رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'مقالات مهندسی برق'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

24 نتیجه پیدا شد

  1. Mehdi.Aref

    آشنایی کلی با پست برق

    ایستگاه های برق به طور کلی به عنوان رابط بین قسمت های تولید ( نیروگاه ) و توزیع برق ( مصرف کننده ها ) در یک سیستم می باشند. در این میان ایستگاه های فوق توزیع نیز به عنوان نقش ارتباط دهنده انتقال نیروی برق و توزیع برق می باشند. مقاله زیر به صورت PDF در مورد آشنایی کلی با پست ها می باشد که امیدوارم بدردتون بخوره. دانلود مقاله
  2. -نحوه اجراي سيستم ارت جهت رعايت سيستم TN-C-S در داخل ساختمان و T-T در شبكه عمومي و ايجاد تناسب بين اين دو به نحويكه مشكلي از جهت ايمني ساكنين و شبكه پيش نيايد بشرح بندهای زير عمل می شود. -لازم است اتصال زمين و لحاظ نمودن آخرين پيشرفتهاي روز در زمينه احداث چاه ارت (استفاده از بنتونيت و ساير مواد كاهش دهنده مقاومت) با مقاومت حداكثر 2 اهم اجرا شود. IEC-60100) و (VDE-0140 در اينصورت مي‌توان با همبندي شمش‌هاي نول و ارت در محل تابلوي كنتور مشتركين، هم براي ارت كردن سيستم داخلي و هم براي زمين كردن بدنه تابلو، از اتصال زمين واحدي استفاده نمود. -لازم است مقدار مقاومت اتصال زمين توسط مهندس ناظر و نماينده شركت برق اندازه‌گيري شود و از پذيرفتن ارتهاي با مقاومت بالاتر از 2 اهم جداً خودداري گردد. (به دليل آنكه بي‌خطر بودن روش فوق بستگي بسيار زيادي به اين مطلب دارد.) -در داخل ساختمان لازم است همبندي بنحو مؤثري رعايت شود و المانهاي فلزي موجود در سازه با روش مناسب، اتصال الكتريكي مورد نياز را داشته باشند تا در صورت بروز هرگونه اشكال احتمالي روي شبكه عمومي برق، امكان بروز حادثه براي ساكنين وجود نداشته باشد. -لازم است موارد فوق براي تمامي منازل، مغازه‌ها، واحدهاي صنعتي و بطور كلي هرگونه متقاضي (بدون درنظر گرفتن متراژ و تعداد طبقات) انجام شود. -لازم است اندازه‌گيري مستمر ارتهاي نصب شده در ساختمانها حداقل سالي يكبار انجام گرديده و در صورت بالاتر بودن از استاندارد نسبت به اصلاح ارت اقدام گردد. مسئوليت انجام اين كار با مالك با مالكين است و وي مي‌تواند بدين منظور از دفاتر مورد تأييد سازمان نظام مهندسي ساختمان استفاده نمايد. الزامات چاه ارت : جنس صفحه و ميله ارت انتخاب الكترودهاي ميله‌اي يا صفحه‌اي و … بايد براساس مقتضيات محل، انجام گيرد. مقاومت الكترودهاي ميله‌ايي تقريباً برابر مي‌باشد كه r مقاومت ويژه خاك و L طول ميله است. براي ميله‌هاي معمول كه مقدار L برابر 1.5 تا 2.45 متر مي‌باشد، ملاحظه مي‌شود كه الكترود ميله‌اي بدون اتخاذ تدابير تكميلي به هيچ عنوان قادر به ايجاد مقاومت زير 2 W نيست. لذا بايد از الكتروليت مناسبي مانند بنتونيت يا الكتروليتهاي ديگري كه خواص الكتريكي و شيميايي آنها به تأييد مراجع ذيصلاح رسيده است استفاده كرد. در مورد الكترود صفحه‌اي مقاومت با رابطه تقريبي تعيين مي‌شود كه l محيط صفحه الكترود است. جنس صفحه و ميله: بنا به توصيه VDE-0140 الويت در بين الكترودهاي موجود به ترتيب زير است: 1 فولاد گالوانيزه 2 آهن روكش شده با سرب 3 مس خالص 4 ميله فولادي كاپر ولد شده 5 ميله فولادی با روکش مس (اکسترودشده) لذا لازم است از ميله فولادي كه داراي روكش گالوانيزه گرم به ضخامت حداقل 90 ميكرون باشد، بعنوان الكترود ميله‌اي و از صفحه مسي با درجه خلوص 99.9 % بعنوان الكترود صفحه‌اي استفاده شود. تجربه نشان مي‌دهد الكترودهاي صفحه‌اي نتايج بهتري نشان مي‌دهند. نحوه اتصال سيم زمين به الكترود ارت با توجه به اينكه چگونگي اين اتصال نقش بسيار محسوسي در مقاومت نهايي و دوام الكترود دارد ترجيحاً از جوش انفجاري (CadWeld) استفاده شود. مقطع سيم اتصال دهنده به صفحه طبق توصيه VDE و با توجه به شرايط موجود در استان اصفهان مقطع سيم رابط بين الكترود و بدنه از رابطه بدست مي‌آيد كه I²k1 ماكزيمم جريان اتصال كوتاه تك فاز است. چنانچه محاسبه اين جريان به هر دلیل امكان‌پذير نباشد، مي‌توان از سيم نمره 35 كه حائز حاشيه اطمينان لازم است، استفاده نمود.
  3. جزوه درسی آموزش PLC زبان برنامه نویسی LD رو می تونید از لینک زیر دانلود کنید. دانلود جزوه آموزش PLC
  4. ماشینهای سنکرون ● تاریخچه وساختار ماشین سنکرون همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی الکتریکی و کاربردهای خاص دیگر ایفاء کرده است. ژنراتور سنکرون تاریخچه ای بیش از صد سال دارد. اولین تحولات ژنراتور سنکرون در دهه ۱۸۸۰ رخ داد. در نمونه های اولیه مانند ماشین جریان مستقیم، روی آرمیچر گردان یک یا دو جفت سیم پیچ وجود داشت که انتهای آنها به حلقه های لغزان متصل می شد و قطبهای ثابت روی استاتور، میدان تحریک را تامین می کردند. به این طرح اصطلاحاً قطب خارجی می گفتند. در سالهای بعد نمونه دیگری که در آن محل قرار گرفتن میدان و آرمیچر جابجا شده بود مورد توجه قرار گرفت. این نمونه که شکل اولیه ژنراتور سنکرون بود، تحت عنوان ژنراتور قطب داخلی شناخته و جایگاه مناسبی در صنعت برق پیدا کرد. شکلهای مختلفی از قطبهای مغناطیسی و سیم پیچهای میدان روی رتور استفاده شد، در حالی که سیم پیچی استاتور، تکفاز یا سه فاز بود. محققان بزودی دریافتند که حالت بهینه از ترکیب سه جریان متناوب با اختلاف فاز نسبت به هم بدست می آید. استاتور از سه جفت سیم پیچ تشکیل شده بود که در یک طرف به نقطه اتصال ستاره و در طرف دیگر به خط انتقال متصل بودند. هاسلواندر اولین ژنراتور سنکرون سه فاز را در سال ۱۸۸۷ ساخت که توانی در حدود ۸/۲ کیلووات را در سرعت ۹۶۰ دور بر دقیقه (فرکانس ۳۲ هرتز) تولید می کرد. این ماشین دارای آرمیچر سه فاز ثابت و رتور سیم پیچی شده چهار قطبی بود که میدان تحریک لازم را تامین می کرد. این ژنراتور برای تامین بارهای محلی مورد استفاده قرار می گرفت. در سال ۱۸۹۱ برای اولین بار ترکیب ژنراتور و خط بلند انتقال به منظور تامین بارهای دوردست با موفقیت تست شد. انرژی الکتریکی تولیدی این ژنراتور توسط یک خط انتقال سه فاز از لافن به نمایشگاه بین المللی فرانکفورت در فاصله ۱۷۵ کیلومتری منتقل می شد. ولتاژ فاز به فاز ۹۵ ولت، جریان فاز ۱۴۰۰ آمپر و فرکانس نامی ۴۰ هرتز بود. رتور این ژنراتور که برای سرعت ۱۵۰ دور بر دقیقه طراحی شده بود، ۳۲ قطب داشت. قطر آن ۱۷۵۲ میلیمتر و طول موثر آن ۳۸۰ میلیمتر بود. جریان تحریک توسط یک ماشین جریان مستقیم تامین می شد. استاتور آن ۹۶ شیار داشت که در هر شیار یک میله مسی به قطر ۲۹ میلیمتر قرار می گرفت. از آنجا که اثر پوستی تا آن زمان شناخته نشده بود، سیم پیچی استاتور متشکل از یک میله برای هر قطب / فاز بود. بازده این ژنراتور ۵/۹۶% بود که در مقایسه با تکنولوژی آن زمان بسیار عالی می نمود. طراحی و ساخت این ژنراتور را چارلز براون انجام داد. در آغاز، اکثر ژنراتورهای سنکرون برای اتصال به توربینهای آبی طراحی می شدند، اما بعد از ساخت توربینهای بخار قدرتمند، نیاز به توربوژنراتورهای سازگار با سرعت بالا احساس شد. در پاسخ به این نیاز اولین توربورتور در یکی از زمینه های مهم در بحث ژنراتورهای سنکرن، سیستم عایقی است. مواد عایقی اولیه مورد استفاده مواد طبیعی مانند فیبرها، سلولز، ابریشم، کتان، پشم و دیگر الیاف طبیعی بودند. همچنین رزینهای طبیعی بدست آمده از گیاهان و ترکیبات نفت خام برای ساخت مواد عایقی مورد استفاده قرارمی گرفتند. در سال ۱۹۰۸ تحقیقات روی عایقهای مصنوعی توسط دکتر بایکلند آغاز شد. در طول جنگ جهانی اولی رزین های آسفالتی که بیتومن نامیده می شدند، برای اولین بار همراه با قطعات میکا جهت عایق شیار در سیم پیچهای استاتور توربوژنراتورها مورد استفاده قرار گرفتند. این قطعات در هر دو طرف، با کاغذ سلولز مرغوب احاطه می شدند. در این روش سیم پیچهای استاتور ابتدا با نوارهای سلولز و سپس با دو لایه نوار کتان پوشیده می شدند. سیم پیچها در محفظه ای حرارت می دیدند و سپس تحت خلا قرار می گرفتند. بعد از چند ساعت عایق خشک و متخلخل حاصل می شد. سپس تحت خلا، حجم زیادی از قیر داغ روی سیم پیچ ها ریخته می شد. در ادامه محفظه با گاز نیتروژن خشک با فشار ۵۵۰ کیلو پاسکال پر و پس از چند ساعت گاز نیتروژن تخلیه و سیم پیچها در دمای محیط خنک و سفت می شدند. این فرآیند وی پی آی نامیده می شد. در اواخر دهه ۱۹۴۰ کمپانی جنرال الکتریک به منظور بهبود سیستم عایق سیم پیچی استاتور ترکیبات اپوکسی را برگزید. در نتیجه این تحقیقات، یک سیستم به اصطلاح رزین ریچ عرضه شد که در آن رزین در نوارها و یا وارنیش مورد استفاده بین لایه ها قرار می گرفت. در دهه های ۱۹۴۰ تا ۱۹۶۰ همراه با افزایش ظرفیت ژنراتورها و در نتیجه افزایش استرسهای حرارتی، تعداد خطاهای عایقی به طرز چشمگیری افزایش یافت. پس از بررسی مشخص شد علت اکثر این خطاها بروز پدیده جدا شدن نوار یا ترک خوردن آن است. این پدیده به علت انبساط و انقباض ناهماهنگ هادی مسی و هسته آهنی به وجود می آمد. برای حل این مشکل بعد از جنگ جهانی دوم محققان شرکت وستینگهاوس کار آزمایشگاهی را بر روی پلی استرهای جدید آغاز کرده و سیستمی با نام تجاری ترمالاستیک عرضه کردند. نسل بعدی عایقها که در نیمه اول دهه ۱۹۵۰ مورد استفاده قرار گرفتند، کاغذهای فایبرگلاس بودند. در ادامه در سال ۱۹۵۵ یک نوع عایق مقاوم در برابر تخلیه جزیی از ترکیب ۵۰ درصد رشته های فایبرگلاس و ۵۰ درصد رشته های PET بدست آمد که روی هادی پوشانده می شد و سپس با حرارت دادن در کوره های مخصوص، PET ذوب شده و روی فایبرگلاس را می پوشاند. این عایق بسته به نیاز به صورت یک یا چند لایه مورد استفاده قرار می گرفت. عایق مذکور با نام عمومی پلی گلاس و نام تجاری داگلاس وارد بازار شد. مهمترین استرسهای وارد بر عایق استرسهای حرارتی است. بنابراین سیستم های عایقی همواره در ارتباط تنگاتنگ با سیستم های خنک سازی بوده اند. خنک سازی در ژنراتورهای اولیه توسط هوا انجام می گرفت. بهترین نتیجه بدست آمده با این روش خنک سازی یک ژنراتور MVA۲۰۰ با سرعت rpm۱۸۰۰ بود که در سال ۱۹۳۲ در منطقه بروکلین نیویورک نصب شد. اما با افزایش ظرفیت ژنراتورها نیاز به سیستم خنک سازی موثرتری احساس شد. ایده خنک سازی با هیدروژن اولین بار در سال ۱۹۱۵ توسط ماکس شولر مطرح شد. تلاش او برای ساخت چنین سیستمی از ۱۹۲۸ آغاز و در سال ۱۹۳۶ با ساخت اولین نمونه با سرعت rpm۳۶۰۰ به نتیجه رسید. در سال ۱۹۳۷ جنرال الکتریک اولین توربوژنراتور تجاری خنک شونده با هیدروژن را روانه بازار کرد. این تکنولوژی در اروپا بعد از سال ۱۹۴۵ رایج شد. در دهه های ۱۹۵۰ و ۱۹۶۰ روشهای مختلف خنک سازی مستقیم مانند خنک سازی سیم پیچ استاتور با گاز، روغن و آب پا به عرصه ظهور گذاشتند تا آنجا که در اواسط دهه ۱۹۶۰ اغلب ژنراتورهای بزرگ با آب خنک می شدند. ظهور تکنولوژی خنک سازی مستقیم موجب افزایش ظرفیت ژنراتورها به میزان MVA۱۵۰۰ شد. یکی از تحولات برجسته ای که در دهه ۱۹۶۰ به وقوع پیوست تولید اولین ماده ابررسانای تجاری یعنی نیوبیوم تیتانیوم بود که در دهه های بعدی بسیار مورد توجه قرار گرفت. ● تحولات دهه ۱۹۷۰ در این دهه تحول مهمی در فرآیند عایق کاری ژنراتور رخ داد. قبل از سال ۱۹۷۵ اغلب عایقها را توسط رزینهای محلول در ترکیبات آلی فرار اشباع می کردند. در این فرآیند، ترکیبات مذکور تبخیر و در جو منتشر می شد. با توجه به وضع قوانین زیست محیطی و آغاز نهضت سبز در اوایل دهه ۱۹۷۰، محدودیتهای شدیدی بر میزان انتشار این مواد اعمال شد که حذف آنها را از این فرآیند در پی داشت. در نتیجه استفاده از مواد سازگار با محیط زیست در تولید و تعمیر ماشینهای الکتریکی مورد توجه قرار گرفت. استفاده از رزینهای با پایه آبی یکی از اولین پیشنهاداتی بود که مطرح شد، اما یک راه حل جامعتر که امروزه نیز مرسوم است، کاربرد چسبهای جامد بود. در همین راستا تولید نوارهای میکای رزین ریچ بدون حلال نیز توسعه یافت. از دیگر پیشرفتهای مهم این دهه ظهور ژنراتورهای ابررسانا بود. یک ماشین ابررسانا عموماً از یک سیم پیچ میدان ابررسانا و یک سیم پیچ آرمیچر مسی تشکیل شده است. هسته رتور عموماً آهنی نیست، چرا که آهن به دلیل شدت بالای میدان تولیدی توسط سیم پیچی میدان اشباع می شود. فقط در یوغ استاتور از آهن مغناطیسی استفاده می شود تا به عنوان شیلد و همچنین منتقل کننده شار بین قطبها عمل کند. عدم استفاده از آهن، موجب کاهش راکتانس سنکرون (به حدود pu۵/۰ ۳/۰) در این ماشینها شده که طبعاً موجب پایداری دینامیکی بهتر می شود. همانطور که اشاره شد، اولین ماده ابررسانای تجاری نیوبیوم تیتانیوم بود که تا دمای ۵ درجه کلوین خاصیت ابررسانایی داشت. البته در دهه های بعد پیشرفت این صنعت به معرفی مواد ابررسانایی با دمای عملکرد ۱۱۰ درجه کلوین انجامید. براین اساس مواد ابررسانا را به دو گروه دما پایین مانند نیوبیوم – تیتانیوم و دما بالا مانند BSCCO ۲۲۲۳ تقسیم می کنند. از اوایل دهه ۱۹۷۰ تحقیقات بر روی ژنراتورهای ابررسانا با استفاده از هادیهای دما پایین آغاز شد. در این دهه کمپانی وستینگهاوس تحقیقات برای ساخت یک نمونه دوقطبی را با استفاده هادیهای دماپایین آغاز کرد. نتیجه این پروژه ساخت و تست یک ژنراتور MVA۵ در سال ۱۹۷۲ بود. در سال ۱۹۷۰ کمپانی جنرال الکتریک ساخت یک ژنراتور ابررسانا را با استفاده از هادی های دماپایین، با هدف نصب در شبکه آغاز کرد. ساخت و تست این ژنراتور MVA۲۰، دو قطب و rpm۳۶۰۰ در سال ۱۹۷۹ به پایان رسید. در این ماشین از روش طراحی هسته هوایی بهره گرفته شده بود و سیم پیچ میدان آن توسط هلیم مایع خنک می شد. این ژنراتور، بزرگترین ژنراتور ابررسانای تست شده تا آن زمان (۱۹۷۹) بود. در سال ۱۹۷۹ وستینگهاوس و اپری ساخت یک ژنراتور ابررسانای MVA۳۰۰ را آغاز کردند. این پروژه در سال ۱۹۸۳ به علت شرایط بازار جهانی با توافق طرفین لغو شد. در همین زمینه کمپانی زیمنس ساخت ژنراتورهای دماپایین را در اوایل دهه ۱۹۷۰ شروع کرد. در این مدت یک نمونه رتور و یک نمونه استاتور با هسته آهنی برای ژنراتور MVA ۸۵۰ با سرعت rpm۳۰۰۰ ساخته شد، اما به دلیل مشکلاتی تست عملکرد واقعی آن انجام نشد. در این دهه آلستوم نیز طراحی یک رتور ابررسانا برای یک توربو ژنراتور سنکرون را آغاز کرد. این رتور در یک ماشین MW۲۵۰ به کار رفت. با توجه به اهمیت خنک سازی در کارکرد مناسب ژنراتورهای ابررسانا، همگام با توسعه این صنعت، طرحهای خنک سازی جدیدی ارایه شد. در ۱۹۷۷ اقای لاسکاریس یک سیستم خنک سازی دوفاز (مایع گاز) برای ژنراتورهای ابررسانا ارایه کرد. در این طرح بخشی از سیم پیچ در هلیم مایع قرار می گرفت و با جوشش هلیم دردمای ۲/۴ کلوین خنک می شد. جداسازی مایع ازگاز توسط نیروی گریز از مرکز ناشی از چرخش رتور صورت می گرفت. ● جمع بندی تحولات دهه ۱۹۷۰ تمرکز اکثر تحقیقات بر روی کاربرد مواد ابررسانا در ژنراتورها بوده است. ۱) استفاده از روشهای کامپیوتری برای تحلیل و طراحی ماشینهای الکتریکی آغاز شد. ۲) حلالها از سیستمهای عایق کاری حذف شدند و تکنولوژی رزین ریچ بدون حلال ارایه شد. ● تحولات دهه ۱۹۸۰ در این دهه نیز همچون دهه های گذشته سیستم های عایقی از زمینه های مهم تحقیقاتی بوده است. در این دهه آلستوم یک فرمول جدید اپوکسی بدون حلال کلاس F در ترکیب با گلاس فابریک و نوع خاصی از کاغذ میکا با نام تجاری دورتناکس را ارایه داد. این سیستم عایق کاری دارای استحکام مکانیکی بیشتر، استقامت عایقی بالاتر، تلفات دی الکتریک پایینتر و مقاومت حرارتی کمتری نسبت به نمونه های قبلی بود. در ادامه کار بر روی پروژه های ابررسانا، در سال ۱۹۸۸ سازمان توسعه تکنولوژی صنعتی و انرژیهای نو ژاپن پروژه ملی ۱۲ ساله سوپر جی ام را آغاز کرد که نتیجه آن در دهه های بعدی به ثمر رسید. سیستم های خنک سازی ژنراتورهای ابررسانا هنوز در حال پیشرفت بودند. در این زمینه می توان به ارایه طرح سیستم خنک سازی تحت فشار توسط انستیتو جایری ژاپن اشاره کرد. این طرح که در سال ۱۹۸۵ ارایه شد دارای یک مبدل حرارتی پیشرفته و یک مایع ساز هلیم با ظرفیت ۳۵۰ لیتر بر ثانیه بود. در این مقطع شاهد تحقیقاتی در زمینه مواد آهن ربای دائم بودیم. استفاده از آهنرباهای نئودیمیوم – آهن بورون در این دهه تحول عظیمی در ساخت ماشینهای آهنربای دائم ایجاد کرد. مهمترین خصوصیت آهنرباهای نئودیمیوم آهن بورون انرژی مغناطیسی (BHmax) بالای آنهاست که سبب می شود قیمت هر واحد انرژی مغناطیسی کاهش یابد. علاوه بر این، انرژی زیاد تولیدی امکان به کارگیری آهنرباهای کوچکتر را نیز فراهم می کند، بنابراین اندازه سایر اجزا ماشین از قبیل قطعات آهن و سیم پیچی نیز کاهش می یابد و در نتیجه ممکن است هزینه کل کمتر شود. شایان ذکر است حجم بالایی از تحقیقات انجام شده این دهه در زمینه ژنراتورهای بدون جاروبک و خودتحریکه برای کاربردهای خاص بوده که به علت عمومیت نیافتن در صنعت ژنراتورهای نیروگاهی از شرح آنها صرفنظر می شود. جمع بندی تحولات دهه ۱۹۸۰ با بررسی مقالات IEEE این دهه (۴۱ مقاله) در موضعات مختلف مرتبط با ژنراتور سنکرون به نتایج زیر می رسیم: ۱) تمرکز موضوعی مقالات در شکل نشان داده شده است. ۲) روشهای قبلی عایق کاری به منظور کاهش مقاومت حرارتی عایق بهبود یافت. ۳) مطالعات وسیعی روی ژنراتورهای سنکرون بدون جاروبک بدون تحریک صورت گرفت. ۴ فعالیت روی پروژه های ژنراتورهای ابررسانای آغاز شده در دهه قبل ادامه یافت. ۵) سیستمهای خنک سازی جدیدی برای ژنراتورهای ابررسانا ارایه شد. ۶) روش اجزای محدود در طراحی و تحلیل ژنراتورهای سنکرون خصوصاً ژنراتورهای آهنربای دائم به شکل گسترده ای مورد استفاده قرار گرفت. ● از ابتدای دهه ۱۹۹۰ تاکنون مهندس مهدی ثواقبی فیروزآبادی دکتر ابوالفضل واحدی مهندس حسین هوشیار هدف از انجام این تحقیق بررسی سیر تحقیقات انجام شده با موضوع طراحی ژنراتور سنکرون است. به این منظور، بررسی مقالات منتشر شده در IEEE که با این موضوع مرتبط بودند، در دستور کار قرار گرفت. به عنوان اولین قدم کلیه مقالات مرتبط در دهه های مختلف جستجو و بر مبنای آنها یک تقسیم بندی موضوعی انجام شد. سپس سعی شد بدون پرداختن به جزییات، سیر تحولات استخراج شود. رویکرد کلی این بوده که تحولات دارای کاربرد صنعتی بررسی شوند. با توجه به گستردگی موضوع و حجم مطالب این گزارش در دو بخش ارایه شده است. در بخش اول پیشرفتهای ژنراتورهای سنکرون از آغاز تا انتهای دهه ۱۹۸۰ بررسی شد. در این بخش تحولات این صنعت از ابتدای دهه ۱۹۹۰ تاکنون مورد توجه قرار گرفته است. در پایان هر دهه یک جمعبندی از کل فعالیتهای صورت گرفته ارایه و سعی شده است ارتباط منطقی بین پیشرفتهای هر دهه با دهه های قبل و بعد بیان شود. در پایان گزارش با توجه به تحقیقات انجام شده و در حال انجام، تلاش شده نمایی از پیشرفتهای عمده مورد انتظار در سالهای آینده ترسیم شود. ● تحولات دهه ۱۹۹۰ در این دهه نیز همچون دهه های گذشته تلاشهای زیادی در جهت بهبود سیستمهای عایقی صورت گرفت. در این میان می توان به ارایه سیستمهای عایق میکاپال که توسط کمپانی جنرال الکتریک از ترکیب انواع آلکیدها و اپوکسیها در سال ۱۹۹۰ بدست آمده بود، اشاره کرد. درسال ۱۹۹۲ شرکت وستینگهاوس الکتریک یک سیستم جدید عایق سیم پیچ رتور کلاس F را ارایه کرد. این سیستم شامل یک لایه اپوکسی گلاس بود که با چسب پلی آمید اپوکسی روی هادی مسی چسبانده می شد. مقاومت در برابر خراشیدگی، استرسهای الکتریکی و مکانیکی و کاهش زوال حرارتی از مزایای این سیستم بود. گروه صنعتی ماشینهای الکتریکی و توربین نانجینگ عایق سیم پیچ رتور جدیدی از جنس نومکس اشباع شده با وارنیش چسبی را در سال ۱۹۹۸ ارایه کرد. از مهمترین مزایای این سیستم می توان به انعطاف پذیری و استقامت عایقی، بهبود اشباع شوندگی با وارنیش، تمیزکاری آسان و عدم جذب رطوبت اشاره کرد. در اواخر دهه ۱۹۹۰ تلاشهایی برای افزایش هدایت گرمایی عایقها صورت گرفت. آقای میلر از شرکت زیمنس وستینگهاوس روشی را ارایه کرد که در آن لایه پرکننده مورد استفاده در طرحهای قبلی به وسیله رزینهای مخصوصی جایگزین می شد. مزیت اصلی این روش پرشدن فاصله هوایی بین لایه پرکننده و دیواره استاتور بود که موجب می شد هدایت گرمایی عایق استاتور به طرز چشمگیری افزایش پیدا کند. دراین دهه مسائل مکانیکی در عملکرد ماشینهای سنکرون بیشتر مورد توجه قرار گرفت. در سال ۱۹۹۳ آقای جانگ از دانشگاه برکلی روشی برای کاهش لرزش در ژنراتورهای آهنربای دائم ارایه کرد. لرزش در ژنراتورهای آهنربای دائم در اثر نیروهای جذبی اعمال شده توسط آهنرباهای دائم گردان به استاتور است. در این روش لرزشها با استفاده از سنسورهای ماکسول، روش اجزاء محدود و بسط فوریه مورد بررسی قرار می گرفت و نهایتاً برای کاهش لرزشها، ابعاد هندسی جدیدی برای آهنرباها ارایه می شد البته با این شرط که کارایی ماشین افت نکند. همزمان با پیشرفتهای مذکور، افزایش سرعت و حافظه کامپیوترها و ظهور نرم افزارهای قدرتمند موجب شد تا راه برای استفاده از کامپیوترها در تحلیل و طراحی ژنراتورهای سنکرون بیش از پیش باز شود. در سال ۱۹۹۵ آقای کوان روشی برای طراحی سیستمهای خنک سازی با هیدروژن ارایه کرد که بر مبنای محاسبات کامپیوتری دینامیک شاره پایه ریزی شده بود. دراین روش بااستفاده از یک مدل معادل سیستم خنک سازی، توزیع دما در بخشهای مختلف ژنراتور پیش بینی می شد. نحوه پیاده سازی سیستمهای خنک سازی نیز از جمله موضوعاتی بود که مورد توجه قرار گرفت. در سال ۱۹۹۵ اقای آیدیر تاثیر مکان حفره های تهویه برمیدان مغناطیسی ژنراتور سنکرون را با استفاده از روش اجزاء محدود مورد بررسی قرار داد و نشان داد که انتخاب مکان مناسب حفره های تهویه جهت جلوگیری از افزایش جریان مغناطیس کنندگی و پدیده اشباع بسیار حائز اهمیت است. مکان حفره ها تاثیر قابل توجهی بر شار یوغ دارد. از مهمترین تحولاتی که در این دهه در زمینه ژنراتورهای ابررسانا صورت گرفت می توان به نتایج پروژه سوپرجی ام که از دهه قبل در ژاپن آغاز شده بود، اشاره کرد. حاصل این پروژه ساخت و تست سه مدل رتور ابررسانا برای یک استاتور بود. مدل اول که در ترکیب با استاتور، خروجی MW۷۹ را می داد در سال ۱۹۹۷ و مدل دوم در سال ۱۹۹۸ با خروجی MW۷/۷۹ تست شد. نهایتاً مدل سوم که دارای یک سیستم تحریک پاسخ سریع بود در سال ۱۹۹۹ تست و در شبکه قدرت نصب شد. با بکارگیری مواد ابررسانای دمابالا در این دهه، تکنولوژی ژنراتورهای سنکرون ابررسانا وارد مرحله جدیدی شد. کمپانی جنرال الکتریک طراحی، ساخت و تست یک سیم پیچ دمابالا را در اواسط این دهه به پایان رساند. در ادامه، همکاری وستینگهاوس و شرکت ابررسانای آمریکا به طراحی یک ژنراتور ابررسانای دما بالای ۴ قطب، rpm۱۸۰۰، Hz۶۰ انجامید. این دهه شاهد پیشرفتهای مهمی در زمینه سیستمهای تحریک مانند ظهور سیستمهای تحریک استاتیک الکترونیکی بود. استفاده از اینگونه سیستمها باعث انعطاف پذیری در طراحی سیستمهای تحریک و جذب مشکلات نگهداری جاروبک در اکسایترهای گردان می شد. یکی از اولین نمونه های این سیستمها در سال ۱۹۹۷ توسط آقای شافر از کمپانی باسلر الکتریک آلمان ارایه شد. در این مقطع زمانی کاربرد سیستمهای دیجیتال در تحریک ژنراتورها آغاز شد. یکی از اولین نمونه های سیستم تحریک دیجیتالی، سیستمی بود که در سال ۱۹۹۹ توسط آقای ارسگ از دانشگاه زاگرب کرواسی ارایه شد. در ادامه تلاشهای صورت گرفته برای بهبود خنک سازی، شرکت زیمنس وستینگهاوس طرح یک ژنراتور بزرگ با خنک سازی هوایی را در سال ۱۹۹۹ ارایه داد. ارایه این طرح آغازی بر تغییر طرحهای خنک سازی از هیدروژنی به هوایی بود. استفاده از عایقهای استاتور نازک دمابالا و کاربرد محاسبات کامپیوتری دینامیک شاره موجب اقتصادی شدن این طرح نسبت به خنک سازی هیدروژنی شد. پایان دهه ۹۰ مصادف با ظهور تکنولوژی پاورفرمر بود. در اوایل بهار سال ۱۹۹۸ دکتر لیجون از کمپانی ABB سوئد، ایده تولید انرژی الکتریکی در ولتاژهای بالا را ارایه کرد. مهمترین ویژگی این طرح استفاده از کابلهای فشار قوی پلی اتیلن متقاطع معمول در سیستمهای انتقال و توزیع در سیم پیچی استاتور است. در این طرح به علت سطح ولتاژ بسیار بالا از کابلهای استوانه ای به منظور حذف تخلیه جزیی و کرونا استفاده می شود. در سال ۱۹۹۸ اولین نمونه پاورفرمر در نیروگاه پرجوس واقع در شمال سوئد نصب شد. این پاورفرمر دارای ولتاژ نامی KV۴۵، توان نامی MVA۱۱ و سرعت نامی rpm۶۰۰ بود. یکی از مسائل مهم مطرح در پاورفرمر فیکس شدن دقیق کابلها در شیارها به منظور جلوگیری از تخریب لایه بیرونی نیمه هادی کابل در اثر لرزشها است. به این منظور کابلها را با استفاده از قطعات مثلثی سیلیکون – رابر فیکس می کنند. به علت پایین بودن جریان سیم پیچ استاتور پاورفرمر تلفات مسی ناچیز است، لذا استفاده از یک مدار خنک سازی آبی کافی است. سیستم خنک سازی دمای عملکرد کابلها را در حدود ۷۰ درجه سانیگراد نگه می دارد، در حالی که طراحی عایقی کابلها برای دمای نامی ۹۰ درجه انجام شده است. لذا می توان پاورفرمر را بدون مشکل خاصی زیر اضافه بار برد. ● جمعبندی تحولات دهه ۱۹۹۰ با بررسی مقالات IEEE این دهه (۱۵۷ مقاله) در موضوعات مختلف مرتبط با ژنراتور سنکرون به نتایج زیر می رسیم: ۱) تمرکز موضوعی مقالات ۲) فعالیت روی ژنراتورهای ابررسانای دمابالا آغاز شد. ۳) کاربرد سیستمهای تحریک استاتیک و دیجیتال گسترش یافت. ۴) روشهای کاهش لرزش حین عملکرد ژنراتور مورد توجه قرار گرفت. ۵) در اوایل دهه رویکرد طراحان بهبود عملکرد سیستمهای خنک سازی هیدروژنی بود، اما در اواخر دهه سیستمهای خنک سازی با هوا به دلایل زیر مجدداً مورد توجه قرار گرفتند: الف) تولید عایقهای استاتور نازکتر با مقاومت حرارتی پایینتر ب) ظهور روشهای محاسبات کامپیوتری دینامیک شاره ج) ارزانی و سادگی ساخت سیستمهای خنک سازی با هوا ۶) تکنولوژی پاورفرمر ابداع شد. ۷) رویکرد طراحان از افزایش ظرفیت ژنراتورها به سمت ارایه طرحهای برنده برنده یعنی کیفیت و هزینه مورد قبول برای مشتری و تولید کننده تغییر کرد. ● تحولات ۲۰۰۰ به بعد همچون دهه های پیش، روند روزافزون استفاده از روشهای عددی خصوصاً روش اجزاء محدود ادامه یافت. آقای زولیانگ یک روش اجزاء محدود جدید را با بهره گیری از عناصر قوسی شکل در مختصات استوانه ای ارایه کرد. مزایای این روش دقت زیاد و فرمولبندی ساده بود. این روش برای تحلیل میدان درشکلهای استوانه ای مانند ماشینهای الکتریکی بسیار مناسب است. در سال ۲۰۰۴ آقای شولت روش نوینی برای طراحی ماشینهای الکتریکی ارایه داد که ترکیبی از روش اجزاء محدود و روشهای تحلیلی بود. از روش تحلیلی برای طراحی اولیه بر مبنای گشتاور، جریان و سرعت نامی و از روش اجزاء محدود برای تحلیل دقیق میدانها به منظور تکامل طرح اولیه استفاده می شد. به این ترتیب زمان و هزینه مورد نیاز طراحی کاهش می یافت. در زمینه عایق تلاشها جهت بهبود هدایت گرمایی در سال ۲۰۰۱ به ارایه یک سیستم با هدایت گرمایی بالا توسط کمپانیهای توشیبا و ونرول ایزولا انجامید. اثر بهبود هدایت گرمایی دراین سیستم نسبت به سیستم معمول مشهود است. در زمینه ژنراتورهای ابررسانا می توان به تحولات زیر اشاره کرد. در سال ۲۰۰۲ کمپانی جنرال الکتریک برنامه ای را با هدف ساخت و تست یک ژنراتور MVA۱۰۰ آغاز کرده است. هسته رتور و استاتور این ژنراتور مانند ژنراتورهای معمولی است. هدف این است که یک رتور معمولی بتواند میدان حاصل از سیم پیچی ابررسانا را بدون اشباع شدن از خودعبور دهد. مهمترین قسمتهای این پروژه، سیم پیچ میدان دمابالا و سیستم خنک سازی است از سال ۲۰۰۰ به بعد فعالیتهای گسترده ای در جهت ساخت و نصب پاورفرمرها صورت گرفته است که نتیجه آن نصب چندین پاورفرمر در نیروگاههای مختلف است. این پاورفرمها و مشخصات آنها عبارتند از: ▪ پاورفرمر نیروگاه توربو ژنراتوری اسکیلزتونا سوئد با مشخصات KV۱۳۶، MVA۴۲، rpm۳۰۰۰ ▪ پاورفرمر نیروگاه هیدرو ژنراتوری پرسی سوئد با مشخصات kv۱۵۵، MVA۷۵، rpm۱۲۵ ▪ پاورفرمر نیروگاه هیدروژنراتوری هلجبرو سوئد با مشخصات KV۷۸، MVA۲۵، rpm۴/۱۱۵ ▪ پاورفرمر نیروگاه هیدرو ژنراتوری میلرگریک کانادا با مشخصات KV۲۵، MVA۸/۳۲، rpm۷۲۰ ▪ پاورفرمر نیروگاه هیدروژنراتوری کاتسورازاوا با مشخصات KV۶۶، MVA۹، rpm۵/۴۲۸ ● جمعبندی تحولات ۲۰۰۰ به بعد با بررسی مقالات IEEE این سالها (۱۴۹ مقاله) در موضوعات مختلف مرتبط با ژنراتور سنکرون به نتایج زیر می رسیم: ۱) تمرکز موضوعی مقالات ۲) تلاشهای زیادی برای بهبود هدایت حرارتی عایق سیم پیچی استاتور خنک شونده با هوا با هدف رسیدن به ظرفیتهای بالاتر صورت گرفت. ۳) پاورفرمرها در نیروگاههای مختلف نصب شدند. ۴) فعالیت روی پروژه های ژنراتورهای ابررسانای دمابالا آغاز شده در دهه قبل ادامه یافت. ۵) کاربرد سیستمهای تحریک دیجیتال به خصوص سیستمهای با چند ریزپردازنده گسترش یافت. ۶) استفاده از روشهای عددی در طراحی و آنالیز ژنراتورهای سنکرون به ویژه سیستمهای خنک سازی بسیار گسترش یافت. ● نتیجه گیری ژنراتورهای سنکرون همواره حجم عمده ای از تحقیقات را در دهه های مختلف به خود اختصاص داده اند، تا جایی که بعد از گذشت بیش از ۱۰۰ سال از ارایه اولین نوع ژنراتور سنکرون همچنان شاهد ظهور تکنولوژیهای جدید دراین عرصه هستیم. تکنولوژیهای کلیدی کماکان مسائل عایق کاری و خنک سازی هستند. تکنولوژی پیشرفته تولید ژنراتور و ریسک بالقوه موجود باعث شده است تعداد سازندگان مستقل ژنراتور کاهش یابد. متاسفانه، علی رغم اینکه بالا بردن نقطه زانویی اشباع مواد مغناطیسی می تواند تاثیر به سزایی در پیشرفت ژنراتورها داشته باشد، تاکنون دستاورد مهمی در این زمینه حاصل نشده است. البته تلاشهایی در گذشته برای کاهش تلفات الکتریکی لایه های هسته صورت گرفته است، اما پیشرفتهای حاصله منوط به کاهش ضخامت لایه ها یا افزایش غیرقابل قبول قیمت آنهاست. متاسفانه پیشرفت مهمی نیز در آینده پیش بینی نمی شود. نیاز امروزه بازار ژنراتورهایی است که به نحوی پکیج شده باشند که به راحتی در سایت قابل نصب باشند. پکیجهایی که از یکپارچگی بالایی برخوردارند به طوری که نویز حاصل از عملکرد ژنراتور را در خود نگاه می دارند، در برابر شرایط جوی مقاومند، ترانسفورماتور جریان و ترانسفورماتور ولتاژ دارند، نقطه نوترال در آنهاتعبیه شده و حفاظت اضافه ولتاژ دارند. همچنین سیستم تحریک نیز در این پکیجها تعبیه شده است و تقریباً بی نیاز از نگهداری هستند. پیش بینی می شود روند جایگزینی سیستمهای خنک سازی هیدروژنی به وسیله سیستمهای خنک سازی با هوا ادامه یابد و این در حالی است که بهبود بازده سیستمهای خنک سازی هیدروژنی همچنان مورد توجه است. با توجه به حجم گسترده تحقیقات در حال انجام روی ژنراتورهای ابررسانای دمابالا، تولید گسترده اینگونه ژنراتورها در آینده نزدیک قابل پیش بینی است. پیشرفتهای مورد نیاز در این زمینه به شرح زیر است: ▪ تولید هادیهای رشته ای و استفاده از آنها به جای نوارهای دمابالای امروزی جهت افزایش چگالی جریان ▪ افزایش قابلیت خم کردن سیمهای دمابالا به منظور ایجاد شکل سه بعدی مناسب سیم پیچی رتور درنواحی انتهایی سیم پیچ ▪ استفاده از سیم پیچی لایه ای به جای سیم پیچی های پنکیک به منظور حداقل سازی اتصالات بین کویلها از موضوعات قابل توجه دیگری که پیش بینی می شود صنعت ژنراتور را در سالهای آینده تحت تاثیر قراردهد، تولید انبوه پاورفرمر و رسیدن به سطوح بالاتر ولتاژ است به طوریکه در آینده نزدیک پاور فرمرهایی با ولتاژ KV۱۷۰ برای نیروگاههای توربو ژنراتوری و KV۲۰۰ برای نیروگاههای هیدروژنراتوری ساخته خواهند شد و امید است که سطح ولتاژ خروجی آنها به KV۴۰۰ هم برسد. انتظار می رود پیشرفت سیستمهای عایقی ادامه یابد. ممکن است از تکنولوژیهای جدید عایقی مانند سیستمهای عایق پلیمری پیشرفته استفاده شود و این سیستمها بتوانند با نوارهای میکا گلاس امروزی رقابت کنند. این پیشرفتها می تواند به بهبود کابلهای پاور فرمر نیز بینجامد.
  5. Glint

    دانلود مقالات ieee

    دانلود مقالات مهندسی برق دراین مجموعه مقالات مهندسی برق از IEEE رو براتون میزارم اگر شما هم مقاله ای دارید به لیست مقالات اضافه کنید ممنون
  6. سلام مقاله ای جالب درمورد توربینهای بادی وپایداری شبکه(بنوعی تولید پراکنده) Reliability analysis of grid connected small wind turbine power electronics دانلود
  7. spow

    پديده كرونا در خطوط فشار قوی

    پديده كرونا در خطوط فشار قوي یکی از پدیده هایی که در ارتباط با تجهیزات برقدار از جمله خطوط انتقال فشار قوی مطرح می شود، کرونا است. میدان الکتریکی در نزدیکی ماده رسانا می تواند به حدی متمرکز شود که هوای مجاور خود را یونیزه نماید. این مسئله می تواند منجر به تخلیه جزئی انرژی الکتریکی شود، که به آن کرونا می گویند. عوامل مختلفی ازجمله ولتاز، شکل و قطر رسانا، ناهمواری سطح رسانا، گرد و خاک یا قطرات آب می تواند باعث ایجادگرادیان سطحی هادی شود که در نهایت باعث تشکیل کرونا خواهد شد. در حالتی که فاصله بین هادی ها کم باشد، کرونا ممکن است باعث جرقه زدن و اتصال کوتاه گردد. بدیهی است که کرونا سبب اتلاف انرژی الکتریکی و کاهش راندمان الکتریکی خطوط انتقال می گردد. پدیده کرونا همچنین سبب تداخل در امواج رادیویی می شود. تعریف کرونا تخلیه الکتریکی ایجاد شده به علت افزایش چگالی میدان الکتریکی ،کرونا نام دارد. در حالی که این تعریف بسیار کلی است و انواع پدیده کرونا را شامل می شود. ولتاژ بحرانی گرادیان ولتاژی که سبب شکست الکتریکی در عایق شده و به ازای آن،عایق خاصیت دی الکتریک خود را از دست می دهد، گرادیان ولتاژ بحرانی نامیده می شود. همچنین ولتاژی را که سبب ایجاد این گرادیان بحرانی می شود ولتاژ بحرانی مینامند. ولتاژ مرئی کرونا هرگاه ولتاز خط به ولتاژ بحرانی برسد، یونیزاسیون در هوای مجاورسطح هادی شروع می شود. اما در این حالت پدیده کرونا قابل روئیت نمی باشد. برای مشاهده کرونا، سرعت ذرات الکترون ها در هنگام برخورد با اتم ها و مولکول ها بایدبیشتر باشید یعنی ولتاژ بالاتری نیاز است. ماهیت کرونا هنگامی که میدان الکتریکی سطح هادی از ولتاژ بحرانی بیشتر شده باشد، بهمن الکترونی بوجود خواهد آمد که بوجود آورنده تخلیه کرونای قابل روئیت درسطح هادی است. همواره تعداد کمی الکترون آزاد در هوا به علت مواد رادیو اکتیو موجود در سطح زمین و اشعه کیهانی، وجود دارد. زمانی که هادی در هر نیمه از سیکل ولتاژمتناوب برقدار می شود، الکترون های هوای اطراف سطح آن بوسیله میدان الکترواستاتیک شتاب پیدا می کند. این الکترون ها که دارای بار منفی هستند در نیمه مثبت به طرفهادی شتاب پیدا می کنند و در نیمه منفی از آن دور می شوند. سرعت الکترون آزاد بستگی به شدت میدان الکتریکی دارد. اگر شدت میدان الکتریکی خیلی زیاد نباشد برخورد بین الکترون و مولکول هوا نظیر O2 و یا N2 نرم خواهد بود به این معنی که الکترون از مولکول هوا دور شده و به آن انرژی نمی دهد. به عبارت دیگر اگر شدت میدان الکتریکی از یک مقدار بحرانی معین بیشتر باشد، هر الکترون آزاد در این میدان سرعت کافی بدست می آورد به طوری که برخوردش با مولکول هوا غیر الاستیک خواهد بود و انرژی کافی بدست می آورد که به یکی از مدارهای الکترون های دو اتم موجود در هوا برخورد کند. این پدیده یونیزاسیون نام دارد و مولکولی که این الکترون از دست می دهد تبدیل به یک یون مثبت می شود. الکترون نخستین که بیشتر سرعتش را در برخورد از دست داده والکترونی که مولکول هوا را رانده است هر دو در میدان الکتریکی شتاب می گیرند و هرکدام از آنها در برخورد بعدی توانایی یونیزه کردن یک مولکول هوا را خواهند داشت. بعد از برخورد دوم 4 الکترون به جلو می آیند و به همین ترتیب تعداد الکترون ها بعداز هر برخورد دو برابر می شود. در تمام این مدت الکترون ها به سمت الکترود مثبت میروند و پس از برخوردهای بسیار تعدادشان بطور چشم گیری افزایش می یابد. این مسئله فرایندی است به وسیله آن بهمن الکترونی ایجاد می شود، هر بهمن با یک الکترون آزادکه در میدان الکترواستاتیک قوی قرار دارد آغاز می شود. شدت میدان الکترواستاتیک اطراف هادی همگن نیست. ماکزیموم شدت آن در سطح هادی و میزان شدت با دور شدن از مرکزهادی کاهش می یابد. بنابراین با افزایش ولتاژ هادی در ابتدا تخلیه الکتریکی فقط درسطح بسیار نزدیک ان رخ می دهد. در نیمه مثبت ولتاژ الکترون ها به سمت هادی حرکت میکنند و هنگامیکه بهمن الکترونی ایجاد شد بطرف سطح هادی شتاب می گیرند. در نیمه منفی، بهمن الکترونی از سطح هادی به سمت میدان ضعیف تر جاری می شود تا هنگامی که میدان آنقدر ضعیف شود که دیگر نتواند الکترون ها را شتاب دهد تا به سرع یونیزاسیون برسند. یون های مثبت باقی مانده در بهمن الکترونی به طرف الکترود مثبت حرکت میکنند. با این وجود به دلیل جرم زیادشان که 50000 برابر جرم الکترون است بسیار کندحرکت می کنند. با داشتن بار مثبت این یون ها، الکترون جذب کرده و هرگاه یکی از آنهابتواند الکترون جذب نماید دوباره تبدیل به مولکول هوای خنثی می شود. سطح انرژی یکیون خنثی کمتر از یون مثبت مربوطه است و در نتیجه با جذب الکترون مقداری انرژی ازمولکول منتشر می شود. انرژی آزاد شده درست به اندازه انرژی نخستین است که لازم بودبرای جدا کردن الکترون از مولکول استفاده گردد. این انرژی بصورت موج الکترومغناطیس منتشر می شود و برای مولکول های O2 و N2 در طیف نور مرئی قرار دارد. بهترین زمان برای مشاهده کرونا کرونا در فضای آزاد بعد از یک روز بارانی تا قبل از زمانی که سطوح برقدار خشک شده باشند قابل مشاهده است. پس از خشک شدن کرونا مشاهده نمی شود. نقاط در معرض کرونا با رطوبت خود را بهتر نشان می دهند. باد می تواند فعالیت کرونا راکاهش دهد. کرونا می تواند در اثر قندیل هم ایجاد شود. موتورهای الکتریکی، ژنراتورهاو تابلو های داخلی می توانند کرونای شدید تری ار وسایل خارجی پست ها ایجاد نمایند. تشکیل هوای یونیزه در فضای بسته و عدم حرکت هوا پدیده کرونا را تسریع می کند و ولتاژهایی را ایجاد می کند که در ان کرونا رخ دهد موتورها و ژنراتور ها می توانندبا توجه به وجود فن های خنک کننده شان هوایی با فشار های گوناگون ایجاد کنند. آشکار شدن کرونا صدای هیس مانند قابل شنیدن، ازن، اسید نیتریک (در صورت وجود رطوبت در هوا ) که بصورت گرد کدر سفید جمع می شود و نور (قوی ترین تشعشع در محدوده ماوراءبنفش و ضعیف ترین ان در ناحیه نور مرئی و مادون قرمز که می تواند با چشم غیر مسلح نیز در تاریکی با دوربین های ماوراء بنفش دیده شود) از نشانه های کرونای الکتریکی می باشند. تخلیه بار ناشی از بهمن الکترونی در آزمایشگاه، به سه طریق مختلف مشاهده می شود. بهترین راه تشخیص کرونای مرئی است که به صورت نور بنفش از نواحی با ولتاژاضافی ساطع می شود. دومین راه شناسایی کرونای صدادار است که در حالی که شبکه موردمطالعه در ولتاژی بالاتر از آستانه کرونا باشد صدایی به صورت هیس هیس قابل شنیدن است. امواج صوتی تولید شده به وسیله اغتشاشات موجود در هوای مجاور محل تخلیه بار،به وسیله حرکت یون های مثبت به وجود می آیند. سومین و مهمترین راه مشاهده از نظر ظرکت برق اثرات الکتریکی استکه منجر به اختلال رادیویی می شود. حرکت الکترون ها (بهمن الکترونی) سبب ایجادجریان الکتریکی و در نتیجه به وجود آمدن میدان مغناطیسی و الکترواستاتیکی درمجاورت ان می شود. شکل گیری سریع و انی بودن این میدان ها ولتاز فرکانس بالایی درنزدیک آنتن رادیویی القا می کند و منجر به اختلال رادیویی می شود. انواع کرونا سه نوع مختلف از کرونا وجود دارد که در نمونه تست EHV درآزمایشگاه مشخص می شود: تخلیه پر مانند، تخلیه قلم مویی و تخلیه تابشی. تخلیه پرمانند، دیدنی ترین آنهاست و علت نامگذاری هم این است که به شکل پر تخلیه می شود. زمانیکه در تاریکی مشاهده شود دارای تنه متمرکزی حول هادی است که قطر این هاله نورانی بنفش رنگ از چند اینچ در ولتازهای پایین تر تا یک فوت و بیشتر در ولتازهای بالا تغییر می کند. بروز آثار صوتی این نوع به صورت هیس هیس بوده و به راحتی توسط یک ناظر با تجربه تشخیص داده می شود. در تخلیه قلم مویی پرچمی از نور به صورت شعاعی از سطح هادی خارج می شود. طول این تخلیه ها از کمتر از یک اینچ در ولتاژ های پایینتا 1 تا 2 اینچ در ولتاژهای بالا تغییر می کند. صدای همراه با ان صدایی در پسزمینه مانند صدای سوختن است. تخلیه تابشی نور ضعیفی دارد که به نظر می رسد سطح هادی را در بر گرفته است ولی مانند نوع قلم مویی برجسته نیست. همچنین ممکن است در نواحی بحرانی سطح عایق ها در زمان بالا بودن رطوبت رخ دهد. معمولا صدایی با این نوع تخلیه همراه نیست
  8. سيستم‌های تحريك استاتيك ژنراتورهای سنكرون سيستم‌های تحريك استاتيك ژنراتورهای سنكرون امير فرهادي چكيده: بسياري از مولدهاي الكتريكي در صنايع مختلف با مشكلات نگهداري و خرابيهاي ناشي از سيستم تحريك مواجه هستند. خرابي كموتاتور، تعويض قسمتهاي از تنظيم كننده اتوماتيك و لتاژ، خرابيهاي قسمتهاي گردان در سيستم تحريك، نارسائيهاي مقاومتهاي متغيري كه با موتور كنترل مي‌ شوند و نواقص مربوط به قطع كننده‌هاي DC ميدان، تنها بعضي از مشكلات سيستمهاي مولد قديمي است كه نتيجه آن هزينه‌‌هاي باتري و زمان خاموشي بيشتر است. جايگزيني سيستمهاي تحريك گردان و تجهيزات ملحقه آن با سيستم تحريك استاتيك راه حل مناسبي براي غلبه بر مشكلات فوق مي‌باشد. انعطاف در طراحي سيستمهاي تحريك استايتك شرايطي را ايجاد مي‌كند كه امكان تغيير و اصلاح آن براي كاربرد در ظرفيتهاي بزرگ و كوچك توليد وجود دارد ضمن اينكه هزينه‌هاي نگهداري سيستم تحريك با جارو بك نيز حذف مي‌ شود. در اين مقاله با تشريح سيستمهاي تحريك استاتيك مشتمل بر قسمتهاي قدرت قابل كنترل، ترانسفورماتور قدرت و تنظيم كننده ولتاژ پرداخته مي‌شود. حذف بريكر يا قطع كنندةDC ميدان با صرفه جويي قابل توجهي در هزينه همراه است كه در كنار آن پاسخ سريع و ديگر مزاياي سيستم تحريك استاتيك بر شمرده خواهد شد. درپايان محدويتهاي انتخاب و ملاحظات عملي در انواع سيستمهاي تحريك نيز مرور مي‌شوند. 1 ـ مقدمه 1 ـ 1 ـ عملكرد سيستم تحريك استاتيك يك سيستم تحريك استاتيك به لحظ عملكرد شبيه تنظيم كننده اتوماتيك ولتاژ ميدان رفتار مي‌كند بطوريكه اگر ولتاژ ژنراتور كاهش داشته باشد جريان ميدان را افزايش مي‌‌دهد و بر عكس اگر ولتاژ ژنراتور افزايش داشته باش جريان ميدان را كاهش مي‌دهد. درواقع سيستم تحريك استاتيك توان ميدان اصلي ژنراتور تأمين مي‌‌كند در حاليكه تنظيم كننده ولتاژ، توان ميدان تحريك كننده را برآورده مي‌سازد. درسيستم تحريك استاتيك3 مؤلفه اصلي وجود دارند: قسمت كنترل، پل يكسوساز و ترانسفورماتور قدرت كه در تركيب باهم ميدان ژنراتور را براي استيابي به ولتاژ خروجي مناسب، كنترل مي‌‌كنند شكل (1) بلوكهاي اصلي يك سيستم تحريك استاتيك را نشان مي‌دهد. متن کامل مقاله را از لینک زیر دریافت نمایید : دانلودکنید. در صورت نیاز به پسورد : [Hidden Content]
  9. Mehdi.Aref

    موتورهای الکتریکی

    هر موتور الکتریکی دارای یه سری مشخصات هست ، این مشخصات روی یه پلاک المینیومی هک میشه و به بدنه موتور میچسبه تا مصرف کننده از نوع و کاربرد موتور اگاهی پیدا کنه ، برای اینکه مشخصات موتور فضای زیادی رو اشغال نکنه از یه سری علائم و مشخصات استفاده میشه ، در ادامه مفهوم این علائم اورده شده است .... بر روی همه موتور ها پاکی توسط کار خانه سازنده نصب میشود ، در این پلاک کلیه اطلاعات مورد نیاز برای راه اندازی موتور اورده شده است ، در صورتی که موارد فوق به درستی رعایت نشوند ، موتور میسوزد یا عمر مفید ان کم میشود ، در زیر به بررسی هر یک از این علائم میپردازیم No: مدل موتور که معمولا توسط کار خانه مشخص میشود Type: نام موتور ، با داشتن نام موتور ومراجعه به شرکت سازنده میتونید اطلاعات بیشتری در مورد موتور بدست اورید AMPS ، حداکثر جریان مجازی است که موتور برای کار کردن به ان نیاز دارد . V=ولتاژ كاري الكترو موتور ميباشد كه نبايد ولتاژ بيشتر و يا كمتر به سيم پيچهاي الكترو موتور اعمال گردد . در صورت وجود علامت ستاره (Y ) یا مثلث ، ولتاژ در همان اتصال استفاده میشود (مثلا ولتاژ کاری موتور بالا 415 ولت در حالت ستاره است ) HERTZ : مشخص کننده فرکانس کاری موتور میباشد ، معمولا فرکانس کاری موتور ها 50 یا 60 هرتز است. نكته: دور الكترو موتورها با فركانس ارتباط دارد لذا الكترو موتوري كه در فركانس 50 هرتز مثلا 1500 دور ميباشد همين الكترو موتور در فركانس 60 دورش ديگر 1500 نيست . DATE : مشخص کننده تاریخ ساخت موتور است . R.P. M= نشان دهنده دور الكترو موتور در يك دقيقه در روي شقت خروجي ميباشد. KW=مقدار توان الكترو موتور را نشان ميدهد. نكته : اگر روي الكترو موتوري نوشته شده بود 380/220 V= معني ان اين است كه اين الكترو موتور در شبكه برق 110 ولت كه برخي از كشورها استفاده ميشود بايد بصورت مثلث و در كشورهاي كه ولتاژ 220ولت ( ولتاژ بين يك فاز و نول) دارند مثل ايران بايد بصورت ستاره بسته شود . IP= ميزان حفاظت الكترو موتور در مقابل گرد و غبار و .. و طبق جدول زير ميباشد. P.H انواع حفاظتها طبق استاندارد دين 40050 P00= باز بدون حفاظت در مقابل تماس با اجسام خارجي و اب ، در این مورد موتور باید در یک فضای سرپوشیده نگه داری شود . P10= محفوظ در مقابل تماس دست و اجسام بزرگ خارجي - محافظ در مقابل اب ، موتور میتواند در فضای از وزیر باران کار کند P11= محفوظ در مقابل تماس دست و اجسام بزرگ خارجي - محفوظ در مقابل اب P20= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط بدون حفاظ در مقابل اب ، برای موتور باید سرپوش مناسب تهیه شود P21= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط - ضد اب P22= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط –محفوظ در مقابل ترشح اب بطور عمودي يا مايل با زاويه بيشتر از 30 درجه نسبت به افق P30= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن – بدون محافظت در مقابل اب P31= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن - ضد اب P32= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن - محفوظ در مقابل ترشح اب بطور عمودي يا مايل با زاويه بيشتر از 30 درجه نسبت به افق P40 و بالا تر :حفاظت شده در برابر کلیه عوامل خارجی معمولا هر چه سطح حفاظت موتور بیشتر باشد ، قیمتش نیز گران تر است
  10. Mehdi.Aref

    ژنراتور الکتریکی

    این مقاله PDF در مورد ژنراتورها و نحوه عملکرد آنها می باشد که امیدوارم بدردتون بخوره. دانلود مقاله
  11. spow

    بانک خازنی

    آشنایی با بانک های خازنی می دانیم در شبکه های جریان متناوب توان ظاهری که از مولدها دریافت می شود به دو بخش توان مفید و غیر مفید تقسیم می شود . نحوه این تقسیم به شرایط مدار بستگی دارد به این معنی که هر قدر ضریب توان CosΦ به يك نزدیکتر باشد سهم توان مفید بیشتراست . این اتفاق در مدارتی رخ می دهد که مصارف اهمی آن بیشتر است .مانند سیستمهای روشنایی یا تولید گرما توسط انرژی برق . اما می دانیم که سهم عمده مصارف شبکه ها را مصرف کننده های (اهمی – سلفی ) دریافت می کنند . مانند الکتروموتورها – ترانسفورماتورهای توزیع – چوکها و .... که درآنها سیم پیچ یا سلف نقش اصلی را ایفا می کند . در سیمپیچها به علت خاصیت ذخیره سازی انرژی الکتریکی بصورت میدان مغناطیسی توان همواره بین شبکه و سلف رد و بدل می شود . سلف در یک چهارم زمان تناوب توان دریافت می کند و در یک چهارم بعدی زمان ، توان را به شبکه پس می دهد . می دانیم در شبکه های جریان متناوب توان ظاهری که از مولدها دریافت می شود به دو بخش توان مفید و غیر مفید تقسیم می شود . نحوه این تقسیم به شرایط مدار بستگی دارد به این معنی که هر قدر ضریب توان CosΦ به يك نزدیکتر باشد سهم توان مفید بیشتراست . این اتفاق در مدارتی رخ می دهد که مصارف اهمی آن بیشتر است .مانند سیستمهای روشنایی یا تولید گرما توسط انرژی برق . اما می دانیم که سهم عمده مصارف شبکه ها را مصرف کننده های (اهمی – سلفی ) دریافت می کنند . مانند الکتروموتورها – ترانسفورماتورهای توزیع – چوکها و .... که درآنها سیم پیچ یا سلف نقش اصلی را ایفا می کند . در سیمپیچها به علت خاصیت ذخیره سازی انرژی الکتریکی بصورت میدان مغناطیسی توان همواره بین شبکه و سلف رد و بدل می شود . سلف در یک چهارم زمان تناوب توان دریافت می کند و در یک چهارم بعدی زمان ، توان را به شبکه پس می دهد . درست است که نتیجه ریاضی این عمل یعنی عدم مصرف انرژی زیرا توان داده شده به سلف با توان دریافت شده از ان برابر است اما در عمل این اتفاق رخ نمی دهد زیرا توان پس داده شده به شبکه امکان استفاده را برای مولد ایجاد نمی کند و این توان در هر حالتی از مولد دریافت شده است . و برای رسیدن به مصرف کننده اهمی – سلفی از شبکه توزیع شامل : سیمها – کابلها و ... عبور کرده است. نتیجه اینکه سلف توانی را از مولد دریافت می کند اما این توان را به شبکه پس می دهد . این توان قابل استفاده نیست و در مسیر عبور تلف می شود . پس مقدار از توان تلف می شود . مصرف کننده های فوق برای انجام اینکار به توان مذکور نیاز دارند اما این توان برای شبکه مضر است و زیانهای زیر را در پی دارد : -اضافه شدن جریان مولد و درنتیجه نیاز به مولدهایی با توانهای بیشتر - چون جریان شبکه زیاد می شود به سیمها و کابلهایی با سطح مقطع بالاتر برای کاهش افت ولتاژ نیاز است که این موضوع هزینه اولیه شبکه را افزایش می دهد . - اتلاف توان در شبکه های توزیع بصورت حرارت روی می دهد در نتیجه هر کاری کنید نمی توانید از این اتلاف جلوگیری کنید . نتیجه این اتلاف توان ،کاهش ولتاژ مصرف کننده می باشد که این موضع راندمان مصرف کننده را پایین می آورد . - نمی توان این توان را به مصرف کننده های اهمی سلفی تحویل نداد زیرا کار آنها مختل می شود . خازن ناجی شبکه های تولید و توزیع توان هم در خازنها بصورت توان غیر مفید است درست مانند سلفها در یک چهارم پریود موج متناوب ،توان دریافت می کنند و در یک چهارم بعدی توان را تحویل می دهند پس خازنها هم مانند سلفها باعث افرایش توان راکیتو ( غیر مفید ) شبکه می شوند اما اتفاق بامزه زمانی روی می دهد که خازن و سلف با هم در شبکه قرار گیرند. این دو برعکس هم عمل می کنند . یعنی زمانی که سلف توان می گیرد خازن توان می دهد و زمانی که سلف توان می دهد خازن توان می گیرد . پس توانهای غیر مفید این دو فقط یکبار از شبکه دریافت می شود و در زمانهای بعد بین آنها تبادل می شود بدون اینکه مولد این توان را تحمل کند . پس مصرف کننده های اهمی سلفی توان راکتیو خود را دریافت می کنند و مولد و شبکه توزیع آنرا تولید و پخش نمی کنند زیرا این کار را خازن انجام می دهد . این خازنها از حالا به بعد ، خازنهای اصلاح ضریب توان نام می گیرند و وظیفه آنها تامین توان راکتیو مورد نیاز مصرف کننده های اهمی سلفی است . اتصال خازن به شبکه خازنهای اصلاح ضریب توان باید در شبکه بصورت موازی قرار گیرند . برای اینکار در شبکه های تکفاز باید به فاز و نول وصل شوند و در شبکه های سه فاز پس از اتصال بصورت ستاره یا مثلث آنگاه به سه فاز متصل می شوند . این خازنها باید از انواعی انتخاب شوند که بتوانند دایمی در مدار قرار گیرند پس باید بتوانند ولتاژ شبکه را تحمل کنند در محاسبه خازن از انواعی استفاده می شود که ولتاژ مجاز آنها 15% بیشتر از ولتاژ شبکه باشد . محاسبه خازن نقش خازن در شبکه کاهش توان راکتیو مصرف کنند های اهمی – سلفی از دید مولدها است . با این اتفاق ضریب توان مفید به یک نزدیک می شود . پس با کنترل ضریب توان امکان کنترل توان راکتیو وجود دارد . این کار بکمک یک کسینوس فی متر صورت می گیرد . یعنی بکمک کسینوس فی متر می توان دریافت که ضریب توان و در نتیجه توان راکتیو در چه وضعیتی قرار دارد . خازن مذکور باید برابر نیاز شبکه باشد در غیر اینصورت خود توان راکتیو از مولد دریافت می کند و همچنین سبب افزایش ولتاژ آن می شود . پس باید خازن مطابق نیاز شبکه محاسبه شود . پرسش : شبکه به چه مقدار خازن نیاز دارد ؟ پاسخ : مقداری که ضریب توان را به یک نزدیک کند . این مقدار خازن خود توان راکتیوی ایجاد می کند که توان راکتیو مصرف کننده اهمی – سلفی را جبران می کند . پس مقدار خازن به مقدار توان راکتیو مدار بستگی دارد . هر قدر این توان قبل از خازن گذاری بیشتر باشد ، اندازه خازن نیز بزرگتر خواهد بود . با توجه به مطالب گفته شده باید برای محاسبه خازن سه مقدار مشخص شود : یک – مقدار ضریب توان شبکه قبل از خازن گذاری دو – مقدار ضریب توان شبکه بعد از خازن گذاری که انتظار داریم شبکه به آن برسد سه - اندازه توان اکتیو پس از تعیین این مقادیرمراحل زیر را پی می گیریم . برای مقدار ضریب توان مطلوب مثلا عدد 9/0 مقدار خوبی است . حال دو مقدار ضریب توان داریم یکی ضریب توان شبکه قبل از خازن گذاری و دیگری ضریب توان مطلوب که می خواهیم با گذاردن خازن به آن برسیم . بکمک رابطه زیر مقدار توان راکتیو مورد نظر را که با آمدن خازن تامین می شود محاسبه می کنیم . ( توجه : در خرید خازنهای اصلاح ضریب توان بجای فارد برای تعیین ظرفیت خازن از میزان توان راکتیو آن خازن سخن گفته می شود).
  12. spow

    استانداردبانكهای خازنی (capacitor bank)

    بانكهاي خازني (capacitor bank) كم كردن تلفات انرژي الكتريكي و افت ولتاژ در يك سيستم انتقال و توزيع همواره مطلوب است . يكي از نشانه هاي بالا بودن تلفات انرژي يك سيستم الكتريكي كم بودن ضريب توان آن است . براي استفاده بهينه از سيستم ضريب توان كه با نسبت توان حقيقي به توان ظاهري مورد لزوم تعريف مي شود بايد نزديك به عدد يك باشد . اكثر ماشينهاي الكتريكي داراي ضريب توان كم هستند . جبران توان رآكتيو از طريق خازن موازي جهت كم كردن بار عبوري كاذب از شبكه ، جلوگيري از تلفات بيشتر ، بالا بردن ظرفيت انتقال و در نهايت بهبود ضريب قدرت از خازنهاي موازي استفاده مي شود بحث نحوه محاسبه و لزوم تعبيه خازن و مقادير آن از محاسبات شبكه بدست مي آيد كه خارج از چارچوب موضوع اين مقال مي باشد . فرض براين است كه اين محاسبات قبلاً انجام بر شده و مشخصات فني و ظرفيت خازنها توسط طراح پروژه اعلام و در اسناد مناقصه درج گرديده است . مزاياي خازن مزاياي خازن نسبت به ساير جبران كننده ها از قرار زيرند : - قيمت كمتر - نصب و تعمير و نگهداري و عملكرد ساده تر - سطح آلودگي صوتي بسيار پائين تر - تلفات انرژي كمتر - جابجايي با امكان تغيير ظرفيت ساده تر - امكان نصب در فضاي بيروني و داخلي ( حتي داخل تابلو ) بطوركلي جهت بهبود ضريب قدرت اقتصادي ترين راه استفاده از خازنهاي موازي مي باشد . آرايش خازنها جهت رسيدن به بار رآكتيو مورد نظر خازنها معمولاً به صورت موازي و سري نصب مي گردند . دليل اين كار محدوديت بالا بردن ظرفيت kvar در واحدهاي توليدي خازن است . ظرفيتهاي استاندارد بين 100 الي 200 كيلووار مي باشد گرچه تا 900 كيلووار هم ساخته شده اند . علاوه بر محدوديت توليد ، تعيين ظرفيت بهينه مي تواند با در نظر گرفتن : - امكان توليد - جابجايي آسان - افزايش و كاهش نيز انجام پذيرد . ظرفيت كل سيستم از تركيبهاي مختلف بلوك خازنها بدست مي آيد . تركيب اين بلوكها را با همديگر بانك خازني مي نامند . بانك خازني از تركيب مجموعه واحدهاي خازني به صورت سري و موازي ايجاد مي شود . محل نصب خازنهاي موازي معمولاً نزديك به نقاط مصرف و يا ايستگاههاي طرف مصرف كننده نصب مي شوند . در سيستمهاي فشار قوي خازنها در طرف 20 ، 33 و يا 11 كيلوولت نصب مي گردند در مجتمع هاي صنعتي خازنها بسته به مورد در طرف 6/6 كيلوولت و يا 400 ولت نصب مي شوند . اين امر باعث مي شود كه جريمه سنگين توان رآكتيو ناشي از مصرف كننده هاي صنعتي به ميزان زيادي كاهش يابد . در هر حال لزوم نصب خازن بايستي طي محاسبات اقتصادي – فني و با توجه به مساله تنظيم ولتاژ بهينه مشخص گردد . بنابراين نصب خازن يك سرمايه گذاري است كه درآمد آن صرفه جويي در مصرف توان حقيقي است . تجهيزات جنبي در پستهاي انتقال جهت كار بهينه خازنها علاوه بر خود بانكهاي خازني تجهيزات زير نيز بايد مدنظر قرار گيرند : - رآكتور سري جهت حفاظت بانكهاي خازني سري از جريان هجومي - ترانس جريان بين بانكهاي سري - رله هاي حفاظتي ( كه در بحث حفاظت بحث خواهد شد ) - وسايل كنترل ( قطع و وصل دستي ) و اتوماسيون ( افزايش يا كاهش بانكها با تغييرات ولتاژ و جريان ) - فيوزهاي حفاظتي ( داخلي و يا خارجي ) قطع و وصل خازنها كليدخانه اي كه قطع و وصل خازن را انجام مي دهد بايستي علاوه بر تطبيق با مشخصات عمومي شبكه ، هماهنگ مشخصات خازن نيز باشد . در طراحيهاي بسيار مدرن مي توان جهت كاهش و يا افزايش بار خازني روي شبكه و قطع و وصل خازنها از scr و يا svc استفاده نمود . در طرح كليدخانه معمولي ، كليد بايد قادر به قطع و وصل جريانهاي هجومي ، جريانهاي پس ماند و جريانهاي اتصال كوتاه خازني باشد . علاوه بر آن اگر كنترل توان رآكتيو به صورت اتوماتيك طراحي شده باشد اين كليدها بسته به تغييرات ولتاژ قطع و وصل هاي متعددي را در پيش رو خواهند داشت . حفاظت خازن ارزيابي حفاظت پستها در گزارش جداگانه اي آمده است . در اينجا به صورت اختصار بايد به حفاظتهاي لازم زير اشاره نمود : - حفاظت اضافه جريان - حفاظت اضافه ولتاژ - حفاظت قطع ولتاژ - حفاظت عدم تعادل بانك خازني - حفاظت عدم تعادل در فازها ملاكهاي ارزيابي ملاكهاي ارزيابي خازني را مي توان به صورت زير خلاصه نموده و جزئيات آن را در جدول ارزيابي پيوست مشاهده نمود : الف – اطلاعات ورودي در مشخصات فني : (اجباري بوده و امتيازي ندارند) - كيلووار خروجي - ولتاژ نامي و ماكزيمم سيستم - فركانس نامي - تعداد فازها - شرايط محيطي - كلاس خازن ( محوطه و يا فضاي بسته ) - نحوه اتصال به شبكه - لزوم تعبيه برق گير - نوع طرح حفاظتي - نوع قطع و وصل - نوع فيوز ( داخلي يا خارجي ) - نوع تركيب مقره ها - مشخصات ترانس جريان و يا ولتاژ - مشخصات رآكتور سري ب- اطلاعات خروجي ( گارانتي شده ) پيمانكار جهت هر واحد خازن : - نام سازنده - كشور سازنده - ساختار بانكها و اجزا آنها - نوع عايق مورد استفاده - نوع روغن داخل خازن - مشخصات روغن از نقطه نظر محيط زيست - داشتن فيوز ، داخلي و يا خارجي بودن آن - نشان دهنده وضعيت فيوز - تلفات الكتريكي برحسب وات و يا وار ( يا نسبت آنها ) - حداكثر افزايش دما - افزايش دما در داغ ترين نقطه - وزن هر واحد خازن - ابعاد هر واحد خازن - وزن و ابعاد با بوشينگهاي سوار شده ج – اطلاعات گارانتي بانك : - ابعاد كلي بانك خازني - ابعاد و مشخصات مقره هاي پايه ( در صورت لزوم ) - مشخصات تراسهاي جريان و رآكتورها - مشخصات ترانس هاي ولتاژ در صورت لزوم - نحوه تخليه خازن در حالت بي برقي و تعميرات - سوالات متفرقه در مورد نحوه اتصالات و عايق بندي و وصل به باسبار و تهيه آنها از طرف پيمانكار 10- نتيجه گيري : بر اساس آمار بدست آمده از پستهاي اجرا شده در سطح كشور ، نسبت ارزش قيمتي بانكهاي خازني به قيمت كل پست در محدوده 1-5 درصد ميباشد ، كه در پستهاي 63 و 132 كيلولت اين ميزان بيشتر بوده و در سطوح ولتاژي بالاتر اين نسبت كاهش مي يابد. از لحاظ اهميت نيز ، اين بخش در همه انواع پستها داراي اهميت متوسطي مي باشد.
  13. spow

    پیل سوختی

    پیل‌های‌سوختی نیروگاهی، واحد‌هایی با توان بیش از 10 کیلووات می‌باشند که به‌صورت متصل یا مستقل از شبکه و به‌عنوان مولد‌های تولید همزمان برق و حرارت (CHP) و CCP یا ژنراتورهای برق عمل می‌کنند. در طول پنج سال گذشته ما شاهد بوده‌ایم ، واحد‌های نیروگاهی پیل‌سوختی کربنات مذاب و اسید‌فسفریک با تخصیص کمک‌های مالی مساعد، در سه ناحیه متمایز به لحاظ اندازه (10 الی 20 کیلووات، 200 الی 300 کیلووات و بالاتر از یک مگاوات) تجاری شده‌اند که برای هر ناحیه کاربردهای متفاوتی مشخص شده است. هم‌چنین تلاش‌ها روی تحقیق و توسعه پیل‌سوختی اکسیدجامد نیز در حال افزایش است. در دوازده ماه اخیر، شرکت‌های فعال در این زمینه با سناریوی روشﻣﻌﺎﻣﻼﺗﻲ ﻣﻌﻤﻮﻟﻲ business- as- usual کار کرده‌اند و به افزایش اندکی در فروش رسیده اند. پیش‌بینی افزایش اندازه واحد‌های فروخته شده از متوسط به سطح مگاوات محقق گردید. تمرکز اصلی در بازار‌های کلیدی مثل ایالت‌های کالیفرنیا و کنکتیکات ایالات‌متحده بوده است. از نظر رشد تعداد شرکت‌ها هیچ شرکتی از فعالیت در این عرصه خارج نشده است، اما شرکت زیمنس واحد‌های تجاری پیل‌سوختی اکسید‌جامد خود را یکباره به فروش گذارد و شرکت HydroGen ، دو‌سوم نیروی کار خود را به‌حال تعلیق در‌آورد. در خصوص توسعه‌های به‌وجود آمده در بازار باید گفت به‌موازات افزایش تعداد واحد‌های فروخته شده به مجتمع‌های اداری و مدارس، قانون‌گذاران و برنامه‌ریزان تجاری توجه بیشتری به تولید غیر‌متمرکز معطوف می‌کنند. مراکز داده و سرور (Server) نیز با توجه به برخی دلایل جدی و بالقوه ارائه شده از سوی شرکت‌های پیل‌سوختی، برای کاربرد‌های CCP خود نیم‌نگاهی به این فن‌آوری‌ دارند و در فکر به‌کارگیری این فن‌آوری‌ها می‌باشند. رشد بازار: بررسی‌های صورت گرفته در سال 2006 و 2007 حاکی از توسعه قابل‌توجه بازار نیرو‌گاهی بود اما این مسأله در سال 2008 به یک سناریوی business-as-usual تبدیل شده است. در سه سال اخیر، تعداد واحدهای پذیرفته شده نیروگاهی در حد 50 واحد در سال ثابت مانده است؛ این در حالیست که در این مدت، مگاوات نصب شده واحدهای پیل‌سوختی، دو برابر شده است (نموادر 1). نمودار 1- تعداد واحدها و مگاوات نصب شده در سال from: www.fcc.gov.ir نمودار (2) این افزایش آهسته یکنواخت را بهتر نشان می‌دهد. نمودار 2- تعداد سالانه و تراکمی واحدهای جدید (نمودار را با اندازه واقعی ببینید)
  14. spow

    پیل سوختی نیروگاهی

    پیل‌های‌سوختی نیروگاهی، واحد‌هایی با توان بیش از 10 کیلووات می‌باشند که به‌صورت متصل یا مستقل از شبکه و به‌عنوان مولد‌های تولید همزمان برق و حرارت (CHP) و CCP یا ژنراتورهای برق عمل می‌کنند. در طول پنج سال گذشته ما شاهد بوده‌ایم ، واحد‌های نیروگاهی پیل‌سوختی کربنات مذاب و اسید‌فسفریک با تخصیص کمک‌های مالی مساعد، در سه ناحیه متمایز به لحاظ اندازه (10 الی 20 کیلووات، 200 الی 300 کیلووات و بالاتر از یک مگاوات) تجاری شده‌اند که برای هر ناحیه کاربردهای متفاوتی مشخص شده است. هم‌چنین تلاش‌ها روی تحقیق و توسعه پیل‌سوختی اکسیدجامد نیز در حال افزایش است. در دوازده ماه اخیر، شرکت‌های فعال در این زمینه با سناریوی روشﻣﻌﺎﻣﻼﺗﻲ ﻣﻌﻤﻮﻟﻲ business- as- usual کار کرده‌اند و به افزایش اندکی در فروش رسیده اند. پیش‌بینی افزایش اندازه واحد‌های فروخته شده از متوسط به سطح مگاوات محقق گردید. تمرکز اصلی در بازار‌های کلیدی مثل ایالت‌های کالیفرنیا و کنکتیکات ایالات‌متحده بوده است. از نظر رشد تعداد شرکت‌ها هیچ شرکتی از فعالیت در این عرصه خارج نشده است، اما شرکت زیمنس واحد‌های تجاری پیل‌سوختی اکسید‌جامد خود را یکباره به فروش گذارد و شرکت HydroGen ، دو‌سوم نیروی کار خود را به‌حال تعلیق در‌آورد. در خصوص توسعه‌های به‌وجود آمده در بازار باید گفت به‌موازات افزایش تعداد واحد‌های فروخته شده به مجتمع‌های اداری و مدارس، قانون‌گذاران و برنامه‌ریزان تجاری توجه بیشتری به تولید غیر‌متمرکز معطوف می‌کنند. مراکز داده و سرور (Server) نیز با توجه به برخی دلایل جدی و بالقوه ارائه شده از سوی شرکت‌های پیل‌سوختی، برای کاربرد‌های CCP خود نیم‌نگاهی به این فن‌آوری‌ دارند و در فکر به‌کارگیری این فن‌آوری‌ها می‌باشند. رشد بازار: بررسی‌های صورت گرفته در سال 2006 و 2007 حاکی از توسعه قابل‌توجه بازار نیرو‌گاهی بود اما این مسأله در سال 2008 به یک سناریوی business-as-usual تبدیل شده است. در سه سال اخیر، تعداد واحدهای پذیرفته شده نیروگاهی در حد 50 واحد در سال ثابت مانده است؛ این در حالیست که در این مدت، مگاوات نصب شده واحدهای پیل‌سوختی، دو برابر شده است (نموادر 1). نمودار 1- تعداد واحدها و مگاوات نصب شده در سال from: [Hidden Content] نمودار (2) این افزایش آهسته یکنواخت را بهتر نشان می‌دهد. نمودار 2- تعداد سالانه و تراکمی واحدهای جدید (نمودار را با اندازه واقعی ببینید)
  15. براي مدت طولاني استفاده از مواد سراميكي به عنوان عايق در صنعت‌برق رايج بود ولي اشكالاتي كه بر اثر كاربرد اين مواد بوجود مي‌آمد محققان را بر آن داشت تا به فكر استفاده از موادي جايگزين برآيند. استفاده از عايق‌هاي پليمري يكي از انتخا‌ب‌هايي بودكه در اين راستا مطرح شد و با توسعه تكنولوژي پليمر و توليد پليمرهاي مهندسي با خواص مطلوب، توجه محققان بيشتر به اين سمت معطوف شد. استفاده از پليمر به عنوان عايق در صنعت‌برق نه تنها خواص الكتريكي مورد نياز را تامين مي‌كند بلكه نقاط ضعف سراميك را نيز برطرف مي‌كند. در اين مقاله ضمن اشاره به معايب عايق‌هاي سراميكي كه در نتيجه سال‌ها استفاده از آنها درصنعت‌برق بدان پي‌برده شده است و طرح دلايل تمايل به جايگزيني آنها با عايق‌هاي پليمري در سال‌هاي اخير،‌نتايج امكان‌سنجي فني و اقتصادي صورت گرفته در خصوص جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتورها با انواع پليمري آنها و تعيين و اولويت‌بندي جايگزين‌هاي مناسب براي اين كار با در نظر گرفتن شرايط كاربري و مسائل اقتصادي ارايه شده است. يك فرآورده سراميكي، از گل كه مخلوطي از آب و خاك است ساخته شده، در هوا خشك و درحرارت سخت شده است.كلمه سراميك از كلمه يوناني Keramos كه خود ريشه سانسكريت دارد و به معني خاك رس پخته شده است، گرفته شده است. بنابراين چنانچه اين مفهوم از كلمه سراميك، مدنظر باشد مي‌‌توان معادل فارسي «رسينه» را براي آن پيشنهاد كرد. عايق‌هاي چيني متداول‌ترين نوع عايق‌هاي الكتريكي هستند، چرا كه داراي مقاومت الكتريكي ونيز استحكام زيادي بوده و قيمت اوليه مناسبي دارند. به طور كلي اين مواد در فركانس‌هاي كم و در كليه ولتاژها (اعم از ولتاژ‌هاي پايين يا بالا) كاربرد دارند. براي مدتهاي طولاني، سراميك تنها ماده مورد استفاده براي كاربردهاي عايقي بوده است با اين حال اين ماده در عمل نارسايي‌هايي از جمله موارد زير را از خود نشان مي‌دهد: - بسيار شكننده است - اتصال قطعات فلزي به آن شكل است - دقت ابعادي آن كم است كه اين امر باعث ايجاد مشكلات حادي در طراحي و شكل‌دهي قطعات سراميكي است. بعد از سال 1945 و با ظهور مواد پليمري در بازارهاي تجاري،تمايل به استفاده از مواد پليمري براي ساخت عايق‌هاي الكتريكي افزايش يافت. علت اين امر توليد رزين اپوكسي با نام آرالديت بود كه باعث شد تا قطعات عايقي ارزان و كوچك با دقت ابعادي بالا وسهولت در فرآيند ساخت توليد شوند. به موازات ساخت پليمرهاي جديد، استفاده از انواع مختلف پليمر براي ساخت قطعات عايقي افزايش يافت به طوري كه در حال حاضر شركت‌هاي مختلفي در دنيا اقدام به ساخت بوشينگ و مقره‌هاي پليمري از انواع مختلف مي‌كنند. البته در اينجا لازم به ذكر است كه عايق‌هاي سراميكي هنوز هم در مقايسه با عايق‌هاي پليمري مزيت‌هايي به شرح زير دارند: 1- از نظر قيمت ارزان‌تر از عايق‌هاي پليمري هستند. 2- روش توليد انبوه آن آسان است. 3- مواد اوليه مورد نياز جهت توليد عايق‌هاي سراميكي در داخل كشور به وفور يافت مي‌شود. 4- تجهيزات و ماشين‌آلات كارگاهي آن بسيار ارزان است. شرح مقاله گرچه عايق‌هاي سراميكي خواص الكتريكي مطلوبي دارند ولي نقاط ضعف آنها باعث شد تا عايق‌هاي ديگري جايگزين اين نوع عايق‌ها شوند. در ادامه به ذكر اين نقاط ضعف و مزاياي استفاده از عايق‌هاي پليمري ومقايسه بين اين دو نوع عايق پرداخته مي‌شود. همچنين نتايج حاصل از بررسي صورت گرفته جهت انتخاب بهترين نوع عايق پليمري از جنبه‌هاي فني و اقتصادي، جهت جايگزيني با بوشينگ‌هاي سراميكي ترانسفورماتورها ارايه خواهد شد. معايب عايق‌هاي سراميكي معايب مكانيكي معايب مكانيكي عايق‌هاي سراميكي عبارتند از: - پارگي عايق يا ستون عايق به علت نيروي قابل ملاحظه بيش از مقدار مجاز و قابل قبول. هنگامي كه نيروي وارد بر زنجير عايق از طرف هادي بطور قابل ملاحظه‌اي افزايش يابد، موجبات شكستگي زنجير عايق و انهدام آن را فراهم مي‌سازد. - با توجه به اين كه عمدتاً عايق‌بندي در ايستگاه‌هاي توزيع و انتقال نيرو با عايق‌هاي سراميكي است و با توجه به تعداد زياد اين عايق‌ها در هر ايستگاه ونيز وزن زياد آنها، وزن ستون عايق‌ها افزايش مي‌يابد كه اين امر باعث افزايش حجم و وزن اسكلت فلزي و فونداسيون مربوطه مي‌شود. - ضربه‌پذيري كم‌عايق. اين موضوع موجب مي‌شود كه در اثر كوچكترين ضربه- به جهت شكل خاص هندسي آن – توزيع تنش در همه نقاط عايق يكسان نباشد و با توجه به استحكام ناچيز سراميك در مقابل نيروهاي ديناميكي، موجب شكستن و يا ترك برداشتن عايق شود. - با توجه به وزن بالاي ستون عايق‌هاي سراميكي، نصب آن بسيار مشكل است و نياز به جرثقيل دارد و به همين دليل زمان و هزينه مونتاژ و نصب آن بالا مي‌رود. - با توجه به استحكام ناچيز عايق‌هاي سراميكي در موقع حمل و نقل، احتياط‌هاي لازم جهت نصب بايد بسيار وسيع و دقيق صورت گيرد تا ضربه‌اي به اين عايق‌ها وارد نشود. زيرا اين عايق‌ها ممكن است در اثر ضربه ترك بردارند و همان ترك رشد كرده، موجب ترك خوردگي كامل عايق شود. - عايق‌هاي سراميكي داراي انعطاف‌پذيري‌ كمي هستند ولذا در مقابل نيروهاي افقي از جمله نيروي باد كه بر محور آن وارد مي‌شود داراي مقاومت كمي هستند و چون حالت انعطاف‌پذيري ندارند، در صورتي كه نيروي زيادي بر آنها وارد شود مي‌شكنند. با توجه به اين مطلب در مناطقي كه داراي طوفان‌هاي فصلي شديد هستند و يا زلزله‌خيز هستند امكان شكستن عايق‌ها وجود دارد. - استحكام فشاري و چسبندگي عايق‌هاي سراميكي ناچيز است. به همين دليل گاهي گلويي مقره و يا آرماتور داخلي از بشقاب جدا مي‌شود كه اين امر نشان مي‌دهد استحكام فشاري و چسبندگي و فشردگي مواد و توزيع يكنواخت مواد در ساخت سراميك‌هاي با شكل هندسي ويژه امكان‌پذير نيست. البته گاهي اوقات با اصلاح قالب و قرارگيري درست آرماتور و فشردگي كامل مواد، اين مشكل تقريباً قابل حل است. معايب حرارتي در عايق‌هاي سراميكي، معايب حرارتي ذيل مشاهده مي‌شود: - در ساختار لعابي كه روي عايق‌هاي سراميكي اعمال مي‌شود از چسب پلي‌وينيل استات و ديگر جسب‌هاي آلي استفاده مي‌شود. هنگامي كه اين لعاب در كوره قرار مي‌گيرد مواد فرار اين چسب‌ها با درجات فراريت مختلف در دماهاي مختلف و با سرعت‌هاي مختلف خارج مي‌شوند. به همين دليل در حين خروج اين مواد فرار، ترك‌هاي ريز كه با چشم براحتي قابل رويت نيستند در سطح عايق ايجاد مي‌شود كه اين امر بر روي خواص دي‌الكتريك عايق و تخليه جزيي و گاهاً جريان‌هاي سطحي و آلودگي سطحي تاثير بسزايي دارد. اين مشكل به هيچ شكلي قابل حل نيست. - با توجه به اين كه دماي Tg اكثر چسب‌هاي آلي لعاب‌ها پايين است، لذا در دماهاي كمتر از صفر و يا مناطق سردسير ممكن است متناسب با نوع لعاب، ترك‌هاي ريز كه به مرور رشد مي‌كنند ايجاد شود كه اين ترك‌ها نيز مشكلاتي همچون بند بالا را بوجود مي‌آورند. - تغييرات درجه حرارت محيط در طول سال و يا تغييرات درجه حرارت بين شب و روز در مناطق كويري و انقباض و انبساط عايق (با توجه به اين كه ضريب انبساط لعاب و بيسكويت زيرين لعاب يكسان نيست) موجب مي‌شود كه ابتدا ترك‌هاي متعدد در بدنه عايق مشاهده شود و گسترش تدريجي ترك‌ها بصورت طولي و عمقي موجب بروز تخليه جزيي مي‌شود. بروز تخليه جزيي در محل ترك‌ها و در سطح خارجي عايق، ترك‌ها را وسعت بخشيده، موجبات شكستگي عايق و برجستگي‌ها را فراهم ساخته و به قوس كامل منجر مي‌شود. معايب الكتريكي ايرادات الكتريكي كه در واقع به نوعي به استحكام و خواص مواد بكار رفته در لعاب و خاك چيني مربوط است عبارتند از: - ايجاد ترك تحت تاثير جريان‌هاي ناشي از تخليه جوي و شدت ميدان قابل ملاحظه‌اي كه در قبال ولتاژهاي موجي تخليه جوي و بروز قوس از نوع قوس‌هاي برگشتي مشاهده مي‌شود. اين عارضه بطور عمده در ستون بوشينگ و يا زنجير مقره خطوط انتقال روي مي‌دهد كه البته اين ترك‌ها، به نوعي در آلودگي و جريان‌هاي سطحي تاثير بسزايي دارد. - بروز تخليه جزيي در محل ترك‌هاي ظاهر شده در سطح خارجي عايق و گسترش تدريجي آنها. ادامه بروز تخليه جزيي موجب شكستگي تدريجي عايق وجدا شدن برجستگي‌هاي خارجي مي‌شود در اين صورت زنجير مقره تنها شامل گلويي خواهد بود. هرگونه ترك، مسير مناسب قوس جزيي را در سطح و يا در عمق مقره بين آرماتور داخلي و سطح خارجي يا هادي تحت ولتاژ بوجود مي‌آورد. معايب خوردگي يكي از ايرادات و مشكلات بزرگي كه در صنايع وجود دارد مشكل خوردگي است و اين ايراد به عنوان يكي از ايرادات مهم و اساسي درعايق‌هاي سراميكي نيز وجود دارد. خوردگي در سطح خارجي عايق سراميكي صنعتي به دو علت زير روي مي‌دهد: • صدمه مكانيكي ناشي از ضربات مكانيكي و يا حرارت حاصل از تخليه جزيي در پي برقراري جريان سطحي. لازم به توضيح است كه بروز تخليه جزيي در سطح خارجي عايق و ايجاد خوردگي مكانيكي و ترك ناشي از حرارت طي مراحل زير صورت مي‌گيرد.: - ايجاد حرارت موضعي در سطح خارجي عايق وبروز قوس‌هاي جزيي بطور چند ميلي‌متر. بروز اينگونه قوس‌ها موجب مي‌شود تا ترك و شيارهايي به عمق 1 تا 3 ميلي‌متر در سطح عايق ايجاد شود. - با گذشت زمان و ادامه برقراري تخليه جزيي، جريان به تدريج به داخل عايق نفوذ مي‌كند. - با قطع جريان و تخليه جزيي، لايه سطحي مجدداً رطوبت جذب كرده و با بروز قوس مجدد در شرايط مناسب اين پديده تكرار مي‌شود. بروز اين پديده به شرح فوق موجب انبساط و انقباض متوالي عايق گشته و ترك‌هاي مويي در سطح عايق ايجاد مي‌‌كند. - با برقراري جريان سطحي و بروز قوس‌هاي موضعي ترك‌هاي ايجاد شده به تدريج به مناطق سرد گسترش مي‌يابند. • خوردگي شيميايي. آلودگي صنعتي برحسب نوع خود مي‌تواند موجبات خوردگي در سطح عايق را فراهم سازد. به همين علت انتخاب نوع مناسب عايق همراه با حداقل لايه سطحي و شست‌وشوي مرتب از اهميت ويژه برخوردار است. هنگامي كه در آلودگي‌هايي كه در سطح عايق مي‌نشيند يون‌هايي مانند سديم، پتاسيم، ليتيم موجود باشند خوردگي شيميايي همزمان با برقراري جريان سطحي با سرعت قابل ملاحظه‌اي روي خواهد داد و هنگامي كه اين نوع خورندگي با تخليه جزيي همراه شود خورندگي به سرعت گسترش مي يابد. معايب عايق‌هاي سراميكي از نظر آلودگي وشرايط محيطي يكي از مهمترين ايراداتي كه بر عايق‌هاي سراميكي وارد است تاثير آلودگي‌هاي محيطي بر عملكرد اين نوع عايق‌ها است. زيرا در اثر آلودگي‌ها، فاكتورهاي اصلي عايق الكتريكي خدشه‌دار مي‌شود و تاثير بسزايي در خواص و ويژگي‌هاي عايقي اين مواد ايجاد مي‌كند. آلودگي‌هاي محيطي بر دو نوع است: • آلودگي‌هاي طبيعي. آلودگي‌هاي محيط به صورت ذرات گرد و غبار، دوده و گازهاي شيميايي و تركيبات آنها بر سطح خارجي عايق رسوب مي‌كند و در طول زمان، لايه سطحي متشكل از ذرات با تركيبات مختلف را پديد مي‌آورد كه با گذشت زمان، اين لايه سطحي متشكل از ذرات در مجاورت رطوبت از هدايت ناچيزي برخوردار گشته و جريان تخليه را از طريق لايه و در سطح خارجي عايق بالغ بر چند ميلي‌آمپر برقرار مي‌سازد كه در صورت افزايش ضخامت لايه، جريان برقرار شده فزوني يافته و با تجاوز از مقدار مشخص، شرايط بروز قوس در سطح خارجي عايق را فراهم مي‌سازد. بدين ترتيب آلودگي‌هاي محيط و لايه سطحي ناشي از آن، ولتاژ دي‌الكتريك عايق را كاهش داده، بروز قوس در سطح خارجي را به ازاي ولتاژ اسمي سبب مي‌شود. • آلودگي‌هاي صنعتي. اين نوع آلودگي در مناطق و نواحي صنعتي نظير كارخانجات شيميايي، رنگسازي، سيمان، ذوب فلزات و غيره مشاهده مي‌شود. در اين مراكز مواد شيميايي حاصل از كارخانجات صنعتي در فضا موجود بوده، در سطح عايق‌ها ظاهر مي‌شود. مقررات و پيش‌بيني‌هاي به عمل آمده به منظور كيفيت ايزولاسيون عايق‌ها و انتخاب مناسب آنها، متناسب با آلودگي‌هاي محيط، براي آلودگي‌هاي صنعتي و محيطي يكسان هستند. با اينهمه در مواردي كه ميزان آلودگي اعم از صنعتي ياطبيعي قابل ملاحظه باشد انجام بررسي‌ها و مطالعات دقيق به منظور انتخاب و تعيين نوع عايق مناسب صورت مي‌پذيرد. مقاومت عايق‌‌هاي سراميكي در مقابل عوامل جوي و اشعه ماوراء بنفش يكي از معايبي كه در مورد عايق‌هاي سراميكي وجود دارد آن است كه در مقابل نور، رطوبت، گازها و برخي مواد شيميايي ضعيف هستند. مثلاً‌در مقابل گازهاي فلوئور و كلر در مجاورت رطوبت كه توليد اسيدفلوريدريك و يا اسيد كلريدريك مي‌كند به شدت ضعيف هستند و خورده مي‌شوند. در مقابل اثرات مستقيم نور خورشيد و تشعشع ماوراء بنفش همراه با رطوبت و شرايط اكسيد‌كنندگي محيطي رنگ پريدگي،‌تخلخل، ترك خوردگي سطحي، سست‌شدن و شكنندگي ايجاد مي‌شود. با توجه به موارد ذكر شده مي‌توان گفت كه اين عايق‌ها از دو نظر با اشكال اساسي روبرو هستند: 1- خواص فيزيكي و مكانيكي اين عايق‌ها ضعيف است. 2- خواص آلودگي اين عايق‌ها نامطلوب است عايق‌هاي پليمري بطور كلي دلايل اصلي كه موجب مي‌شود به جاي عايق‌هاي سراميكي از عايق‌هاي پليمري استفاده شود به شرح ذيل است: 1- خواص و ويژگي‌هاي مكانيكي عايق‌هاي سراميكي ضعيف است. 2- ميزان جذب رطوبت عايق‌هاي پليمري از عايق‌هاي سراميكي كمتر است. 3- ميزان جذب آلودگي و ايجاد جريان سطحي در عايق‌هاي سراميكي زيادتر است. 4- در ولتاژهاي بالا عايق‌هاي سراميكي مقاومت قوسي پاييني دارند. 5- ضريب دي‌الكتريك عايق‌هاي سراميكي كم است. 6- با توجه به اين كه عايق‌هاي چيني و يا شيشه‌اي به عنوان ايزولاسيون خارجي فاصله سطحي مناسبي ندارند به همين منظور جهت تامين فاصله سطحي كافي و كاهش ارتفاع عايق، از عايق‌هاي پليمري با اندازه ايده‌آل برجستگي‌ها استفاده مي‌شود. مقايسه عايق‌هاي سراميكي وپليمري • مقايسه از لحاظ فني: بطور خلاصه مي‌توان مزاياي عايق‌هاي پليمري را به صورت ذيل خلاصه كرد: - مقاومت بالا در برابر انفجار بر اثر فشارهاي داخلي و يا عوامل خارجي همانند تخريب انساني. - طول عمر بالاي 25 سال بدون افت رفتار عايقي - عملكرد عالي در مناطق آلوده و عدم نياز به شست‌وشو - مقاومت بالا نسبت به عوامل محيطي از قبيل اشعه UV، رطوبت و ... - وزن كمتر (بين 10 تا 50 درصد وزن عايق‌هاي سراميكي) كه اين مساله باعث كاهش هزينه و ضايعات حمل و نقل مي‌شود. - انعطاف‌پذيري كه سبب حذف ضايعات ناشي از شكستن عايق در مراحل توليد، حمل و نقل، نصب و بهره‌برداري مي‌شود. - ايمني بالاتر در هنگام وقوع نقص الكتريكي - مقاومت بالاتر نسبت به خرابكاري - ايمني بيشتر در هنگام وقوع زلزله خصوصاً‌در عايق‌هاي مصرفي در ترانسفورماتورهاي قدرت - عدم محدوديت در زواياي نصب - قابليت دستيابي به فواصل خزشي بالا (به دليل خواص عايقي مطلوب) بدون افزايش قابل ملاحظه در وزن و ابعاد - آب‌بندي موثرتر در محل اتصال عايق - امكان افزايش فاصله سطحي در ارتفاع يكسان با عايق‌هاي سراميكي تا حدود 2 برابر، كه اين امر در مناطق با آلودگي بالا از اهميت بالايي برخوردار است. • مقايسه از لحاظ اقتصادي: در مقايسه اقتصادي عايق‌هاي سراميكي با عايق‌هاي پليمري بايد به دو پارامتر توجه كرد: 1- هزينه اوليه عايق 2- هزينه عملياتي عايق 1- هزينه اوليه عايق: قيمت خريد عايق پليمري بيشتر از عايق سراميكي است كه ناشي از قيمت مواد اوليه مورد نياز است البته ميزان افزايش قيمت بر حسب نوع پليمر متغير است. 2- هزينه عملياتي عايق: يكي از موارد مهمي كه در بررسي فني و اقتصادي جايگزيني بايد مدنظر قرار گيرد مساله هزينه‌هاي عملياتي عايق‌ها است. هزينه‌هاي عملياتي عايق را مي‌توان به دو دسته كلي تقسيم كرد: الف) هزينه‌هاي عملياتي قبل از نصب در محل بهره‌برداري ب) هزينه‌هاي عملياتي بعد از نصب در محل بهره‌برداري الف) هزينه‌هاي عملياتي قبل از نصب در محل بهره‌برداري: اين قسمت شامل كليه هزينه‌هاي قبل از نصب است. در ابتدا بايد هزينه‌هاي ساخت عايق را در نظر گرفت. عايق‌هاي سراميكي به دليل ساختارشان، در حين توليد ضايعات بيشتري را نسبت به عايق‌هاي پليمري ايجاد مي‌كنند (به عنوان مثال شكستن در كوره و تحت حرارت پخت) كه اين هزينه‌ها در انتها بر روي قيمت عايق تاثير مستقيم مي‌گذارند. همچنين عايق‌هاي سراميكي در حين حمل و نقل و نصب در محل مورد نظر دچار شكستگي مي‌شوند كه اين موضوع در مورد عايق‌هاي پليمري صادق نيست. به عبارت ديگر ضايعات عايق‌هاي سراميكي از ابتداي ساخت تا زمان نصب در محل بهره‌برداري بيشتر از عايق‌هاي پليمري است بنابراين هزينه بيشتري برمصرف‌كننده تحميل مي‌كند. ضايعات عايق‌هاي سراميكي را مي‌توان به صورت زير عنوان كرد: - در حين توليد عايق - حمل از محل توليد به محل بهره‌برداري - نصب عايق - ضايعات ناشي از خرابكاري - ضايعات ناشي از زلزله طبق برآوردهاي انجام شده مجموع اين ضايعات به 10 تا 15 درصد بالغ مي‌شود. بديهي است هزينه ضايعات عايق‌ها تنها به جايگزيني آنها محدود نشده و وقفه‌هاي ايجاد شده در مراحل مختلف و نيز مشكلات حاصل از ناكارآمدي عايق تحت سرويس، هزينه‌هاي جانبي قابل ملاحظه‌اي را بر مصرف‌كنندگان تحميل مي‌كند. ب) هزينه‌هاي عملياتي بعد از نصب در محل بهره‌برداري: اين هزينه‌ها شامل هزينه‌هاي شست‌وشوي عايق، هزينه‌هاي ناشي از شكسته‌شدن عايق و جايگزيني آن، هزينه‌هاي ناشي از ايجاد قوس الكتريكي (بر اثر آلودگي) و ... است. عايق‌هاي سراميكي به دليل ساختارشان، احتياج به شست‌و شوي متناوب دارند. اين شستشو مخصوصاً در شرايط آب و هوايي با آلودگي بالا (مانند مناطق جنوبي) از اهميت خاصي برخوردار است. در صورت عدم توجه به اين موضوع، تشكيل قوس الكتريكي و صدمه ديدن عايق مي‌تواند هزينه‌هاي بيشتري را تحميل كند در حالي كه عايق‌هاي پليمري به دليل ويژگي‌هاي ساختاري‌شان احتياج كمتري به شست‌وشو دارند بنابراين هزينه شست‌وشوي آنها كمتر است. همچنين احتمال تشكيل قوس الكتريكي و صدمه‌ديدن عايق در اين حالت كمتر است. با در نظر گرفتن ضايعات عايق‌هاي سراميكي كه رقمي در حدود 10 تا 15 درصد را تشكيل مي‌دهد اختلاف قيمت نهايي عايق‌هاي سراميكي و پليمري چندان تفاوتي با يكديگر نخواهد داشت. بعلاوه بررسي‌ها نشان مي‌دهد كه هزينه ساليانه شست‌وشوي عايق‌هاي سراميكي در مناطق آلوده در حدود 5 تا 10 درصد قيمت عايق است كه باجايگزيني اين عايق‌ها با عايق‌هاي پليمري اين هزينه‌ها حذف خواهند شد. حذف عمليات شست‌وشوي دوره‌اي عايق‌ها در مناطق آلوده، از ديگر مزاياي اقتصادي عايق‌هاي پليمري است. در خصوص شبكه توزيع،‌ با توجه به پراكندگي و گستردگي مناطق نصب و تعداد اين عايق‌ها در مقايسه با شبكه فوق‌توزيع و قدرت، اين مزيت از اهميت بالاتري برخوردار خواهد بود. در مناطقي همچون بندرعباس، چابهار و بخش‌هايي از استان خوزستان، سيكل شست‌شو در اكثر ماههاي سال در دوره‌هاي 20 تا 25 روزه انجام مي‌گيرد كه در صورت استفاده از عايق‌هاي پليمري نياز به اين عمليات كمتر خواهد شد. بنابراين بطور خلاصه مي‌توان گفت كه استفاده از عايق‌هاي پليمري علاوه بر كاهش هزينه‌، افزايش كارايي خطوط انتقال نيرو و كاهش صدمات ناشي از كاركرد نامناسب عايق‌هاي سراميكي را به دنبال خواهد داشت. روش تحقيق در اين تحقيق جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتور با انواع پليمري آنها مورد بررسي قرار گرفته است. براي اين كار ابتدا شرايط كاربري اين عايق‌ها تعيين شد و سپس با بررسي رزين‌ها و الاستومرهاي مختلف ومقايسه خواص فيزيكي، مكانيكي و ... آنها با شرايط كاربري عايق‌هاي سراميكي، تعدادي از اين پليمرها انتخاب و درنهايت فرمولاسيون‌هاي مناسب براي ساخت عايق‌هاي پليمري پيشنهاد شد. انتخاب اين فرمولاسيون‌ها به صورتي انجام شده كه خواص كاربري عايق‌هاي ساخته شده با كامپاند پليمري حداقل برابر با خواص كاربري عايق سراميكي باشد (كه البته در اكثر موارد خواص كاربري عايق‌هاي پليمري بالاتر از عايق سراميكي است). مراحل انجام اين تحقيق را مي‌توان به صورت زير بيان كرد: 1- بررسي عايق‌هاي سراميكي و تعيين شرايط كاربري آنها (نظير خواص مكانيكي، الكتريكي، شيميايي و ...) 2- استفاده از شرايط كاربري تعيين شده به عنوان مرجعي در طراحي عايق‌هاي پليمري 3- بررسي پليمرهاي مختلف و مقايسه خواص آنها با شرايط كاربري تعيين شده و حذف مواردي كه قابليت ارايه شرايط كاربري مورد نظر را نداشتند. از اين ميان تعدادي از پليمرها نيز به دليل مسائل فني و اقتصادي حذف شدند (نظير كمياب بودن و يا خاص بودن پليمر مورد نظر). 4- انتخاب نهايي تعدادي از پليمرها و ارايه فرمولاسيون اوليه براي هر يك از آنها كه بر مبناي اين فرمولاسيون‌ها، مطالعات اوليه براي برآورد قيمت عايق نيز انجام شد. در انتخاب پليمرها، هدف تعيين انواعي از پليمرها بوده كه شرايط كاربري آنها حداقل برابر شرايط كاربري سراميك باشد تا بتوان از آن در جايگزين كردن بجاي عايق‌هاي سراميكي استفاده كرد. با توجه به مطالعات انجام شده رزين‌هايي كه مي‌توان از آنها براي ساخت عايق‌ پليمري استفاده كرد عبارتند از: 1- رزين آكريليك: نام تجاري معروف اين رزين، پلكسي گلاس،لاكيت و آكريليت است. - مزايا: دامنه وسيع رنگهاي آنها، شفافيت مطلوب، به آهستگي مي‌سوزند و در نتيجه سوختن دود كمي ايجاد مي‌شود يا اين كه اصلاً دودي آزاد نمي‌شود، مقاومت عالي آنها در برابر شرايط جوي و اشعه ماوراي بنفش، سهولت فرآوري، خواص الكتريكي عالي، صلبيت با استحكام ضربه‌اي خوب، صيقلي بودن خوب، پايداري ابعادي عالي و انقباض كم در قالب‌گيري، افزايش سختي دوجهتي براثر فرم‌دادن كششي. - معايب: مقاومت ضعيف در برابر حلال‌ها، امكان ترك خوردن بر اثر تنش، قابليت احتراق، محدوديت استفاده مداوم آنها در دماي بالا (0C93)، غيرقابل ارتجاع بودن. آكريليك‌ها بصورت كوپليمرهاي مختلفي وجود دارند كه عبارتند از: - كوپليمر آكريليك- استايرن- آكريلونيتريل (ASA) - كوپليمر آكريلونيتريل- بوتادين- استايرن (ABS) - كوپليمر آكريلونيتريل- پلي‌اتيلن كلردار- استايرن (ACS) 2- رزين اپوكسي - مزايا: محدوده وسيع شرايط تثبيت از دماي اتاق تا 350 درجه فارنهايت، عدم تشكيل تركيبات فرار در طي تثبيت، چسبندگي عالي، قابليت تشكيل اتصال عرضي با تركيبات ديگر، مناسب براي همه روش‌هاي فرآوري گرماسخت‌ها. - معايب: پايداري كم در برابر اكسيد شدن، حساس بودن بعضي از اين تركيبات در برابر رطوبت، پايداري حرارتي تا 450-350 درجه فارنهايت، گران بودن بسياري از انواع آنها. 3- فلوئورو پلاستيك‌ها (رزين پلي‌تترافلوتورو اتيلن (PTEE) - مزايا: عدم آتشگيري، مقاومت خوب در برابر حلال‌ها ومواد شيميايي، مقاومت خوب در مقابل عوامل جوي، ضريب اصطكاك پايين، امكان بكارگيري در محدوده وسيعي از دماها، خواص الكتريكي بسيار خوب. - معايب: عدم امكان استفاده از روش‌هاي معمولي در فرآيند آن، سمي بودن محصولات ناشي از تخريب حرارتي، داشتن خزش، نفوذ‌پذيري، نياز به دماي بالا هنگام فرايند، استحكام اندك، دانسته زياد، قيمت نسبتاً بالا. 4- رزين‌هاي فنوليك - مزايا: قيمت نسبتاً كم، مناسب بودن براي استفاده تا دماي 250 درجه سانتيگراد، مقاومت عالي در مقابل حلال، سختي مناسب، تراكم‌‌پذيري خوب، استحكام زياد، قابليت خاموش‌شوندگي خودبخود، ويژگي‌هاي الكتريكي عالي. - معايب: احتياج به پركننده براي قالب‌گيري، مقاومت كم در مقابل بازها و اكسيدكننده‌ها، آزاد شدن مواد فرار طي تثبيت (يك پليمر تراكمي)، تيره بودن رنگ (به دليل بدرنگ شدن در نتيجه اكسيداسيون). 5- رزين ‌پلي‌كربنات - مزايا: ضربه‌پذيري بسيار خوب، مقاومت بسيار خوب در مقابل خزش، دارا بودن درجات متنوعي از شفافيت، قابليت كاربرد مداوم تادماي بيش از 120 درجه سانتيگراد، پايداري ابعادي بسيار خوب. - معايب: عدم قابليت فرايند در دماي بالا، مقاومت ضعيف در مقابل قلياها، آسيب‌پذيري در مقابل حلال‌ها، نياز به تثبيت‌كننده ماوراي بنفش. 6- رزين‌ سيليكوني الاستومرهايي كه مي‌توان از آنها براي ساخت عايق‌هاي پليمري استفاده كرد عبارتند از: 1- EPDM - مزايا: مقاومت عالي در برابر گرما، اُزن و نور خورشيد، انعطاف‌پذيري خيلي خوب در دماهاي پايين، مقاومت خوب در برابر بازها، اسيدها و حلال‌هاي اكسيژن‌دار، مقاومت فوق‌العاده در برابر آب و بخار آب، پايداري عالي رنگ. - معايب: مقاومت ضعيف در برابر روغن، بنزين و حلال‌هاي هيدروكربني، چسبندگي ضعيف به الياف وفلزات 2- سيليكون - مزايا: مقاومت برجسته در برابر گرماي زياد، انعطاف پذيري عالي در دماهاي پايين، مانايي فشاري كم، عايق‌كنندگي الكتريكي خيلي خوب، مقاومت عالي در برابر شرايط جوي، ازن، نور خورشيد و اكسايش، پايداري و حفظ رنگ فوق‌العاده. - معايب: مقاومت ضعيف در برابر سايش، پارگي و رشد بريدگي، استحكام كششي كم، مقاومت نامطلوب و پايين در برابر روغن، بنزين و حلال‌ها، مقاومت ضعيف در برابر بازها و اسيدها. 3- هيپالون - مزايا: تاخيراندازي خوب در برابر اشتعال، مقاومت سايشي خوب، مقاومت فوق‌العاده در برابر شرايط جوي، ازن، نور خورشيد و اكسايش، مقاومت عالي در برابر بازها و اسيدها، پايداري و حفظ رنگ خيلي خوب، مقاومت متوسط در برابر روغن و بنزين. - معايب: مقاومت ضعيف تا متوسط در برابر حلال‌هاي آروماتيك، انعطاف‌پذيري محدود در دماهاي پايين، جهندگي و مانايي فشاري متوسط. درادامه الويت‌بندي پليمرهاي انتخابي بر اساس مزيت‌هاي فني و اقتصادي آنها ارايه شده است. 4- انتخاب عايق پليمري مناسب با مقايسه شرايط كاربري مورد نظر براي اين عايق‌ها با مشخصات پليمرهاي پيشنهادي در بند قبل و نيز با در نظر گرفتن مسائل اقتصادي، مي‌توان انتخاب مناسبترين پليمر براي اين كاربرد را مطابق جدول 1 اولويت‌بندي كرد: نتيجه‌گيري استفاده از عايق‌هاي پليمري به جاي عايق‌هاي سراميكي گرچه هزينه‌هاي اوليه بيشتري را بر مصرف‌كننده تحميل مي‌كند ولي از آنجايي كه هزينه‌هاي عملياتي عايق‌هاي پليمري بسيار كمتر از عايق‌هاي سراميكي است در مجموع هزينه استفاده از عايق‌هاي پليمري را نسبت به عايق‌هاي سراميكي كاهش مي‌دهد. همچنين بايد توجه داشت كه استفاده از عايق‌هاي پليمري كاهش خطا را در شبكه‌هاي توزيع و انتقال به همراه خواهد داشت كه اين خود باعث كاهش بسيار در هزينه‌هاي مصرف‌كننده خواهد شد. در صورت جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتورها با نوع پليمري، مناسبترين نوع پليمرها به ترتيب عبارتند از: پليمرهاي اپوكسي، لاستيك‌ سيليكوني، هيپالون، EPDM-NR، پلي كربنات، فلوئور كربن، اكريليك، فنوليك و سيليكون رزين.
  16. Glint

    ثبات ها Fault Detector

    تجزيه تحليل خطا و اتفاقاتي كه در شبكه يا پستهاي فشار قوي رخ مي‌دهد و نيز مشخص نمودن علل وقوع آنها نيازمند داشتن اطلاعات دقيق و كافي از وضعيت سيستم در هنگام بروز خطا مي‌باشد. علاوه بر آن اين اطلاعات مي‌تواند در برطرف كردن علت خطا و نيز پيشگويي و يا جلوگيري از اتفاقات بعدي بكار گرفته شود و به اين ترتيب مي‌توان با تدابير مناسب احتمال وقوع خطا را در سيستم به حداقل رسانيد. دستگاه‌هايي كه جهت ثبت و ضبط وقايع و اتفاقات در پست‌هاي فشار قوي بكار مي‌روند را مي‌توان به سه دسته زير تقسيم‌بندي نمود: - دستگاههاي ثبات خطا - دستگاههاي ثبات ترتيب وقايع يا ثبات وقايع - دستگاههاي ثبت اغتشاشات ديناميكي اين دستگاه‌ها عموماً در پستهاي 230 و 400 كيلوولت بكار مي‌روند و در پست‌هاي 63 و 132 كيلوولت كاربرد ندارند، مگر در پست‌هاي بسيار مهم كه ثبت خطاها و وقايع از اهميت زيادي برخوردار باشد. - ثبات خطا : دستگاهي است كه وظيفه ثبت اطلاعات مورد نياز سيستم را جهت بررسي و تحليل عملكرد سيستم در هنگام بروز خطا بعهده دارد. اين اطلاعات شامل مقادير لحظه‌اي و شكل موجهاي پارامترهاي سيستم قدرت از قبيل شكل موج‌هاي جريان شامل جريان‌هاي سه فاز، شكل موج‌هاي ولتاژ سه فاز، ولتاژهاي خط به زمين و ولتاژ نوترال به زمين در زمان قبل، دوره وقوع و زمان بعد از وقوع يك اغتشاش و خطا در سيستم مي‌باشد. اين اطلاعات جهت تحقيق در مورد عملكرد صحيح سيستم حفاظتي از جمله رله‌ها، كليدها و سكسيونرها و نشان دادن خرابي تجهيزات و يا بازسازي اغتشاشي كه باعث پاسخ ديناميكي در شبكه شده است، بكار مي‌رود. ثبت خطا بايد كمي قبل از بروز اغتشاش يا خطا شروع شده و تا چند ثانيه بعد از آن نيز ادامه يابد. مقادير لحظه‌اي بايد براي مدت زماني از 10 سيكل تا چند ثانيه و با پريود نمونه برداري مناسب (حداقل چند نمونه در هر سيكل) توسط يك حافظه و بدون از دست رفتن هيچگونه سيگنال اطلاعاتي جمع‌آوري و ثبت شود. ثبات خطا شامل تعدادي كانال آنالوگ و تعدادي كانال ديجيتال است. به جهت جلوگيري از بروز خطا در هنگام نمونه‌گيري داده‌ها، بايد در ورودي كانال‌هاي آنالوگ از ***** استفاده نمود. اين تجهيزات براي تحليل پديده‌هاي فركانس بالا از جمله پديده ولتاژ استقرار و امواج سيار بكار نمي‌روند. اولين نوع ثبات‌هاي خطا كه در پست‌هاي فشار قوي بكار گرفته شد ثباتهاي الكترومكانيكي بودند. در اين نوع ثبات‌ها براي ثبت وقايع قبل از اتصالي، از يك حافظه كه براساس روشهاي مكانيكي (استفاده از يك استوانه جوهري از جنس فولاد) استوار بود بهره‌ گرفته مي‌شد. اين گونه ثبات‌ها داراي محدوديتهايي شامل مشكل بودن نگهداري و بهره‌برداري از آنها، كم بودن نسبي كانالهاي ثبات و ضعيف بودن كيفيت ثبت از نظر نشان دادن آنها بود. نسل بعدي ثبات‌ها استفاده از استوانه‌هاي مغناطيسي را به جاي استوانه‌هاي جوهري مدنظر قرار داد. در نسل بعد از آن حافظه‌هاي ديجيتالي در ثبات‌هاي خطا مورد استفاده قرار گرفت. در اين نوع ثبات‌ها با استفاده از يك مبدل آنالوگ / ديجيتال وروديهاي آنالوگ نمونه‌برداري مي‌شوند، به صورت ديجيتال در‌آمده و سپس روي يك حافظه ذخيره مي‌شوند. هر زمان كه به اين حافظه احتياج بود اين اطلاعات با استفاده از يك مبدل ديجيتال / آنالوگ تبديل شده و روي كاغذهاي حساس به نور ثبت مي‌گردند. آخرين نوع از ثبات‌هاي خطا نوع ميكروپروسسوري است كه مزاياي فراواني را نسبت به ساير ثبات‌هاي خطا ارائه مي‌دهند. اين گونه ثبات‌ها از يك ميكروكامپيوتر استفاده كرده كه اين وسيله كليه داده‌هاي آنالوگ و ديجيتال را در يك حافظه ذخيره مي‌نمايد. هنگامي كه خطايي در سيستم رخ مي‌دهد ثبات راه‌اندازي شده و داده‌هاي موجود به حافظه يا چاپگر انتقال پيدا مي‌كند. بطور كلي مزاياي اين نوع ثبات‌ها را مي‌توان به شرح زير ارائه نمود : - ثبات‌هاي اوليه داراي پاسخ فركانسي كمتر از 100 هرتز بودند، اما واحدهاي جديد ميكروپروسسوري مي‌توانند پاسخ‌هاي تا 20 كيلوهرتز را نمايش دهند. اگر چه فركانسهاي بيشتر از 1000 هرتز توسط وسايل حفاظتي ديده نمي‌شود، اين سطح پاسخ فركانسي به استفاده كننده اين اجازه را مي‌دهد كه هارمونيك‌هاي مهم سيستم را نيز تحليل كند. - دقت ثبت، در اين نوع ثبات‌ها بسيار بالا است. - قابليت‌ انعطاف بالا در زمان ثبت، يكي از مزاياي مهم ثبات‌هاي جديد است. بطوريكه با اين نوع ثبات‌ها نسبت به ثبات‌هاي قبلي مي‌توان دو خطا به فاصله زماني كمتر را، از هم تشخيص داد. - يكي ديگر از مزاياي ثبات‌هاي جديد امكانات گرافيكي بيشتر آن مي‌باشد. به اين ترتيب كه در هر عمل ثبت نمودن، زمان و تاريخ ثبت، علت راه‌اندازي شدن و كليه شكل موجهاي ولتاژ و جريان بصورت گرافيكي در يك متن كامل ثبت مي‌شوند. - مشخصه‌ ارتباط از راه دور نيز يكي از مزاياي اين نوع ثبات‌ها است (اين مشخصه اكنون به صورت استاندارد در آمده است). كليه داده‌ها به يك كامپيوتر مركزي (ازطريق يك خط ارتباطي) انتقال مي‌يابد. اين كامپيوتر مركزي مي‌تواند با تعدادي از ثبات‌هاي توزيع شده در سيستم ارتباط برقرار كند. هنگامي كه چند ثبات خطا در چند پست مورد احتياج باشد كليه واحدهاي ثبات بايد بصورت همزمان راه‌اندازي شده و مقايسه زماني دقيق بين چارت‌هاي هركدام از آنها انجام گيرد. اين عمل توسط كامپيوتر مركزي امكان پذير است. مشخصات ثبات خطا : مشخصات عمومي يك ثبات خطا را مي‌توان به شكل پارامترهاي زير ليست نمود : - اساس عملكرد (نحوه اتصال به دستگاههاي جانبي، نحوه راه‌اندازي، برنامه‌نويسي و ...) - نيازهاي نگهداري - پاسخ فركانسي - سرعت كاغذ - منبع تغذيه مورد لزوم - سطح عايقي - تعداد كانالهاي آنالوگ و ديجيتال ثبات‌هاي خطا معمولاً از يك سيستم باطري مشترك همراه با تجهيزات حفاظتي استفاده مي‌كنند و باطري‌هاي جداگانه براي ثبات‌ها لازم نخواهد بود.
  17. spow

    دانلود چندمقاله مهندسی برق از ieee

    1- طراحی بهینه اینورتر flyback منبع جریان برای سیستم های فتو ولتائیک متصل به شبکه نامتمرکز مرجع: IEEE سال انتشار: 2008 دانلود 2- طراحی یک سیستم کنترل فازی قوی برای سیستم های بزرگ غیر خطی با چند تأخیر زمانی از طریق روش مبتنی بر شبکه عصبی مرجع: IEEE سال انتشار: 2008 دانلود(184 KB) 3- توزیع توان سیگنالهای مایکروویو با مدولاسیون فاز در یک لینک فیبر نوری پراکنده کننده مرجع: IEEE سال انتشار: 2008 دانلود(216 KB) 4- تحقیقی درباره کنترل کننده یکپارچه پخش توان (UPFC) مرجع: IEEE سال انتشار: 2007 دانلود(193 KB) 5- تولید آبی سرعت-متغیر: جنبه ها و کنترل عملی مرجع: IEEE سال انتشار: 2006 دانلود(343 kb)
  18. spow

    ترموستات

    ترموستات ها از نظر محل نصب، نوع عملكرد، فصل سالي، نوع سنسور، رنج كاري، تعداد مراحل كار و از نظر حرارت به انواع مختلفي تقسيم مي شوند. از نظرمحل نصب: به انواع اتاقي، كانالي، مستغرق و جداري تقسيم مي شوند. از نظر نوع عملكرد: به انواع قطع و وصلي و تدريجي تقسيم مي شوند. از نظر حرارت: به انواع حرارتي و برودتي تقسيم مي گردند. از نظر رنج: به زير صفر و بالاي صفر تقسيم مي شوند. از نظر تعداد مراحل كار: به يك مرحله اي، دو مرحله اي و پله ای(استپ کنترل) تقسيسم مي گردند. از نظر نوع سنسور: به بيمتالي، فانوسه اي، رئوستا و ديافراگمي تقسيم مي شوند. از نظر فصلي: به سه نوع تابستاني، زمستاني و دو فصلي تقسيم مي شوند. پس از معرفي انواع آن، حال به معرفي چند نوع ترموستات مي پردازيم.
  19. am in

    تشخیص و نمایش خطای زمین

    برای تشخیص خطای زمین ناشی از سیم کشی نادرست ، خرابی عایق ، تراکم رطوبت ، میدان های مغناطیسی پراکنده و مسائل دیگر می توان از جریان نشتی به هادی های زمین استفاده کرد . علائم خطاهای زمین میتواند خرابی کارت های I / O در شبکه ها ، بهم خوردن متناوب اطلاعات در دستگاه های ارتباطی ، از دست رفتن سیستم ، آلارم های غیر واقعی ، قطعی های اتوماتیک و غیره باشد . بعضی از مشکلات ناشی از خطاهای زمین عبارتند از : کاهش ایمنی بهره برداران و افزایش خطرات آتش سوزی ، افزایش ولتاژ در نقاط مختلف زمین سیستم، مشکلات ورود فرکانس های بالا به دستگاه های الکترونیکی حساس و ایجاد میدان های پراکنده بسیار قوی . اصول تشخیص خطا بر جمع جریانهای اندازه گیری شده می باشد. در مدارهای تک فاز سیم فاز ونول از داخل ترانس جریان ( CT ) و در مدارهای سه فاز ، کلیه سیم های فاز بعلاوه سیم نول از داخل CT عبور داده می شود. ترانس جریان مجموع اثر جریان ها را جمع می کند . اگر شبکه سالم باشد مجموع اثر آنها تقریبا صفر است .اگر شبکه خطای زمین داشته باشد ، مجموع جریان ها برابر با جریان خطای زمین خواهد بود. با استفاده از واحدهای نظارت جدید و حساس اندازه گیری بسیار دقیق انجام می شود و دامنه اندازه گیری می تواند در محدوده 1 mA تا 10 A انجام شود. این روش اندازه گیری از نظر اقتصادی مقرون به صرفه است و می تواند در نقاط زیادی، سیستم جدید نصب گردد. چون آلارم مستقیما از قسمت خطادار سیستم صادر می شود بنابراین تشخیص محل خطا ساده خواهد بود. شکل (1) محل نصب دریافت کننده های سیگنال مشخص شده است . هر یک از دریافت کننده های سیگنال می تواند به یک رله جداگانه متصل شود و یا اینکه به یک واحد نظارت چند کاناله متصل شود که با یک کامپیوتر برای جمع آوری اطلاعات در ارتباط می باشد.
  20. Mehdi.Aref

    كلیدهای قدرت

    در این مقاله در مورد کلیدهای فشار قوی نوع هوای فشرده که برای قطع و وصل جریان در شبکه استفاده شده است بحث می شود که برای دانلود آن میتوانید از لینک زیر استفاده کنید. دانلود
  21. spow

    ترموستات

    ترموستات ها از نظر محل نصب، نوع عملكرد، فصل سالي، نوع سنسور، رنج كاري، تعداد مراحل كار و از نظر حرارت به انواع مختلفي تقسيم مي شوند. از نظرمحل نصب: به انواع اتاقي، كانالي، مستغرق و جداري تقسيم مي شوند. از نظر نوع عملكرد: به انواع قطع و وصلي و تدريجي تقسيم مي شوند. از نظر حرارت: به انواع حرارتي و برودتي تقسيم مي گردند. از نظر رنج: به زير صفر و بالاي صفر تقسيم مي شوند. از نظر تعداد مراحل كار: به يك مرحله اي، دو مرحله اي و پله ای(استپ کنترل) تقسيسم مي گردند. از نظر نوع سنسور: به بيمتالي، فانوسه اي، رئوستا و ديافراگمي تقسيم مي شوند. از نظر فصلي: به سه نوع تابستاني، زمستاني و دو فصلي تقسيم مي شوند. پس از معرفي انواع آن، حال به معرفي چند نوع ترموستات مي پردازيم.
  22. دید کلی معمولا اندازه گیری فرکانسهای صوتی (20Hz تا 20kHz) ساده‌تر از فرکانسهای دیگر انجام می‌شود و برای اندازه گیری این فرکانسها ابزارها و روشهای بسیاری موجود است. البته توجه داشته باشید که به صرف سادگی اندازه گیری فرکانسهای صوتی نباید از دقت لازم کاست، بلکه همانند دیگر اندازه گیریها این اندازه گیری نیز باید صحیح و دقیق باشد. روشهای اندازه گیری روش Beat _ Note (صدای تداخلی) ساده‌ترین روش اندازه گیری فرکانس مجهول صوتی ( ) تنظیم دستگاه سیگنال ژنراتور صوتی روی تداخل صفر است. پس از این عمل می‌توان از روی صفحه مدرج سیگنال ژنراتور مقدار فرکانس را خواند. در این روش هم می‌توان از گوشی استفاده نمود و یا به جای آن میتری در مدار قرار داد. دو سیگنال بطور همزمان به شاخص اختلاف فرکانس وارد می‌شود. چنانچه اختلاف فرکانس دو سیگنال صفر باشد، در گوشی صدایی با قدرت بیشتر و یا در میتر با انحراف عقربه بیشتر روبه‌رو خواهیم شد. در این حالت آزمایشگر باید دقت کند که سیگنال ژنراتور را روی هماهنگها یا هارمونیکهای تنظیم نکند. با چند آزمایش می‌توان به اختلاف این دو حالت پی برد. سیگنال منتجه حاصل از فرکانس اصلی دارای شدت بیشتری است. چنانچه آزمایشگر در اندازه گیری خود دقت لازم بکار برد، دقت اندازه گیری معادل با دقت دستگاه سیگنال ژنراتور صوتی که معمولا تا است، خواهد شد. روش ولت متر این روش اندازه گیری صامت است و در نتیجه از خطاهای حاصل از عیوب ممکن در گوش پرهیز می‌شود. در این روش با اندازه گیری مقدار موثر موج حاصل از تداخل دو سیگنال توسط ولت متر مقدار فرکانس مجهول بدست می‌آید. سیگنال مجهول ( ) و سیگنال ژنراتور ( ) از طریق مقاومتهای جداسازی و که می‌توانند دارای مقادیری بین 820 تا 1800 اهم باشند، به ولت متر وارد می شود. برای اندازه گیری فرکانس با این روش ابتدا باید سیگنال مجهول را کنار گذارده و خروجی ژنراتور را برای انحراف عقربه ولت متر تا وسط صفحه مدرج تنظیم کنید. سپس با اعمال سیگنال مجهول مشاهده خواهید کرد که عقربه به نوسان افتاده و به بالا و پایین وسط صفحه حرکت می‌کند. با تنظیم فرکانس ژنراتور چنانچه روی فرکانسی برابر فرکانس مجهول قرار گیرد، عقربه از نوسان افتاده و به حالت سکون می‌رسد. بنابراین در این روش می‌توان با دقت بیشتری فرکانس مجهول را بدست آورد. یکی از مزایای این روش این است که عقربه تنها در فرکانس اصلی سکون خواهد یافت و در هماهنگها نیز نوسان خواهد کرد. اندازه گیری فرکانس نوع القایی این دستگاه را اندازه گیری فرکانس نوع آهن متحرک نیز می‌نامند. در این دستگاه فرکانس مستقیما توسط آهن متحرک خوانده می‌شود. در این دستگاه دو سیم پیچ ثابت و بطور عمود بر یکدیگر سوار می‌شوند. عنصر متحرک یک تیغه آهنی نرم و باریک و بلند است که به آن عقربه‌ای متصل کرده‌اند. انحراف این تیغه آهنی متناسب با میدان مغناطیسی حاصل از دو سیم پیچ و است. شبکه سلفی _ مقاومتی متصل به سیم پیچها اختلاف فاز بین جریانهای جاری در سیم پیچها را کاهش داده و بدان وسیله مانع از چرخش تیغه آهنی می‌شود. در این صورت چون تیغه نمی‌تواند چرخش میدان مغناطیسی را دنبال کند، انحرافی متناسب با فرکانس جریان پیدا می‌کند. این نوع فرکانس را معمولا برای اندازه گیری فرکانس برق شهری (25 ، 40 ، 50 ، 60 و 125 هرتز) بکار می‌برند. البته وسایلی با این چنین ساختمانی برای اندازه گیری فرکانسهای بالاتر تا حدود 500 هرتز نیز ساخته شده است. اغلب دستگاه را برای یک فرکانس معمول طراحی کرده و آن را در وسط صفحه مدرج قرار می‌دهند. انحراف عقربه در دو طرف فرکانس کار دستگاه از 30 درصد تا 85 درصد متغیر است. دقت این نوع وسایل بستگی به نوع ساخت و مدل آن دارد و می‌تواند به 0،5درصد برسد. دستگاه اندازه گیر فرکانس نوع القایی را می‌توان برای یک ولتاژ / یک فرکانس ، دو ولتاژ/ یک فرکانس یا دو ولتاژ / دو فرکانس بکار برد. اندازه گیری فرکانس نوع تیغه‌ای این وسیله به نام تیغه مرتعش معروف است. در این وسیله M یک ماده مغناطیس دائمی می‌باشد. روی گردن این مغناطیس یک سیم پیچ (L) با تعداد دور بسیار از سیم نازک پیچیده شده است. این سیم پیچ به منبع جریان فرکانس صوتی مجهول متصل می‌شود. یک طرف تیغه R (یک نوار نازک فلزی مانند آهن یا فولاد) به یکی از قطبین آهنربا وصل شده است. طرف دیگر این تیغه با فاصله کمی روی قطب دیگر آهنربا قرار می‌گیرد. تیغه فنری دارای پریود ارتعاشی است که با توجه به طول و ضخامت آن تعیین می‌شود. چنانچه جریان متناوبی به سیم پیچ جاری شود، نیروی میدان مغناطیسی منتج با فرکانس موج ac تغییر می‌کند و تیغه را وادار به ارتعاش می‌نماید. وقتی فرکانس موج ، معادل با فرکانس طبیعی باشد، ارتعاش خیلی شدید است، بطوری که انتهای آزاد تیغه دیده نمی‌شود. چنانچه فرکانس موج بالاتر یا پائین‌تر از فرکانس طبیعی تیغه باشد، ارتعاش کندتر صورت گرفته و به شکل خاکستری رنگ دیده می‌شود. در دستگاههای عملی چندین تیغه را با طولهای مختلف کنار هم سوار می‌کنند. قطب بالایی آهنربا چنان بریده شده که تیغه‌ها دارای طولهای متفاوتی باشند. این عمل بدین منظور انجام می‌گیرد که انتهای آزاد تیغه‌ها در یک خط قرار گرفته و از خارج به سهولت قابل روئیت باشند. برای روئیت بهتر تیغه‌ها خمیدگی سر آزاد آنها را به رنگ سفید در می‌آورند. اگر اختلاف طول تیغه‌ها کم باشد، در یک فرکانس مشخص چندین تیغه به ارتعاش در می‌آید (معمولا 3 تیغه)، اما آن تیغه که ارتعاش طبیعی وی به فرکانس مجهول نزدیکتر است، فعالتر بوده و از دید محو می‌شود، در حالی که تیغه‌های دیگر به رنگی تیره هنوز دیده می‌شوند. اندازه گیری الکترونیکی فرکانس از نوع آنالوگ این دستگاه دارای امپدانس زیادی بوده و قابلیت اندازه گیری 0 تا 10kHz و 0 تا 100kHz را دارد. از آمپرمتر فرکانس جریان dc از 0 تا 50 میکروآمپر عبور می‌کند. مقدار فرکانس مستقل از دامنه سیگنال 1،7 ولت به بالا بوده و همچنین مستقل از شکل موج می‌باشد و پاسخ مدار خطی است و بنابراین کافی است در هر باندی یک نقطه تنظیم شود. این آرایش شامل دو تقویت کننده بیش تغذیه شده (Overdriven) است. خروجی طبقه آخر ( ) یک موج مربعی است که در یک مدار RC بکار برده می‌شود. دیودهای و عمل یکسوسازی را انجام می‌دهند. تا وقتی دامنه موج مربعی ثابت است، انحراف عقربه (M) تنها به تعداد پالسهای موجود در هر ثانیه بستگی پیدا می‌کند و بنابراین بطور مستقیم با فرکانس سیگنال متناسب است. دستگاه را باید ابتدا روی یک نقطه از هر باند تنظیم نمود. این تنظیم تنها برای یک بار انجام می‌شود. بهترین نقطه برای تنظیم عبارت از فرکانس حد بالای باند جهت انحراف کامل عقربه است. پتانسیومترهای تا برای این منظور در مدار جای گرفته‌اند. اندازه گیری الکترونیکی نوع دیجیتال همانند اندازه گیر نوع آنالوگ اندازه گیر نوع دیجیتال نیز الکترونیکی است و امپدانس بالایی تولید می‌کند. در این نوع اندازه گیرها میتر M حذف شده و فرکانس به صورت یک سری اعداد که توسط مدارهای خاص تولید می‌شود، نشان داده خواهد شد. بنابراین اندازه گیر دیجیتال ، یک دستگاه تمام الکترونیکی است. دستگاه نوع دیجیتالی اصولا شامل یک شمارنده الکترونیکی است که تعداد پالسهای موجود در هر ثانیه را شمرده و سپس یک نمایش دهنده 5 یا 8 عددی را جهت نمایش فرکانس بکار می‌اندازد. گیت مبنای زمانی یک ثانیه‌ای توسط یک سیگنال مبنای زمانی دقیق (سیگنال ساعت) کنترل می‌شود. این سیگنال در داخل دستگاه تولید شده و معمولا از یک نوسان ساز کریستالی بدست.
  23. Title: A Hybrid Approach of Marginal Benefit and Normal Boundary Interesection Algorithm for Distributed Generation Planning Authors: Shahram Jadid شهرام جدید Ali Zangeneh علی زنگنه Ashkan Rahimikian اشکان رحیمی کیان Organization: دانشگاه علم وصنعت ایران Sience and Technology University Keywords: بهینه سازی چند هدفه Multiobjective Optimization سود حاشیه ای Marginal Benefit تولید پراکنده Distributed Generation PSC 2007 22nd International Power System Conference - 19-21 November, 2007 Tehran - Iran Technical Sessions: Planning and System Studies 98-E-PSS-504.pdf
×
×
  • اضافه کردن...