جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'رزین'.
22 نتیجه پیدا شد
-
چسبهای بسیاری برای متصل کردن اجسام مشابه یا غیر مشابه در دسترس هستند. امروزه تقریبا استفاده از چسبانندههای طبیعی مثل سریش بجز موارد استفاده خاصی منسوخ شده است. در عوض هر روز شاهد تولید و سنتز چسبهای جدیدی هستیم که منشأ پلیمری دارند. چسبها در اصل صنعتی به شیوههای گوناگونی تهیه میشوند که در این بحث برخی از مهمترین روشها را معرفی میکنیم. پخت یا پروراندن رزین چسب به صورت یک جسم جامد اپوکسیها معروفترین چسبهای این گروه هستند که با استفاده از رزینهای سیکلوآلیفاتیک ، طوری فرمولبندی میشوند که در دماهای بالا قابل استفاده باشند. برای سنتز چسبهای قوی و نیمه انعطافپذیر از رزینهای اپوکسی با عوامل پخت پلی آمین یا پلی آمید استفاده میشود و بیشتر اپوکسیها بدون استفاده از مواد افزودنی هم چسبندگی خوبی دارند. زمان پخت میتواند از ثانیهها تا روزها طول بکشد که این امر به کاتالیزورها و دما بستگی دارد. اپوکسی فنولی با استفاده از این چسبها میتوان اتصالاتی پدید آورد که تا 315ºc پایدار هستند. این چسبها در دماهای بالا پرورده میشوند و از آنها برای پیوند ساختمانی و لانه زنبوری استفاده میشود. از دیگر چسبهای این گروه میتوان از پلی استرها (که ارزان قیمت و زودگیر و شکننده هستند)، سیلیکونها ، سیانوآکریلاتها و آکریلیها ، نام برد. تبخیر حلال از محلول پلیمر گرمانرم مواد پلیمری حل شده در حلالها میتوانند چسبهای مفیدی تشکیل دهند. با تبخیر حلال ، پلیمر گرمانرم جامدی حاصل میشود که به چسب حلال معروف است. از این گروه میتوان نیتروسلولز را نام برد که سالها محلول 10 تا 25 در صد آن به عنوان چسب هواپیما و یا برای مصارف خانگی استفاده میشد. آکریلیها ، محلول رزینهای آکریلیک پرورده شده هستند و به چسبهای پلاستیک مشهورند و برای متصل کردن پلاستیکهای abs ، پلی استیرن و آکریلی مؤثرند. سیمانهای لاستیکی هم جزو چسبهای حلال میباشند. تبخیر آب از یک شیرابه پلیمری شیرابهها از ذرات کوچک پلیمر پرورانده شده معلق در آب تشکیل شدهاند و در موقع تبخیر آب ، ذرات بوسیله نیروهای واندرواسی به یکدیگر متصل میشوند. رزین خشک شده ، دیگر در آب حل نمیشود. از این چسبها میتوان پلی وینیل استات را نام برد که برای اتصال قطعات چوبی بکار میرود و به صورت شیرابه (محلول در آب) عرضه میشود و به نام چسب سفید یا چسب چوب معروف است. سرد کردن پلیمر گرمانرم ذوب شده پلیمرهایی که در دمای مناسب ذوب میشوند و دارای نیروهای جاذبه زیادی میباشند، بعنوان چسب داغ ذوب شناخته میشوند. از انواع پلی استرهای گرمانرم ، پلی آمیدها و پلی اتیلنها ، بعنوان چسب داغ ذوب استفاده میشود. این چسبها به صورت لولههایی با ضخامت کم در بازار موجود میباشد. در اثر حرارت دادن ، لوله ذوب و جاری میشود و با مالیدن به سطح جسم و فشردن سطوح به همدیگر ، اتصال در ضمن سرد شدن انجام میشود. عوامل اتصال دهنده موادی که با شیمی دوگانه وجود دارند، میتوانند به چسبندگی کمک کنند. این ترکیبات دارای دو گروه عاملی متفاوت در دو انتها میباشند و معمولیترین آنها عوامل اتصال دهنده سیلان میباشند. یک انتهای این ترکیبات ، تولید چسبندگی با شیشه یا مواد معدنی دیگر میکند و انتهای دیگر از نظر شیمیایی فعال میباشد. اخیرا ترکیباتی به نام تیتاناتها وارد بازار شدهاند که مانند سیلان دارای شیمی دوگانه هستند و شبیه آنها عمل میکنند، اما برتریهایی هم در برخی خواص نسبت به سیلانها دارند
-
ژل موي سر يكي از ابزار هاي شكل دادن به مو به شمار مي آيد. با استفاده از اين فراورده مي توانيد مدل دلخواه خود را براي مدت نسبتا طولاني بر روي مو تثبيت نمائيد. محصولات مدل دهنده مو، همگی از نظر شیمیایی پلیمرهای حل شده در حلال مایع هستند. وظیفه پلیمرهای موجود در این ترکیبات آن است که رشته های مو را به هم متصل کند، ضمن آنکه، پوشش پلیمری محیط بر تارهای به هم چسبیده مو، باعث افزایش حجم کلی آنها می گردد. نحوه اتصال تار های مو توسط این فراورده ها معمولا به دو صورت است: 1- اتصال جانبی (پهلو به پهلو)ی تار های مو که اصطلاح جوش خطی (Seam weld) به آن اطلاق می گردد. 2- اتصال نقطه ای (یا متقاطع) تارهای مو که جوش نقطه ای (Spot weld) نام دارد. در این حالت تارهای مو، در یک نقطه، یکدیگر را قطع می کنند. فراورده مدل دهنده مو، باید به گونه ای توسط تولید کننده طراحی و بوسیله مصرف کننده به کار برده شود که اتصال تارهای مو، بیشتر از نوع جانبی باشد. زیرا اتصال تارهای مو، به این شیوه، علاوه حجم بیشتر، آنها را به شکل ملایمتری در کنار هم نگاه داشته و آسیب کمتری به كوتیکول وارد می کند . در حال حاضر ژلهای مو به دو دسته کلی تقسیم بندی می شوند: Micro gels ژلهای روغنی (یا میکرو ژل ها) به صورت امولسیون های شفاف روغن در آب عرضه می شوند ( قطرات روغن آنقدر کوچکند که امولسیون شفاف به نظر می رسد). اين نوع از ژلها بيشترجهت ایجاد درخشندگی و گره گشایی از مو در هنگام برس و یا شانه کردن استفاده می شوند True gels ژلهای پلیمری ( ژلهای حقیقی) مخلوطی از آب، یک عامل ژل کننده و یک پلیمر تثبیت کننده با وزن ملکولی بالا هستند . وقتی که این مواد روی مو قرار می گیرند، رشته های مو با مخلوط آب و پلیمر پوشانده می شوند. سپس آب از روی مو تبخیر شده و لایه نازکی از پلیمر روی آن را می پوشاند. این پلیمر باید پوششی سبک، قابل انعطاف و شفاف روی مو بر جای گذارد و درخشندگی خاصی به آن بدهد ضمن آنکه که گره ها و الکتریسته ساکن مو تاحدی کاهش يابد. روشی برای استفاده موي خود را ابتدا با شامپوي مناسب شستشو دهيد. آب اضافي را با استفاده از حوله(با روش گذاشتن و برداشتن) از روي مو بزدائيد. مقداري ژل در كف دست خود قرار داده و پس از پخش آن بر روی دست به طور يكنواخت روي مو پخش نمائيد. دو نكته در مورد ژلها: ژل می تواند هم بر روی موی خشک و هم بر روی موی تر استفاده شود. ژل بر روی موی مشکی جلوه بیشتری دارد. • در صورتي كه مدل فر، مورد نظرتان است با استفاده از نوك انگشتان فر دلخواه خود را به مو بدهيد. • براي صاف نمودن، رشته های مو را بین دو دست قرار داده و دستها را در حالیکه فشار كمي اعمال مي كنید به سمت پائين حركت دهید .
- 6 پاسخ
-
- 9
-
- لوازم آرایش
- ژل مو
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
سلام در اینجا سعی میشه کتابهایی که مربوط به علم پوشش و سطوح هست، جمعآوری شه. پسورد تمامی فایلها: [Hidden Content]
- 19 پاسخ
-
- 3
-
- کتاب
- پوشش و سطح
-
(و 2 مورد دیگر)
برچسب زده شده با :
-
چكيده: پوشش هاي پودري شامل رنگدانه ها و افزودني هاي پخش شده در يك بايندر تشكيل دهنده فيلم ( رزين و عامل پخت) مي باشند كه بصورت پودرهاي ريز توليد مي شوند . چنين پودرهايي با يك تفنگ الكترواستاتيك بر روي سطوح مورد نظر پاشش ميگردند. ذرات پودر در تفنگ باردار شده و لايه نازك چسبناكي را روي سطح مورد نظر تشكيل ميدهند و پس از عبور از يك كوره در اثر حرارت ، ذرات پودري ذوب شده و پس از ايجاد چسبندگي و باند عرضي يك پوشش سخت ، بادوام و غيرقابل انحلال را ارائه ميدهند. لغت پوشش پودري به هر دو پوشش پخت شده و حالت پودري اطلاق ميشود و هيچ گونه ابهامي در بكار بردن آن وجود ندارد ولي ترم پودر پوششي فقط براي حالت پودري استفاده ميشود . دانلود
- 12 پاسخ
-
- 1
-
- لوله کامپوزیتی
- لاستیک
-
(و 40 مورد دیگر)
برچسب زده شده با :
- لوله کامپوزیتی
- لاستیک
- مقایسه رزین ها
- مستربچ
- ژل شدن
- کامپوزیت
- کامپوزیت پلیمری
- کاربرد کامپوزیت
- کاربرد رنگ
- گرمانرم
- گرماسخت
- پلی استر
- پلیمر
- پلاستیک
- پوشش پودری
- پوشش،پودر
- پخت رزین
- آشنایی،پلیمر،رزین
- افزودنی
- افزودنی رنگ زا
- الاستومر
- انواع رنگ
- انواع رزی
- اپوکسی
- اپوکسید
- بسپار
- تولید رنگ
- تیر کامپوزیتی
- ترموپلاستیک
- ترموپلاستیک الاستومر
- خواص رزین
- رنگ
- رنگ مو
- رنگ پلاستیکی
- رنگ خودرو
- رنگ صنعتی
- رنگینه
- رنگدانه
- رزین
- رزین پلی استر
- رزین اپوکسی،پلیمر
- عمل آوری
-
مقاله انتخاب صحیح نوع الیاف شیشه در قطعات frp
unstoppable پاسخی ارسال کرد برای یک موضوع در کتب و مقالات و جزوات درسی
چگونه باید تشخیص دهیم که در ساخت قطعه، چه نوع الیاف شیشه ای باید استفاده نمود؟ این اتتخاب همانند انتخاب مناسب رزین در بعضی از محیط های شیمیایی است، اتتخاب نوع صحیح الیاف شیشه در قطعات FRP بایستی طوری باشد که بتوانند در برابر خوردگی مقاوم باشد شرکت اونز کرنینگ (Owen Corning) به مهندسان و تولیدکنندگان در انتخاب نوع مناسب الیاف شیشه در محیطهای شیمیایی کمک میکند. طبق مقیاس فریک کلرید :(Ferric chloride) در محیطهای خوردگی، الیاف شیشه نوع ادونتکس (Advantex) مقاومت خوبی از خود نشان میدهد. طبق مقیاس فریک کلرید، استاندارد الیاف شیشه نوع E برای هیچ یک از بخش های کاربردی انتخاب خوبی نیست چراکه با کاهش 37 درصد وزن آن مقاومت خوردگی آن نیز کاهشمی یابد (به نمودار ذیل توجه فرمائید). اسید هیدروکلرویک: طبق آزمایشاتی که شرکت اون کرن انجام داده است، الیاف شیشه نوع C، الیاف شیشه نوع Advantexمیتوانند در معرض محیط خوردگی اسیدهیدروکلرویک قرار گیرند و در برابر این محیط مقاومت نشان دهند ولیکن الیاف شیشه نوع E در این محیط به خوبی نمی تواند مقاومت داشته باشد. (به نمودار ذیل توجه فرمائید) الیاف شیشه Advantex نمونه ای از عنصر برن (Boron) (عنصر شیمیایی قوی) الیاف شیشه Advantex نمونه ای از عنصر برن است که مقاومت خوردگی الیاف شیشه نوع E-CR و نوع E را دارد این الیاف با مشخصات ذیل توسعه یافته است: افزایش ویژگی های مکانیکی در مقایسه با استانداردهای الیاف شیشه نوع E و E-CRو بهبود مقاومت خوردگی در مقایسه با استاندارد الیاف شیشه نوع E است و همچنین پاسخگوی استاندارد ASTM D 578 4.24 و استاندارد ISO 2078 میباشد. شرکت اونز کرنینگ الیاف شیشه Advantex را در سال 1996 تولید نمود و ثابت کرد که بهترین نوع الیاف شیشه برای قطعات FRP در محیط های خوردگی است این نوع الیاف شیشه در تمامی مناطق دنیا برای تامین مشتریها تولید میشوند. چندین استانداردهای صنعتی وجود دارد که استفاده از انواع الیاف شیشه در ساخت قطعات FRP در محیطهای خوردگی را پیشنهاد شدند. یکی از این استانداردها ASTM D 578 میباشد که استاندارد تعیین مشخصات و وِیژگی های الیاف شیشه است و برای بهبود مقاومت به خوردگی با اسید استفاده میشود. استاندارد بین المللی ISO 2078 جدولی با نشانه های کلی و عمومی برای انواع الیاف شیشه ارائه میدهد که در محیط های خاص استفاده میشوند. (جدول شماره 2) استاندارد مشخضات قطعات FRP بسیاری از کاربران و مهندسان استاندارد مشخصات قطعات FRP که تولید خودشان است و با محیطهای خوردگی روبرو هستند را با استاندارد الیاف شیشه نوع E و Advantex و E-CR مطابقت مینمایند. مفاومت قطعات FRP به نوع الیاف شیشه مورد استفاده در آنها بستگی دارد استفاده از الیاف شیشه که مقاومت شیمیایی بهتری دارد در بسیاری از محیطها، خطر خوردگی را کاهش میدهد و میتواند عملکرد کل سازه را بهبود دهد. الیاف شیشه E-CR/ Advantex اغلب در معادن، بخشهای Flue Gas Desulphurization، فرایندهای شیمیایی، فاضلاب ها و سایر فرایندهای صنعتی استفاده میشود. ترجمه و تالیف: م. تقی زاده- انجمن کامپوزیت ایران منبع: نشریه JEC Composites منبع: انجمن کامپوزیت ایران -
پلیمر یک واژه یونانی است. و از اتصال زنجیرهای کوچک منومرساخته میشود. که انصال این زنجیره ها را پلیمریزاسیون گویند. فرایند پلیمریزاسیون عموماً به دو صورت انجام میشود که خود نیاز به یک بحث طولانی و پیچیده میباشد. ویژگی برتر این مواد پلیمری : سبکی، سختی و در عین حال انعطاف پذیری، مقاومت در برابر خوردگی، رنگ پذیری، شفافیت، سهولت در شکل پذیری و بسیاری از خواص مورد استفاده در کاربردهای مختلف. پلیمرها عموماً به دو دسته پلاستیکها و لاستیکها تقسیم میشوند. وهر دو گروه نیز خود به پلیمرهای گرمانرم(termoplast) و گرما سخت (termoset) تقسیم میشوند که بطور مفصل شرح داده خواهد شد. به خاطر اینکه مواد پلیمری به تنهایی نمی توانند مورد مصرف قرار گیرند در محل تولید (پتروشیمی) یا صنایع پایین دستی بنا به شرایط و کاربرد آنها از مواد افزودنی (addetive) استفاده میشود. به طور مختصر بعضی از این افزودنی ها ذکر میشود. مواد پرکننده (filler): مانند خاک رس یا در اکثر موارد کربنات کلسیم یا سیلیکا استفاده میشود و علت افزودن آنها کاهش قیمت است و تأثیری در افزایش خواص ندارد. از افزودنی مثل الیاف کوتاه یا پولک جهت بهبود خواص مکانیکی استفاده میشود. منظور از خواص مکانیکی کاهش خزش و استحکام در برابر تنش و ... میباشد. روان کننده ها (lubricant): این مواد ویسکوزیته پلیمر مذاب را کاهش داده و شکل پذیری در قالب ها را آسان تر میکند. مانند استارات کلسیم. رنگدانه ها (pigment): جهت ایجاد رنگهای گونگون در پلاستیکها به کار میروند. نرم کننده ها (plasticizers): موادی با وزن مولکولی و طول زنجیره کمتر نسبت به رنجیره پلیمرها که خواص و مشخصه شکل گیری پلیمرها را کمتر میکند. بهترین نمونه کاربرد آن DOP دی اکتیل فتالات، در تهیه PVC پلی وینیل کلراید میباشد که باعث انعطاف پذیری آن میشود. پی وی سی تقریباٌ سخت میباشد و در موارد استفادهایی که انعطاف پذیری نیاز داریم بوسیله این ماده آن را نرم میکنیم. مثال ساده استفاده در سفره ها (به بوی خاص و تند آن توجه کنید همان DOP است) و دمپایی ها و داشبوردهای پیکان های مدل قدیم! میباشد. و اگر به ترک! داشبورد بعضی از آنها توجه کنیم مربوط به از بین رفتن (پریدن) این افزودنی میباشد. استحکام دهنده ها(reinforcement) : با افزودن موادی نظیر الیاف شیشه یا الیاف کربن مقاومت و سفتی پلیمرها افزایش و بهبود می یابد. نظیر فایبر گلاس ها یا بدنه هواپیما و بعضی از خودروها مانند سیناد2 ! پایدار کننده ها(stabilizers) : این افزودنی ها از فساد و تخریب پلیمرها در مقابل عوامل محیطی مانند نور خورشید (اشعه UV) و رطوبت و ... جلوگیری میکند. مانند مواد ضد اکسایش که به پلاستیکهایی نظیر ABS اکریو نیتریل-بوتادین- استایرن ، پلی اتیلن و پلی استایرن اضافه میشود و پایدارکننه های حرارتی که معمولاٌ برای شکل دهی PVC به کار میرود. مواد ضد آتش زا(inflammable) : از این مواد در پلیمرهای استفاده میشود که خطر آتش سوزی در محل میباشد. بعضی از پلیمرها مانند PVC که حوای ماده کلر(ضد آتش) میباشد، در هنگام آتش سوزی خود اطفا میباشد و خاموش میشود. همچنین گاز وجود گاز خنثی نیتروژن در فوم های پلی استایرن (سقف کاذب) نیز باعث اطفاء حریق میباشد.
- 28 پاسخ
-
- polymer
- لاستیک
-
(و 48 مورد دیگر)
برچسب زده شده با :
- polymer
- لاستیک
- مقايسه
- مهندسی پلیمر
- مونومر
- مواد پلیمری
- ماکرومولکول
- چسب
- کاربرد پلیمر
- کاربردهای پلیمر
- گرمانرم
- گرماسخت
- پليمر
- پليمر،كاربردهای آن و انقلاب صنعتی
- پلیمر
- پلیمر مصنوعی
- پلیمر صنعتی
- پلیمر طبیعی
- پلیمرها
- پلاستیک
- آشنایی با پلیمر
- الاستومر
- انواع پلیمر
- بسپار
- بسپار لاستیک
- تقسيم بندي پليمر
- تهیه پلیمر
- ترموپلاست
- ترموپلاستیک
- ترموپلاستیک الاستومر
- ترموسيتينگ
- ترموست
- دسته بندی پلیمر
- دسته بندی پلیمرها
- رنگ
- رزین
- رشته پلیمر
- ساختمان مولكولي
- ساختار
- ساختار پلیمر
- ساختار،پلیمر
- شماسایی لاستیک
- شناخت پلیمرها
- شناسایی پلیمر
- شناسایی پلیمرها
- شناسایی پلاستیک
- شناسایی ترموپلاست
- شناسایی ترموست
- شیمی پلیمر
- علوم پلیمر
-
محققان کشور موفق به ساخت ماده اصلی فیبر نوری شدند
unstoppable پاسخی ارسال کرد برای یک موضوع در اخبار و نوآوری
پژوهشگران شهرک علمی و تحقیقاتی اصفهان با استفاده از نانو ذرات سیلیس ماده پایه فیبرهای نوری را عرضه کردند ضمن آنکه از آن برای افزایش مقاومت بتن و لولههای نفتی نیز استفاده میشود. این ماده همان سیلیکای دود شده است که در بازارها با عنوان " ایروسیل" یا (AEROSILE) شناخته میشود. این محصول متشکل از دانههای نانو سیلیس است که در یک ساختار سه بعدی به هم جوش خوردهاند. ایروفیوم به عنوان یک عامل کنترل سیال در فرمولاسیون رزینهای مایع به کار برده میشود. از این ماده به عنوان پر کننده در لاستیک خودروها و خمیر دندانها استفاده میشود ضمن آنکه ایرفیوم ماده پایه برای تولید فیبرهای نوری است. این ماده همچنین افزایش دهنده دوام و مقاومت بتن در برابر جذب آب، خوردگی و مواد شیمیایی است. ایرفیوم در صنعت نفت و گاز نیز برای کاهش نشت دهی در لولههای نفت و گاز و افزایش دوام و پایداری لولهها به کار برده میشود. از این ماده برای جلوگیری از ته نشینی رنگدانهها در رنگها و پرکنندهها نیز به استفاده میشود. منبع: مچله بسپار -
مقدمه امروزه در بسیاری از کاربردهای مهندسی، به تلفیق خواص مورد نیازاست وامکان استفاده ازیک نوع ماده که همه خواص مورد نظر رابرآورده سازد وجود ندارد. به عنوان مثال درصنایع هوا فضا به موادی نیاز است که ضمن داشتن استحکام بالا ،سبک باشند.مقاومت سایشی ومقاومت در برابر نورماورابنفش خوبی داشته باشندودردمای بالا استحکام خود را ازدست ندهد. از آنجا که نمی توان ماده ای یافت که همه خواص فوق را داشته باشد باید به دنبال روشی برای ترکیب خواص مواد بود این راه حل همان مواد کامپوزیت است. کامپوزیت ماده ای چند جزئی است که خواص آن از هر کدام از اجزاءبیشتر است.ضمن آنکه اجزای مختلف کارایی دیگر را بهبود می بخشند.باتعریف فوق،کامپوزیت ها دراصل از زمان های قدیم مورد توجه بوده اند.از نمونه های قدیمی کاربرد این نوع مواد می توان به کاه گل ویا مومیایی اشاره نمود.کامپوزیت ها خواص مکانیکی برجسته ای داشته و از انعطاف پذیری مناسبی در طراحی برخوردارندو روشهای ساخت آنها نسبتا آسان است.کامپوزیتها موادی سبک،مقاوم در برابر خوردگی وضربه،دارای مقاومت خستگی عالی،مستحکم وبادوامندوبه روش های مختلفی قابل تبدیل به یک محصول یاقطعه می باشند. تعریف کلمه کامپوزیت که ان را درفارسی به مواد مرکب یا چند سازه ای ترجمه کرده اند،به معنی مرکب از دویا چند جزءمشخص را می توان یک کامپوزیت درنظر گرفت درصورتی که فازهایااجزاء تشکیل دهنده آن خواص کاملا متفاوتی با یکدیگر داشته باشند .درمقیاس ماکروسکوپیک یک مخلوط فیزیکی از دو یا چند ماده مختلف را که این مواد مشخصات فیزیکی وشیمیایی خودراحفظ کرده ومرز است
- 22 پاسخ
-
- 3
-
- مهندسی مکانیک
- مکانیک جامدات
- (و 15 مورد دیگر)
-
متخصصان دندان پزشکی با افزودن نانوذرات اکسید روی به رزینهای دندانپزشکی، موفق به تولید رزین نانوکامپوزیتی شدند که علاوهبر حفظ خواص فیزیکی و مکانیکی رزین، خواص ضدمیکروبی مناسبی را به آن بخشید. متخصصان دندان پزشکی با افزودن نانوذرات اکسید روی به رزینهای دندانپزشکی، موفق به تولید رزین نانوکامپوزیتی شدند که علاوهبر حفظ خواص فیزیکی و مکانیکی رزین، خواص ضدمیکروبی مناسبی را به آن بخشید. کاربرد این طرح در صنعت مواد دندانی و متعاقباً در رشتههای دندانپزشکی است که این مواد کاربرد دارد. پوسیدگی ثانویه مهمترین دلیل تعویض و برداشت پرکردگیهای دندانی حاوی رزین کامپوزیت است. از آنجا که پوسیدگی یک عارضه عفونی بوده و باکتریهای زیادی از جمله استرپتوکوکوس موتانس و لاکتوباسیلها از پلاکهای پوسیدگیزا جداشدهاند، لذا استفاده از رزین کامپوزیتی که دارای خواص ضدمیکروبی باشد در پیشگیری از پوسیدگی ثانویه بسیار سودمند خواهد بود. قرنهای متمادی است که فلزات به عنوان عوامل ضد باکتری استفاده میشوند. از جمله فلزات مطرح در این زمینه طلا، نقره و روی را میتوان نام برد. خواص آنتیباکتریال در مورد نانوذرات نقره و طلای اضافه شده به انواع مواد رزینی مطرح شده است. مواد مذکور دارای رنگ تیره بوده و باعث تغییر رنگ واضح مواد ترمیمی رزینی میشوند. نظر به آنکه اکسید روی دارای رنگ سفید اپک است لذا در این مطالعه با افزودن نانوذرات اکسید روی با اندازه حدود 50 نانومتر به سیمانهای رزینی دندانپزشکی خواص آنتی باکتریال در مواد مذکور مورد بررسی قرار گرفت. دکتر سارا توسلی از دانشکده دندانپزشکی شاهد هدف این تحقیقات را دست یافتن به رزین کامپوزیتی دانست که علاوهبر دارا بودن خاصیت ضدمیکروبی، خواص مکانیکی و فیزیکی آن افت نکرده باشد. وی افزود: «در این مطالعه نانوذرات اکسید روی به یک ماده پیشگیرانه و ترمیمی در حوزه دندانپزشکی اضافه شده و خواص ضد میکروبی و فیزیکی و مکانیکی آن همزمان با تستهای مختلف و متعدد مورد بررسی قرار گرفت.» به گفته توسلی افزودن نانوذرات اکسید روی به رزینهای دندانپزشکی باعث تقویت خاصیت آنتی باکتریال آنها بدون افت خواص فیزیکی و مکانیکی میشود. رزینهای کامپوزیتی به شکل مایع در ترمیمهای پیشگیرانه و فیشور سیلنت (سیل و مهر و موم کردن شیارهای سطح جونده برای پیشگیری از پوسیدگی) و در شکل معمول در ترمیم پوسیدگیها کاربرد دارد. مشکل اصلی این درمانها عود پوسیدگی یا پوسیدگی ثانویه است که مهمترین دلیل تعویض و برداشت ترمیمهای دندانی حاوی رزین کامپوزیت است. از آنجا که پوسیدگی یک عارضه عفونی بوده و باکتریهای زیادی از جمله استرپتوکوکوس موتانس و لاکتوباسیلها در ایجاد آن مشارکت دارند، لذا استفاده از رزین کامپوزیتی که دارای خواص ضدمیکروبی باشد در پیشگیری از پوسیدگی ثانویه بسیار سودمند خواهد بود. نتایج این تحقیقات حاکی از آن است که افزودن نانوذرات اکسید روی به رزین کامپوزیت در تمامی درصدهای مطالعه (1-5 درصد وزنی) رشد استرپتوکوک موتانس را به طور چشمگیری کاهش میدهد و در درصدهای 1 تا 2 درصد وزنی خواص مکانیکی را تغییری نمیدهد. نتایج این کار تحقیقاتی که به دست سارا توسلی حجتی و همکاران وی صورت گرفته است، در مجله dental materials (جلد 29، شماره 5، ماه می سال 2013) منتشر شده است. منبع : مجله بسپار
- 3 پاسخ
-
- 4
-
- نانو
- نانو فناوری
-
(و 11 مورد دیگر)
برچسب زده شده با :
-
جواهرات ساخته شده از شیر مادر، ابتکاری جدید از یک مادر انگلیسی است که شیر مادر را به پلاستیک تبدیل کرده و آن را به شکل دستبند یا گردنبند درآورده است. آلیسیا موگاورو از جنوب رودآیلند که فروشگاه آنلاین «سازههای شیر مادر Mommy Milk Creations را اداره میکند، از مادران میخواهد که دو قاشق از شیر خود را در یک بسته بندی ارسال کنند تا وی بتواند آن را در رزین قرار داده و به شکلهای مختلف در بیاورد. این ابتکار به شدت مورد استقبال قرار گرفته و خریداران آن را تداعی کننده تجربه زیبای مادر و فرزندی میدانند. نمونههای شیر پس از تبدیل شدن به پلاستیک به شکل های مینیاتوری مانند قلب، ماه، ستاره یا پا و دست کوچک قالب زده میشوند. این نمونهها سپس درون رزین شفاف قرار گرفته و قلاب و زنجیر نقره به آنها اضافه میشود. همچنین میتوان نام نوزاد یا یک پیام خاص را نیز در آن قرار داد. به گفته موگاورو، رنگ محصول نهایی به نمونه شیر بستگی داشته و هیچ دو نمونهای شبیه به هم نیستند. منبع : پینا
-
معرفی كامپوزیتها و نانو کامپوزیتها و کاربردها
mim-shimi پاسخی ارسال کرد برای یک موضوع در کتب و مقالات و جزوات درسی
در این پست مقالات مختلف مربوط به کامپوزیتها قرار داده شده است: تا پست اخر مطالب و مقالات ارائه شده به ترتیب عبارتند از: (در صورت اضافه شدن مطلب بعد از آخرین پست عناوین به لیست اضافه میشود) - كامپوزیت ها در صنایع نظامی -ساخت كامپوزیت های ایمن در برابر آتش از روش rtm -كاربرد كامپوزیت در صنعت برق -تنش های باقی مانده در کامپوزیت پلیمری روش لایه گذاری دستی در تولید کامپوزیت -کاربرد کامپوزیت در آسفالت -چشم انداز كامپوزیت های چوب پلاستیك -كامپوزیتهای گرمانرم -چوب ها هم كامپوزیتی میشوند -دريلهاي كامپوزيتي -کامپوزیت -کاربرد نانو کامپوزیت پلیمری -کاربرد کامپوزیت در صنعت برق و الكترونيك -كاربرد كامپوزیت ها در صنعت خودرو سازی -نانوکامپوزيت هاي پليمري -كامپوزیت های چوپ پلاستیك -الیاف کربن و کامپوزیت آنها -اثر تنش هاي پس ماند گرمايي ناشي از پخت بر تغيير شکل چند لايه اي هاي کامپوزيتي تخت و استوانه اي -نانو کامپوزيت ها، تحولی بزرگ در مقياس کوچک -سنتز و تعیین مشخصات لاتکس نانوکامپوزیت پلی(استیرن- کو- بوتیلآکریلات)- خاک رس به روش پلیمرشدن رادیک -بررسی اثر کیتوسان و نانوهیدروکسی آپاتیت بر خواص فیزیکی و شیمیایی ریزگوی های نانوکامپوزیتی بر پایه ژل -بررسی اثر کیسه خلاء تنها و سامانه پخت اتوکلاو بر خواص فیزیکی و مکانیکی کامپوزیت های فنولی شبیهسازی فرایند ساخت پولتروژن کامپوزیت شیشه- پلیاستر -اثر شرایط اختلاط بر خواص فیزیکی و مکانیکی آمیزههای نانوکامپوزیتی بر پایه NBR/PVC/Nanoclay -مطالعه خواص و عملکرد عایق کامپوزیتی بر پایه رزین اپوکسی- الیاف پنبه بررسی اثر وجود افزودنی پلیمری بر شکل شناسی و کارایی لایه های غشای نانو***** کامپوزیتی بر پایه پلی ات -بررسی اثر نوع سازگارکننده بر خواص نانوکامپوزیت پایه الاستومر sbr - نانورس اصلاح شده -آیا کامپوزیت گزینه مناسبی برای صنعت خودروسازی کشور است؟ -سازگار كردن ذرات رس و ماتريس پليپروپيلن براي توليد نانوکامپوزيت پلي پروپيلن كامپوزیت ها در صنایع نظامی رویدادهای 11 سپتامبر 2001، توجه جهانیان را به شكل كاملاً جدیدی به مسئلۀ امنیت معطوف كرده و مایۀ نگرانی های شدیدی در سطح بین المللی شده است. مسائل امنیتی در گذشته و حال متفاوت هستند. هنگام جنگ سرد (دهه های 50 و 60 میلادی) نگرانی اصلی جهان، بمب ها و موشك های هسته ای بود. در جنگ جهانی دوم، خرابكاری موضوعی نگران كننده در آمریكا بود و این بسیار شبیه نگرانی های امروزی است. آنچه به نظر متفاوت می آید این است كه امروزه مسئلۀ امنیت بسیار شخصی ترشده است و جالب است كه بسیاری از كاربردهای كامپوزیت ها در اسلحه ها و محافظ ها نیز شخصی و فوری است. برخی از این كاربردها عبارتند از: اسلحه های شخصی به كارگیری كامپوزیت ها در تسلیحات نظامی روند رو به رشدی داشته است و در این بین تفنگ های تمام كامپوزیتی به تعداد محدودی ساخته می شوند ولی كامپوزیتی كردن بخشی از اسلحه معمول تر است. برای مثال ضخامت لوله فولادی تفنگ را كاهش می دهند و روی آن یك پوشش كامپوزیتی می پیچند. برتری های پوشش كامپوزیتی روی لوله تفنگ حیرت آور است. جنس لوله تفنگ، فولاد زنگ نزن 416 است كه به دقت ماشینكاری و نازك شده است. لوله تفنگ و خان های آن معمولاً با نوعی فولاد كه كمترین تغییر را در مسیر فشنگ ایجاد می كند ساخته میشود. با تركیب فولاد و پوشش میتوان تفنگ هایی مناسب شكار و كاربردهای نظامی ساخت. استحكام بالاتر تفنگ كامپوزیتی به علت طبیعت جهت دار الیاف كربن است. بیشتر الیاف را میتوان به صورت های گوناگونی به دور یك محور پیچاند. بنابراین درمورد تفنگ این امكان وجود دارد كه الیاف را به گونه ای دور لوله جهت داد كه استحكام بالاتری حاصل شود. بهبود استحكام، افزایش امنیت را به دنبال خواهد داشت؛ زیرا احتمال شكافتن لوله كاهش می یابد. سفتی بالای تفنگ های كامپوزیتی و درنتیجه افزایش دقت آنها نیز از جهت انتخابی برای الیاف ناشی می شود. تركیب سفتی و استحكام، منجر به كاهش وزن تفنگ میشود. برای مثال وزن تفنگ های كامپوزیتی معمولی حدود 40 درصد كمتر از M-1 است. هنگامی كه لوله فولادی ساخته میشود ایجاد سوراخ و خان در لوله، تنش هایی را در لوله به وجود می آورند. برخی از این تنش ها در محصول نهایی باقی می مانند. بنابراین وقتی تفنگ به هنگام شلیك های پیاپی گرم می شود تنش های باقی مانده باعث میشود كه در بعضی نقاط، لوله تفنگ از حالت طبیعی خارج شود و در نتیجه انحرافی در مسیر گلوله به وجود آید و در پی آن دقت شلیك كاهش یابد. استحكام و سفتی بالای پوشش كامپوزیتی از انحراف لوله جلوگیری می كند و بنابراین حتی هنگامی كه اسلحه خیلی سریع و به طور پیاپی شلیك می كند، دقت بالایی خواهد داشت. فرایند ایجاد پوشش كامپوزیتی هیچ تنشی را در تفنگ ایجاد نمی كند، پس مسیر حركت گلوله همواره صاف و مستقیم خواهد بود. یك ویژگی بی نظیر كامپوزیت های الیاف كربنی، ضریب انبساط حرارتی نزدیك به صفر آنهاست. بنابراین تغییرات دمایی، اثر مشخصی روی ابعاد لوله نمی گذارد. افزون بر آن به خاطر اتصال محكم بین پوشش كامپوزیتی و لایه فلزی، فلز و كامپوزیت یكپارچه می شوند و هیچ لغزشی در امتداد سطح آنها وجود ندارد. پوشش كامپوزیتی به علت طبیعت غالبش، از تغییر ابعاد لوله در اثر گرم شدن لایه فلزی به علت تكرار شلیك جلوگیری می كند؛ زیرا جرم و استحكام پوشش كامپوزیتی از جرم و استحكام لایه نازك فلزی بسیار بیشتر است. هنگامی كه تغییر ابعادی رخ دهد، مشهودترین عیب، كاهش دقت است كه با افزایش فاصله تا هدف بروز می كند؛ زیرا كوچكترین تغییر در مسیر گلوله انحراف قابل توجهی را در برد زیاد از خود نشان می دهد. هدایت حرارتی كامپوزیت الیاف كربنی، كاملا غیرعادی است و نوید برتری های دیگری را می دهد. انتقال حرارت در درون كامپوزیت درجهت عمود بر الیاف بسیار ضعیف است. بنابراین بخش خارجی پوشش كامپوزیتی پس از حدود 20 بار شلیك، فقط كمی گرم میشود. حال آنكه گرمای ایجاد شده در چنین حالتی در یك نمونه فولادی قابل توجه خواهد بود. مدت زمان طولانی پس از تیراندازی، كامپوزیت گرم می شود. توانایی بالای انتقال حرارت الیاف كربن در امتداد طولی آنها باعث میشود كه گرما بسیار سریع به انتهای لوله منتقل شده و در آنجا پخش شود. نتیجه نهایی این كه دمای سطح خارجی لوله كامپوزیتی كم تر شده و طول عمر لوله افزایش می یابد. در نهایت سبكی لوله كامپوزیتی ، به طور مطلوبی مركز توازن تفنگ را به سمت ماشه منتقل می كند و این موضوع باعث می شود كه بتوان چندین بار به طور مشابه به یك هدف كوچك شلیك كرد. بهای تفنگ های شكاری از جنس كامپوزیت تقریباً بالا و بین 1000 تا 3000 دلار است. تفنگ های جنگی بهایی در حدود 10،000 دلار دارند. جنگ افزارهای بزرگ با توجه به برتری های مواد كامپوزیتی استفاده از آنها در جنگ افزارهایی چون توپ ها، موشك اندازها و جز آن در دست پژوهش است. استفاده از فنآوری تقویت لوله توپ با پوشش كامپوزیتی هنوز مورد پذیرش سیستم استاندارد جنگ افزاری قرار نگرفته است. مشكلی كه در اینجا وجود دارد، اختلاف ضریب انبساط حرارتی كامپوزیت و لوله فولادی است. درمورد تفنگ، لوله فولادی نسبتاً نازك بود و انبساطش تحت تأثیر كامپوزیت قرار می گرفت. حل این مشكل، موضوع پژوهش در این زمینه است. موشك ها كاربرد كامپوزیت ها در صنایع موشكی در عرض 40 سال تجربه شده است و به طور چشمگیری گسترش یافته است. به علت هزینه های بالای حركت یك جسم در فضا، شرایط ایجاب می كند كه وزن آن كم باشد. به همین علت، كامپوزیت ها نامزد مناسبی برای این كاربرد هستند. كاربرد كامپوزیت در لانچر موشك انداز نیز به همان اندازه مهم است. این لوله ها باید سبك باشند تا به راحتی حمل شده و بر روی خودرو یا هواپیما نصب شوند. همچنین باید خیلی سفت باشند تا پرواز موشك دقیق باشد. كامپوزیت ها این بازار را تحت كنترل خود درآورده اند. هواپیماها نوشتارهای زیادی در مورد كاربرد كامپوزیت ها در هواپیماها- چه نظامی و چه غیر نظامی- نوشته شده است. به نظر می رسد هرساله كاربرد نوینی برای كامپوزیت ها د رمدل های جدید ایجاد می شود. این كاربردها به منظور كاهش وزن و بهبود استحكام صورت می گیرد. هواپیماهای بدون سرنشین میتوانند برای شناسایی منطقه و همچنین برای پرتاب موشك ها به كار روند. بیشتر این هواپیماها از كامپوزیت ساخته میشوند. منبع : انجمن کامپوزیت ایران- 38 پاسخ
-
- 2
-
- frp
- geotextile
-
(و 95 مورد دیگر)
برچسب زده شده با :
- frp
- geotextile
- hand lay up
- rtm
- فیبر
- فرايند ساخت
- فشار
- فعال کننده توليد شده با انتقال الکترون
- لوله کامپوزیتی
- لایه گذاری دستی
- لاتکس آبي
- لاستيک آکريلونيتريل بوتادي ان
- لاستيک استيرن
- مقدار حباب
- مواد کند سوز کننده
- چوب،کامپوزیت
- نانو
- نانو فناوری
- نانو هیدروکسی آپاتیت
- نانو کامپوزیت
- نانو کامپوزیت pp
- نانو کامپوزیت پلی پروپیلن
- نانو کامپوزیت ،پلیمر
- نانو پلیمر
- نانوكامپوزيت
- نانوکامپوزيت
- نانورس اصلاح شده
- ژئوتكستایل
- کيسه خلاء
- کیتوزان
- کیتوسان
- کامپوزيت فنولي -پنبه نسوز
- کامپوزيت اپوکسي-پنبه
- کامپوزيت شيشه- پلي استر
- کامپوزیت
- کامپوزیت چوب
- کامپوزیت نسوز
- کامپوزیت پلیمری
- کامپوزیت استوانه ای
- کامپوزیت تخت
- کامپوزیت،چوب،پلاستیک
- کامپوزیت،پلیمر،کامپوند،مذاب
- کاربرد نانو
- کاربرد کامپوزیت
- کاربرد پلیمر
- کربن
- گرمانرم پلیمر
- پلي (استيرن- بوتيل آکريلات)
- پلي وينيل کلريد
- پلي وينيل پيروليدون
- پلي اتيلن گليکول
- پلي اتر سولفون
- پليمرشدن راديکالي انتقال اتم
- پلی پروپیلن
- پلیمر
- پلیمر نسوز
- پلاستیک
- پولتروژن
- پایگاه تخصصی شیمی رادون
- پرکننده
- پسماند
- آسفالت
- آسفالت پلیمری
- آسفالت جدید
- الیاف
- الیاف کربن
- الیاف شیشه
- انتقال رزین
- اهمیت کامپوزیت،کامپوزیت،خودروسازی
- اتوکلاو
- بوتادي ان (sbr)
- برق
- بسپار
- تقویت آسفالت
- تنش های باقی مانده
- تنش پسماند گرمایی
- تجزيه گرما وزن سنجي
- جدايش فاز
- خواص
- خواص مکانيکي
- خواص ريولوژيکي
- خودروسازی
- دریل،کامپوزیت
- ذرات نانو
- ريز امولسيون
- رزين
- رزین
- رزین اپوکسی
- زغال باقي مانده
- سازگار کننده
- شبكه های كامپوزیتی
- شبكه های كامپوزیتی تقویت آسفالت
- شبيه سازي
- صنایع نظامی
- صنعت کامپوزیت
- عايق پيش رانه
- غشاهاي کامپوزيتي
-
پارچه ها و الیاف توسط تولیدکنندگان مواد اولیه، تحت دما و فشار یا توسط حلال، با رزین پیش فعال شده پیش آغشته می شوند. ماده فعال کننده بطور عمده در دمای محیط غیر فعال است و لذا از وقتیکه مواد سرمازدایی شوند (از یخچال خارج شوند) عمر مفیدی که به مواد میدهد برای چند هفته یا چند ماه خواهد بود. بنابراین برای نگهداری طولانی مدت این گونه مواد می بایست به صورت منجمد نگهداری شوند. رزین در دمای محیط معمولا نزدیک به حالت جامد بوده و مواد پیش آغشته شده مثل حالت نوار چسب قدری چسبناک هستند. تقویت کننده های تک جهته، الیاف صاف و مستقیم را از روی دوک گرفته که این الیاف تنها به کمک رزین در کنار هم نگه داشته شده اند (با چسبندگی رزین مایع به هم چسبیده باقی می مانند). الیاف پیش آغشته بوسیله دست یا ماشین به سطح قالب خوابانده می شوند و کیسه خلاء بر روی آنها قرارگرفته و تحت مکش به طور معمول بین 120 تا 180 درجه سانتیگراد گرم میشوند. این کار موجب میگردد که رزین دوباره ابتدا جاری شده و سرانجام پخت گردد. اعمال فشار اضافی به سطح سازه درون قالب در حین فرایند ساخت معمولا توسط دستگاه اتوکلاو صورت میگیرد (گرم خانه فشاردار موثر ) که می تواند فشاری معادل 5 بار بر چند لایی اعمال نماید. مواد اولیه قابل مصرف رزین ها: معمولا اپوکسی، پلی استر، فنولیک و رزین های حرارتی مثل پلی ایمیدها، استرهای سیانات و بیس مال ایمیدها. الیاف: همه نوع الیاف مستقیم از روی دوک و یا هر نوع بافته دیگر. مغزی ها: همه نوع، گو اینکه به دلیل وجود درجه حرارت های بالا در این فرایند نیاز به انواع خاص اسفنج ها می باشد مزایا و معایب *مزایای اصلی: -سطوح اختلاط رزین/ فعال کننده و درصد رزین موجود در الیاف دقیقا توسط سازتدگان این مواد اولیه تنظیم می گردد. در صد بالای جزء الیاف (fvf) با اطمینان کامل دست یافتنی است. -مواد اولیه دارای خواص حفاظتی و سلامتی عالی بوده در حین کاربردشان، محیط کاری تمیزی داریم. -از آنجایی که فرایند ثانویه برای شکل دهی یا بافتن بر روی الیاف تک جهته اجرا نمی شود قیمت الیاف مصرفی پایین است. -رزین مصرفی برای کارایی لازم مکانیکی و حرارتی بهینه شده، و به دلیل نوع فرایند رزین های با گرانروی بالا قابل آغشته شدن می باشد. -زمان کارکرد طولانی (تا چند ماه در درجه حرارت محیط) به معنی اینست که با خاطر آسوده میتوان سازه های بهینه شده و لایه گذاری های پیچیده را به سهولت انجام داد. -قابلیت مصرف با سازوکارهای خودکار و بالنتیجه صرفه جویی در هزینه های کارگری اماکن پذیر میباشد. *معایب اصلی: - پارچه های پیش آغشته قیمت بالایی دارند -وجود اتوکلاو برای پخت قطعات الزامی است. اتوکلاو ها گران و محدود در اندازه هستند و عملیات آنها کند است. -قالبها بایستی پایداری لازم در مقابل درجه حرارت اعمال شونده در این فرایند را داشته باشند -مغزی های مصرفی باید قادر به تحمل درجه حرارت و فشار وارده در فرایند باشند کاربردهای معمول قطعات ساختی هواپیما ها (بال ها و دم ها)، بدنه اتومبیل های مسابقه ای f1 و وسایل ورزشی مثل راکت تنیس و اسکی. ============= منبع: کتاب راهنمای صنعت کامپوزیت- گروه مؤلفان و مترجمان: کیومرث اسفندیاری، رضا حجتی، ایرج علاقه بند، نغمه گلپریان، حمیدرضا هاشمی.
-
امروزه خانواده بزرگ رزینهای اپوکسی دارای بالاترین کارآیی ها در بین رزین های موجود در صنعت میباشد. اپوکسی ها عموماً در مقاومت های شیمیایی و "از هم پاشیدگی های" ناشی از عوامل محیطی و خواص مکانیکی، بالاتر از اکثر انواع رزین های دیگر می باشند که در نتیجه موجب مصرف تقریباً انحصاری این رزینها در قطعات سازه های هوایی گردیده است. از دیگر سو به دلیل چسبندگی بالای این رزین ها و مقاومتشان در برابر از هم پاشیدگی ناشی از تماس با آب از آنها به عنوان رزین ایده آل برای مصارفی چون تجهیزات صنایع هوا فضا و بالستیک، چند سازه ای های پیشرفته، صنایع دفاعی، نفت و گاز، دریایی، خودروسازی، برق و الکترونیک، تجهیزات ورزشی، و غیره استفاده می شود.همچنین امروزه از اپوکسی ها در مصارفی دیگر مانند چسب ها، خمیرهای درزگیر، ترکیبات ریخته گری و سیل کننده ها (آب بندی کننده ها)، لعاب، پوشش های کف و رنگ ها استفاده می گردد.اصطلاح اپوکسی به گروه شیمیایی اطلاق میشود که در آن یک اتم اکسیژن با دو اتم کربن دیگر که به نوعی به هم پیوند خورده اند متصل میباشد. ساده ترین اپوکسی دارای یک ساختمان حلقوی سه عضوی بوده که اصطلاحاً به آن "1 و 2 اپوکسی" یا "آلفا اپوکسی" گفته میشود. شکل زیر ساختمان شیمیایی ایده آل یک اپوکسی را نشان می دهد که به عنوان ساده ترین مشخصه هر مولکول پیچیده اپوکسی شناسایی شده است. رزینهای اپوکسی از واکنش بین اپی کلروهیدرین و بیس فنل A به دست میآیند و معمولا با رنگ قهوه ای یا زرد کهربایی مخصوص به خود شناسایی می شوند و دارای خواص مفید زیادی هستند. رزین مایع در مخلوط با عامل پخت کننده آن، رزینی با گرانروی پایین میسازد که سهولت در انجام فرایند های تولید را به دنبال دارد. رزینهای اپوکسی بسته به نوع عامل پخت کننده آن می توانند به سهولت و سرعت در هر درجه حراتی از 5 درجه سانتیگراد تا 450 درجه سانتیگراد پخت شوند. یکی از بزرگترین امتیازات اپوکسی ها جمع شدگی کم آنها در طی پخت است که اثر "زیر – نشان" (مانند ظاهر شدن برجستگی الیاف در زیر پوشش ژلی) و تنش پس ماندسازه را به حداقل می رساند. قدرت بالای چسبندگی و خواص مکانیکی بالای این رزین ها در کنار مقاومت بالای عایق الکتریکی و مقاومت شیمیایی خوب آنها موجب ارتقاء بیش از پیش جایگاه مصرف آنها گردیده است.رزین های اپوکسی همانند وینیل استرها از ساختمان زنجیره های بلند مولکولی تشکیل شده اند که مکانهای واکنش پذیرشان در انتهای این زنجیره هست با این تفاوت که به جای گروه های استری، این مکان ها از گروه های اپوکسی تشکیل شده اند. نبودن گروه های استری در این رزین ها به معنی داشتن مقاومت بسیار خوب به خصوص در مقابله با آب میباشد. همچنین مولکول های اپوکسی در مرکز خود دارای دوگروه حلقوی اند که بهتر از گروه های خطی قادر به جذب تنش های مکانیکی و حراتی هستند بنابراین رزین های اپوکسی خواص سفتی، چغرمگی و مقاومت حرارتی خیلی خوبی را ارائه میکنند.شکل20 ساختمان شیمیایی ایده آل نوعی اپوکسی را نشان میدهد. همان طوری که ذکر شد نبود گروه های استری در درون زنجیر مولکولی مشهود است. تفاوت دیگر رزین های اپوکسی با پلی استر ها در این است که رزین های اپوکسی به جای یک فعال کننده، به وسیله یک "سخت کننده" پخت می شوند. سخت کننده که اغلب یک امین میباشد از طریق "واکنش افزایشی" موجب پخت رزین اپوکسی گردیده و هر دو ماده از طریق این واکنش در ساختار نهایی شرکت میکنند از دیدگاه شیمی معنی این واکنش همانا اتصال خوردن سر دو اپوکسی مجزا با سر یک آمین است. این واکنش یک ساختمان مولکولی سه بعدی پیچیده را که در شکل 21 نشان داده شده تشکیل میدهد.از آنجایی که مولکولهای آمین با مولکول های اپوکسی در یک نسبت معین، " هم واکنش" می باشند، برای اطمینان از اتفاق افتادن واکنش کامل بین رزین و سخت کننده رعایت نسبت صحیح اختلاط بین آنها ضروری است. اگر اپوکسی و آمین به نسبت صحیح مخلوط نشوند، آن بخش از رزین و یا سخت کنند که وارد واکنش نگردیده در میان بستر قطعه چند سازه ای باقی خواهند ماند که بر خواص نهایی سازه بعد از پخت، اثر خواهد گذاشت. جهت کمک کردن به اختلاط دقیق رزین و سخت کننده معمولا تولیدکنندگان فرمولی با نسبت اختلاط ساده مهیا می سازند که به سادگی با اندازه گیری وزنی یا حجمی به دست آید. منبع: کتاب راهنمای صنعت کامپوزیت
- 1 پاسخ
-
- كامپوزيتهاي آراميد - اپوكسي
- ويژگيهاي اپوکسی
-
(و 3 مورد دیگر)
برچسب زده شده با :
-
کامپوزیت های سازه ای بر پایه الیاف طبیعی و رزین های گرمانرم
Astraea پاسخی ارسال کرد برای یک موضوع در علوم الیاف
در صنعت کامپوزیت تقاضا برای مواد جدید روز به روز در حال افزایش است.تحقیقات اخیر حاکی از آن است که روند استفاده از الیاف گیاهی در کامپوزیتهایگیاهی (سبز) سیر صعودی یافته است. در حقیقت با مقایسه الیاف مذکور و الیاف آلیدر می یابیم که الیاف گیاهی از خواص بهتری برخوردارند، به این معنا که خواص مکانیکی بهتری دارند، در موارد خاص از قابلیت تجزیه بیولوژیکی برخوردارند، جزءمنابع تجدیدپذیر هستند و برای تولید آنها انرژی زیادی مصرف نمی شود. باید محصولات الیافگیاهی در مقیاس صنعتی تولید گردند و خواص فنی و زیست محیطی آنها ارتقاء یابندتا در بازار جایگاه محکمی پیدا کنند. برای صنعت کامپوزیت باید قطعاتی ساخته شوند که ضخیم بوده و ازاشکالی پیچیده برخوردار باشند. برای دسترسی به این قطعات باید از الیاف تقویت کننده بافته شده استفاده کرد. بافتن الیاف باعث میشود خواص مکانیکی آنها ارتقاءیافته و محصولات جدیدی تولید شوند. از دیگر مزایای الیاف طبیعی این است که به محیط زیست آسیب کمتری وارد می کنند و می توان تا 50% وزن محصولات نهایی آنها ازاین الیاف استفاده کرد. پروژه فایبر تیشیا یکی از اهداف اجرای این پروژه، تولید کامپوزیت های بر پایه الیاف طبیعی و رزین های گرمانرم می باشد، ضمن اینکه با اجرای این پروژه فرایندتولید این مواد در مقیاس صنعتی نیز ارتقاء می یابد. هدف نهایی این پروژه کاهش استفاده از کربن در کامپوزیت ها و جایگزین کردن آن با رزین هایی است که منشأ آلی دارند که به این ترتیب موادی با کارایی بالا و با منشأ 100% آلی تولید می گردند.به همین منظور شرکت سرمایه گذاری کامپوزیت های گیاهی به نام اگروکامپوزیتس تاسیس شد تا با حمایت مقامات منطقه ای، ملی و اروپایی پروژه مذکور را به مرحله اجرا درآورد. پروژه مذکور توسط پنج شرکت سرمایه گذار ولینس، کرست (Crest)، گروپ امپرینت، ژولین اس ای و پی ایی آی اجرا شد. لازم به ذکر است که شرکت های نامبرده از تمام شرایط لازم برای فعالیت تولیدی فوق برخوردار بودند. مواد خام در پروژه یاد شده از الیاف طبیعی کتان و کنف و از رزین گرمانرم استفاده شده است. رزین مذکور از جنس پلی پروپیلن یا اسید پلی لاکتیک است. الیاف طبیعی و رزین به شکل فتیله در آمدند تا به هم بافته شوند و در هم پیچیده نشوند 50%پارچه ای که از الیاف و رزین مذکور بافته شد، از الیاف طبیعی تشکیل شده بود وچگالی سطحی آن 1 کیلوگرم/ متر مربع بود. چرخه تولید سریع پارچه مذکور به روش قالب گیری تراکمی و طی یک چرخه زمانی محدود 30دقیقه تولید شد. از مزایای دیگر این محصول عاری بودن آن ترکیبات آلی فرار است، ضمن اینکه نگهداری این پارچه نیز آسان می باشد. بسته به خواص مکانیکی این پارچه، میتوان چندین لایه از آن را روی هم چید. اشکال کروی با چنین فرایند تولیدی می توان محصولاتی با اشکال کروی تولید کرد که از مزایای زیر برخوردارند: - هیچ گونه پاره شدگی، تاخوردگی، پیچ خوردگی با شکافی در الیاف به چشم نمی خورد. - در سراسر قطعه ای که این الیاف تولید می شود، تمام الیاف نسبت به همبه صورت موازی قررا می گیرند. خواص مکانیکی در این پروژه خواص مکانیکی پارچه ای که از چهار لایه کتان/ پلیپروپیلن و به روش قالبگیری تراکمی تولید شده بود، مورد آزمایش قرار گفت که نتیجه آزمایشات مذکور در جدول زیر مشاهده می گردد : تولید موادی تقریبا 100% آلی هدف نهایی این پروژه تولید و ارتقاء کیفیت محصولاتی است که بااستانداردهای زیست محیطی جدید سازگار باشند. نتیجه اجرای این پروژه این بود که محصول جدیدی از الیاف کتان و اسید پلی لاکتیک تولید شد که پس از پشت سر گذاشتنآزمایش های کششیISO 157-2 به خواص مکانیکی آن پی بردند، ضمن اینکه با آزمایش های مذکور، خاصیتارتجاعی این محصول به میزان GPa9/15 تعیین گشت. در صورت استفاده از الیاف طبیعی کتان/ پلی پروپیلن می توان قطعاتی با اشکال پیچیده تولید نمود. نتیجه گیری و چشم انداز آینده امروزه برای تولید کامپوزیت ها در مقیاس صنعتی، به مواد جدیدی نیازاست که با محیط زیست سازگاری بیشتری داشته باشند و سرعت تولید آنها نیز بالا باشد.هنوز باید آزمایش های مکانیکی کامل تری انجام شود تا دو نوع الیاف طبیعی کتان/اسید پلی لاکتیک و کنف / پلی پروپیلن از هم متمایز گردند. محصولات جدیدی که چندلایه پارچه الیاف طبیعی تشکیل می گردند نیز تحت همین آزمایش ها قرار می گیرند تاخواص مکانیکی آنها با هم مقایسه گردند. درباره شرکت سرمایه گذاری اگرو کامپوزیتس شرکت مذکور در واقع انجمنی متشکل از 11 شرکت می باشد که روی موادی کهبر پایه الیاف طبیعی هستند، کار می کنند. هدف این انجمن ارائه راه حل های همه جانبه است تا ایده استفاده از مواد طبیعی در صنعت را از قوه به فعل برساند.کارشناسان این انجمن همگی از مهارت های مورد نیاز این زنجیره تولیدی برخوردار میباشند. شرکت سرمایه گذاری اگرو کامپوزیتس بر پایه الیاف طبیعی و در مقیاس صنعتی،در سال 2010 میلادی در مرکز فرانسه تاسیس شد. منبع: موسسه کامپوزیت ایران- نشریه کامپوزیت-
- 2
-
- کامپوزیت
- کامپوزیت های سازه ای
-
(و 6 مورد دیگر)
برچسب زده شده با :
-
در زنجیره مولکولی این نوع رزین های پلی استر، از نوع هالوژن ها به ویژه برم استفاده می شود و با افزودن حدود 5 درصد تری اکسید آنتیموان به عنوان فعال کننده به آنها خواص کند کنندگی حریق به طور قابل قبولی افزایش می یابد. در برگه مشخصات فنی این نوع رزین ها قابلیت تطابق آنها با انواع استانداردهای مورد نظر کندکنندگی حریق ذکر می گردد.قابلیت کاربرد، فرایند پذیری و پخت رزین های فوق همانند رزین های معمولی می باشد ولی در صورت بروز، حریق، گاز هالوژن آزاد شده از رزین، شعله ور شدن محصول نهایی را تا مدت زمانی که برای کمک گرقتن از وسایل اطفاء حریق لازم می باشد، به تاخیر میاندازد برای اطلاعات بیشتر جهت آشنایی با طبقه بندی های مختلف کندکنندگی حریق و انجام تست های مربوطه به استانداردهای ASTM E84، UL94 مراجعه شود. رزین های کلرندیک: این گروه از رزین های پلی استر غیر اشباع هالوژنه برای ساخت تجهیزاتی که در درجه حرارت های بالا یا محیط های اکسید کننده بسیار قوی مثل کلر مرطوب و داغ طراحی می شوند، مناسب هستند. این رزین ها خواص فرایندپذیری بسیار خوبی دارند و به طور خاص برای ساخت پوشش های داخل دودکش ها، کانال های انتقال گاز، مخازن آبکاری کروم، مخازن اسید شویی و کانال های عبور کلر به کار می روند . در عین حال این رزینها به علت دارا بودن هالوژن، دارای خواص کندکنندگی حریق نیز میباشند.رزین های بیس فنل فومارات: این دسته از رزین ها از واکنش بیس فنل A با اکسید پروپیلن و فوماریک اسید بدست می آیند و دارای مقاومت ویژه در محیط های قلیایی می باشند. این رزین ها اساسا برای کاربردهایی در تماس با محلول قلیایی داغ توصیه می شوند، اما در عین حال توانایی مقاومت در برابر برخی اسیدها، تعدادی از حلال های آلی و محلول های نمکی را نیز تا دمای حداکثر 120 درجه سانتیگراد دارا میباشند. شکل شماره 13 ساختمان شیمیایی ایده آل رزین پلی استر را نشان می دهد. توجه به جایگاه گروه های استری (co- o-c) و مکانهای فعال ( ْC = ْ(C در داخل زنجیره های مولکولی داشته باشید. اکثر رزین های پلی استر مایع کمرنگ و گرانرو بوده و شامل محلولی از پلی استر در یک تکپار که معمولا استایرین است می باشند، افزودن استایرین آن هم تا حدود 30-50 درصد (با توجه به نوع رزین) با کاهشی که در گرانروی ایجاد می کند موجب به دست آمدن یک رزین قابل مصرف می گردد. استایرین یک وظیفه حیاتی دیگر هم دارد که همانا قادر ساختن رزین به تغییر شکل از فرم مایع به شکل جامد طی فرایند پخت به وسیله ایجاد "شبکه های عرضی" بین زنجیرهای مولکولی پلی استر بودن به وجود آوردن هیچ محصول جانبی می باشد.بنابراین این رزینها بدون استفاده از فشار می توانند قالبگیری شوند و به همین مناسب به رزین های "فشار کم" و یا "تماسی" نیز شهرت دارند. رزینهای پلی استر زمان انبارداری محدودی دارند و به همین دلیل در نگهداری طولانی مدت، از درون شروع به "ژل شدن" می کنند. لذا در موقع تولید مقداری بازدارنده به آنها می افزایند تا سرعت ژل شدن در مدت انبارداری را کاهش دهند. زمان حداقل انبارداری رزینهای مورد استفاده عمومی 6 ماده می باشد.رزین های پلی استر برای اینکه جهت تولید سازه های قالبگیری شده به جسم جامدی تبدیل شوند نیازمند افزودن بعضی محصولات کمکی هستند که معمولا عبارتند از:فعال کنندهشتاب دهندهافزودنی ها شامل: روان نیرو، رنگدانه، پرکننده، مقاومت دهنده شیمیایی و کندکننده حریقیک تولید کننده ممکن است رزین را به دو حالت ساده (بدون هیچیک از افزودنی های فوق)، و یا بر طبق نیازمندی های تولیدکنندگان قطعات چند سازه ای بسازد ("پیش شتاب شده")، به طوریکه قبل از قالبگیری فقط نیاز به اضافه کردن فعال کننده باشد. همانطوری که ذکر شد اگر زمان کافی به رزین پلی استر داده شود به خودی خود جامد خواهد شد. بدین ترتیب سرعت بسپارش بسیار کند خواهد بود و بنابراین از فعال کننده ها و شتاب دهنده ها برای رسیدن به زمان عملی بسپارش استفاده می شود فعال کننده ها قبل از استفاده از رزین در مقادیر خیلی کم به رزین ها اضافه می شوند تا واکنش بسپارش آغاز گردد. آنها در زنجیره حاصل از واکنش شیمیایی قرار نمی گیرند بلکه صرفا موجب فعال شدن فرایند می گردند. شتاب دهنده ها برای قادر ساختن انجام فرایند واکنش در دمای محیط و با سرعت بیشتر باشد تاثیر کمی می گذارند معمولا سازندگان رزین در محل کارخانه این مواد را به رزین خود افزوده و محصولی به نام رزین "پیش شتاب شده" ساخته و عرضه می نمایند.زنجیرهای مولکولی پلی استر می توانند به صورت ذیل نشان داده شوند به طوریکه B نشان دهنده مکان های فعال در مولکول می باشد.با اضافه شدن استایرین "S" و در حضور یک فعال کننده، استایرین با هر یک از مکان های واکنش پذیر زنجیره های بسپار پیوندهای عرضی ایجاد میکند تا شبکه سه بعدی پیچیده (شکل 15) را شکل دهد.رزین پلی استر از این مرحله به بعد "پخت شده" نامیده می شود که معمولا جسمی جامد و سخت و دارای مقاومت شیمیایی مطلوب خواهد بود. فرایند شبکه ای شدن یا پخت، نوعی از واکنش "بسپارش" به صورت تشکیل اتصالات عرضی می باشد. فرایند شبکه ای شدن یک واکنش شیمیایی برگشت ناپذیر است. تشکیل پیوندهای عرضی در بین زنجیره های مولکولی ماهیتی فشرده و تنگاتنگ برای آنها ایجاد می کند که نتیجه آن تحمل در برابر شکستن سازه های ساخته شده از پلی استرها تحت نیروهایی که به طور ناگهانی به آنها اعمال می شود، خواهد بود.مراقبت های مهمی در تهیه مخلوط رزین قبل از قالبگیری نیاز می باشد. رزین و افزودنی های آن بایستی با دقت به هم زده شده تا تمامی افزودنی ها به طور یکنواخت در همه جای رزین پخش شده و باز شوند. سپس به آنها فعال کننده اضافه شده و مجددا مخلوط شود. لذا دقت و مراقبت زیادی در مخلوط کردن رزین قبل از شروع تولید و قالبگیری باید اعمال شود. این " بهم زدن" باید کامل و دقیق و با مراقبت صورت گیرد چرا که هر مقدار هوایی که به رزین مخلوط شده، وارد شود تاثیر منفی بر کیفیت محصول نهایی خواهد گذاشت. مخصوصا در حین ساخت چند لایی با لایه های مواد تقویت کننده، حباب های هوا میتوانند در بین چند لایی حاصل محبوس شده باشند که سبب ضعیف شدن آن سازه خواهد شد. همچنین جهت دستیابی به بهترین خواص مواد، استفاده کردن دقیق مقادیر اندازه گیری شده شتاب دهنده و فعال کننده برای کنترل واکنش پخت اهمیت بسزایی دارد. مصرف زیادتر از حد فعال کننده زمان ژل شدن را کوتاه می کند و کم مصرف نمودن آن نیز باعث پخته نشدن رزین می شود.با استفاده از رنگ دانه ها می توان رزین مخلوط شده را به رنگ دلخواه در آورد انتخاب رنگدانه مناسب و حتی میزان مصرف رنگدانه تا حداکثر 3 درصد وزن رزین مصرف شده به صورت خمیر، باید به دقت کنترل شود چرا که استفاده از رنگدانه های نامناسب به راحتی در واکنش پخت تاثیر گذاشته و باعث به هم ریختگی محصول نهایی می شوند.پرکننده ها به طور گسترده ای با رزین های پلی استر برای دلایل متنوع زیر استفاده می شوند:- پایین آوردن قیمت محصول- ایجاد سهولت در فرایند قالبگیری - کاهش جمع شوندگی قطعه پس از قالبگیری - ایجاد خواص ویژه در قطعات (مانند سبک کردن قطعه، بهبود مقاومت در برابر ضربه و غیره )برخی پرکننده ها (ماننده ATH) را می توان تا 50 درصد وزن رزین مصرفی اضافه نمود، اگر چه چنین نسبت وزنی در استحگام کششی و خمشی چند لایی تاثیر خواهد گذاشت. استفاده از پرکننده ها از طرف دیگر در ساخت سازه های چند لایی و یا ریخته گری شده ضخیم به طور قابل ملاحضه در متعادل ساختن حرارت ناشی از این واکنش گرمازا مفید خواهد بود. افزودن پرکننده های خاصی در افزایش مقاومت قطعه چند سازه های در مقابل آتش نیز کمک خواهد نمود. انجمن کامپوزیت ایران
-
- رزین
- رزین های کندکننده حریق
-
(و 1 مورد دیگر)
برچسب زده شده با :
-
در اینجا پلی استرها، وینیل استرها و اپوكسی ها كه شاید نیازها را در ساخت 90 درصد ساختار چند سازه ها برآورده می سازند، مورد بحث قرار گرفته اند. جدول ذیل حاوی خلاصه ای از مزایا و معایب اصلی هر كدام از ین رزین ها است: دیگر رزین های مصرفی در كامپوزیتها (چند سازه ها) علاوه بر پلی استرها، وینیل استرها و اپوكسی ها، رزین های خاص دیگری نیز وجود دارند كه در مواردی كه به ویژگی های منحصر به فرد آنها نیاز باشد مورد مصرف قرار می گیرند.فنولیك هاابتدایی ترین مصرف رزین های فنولیك در سازه های است كه نیازمند مقاومت در برابر آتش هستند، ضمن اینكه فنولیك ها به خوبی قادر به حفظ خواصشان در برابر حرارت های بالا نیز می باشند. در انواعی از این رزین ها كه فرآیند پخت آنها در درجه حرارت محیط (20 درجه سانتی گراد) می باشد از اسیدهای خورنده ای استفاده می شود كه شرایط كاربرد ناخوش آیندی را در بر دارند. طبیعت تراكمی فرآیند پخت این رزین ها غالبا موجب ایجاد حباب ها و اشكالات ظاهری در آنها شده كه نتیجه آن به وجود آمدن رزینهای شكننده ای است كه خواص مكانیكی بالایی هم نخواهند داشت. استرهای سیانات از این رزین ها در صنایع هوایی استفاده می شود. خواص عالی مقاومت این رزین ها در برابر جریان الكتریسیته (خاصیت دی الكتریك) زمینه مصرف مناسب آنها را در ساخت رادارها با تقویت كننده های مشابه از لحاظ عایق الكتریسیته (خاصیت دی الكتریك پایین) مثل الیاف كوارتز، ایجاد كرده است. پایداری حرارتی استرهای سیاناتی حدود 200 درجه سانتیگراد د رشرایط مرطوب می باشد. سیلیكونها رزین های ساختگی هستند كه در ساختار آنها برخلاف بسپارهای آلی كه از كربن استفاده میكنند، از سیلیكون استفاده شده است. این گونه رزین ها دارای پایداری در حرارت های بالا بوده و مقاومت خوبی در برابر آتش از خود نشان می دهند. آنها برای پخت به درجه حرارت بالا نیازمند بوده و در صنایع موشكی مورد استفاده قرار میگیرند. پلی اورتاناین رزین ها دارای چغرمگی بالا بوده كه در برخی موارد به سبب خواص مكانیكی فشاری نسبتاً كم خود، با انواع دیگر رزین ها به صورت تركیبی مصرف می گردند و با ایزوسیانات ها (كه بسیار مضرند) پخت می شوند. بیس مال ایمیدها (BMI) اصولاً این رزین ها در ساخت سازه های قطعات چند سازه ای در صنایع هوایی، در جاهایی كه درجه حرارتهای بالا (250 درجه سانتی گراد خشك/ 230 درجه سانتی گراد مرطوب) نیاز باشد، استفاده می شوند و مثلاً در ورودی موتورهای جت و یا سطوح پروازی هواپیماهای پر سرعت عرضه می گردند. پلی ایمیدها در مواردی كه عملیات در دماهای از توان بیسمال باشد از پلی ایمیدها استفاده می شود (300 درجه سانتی گراد خشك / 250 سانتی گراد مرطوب) . مصارف موردی آنها در ساخت موشك ها و قطعات مورد نیاز موتورهای هواپیما می باشد. كار كردن با پلی ایمیدها به دلیل اینكه در حین فرآیند پخت واكنش تراكمی منجر به خروج آب از آن می شود، مشكل بوده و رزین پخت شده نیز نسبتاً شكننده خواهد بود. منبع: كتاب راهنمای صنعت كامپوزیت- گروه مؤلفان و مترجمان: كیومرث اسفندیاری، رضا حجتی، ایرج علاقه بند، نغمه گلپریان، حمیدرضا هاشمی.
-
- مقایسه رزینها
- اپوکسی
-
(و 5 مورد دیگر)
برچسب زده شده با :
-
یکی از انواع جدید رزین های فنولیک، رزین بنزوسازین میباشد. این رزین از این جهت با رزین های فنولیک سنتی تفاوت دارد که مولکول های بنزوکسازین با ایجاد یک پیوند حلقوی به هم متصل می گردند. ولی مولکول های فنولیک سنتی توسط پیوند خطی متیلن (-CH2-) به هم متصل میشوند. به راحتی میتوان از رزین های فنولی (نظیر بیسفنول یا نووالاک)، آمین های ساده و فرم آلدئید، بنزوکسازین را تولید کرد. پلیمریزاسیون با باز شدن ساختار حلقوی بنزوکسازین نه تنها به تولید مواد جانبی و گازهای فرار منجر نمیگردد، بلکه استحکام ابعادی محصول نهایی را نیز افزایش میدهد. بنزوکسازین علاوه بر مقاوت بالا در برابر گرما و خاصیت به تعویق انداختن حریق، از خواصی نظیر جذب پایین آب نیز برخوردار است که این خواص در رزین های سنتی فنولیک وجود ندارد. ضمناً در مواد اولیه صنایع الکترونیک، کامپوزیت های تقویت شده با الیاف و چسب ها، بنزوکسازین از خواص دی الکتریک پایین (رسانایی الکتریکی بالا) برخوردار است. شرکت های هانتسمن، هنکل و دو شرکت دیگر از تولیدکنندگان اصلی رزین های بنزوکسازین هستند. سال گذشته شرکت اوونیک رزین زمینه گرماسختی از جنس پلی ریل اتر آمید با نام تجاری Calidur TM تولید کرد.
-
یکی از چالشهای تولید خودرو،قایق،هواپیما و وسایل الکتریکی با کشف یک ماده جدید بزودی حل خواهد شد.رزین یک ماده مشترک در تمام این محصولات است اما دارای محدودتیت های خاص خود میباشند... منبع:iranpolymer.com www. یکی از چالشهای تولید خودرو،قایق،هواپیما و وسایل الکتریکی با کشف یک ماده جدید بزودی حل خواهد شد.رزین یک ماده مشترک در تمام این محصولات است اما دارای محدودتیت های خاص خود میباشند ،به طور مثال نمیتوان پس از تولید و ایجاد کردن مواد مجددا شکل و ظاهرشان را تغییر داد.اما به تازگی محققان فرانسوی(cnrs)توانسته اند نوعی جدید از مواد را تولید کنند که با برداشتن این موانع و ارایع بهترین کیفیت از ترکیب رزین و شیشه،انقلاب جدیدی در تولید محصولات آینده ایجاد کند. شیشه تولید شده توسط محققان به راحتی شکل می گیرد و قابلیت شکل گیری مجدد و تعمیرشدن را نیز داراست،این در حالیست که شیشه های معمولی سنگین و شکننده هستند و درطیف گسترده ایی از کاربردهای عملی کارایی لازم را ندارند. همچنین لازم به ذکر است که رزین ماده ایی سبک،انعطاف پذیر و قوی است و دارای کارایی بسیار خوبی می باشد. ماده ایجاد شده در آزمایشگاه نتیجه کیفیت و ویژگی ها از رزین است اما در صورت نیاز می توان بدون وقفه و تضعیف ساختاری به ماده حرارت و گرما داد و دوباره از آن اشکال و حالت های جدید ساخت. علاوه بر موارد فوق،این ماده جدید از موادی که امروزه به طور گسترده در صنعت استفاده میشود ساخته شده اند که با تغییرات کوچک در ساختار فرمولی انها میتوان قابلیت های فوق العلاده ای به آنها اضافه گردد.
-
دانشمندان چینی و آمریکایی ساختار شبکهای از نانوالیاف جهت پوشش بلورهای کوارتز طراحی کردهاند که به عنوان حسگر ردیاب آلایندههای گازی داخلی با مقدار کم بکار میروند. این شیوه یکی از انتخابهای بهینه برای کاربردهایی از قبیل حسگرها، سامانههای ***** کننده و مهندسی بافت است. فرمالدهید در ساختار بسیاری از پلیمرها، رزینها و دیگر مواد وجود دارد و به عنوان ماده واسطه در صابونها و مواد شوینده و به طور گسترده در داروسازی و پزشکی بکار می رود. با این وجود، فرمالدهید ترکیبی سرطان زا است که حد انتشار مجاز آن بین ۶۰ تا ۸۰ قسمت در میلیارد در دوره زمانی ۳۰ دقیقه است. روشهای معمول شناسایی فرمالدهید از جمله کروماتوگرافی، کالریمتری، فلوئورسنس و طیف سنجی، طولانی، گران و با حساسیت کم هستند. بنابراین نیاز به ایجاد روشی سریع و ارزان با حساسیت بالا جهت کشف فرمالدهید احساس میشود. غشاهای جاذب آلودگی شبیه به تار عنکبوت. نمودار نشان دهنده پاسخ سنسور در برابر فرمالدهید است. بین دینگ و همکارانش در دانشگاه دانگ هوا در شانگهای چین، غشاهای پلی آمیدی را به وسیله تکنیک بافت ریسندگی الکتریکی (Electrospinning) روی بلور کوارتز میکروبالانس قرار دادند. شبکههای نانوالیاف دارای مساحت سطح بزرگ و تخلخل زیاد به همراه چگالی و نیروی چسبندگی بالا هستند؛ این خصوصیات به ردیابی مقدارهای کم فرمالدهید (حدود ۵۰ در میلیارد) میانجامد. این سامانه عکس العمل زمانی سریع و تکرارپذیری و گزینش پذیری خوبی دارد. قطر نانوالیاف در ریسندگی الکتریکی معمولاً در حدود ۱۰۰ تا ۵۰۰ نانومتر است. با کاهش قطر لیف به حدود۲۰ نانومتر، خواصی از جمله مساحت سطح و تخلخل برجسته میشوند. دینگ میگوید: “یافتن سازوکاری مطمئن جهت تولید نانوالیاف بسیار کوچک و هم اندازه، به مقدار بسیار زیاد از مسائل مورد چالش است.” او همچنین افزود: “شبکههای فیبری کاربردهای بالقوهای مانند *****های جدا کننده ویروسها و باکتریها را دارند.” بینگیون لی، متخصص جاذبهای نانو در دانشگاه ویرجینیای غرب در امریکا میگوید: “مهمترین بخش این کار، حساسیت بالا و پاسخهای سریع به فرمالدهید است و مسئلهی پیش رو تولید دوباره سیستمها و اجرای چرخه چندگانه خواهد بود.” این تیم بر روی شناخت سازوکارهای تشکیل شبکهها جهت اعمال آن بر روشهای *****یزاسیون و حسگرهای محیطی تمرکز خواهند کرد. نتایج این تحقیقات در مجله Journal of Material Chemistry به چاپ رسیده است.
-
- نانو الیاف
- پلیمر
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
نگاه کلی منظور از لاک فقط لاک ناخن نیست، بلکه لاکها به عنوان رنگهای نهایی یا رویه صنعتی ، بر روی پلاستیکها ، فلزات ، اثاثیه منزل و انواع کاغذها و مقواها مورد استفاده قرار میگیرند. لاکها به علت توانایی سخت شدن سریع در تمام دماهای محیطی و بویژه جاهایی که کوره خشککن ندارند، مورد استقبال عمومی در صنعت قرار گرفتهاند. آنها برای ساخت رنگهای رویه با اتصالات عرضی و «سرما خشک» ، بسیار مناسب هستند. این رنگها به صورت یکجزئی عرضه میشوند و مشکلات ماندن در انبار و عمر مفید را ندارند و همچنین سریعتر از رنگهایی با مکانیسم اکسیداسیونی خشک میشوند، خشک میگردند. انواع لاک امروزه انواع مختلفی از لاکها با توجه به کاربرد و نوع مصرف تولید میشوند. از میان اینها لاکهای نیتروسلولزی و آکریلیکی ، به صورت گسترده مورد استفاده قرار میگیرند. پلیمرهای سلولزی این پلیمرها بر پایه سلولز ساخته میشوند. سلولز به صورت مصنوعی ساخته نمیشود، اما به مقدار زیاد در طبیعت وجود دارد. سلولز از حلقههای به هم پیوسته گلوکز تشکیل شده است و به علت جرم مولکولی بالا و پیوند هیدروژنی درون مولکولی در آب و حلالهای طبیعی حل نمیشود. با استری یا اتری کردن سه گروه هیدروکسیل حلقههای گلوگز ، سلولز را میتوان به پلیمرهای قابل حل در حلالهای آلی تبدیل کرد. تعدادی از پلیمرهای مفید در تولید لاکها اتیل سلولز اتر یا اتیل الکل سلولز استات ، استر اسید استیک سلولز استات بوتیرات (c.a.b )، استر اسیدهای استیک و بوتیریک نیترات سلولز ( نیتروسلولز n/c) ، استر اسید نیتریک سلولز را با نیتره کردن توسط اسید نیتریک به نیترات سلولز تبدیل میکنند. این فرایند را میتوان با رقیق کردن با آب متوقف کرد. بطور متوسط 1.8 _ 2.4 گروه نیترات در هر واحد گلوکز بدست میآید. وزن ملوکولی محصول برای مصرف رنگ ، بالاست و برای رسیدن به وزن مطلوب معمولا مولکولها را بوسیله هیدرولیز با اسیدهای رقیق و با کمک فشار و حرات دو نیم میکنند و محصولاتی با وزن مولکولی 50000 تا 300000 تولید میشوند، وزن مولکول و ویسیکوزیته محلول را تعیین میکند. وجود آب برای لاک ، مضر میباشد. بنابراین بوسیله الکل تعویض میشود. نیتروسلولز باید توسط یک مایع به صورت مرطوب تهیه شود، در صورت خشک بودن به عنوان یک ماده منفجره طبقهبندی میشود. تعیین حلالیت مقدار نیتروژن ، حلالیت را تعیین میکند. اگر مقدار نیتروژن 11.8 تا 12درصد باشد، ماده در استرها ، کتونها و اتر_الکلها حل میشود. با 11.2 تا 11.8 درصد نیتروژن ، ماده در مخلوطی از اتانول و استرها یا تولوئن حل میشود. با 10.5 تا 11.2 درصد نیتروژن ، ماده در اتانول حل میشود. پلیمرهای آکریلیکر پلیمرهای آکریلیکر ، جزو پلیمرهای افزایشی مصنوعی هستند و منومرهای آنها بطور عمده استر اسیدهای غیراشباع میباشد. پلیمرهای آکریلاتها نسبت به متاکریلاتها نرم و انعطافپذیرند. استرهای متاکریلات حاصل از الکلهای سنگینتر ، پلیمرهای نرمتری میدهد. پلیمتیل متاکریلات در هیدروکربنهای زنجیری نامحلول است و در بالاتر از 125 درجه سانتیگراد نرم میشود. پلیبوتیل متاکریلات در هیدروکربنهای زنجیری محلول است و در بالاتر از 33 درجه سانتیگراد نرم میشود. تشکیل دهندههای لایه لاکی پلیمر آکریلیکر ، بهترین پوشش لاکی روی فلزاتی است که در معرض آب و هوا قرار میگیرند. پلیمتیل متاکریلات ، سختترین پلیمر آکریلیکی است. بسیار سخت و درخشان و اغلب بسیار کمرنگ است و خیلی کم ، تحت تاثیر نور ماورا بنفش قرار میگیرد. در بنزینهای تجارتی نامحلول است و مقابل اسیدها و بازها مقاوم میباشد. تهیه یک لاک کامل پلیمتیل متاکریلات و نیترو سلولز ، هر دو شکننده و سخت میباشند و برای استفاده در رنگ باید نرم شوند. این عمل بوسیله مخلوط کردن با رزینهای انعطافپذیر انجام میشود. بهترین نرم کننده برای پلیمرها ، حلالهایی هستند که نقاط جوش بالایی دارند. بیشتر نرم کنندهها جزو استرها میباشند. معمولیترین نرم کننده برای نیترو سلولز ، دیبوتیل فتالات و برای پلیمتیل متاکریلات ، بوتیلفنریل فتالات میباشد. یک لاک کامل شامل: رنگدانه (اگر نیاز باشد) پلیمر خطی نرم کننده رزین یا پلیمر سازگار (اگر نیاز باشد) حلال و افزودنیهای دیگر میباشد. رزینهای سازگار با نیتروسلولز شامل آلکیدهای خشک نشدنی ، رزینهای آکریلیک و رزینهای طبیعی و مشتقات آنها مثل صمغ استر میباشد و رزینهای سازگار با پلیمتیل متاکریلات ، شامل پلیمرهای نیتروسلولز و پلیمرهای آکریلیک و پلیمرهای وینیل میباشد. این رزینها میزان جامد یک لاک را در ویسکوزیته کاربردی افزایش میدهند. از حلالهای نیتروسلولز میتوان نیترو اتان و اتیلن کربنات و متانول را نام برد و برای pmm میتوان از نیترو متان و پروپیلن کربنات و ... نام برد. پاشش داغ در استفاده از لاکها با بکارگیری روش پاشش داغ میتوان رنگ را با جامدات بیشتر و ویسکوزیته بالاتر برای رنگ آمیزی مورد استفاده قرار داد. در این روش لاک در مسیرش به سوی پیستون پاششی حرارت داده میشود و با دمای 70 تا 90درجه سانتیگراد از افشانه بیرون میزند.
-
- 2
-
- لاک
- کاربرد لاک
- (و 4 مورد دیگر)
-
مقاله قالبگیری با انتقال رزین- rtm
*mishi* پاسخی ارسال کرد برای یک موضوع در کتب و مقالات و جزوات درسی
یكی از روش های متداول تولید قطعات كامپوزیتی روش قالبگیری با انتقال رزین (RTM) است. RTM یك فرایند قالب بسته كم فشار است كه از طریق آن با به كارگیری پلیمرهای مایع گرماسخت تقویت شده با انواع گوناگون الیاف، قطعه ای با كیفیت سطح و دقت ابعادی بالا تولید می شود. معمولاً در این فرآیند پلیمرهایی از خانواده اپوكسی، وینیل استر، متیل متاكریلات، پلی استر یا فنلیك و تقویت كننده الیاف شیشه استفاده میشوند. سایر تقویت كننده ها از جمله الیاف كربن، آرامید یا الیاف سنتزی به تنهایی یا در تركیب با یكدیگر برای كاربرد در شرایط دشوارتر به كار گرفته می شوند. نوع زمینه پلیمری و تقویت كننده، عامل تعیین كننده جنس قالب و كارایی آن از نظر مكانیكی و سطحی است. علاوه بر پلیمر و تقویت كننده، میتوان برای افزایش دیرسوزی، مدول خمشی و كیفیت سطح نهایی از پركننده های معدنی نیز استفاده كرد. در این فرایند تقویت كننده ها به صورت پارچه بافته، الیاف سوزنی و... به شكل خشك درون قالب قرار داده می شوند. این الیاف یا قبلاً به شكل دقیق قالب تهیه می شوند (به صورت پیش شكل) یا در حین فرایند چیدن آنها در قالب، با دست شكل داده می شوند. بعد از قرار دادن الیاف درون قالب، یك رزین كه از پیش با كاتالیزور مخلوط شده است به درون قالب بسته تزریق شده و الیاف را در بر می گیرد. ممكن است روی سطح قالب پوشش ژلی اعمال شود؛ فرایندی كه طی آن، قبل از قرار دادن الیاف درون قالب، روی سطح قالب پوشش داده می شود. برتری ذاتی فرایند RTM تزریق رزین با فشار كم است. فشار تزریق رزین در حین پر شدن قالب معمولاً از 690 كیلوپاسكال تجاوز نمی كند. دیگر برتری های این روش در مقایسه با فرایندهای قالب باز عبارتند از: كمتر بودن میزان انتشار گازها و بخارات ناشی از پلیمریزاسیون یا پخت رزین، شرایط كاری تمیزتر، پایداری ابعاد بیشتر قطعات تولیدی، كیفیت خوب هردو سطح قطعه تولیدی و فرایند تولید سریعتر. با این حال باتوجه به هزینه بالای ساخت قالب و نیاز به گره های نگهدارنده قالب و تجهیزات كمكی، در مجموع فرایند RTM از نظر هزینه و حجم تولید فرایندی متوسط محسوب می شود و در اصل بین دو دسته فرایندهای قالب باز كم هزینه با تولید كم و فرایندهای پرهزینه قالبگیری با پرس با تولید انبوه قرار دارد. همیشه این سؤال مطرح بوده است كه ایا فرایند RTM در مقیاس وسیع در صنعت كامپوزیت مورد استفاده قرار گرفته است؟ صنعتگران زیادی در سالهای گذشته روش RTM را به عنوان روش تولید قطعات كامپوزیتی آزمایش كرده و به كار گرفته اند، اما تنها تعداد كمی از آنها برای مدت زیادی از این روش استفاده كردند و تقریباً میتوان گفت هیچ كدام از آنها RTM را به عنوان روش انحصاری تولید خود نپذیرفتند. طبق آمارهای موجود تقریباً همه صنایعی كه تولیداتی ارزان یا با قیمت متوسط دارند از روش های قالبگیری باز استفاده می كنند. قطعاً نیاز به مهارت زیاد برای فرایند RTM عامل اصلی دلسردی بسیاری از صنعتگران در به كارگیری این روش برای تولید قطعات كامپوزیتی بوده است. به علاوه این كه عواملی چون هزینه های نهفته ناشی از نگهداری قالب، چیدن تقویت كننده ها درون قالب، عملیات مجدد روی قطعه پس از قالبگیری (به علت وجود حباب یا چسبیدن قطعه به قالب) و همچنین خسارات وارده طی فرایند ساخت باعث شده اند تا از دیدگاه بسیاری از تولیدكنندگان فرایند RTM فرایندی با هزینه و حجم تولید متوسط محسوب نشود. فرایندی كه امروزه تحت عنوان RTM مورد استفاده قرار می گیرد در واقع RTM سبك (Light) یا LRTM است. اگرچه ممكن است این فرایند نتواند همانند RTM سنتی فرایندی با حجم تولید متوسط (1000 تا 10000 قطعه در سال) به حساب اید اما نسبت به فرایندهای قالب باز از سرعت بالاتری برخوردار بوده و برتری های واقعی یك فرایند قالب بسته را به همراه دارد. باتوجه به برطرف شدن معایب فرایند RTM در LRTM، اعتماد تولیدكنندگان به این روش روز به روز بیشتر می شود، به طوری كه امروزه آمارهای موجود از به كارگیری گسترده این فرایند توسط صنعتگران حكایت دارد. تاریخچه فرایندی كه امروزه به عنوان LRTM شناخته می شود اولین بار حدود 25 سال قبل در بلژیك به كار گرفته شد. در واقع ایده این فرایند از روش VARTM یا RTM به كمك خلاء گرفته شده است كه روشی برای تولید قطعات سبك با به كارگیری خلاء است. مراحل این فرایند عبارتند از: - الیاف خشك از طاقه بریده شده و پس از شكل دادن در محفظه قالب قرار داده می شوند. - پس از آن كه الیاف در جای مناسب خود قرار گرفتند، قالب بسته و محكم می شود. - یك خلاء نسبی محفظه داخل قالب را فرا می گیرد. - رزین با مقدار مشخص و با فشار كم به داخل قالب تزریق می شود. - خلاء نسبی، رزین را در تمام قالب پخش كرده و تمام الیاف به رزین آغشته می شوند. - پس از گذشت زمان لازم برای سخت شدن قطعه، قالب باز شده و قطعه از آن جدا می شود. این فرایند در آن زمان دارای مشكلاتی بود. الیاف مورد استفاده (كوتاه یا بلند) درون قالب به راحتی شكل نمی گرفتند. نظم این الیاف پس از بسته شدن قالب به هم می خورد. با ورود رزین، رشته های الیاف كنار هم جمع شده و به هم می چسبیدند. این امر باعث می شد تا قطعه تولیدی دارای انعطاف پذیری لازم نبوده و تقریباً سخت شود. این مشكل در فرایندهای قالب باز وجود نداشت. علاوه بر این، مشكلات دیگری نیز وجود داشت. جابجایی الیاف و به هم ریختن آنها در قالب باعث می شد تا خلاء نسبی موجود نتواند الیاف را فشرده و قالب را به طور كامل بسته نگاه دارد. این امر باعث می شد تا تنها قطعات ساده و تخت با این روش تولید شوند. استفاده از این روش برای تولید قطعات پیچیده نیازمند به كارگیری الیاف بافته ویژه ای همراه با كارهای اضافی روی الیاف بود. اگرچه این الیاف خوب شكل می گرفتند ولی قیمت تمام شده آنها بسیار بالا بود و از طرفی جریان رزین را به خوبی عبور نمی دادند. این عوامل سبب شد تا این فرایند رشد چندانی نداشته باشد. ورود نسل جدید تقویت كننده ها به بازار كم كم الیافی وارد بازار شدند كه مشكلات مذكور را حل كردند. بدین ترتیب قطعات تولیدی از روش VARTM از كیفیت خوبی برخوردار شدند. ولی هزینه های بالا، فرایند VARTM را از دسته فرایندهای با هزینه متعادل خارج می كرد. حدود 10 سال قبل با ورود نسل جدید الیاف به بازار، وضعیت به كلی تغییر كرد. چندین شركت تولیدكننده الیاف شیشه، الیاف جدیدی تولید كردند كه منحصراً برای فرایندهای قالب بسته طراحی شده بودند. ویژگیهای مثبت این الیاف، آنها را به الیافی ایده آل برای روش VARTM تبدیل كرد. این الیاف دارای چسبندگی كمتری بوده و نرم تر بودند و به همین دلیل به راحتی در قالب شكل می گرفتند. علاوه بر این، برای شكل گیری در قالب نیاز به مرطوب شدن نداشتند. ویژگی مثبت دیگر این الیاف، این بود كه از سه لایه تشكیل شده بودند كه لایه میانی آنها محیطی مناسب برای عبور جریان با چگالی كم فراهم می كرد. این لایه باعث می شد تا رزین بدون هیچگونه مقاومتی و به طور افقی در الیاف جریان یابد. همچنین لایه های بیرونی این الیاف دارای انعطاف زیادی بودند و این عامل سبب می شد تا سطوح خارجی قطعه تولیدی از كیفیت بیشتری برخوردار شد. مایك انگرر مالك شركت نیوبوستون كامپوزیت در سفری كه در سال 1997 به اروپا داشت با این فرایند آشنا شد و از جمله اولین تولیدكنندگان آمریكایی بود كه این فرایند را به عنوان فرایندی مناسب برای تولید قبول كرد. پس از گذشت زمان كوتاهی، مایك انگرر روش تولید محصولات خود را از فرایندهای قالب باز به LRTM تغییر داد. در همان زمان نیل مك آرتور از شركت كامپوزیت مك آرتور این فرایند را در اروپا مشاهده كرد و به عنوان نخستین تولیدكننده قطعات كامپوزیتی در استرالیا آن را پذیرفت. اما چگونه فرایند قالبگیری رزین به كمك خلاء یا VARTM به LRTM تغییر یافت؟ گای شومارات صاحب شركت شومارات یكی از اولین تولیدكنندگان نسل جدید الیاف كوتاه و همچنین آلن هارپر صاحب شركت انگلیسی پلاستك سازنده تجهیزات تزریق رزین تصمیم گرفتند برای رشد صنایع خود این فرایند را به عنوان فرایندی مناسب برای تولید قطعات كامپوزیتی معرفی كنند و به این نتیجه رسیدند كه VARTM احتیاج به نام جدیدی دارد. بدین ترتیب VARTM به RTM سبك یا LRTM تغییر نام داد. فرایندی جهانی با گذشت زمان، حدود 400 صنعتگر در سراسر دنیا فرایند RTM را یاد گرفته و بیش از 100 تن از آنها شروع به تولید قطعات كامپوزیتی با این روش كردند. پس از حدود 20 سال از ابداع RTM این فرایند و مواد مصرفی آن به طور چشمگیری تغییر یافته اند. چارلز تور یكی از توسعه دهندگان اصلی این فرایند- هنگامی كه در بلژیك تهیه كننده مواد اولیه بود- هم اكنون در شومارات كار می كند و برای گسترش و پیشرفت این فرایند وقت زیادی صرف كرده است. پلاستك نیز به سهم خود اتصالات و تجهیزات جانبی ویژه ای را طراحی و تولید كرد كه مراحل ساخت و نصب قالب را به طور چشمگیری ساده كرده است. فرایند LRTM مورد استفاده در حال حاضر برتری های زیادی دارد و قطعه تولیدی برای نخستین بار انتظارات قالبگیران را برآورده میسازد. تولیدكننده میتواند با هزینه ای تقریباً دو برابر هزینه روش های قالب باز، قطعه ای را از روش قالب بسته تولید كند. گذشته از هزینه، یك قالبگیر میتواند انتظار داشته باشد كه با استفاده از یك قالب، چهار بار در روز قطعه تولید كند كه به این ترتیب در مقایسه با قالبگیری باز نرخ تولید تقریباض دو برابر است. افزودن یك نیمه قالب اضافی (به عنوان مثال دو نیمه قالب ماده و یك نیمه نر) اغلب می تواند سرعت فرایند را افزایش دهد. علاوه بر این ها در این روش خروج گازهاو بخارات ناشی از پلیمریزاسیون رزین به طور قابل ملاحظه ای كاهش می یابد و میتوان رو ی هر دو سطح قطعه پوشش ژلی اعمال كرد. شرایط كاری در فرایند LRTM به مراتب تمیزتر از روش قالبگیری باز بوده و یكنواختی قطعات در آن بیشتر است. میزان مصرف مواد نیز بیشتر قابل پیش بینی است. البته LRTM محدودیت هایی هم دارد. جداسازی بعضی قطعات پیچیده از نیمه نر قالب مشكل است. بعضی قطعات را به دلیل پیچیدگی هندسی قطعه نمیتوان از روش LRTM قالبگیری كرد. هزینه مواد در فرایند LRTM نسبتاً زساد بوده و تهیه برخی مواد زمان زیادی می طلبد (البته هزینه بالای مواد با افزایش بهره وری جبران می شود). قالب مهم ترین جزء فرایند LRTM، قالب است. در فرایندهای قالب بسته، قالب دارای دو نیمه است. یك نیمه قالب نسبتاً صلب و نیمه دیگر نسبتاً انعطاف پذیر است. در واقع یك نیمه قالب سفت تر از نیمه دیگر آن است. معمولاً نیمه صلب قالب با استفاده از فناوری و موادی ساخته میشود كه برای ساخت قالب های فرایند قالب باز به كار گرفته می شود. تنها تفاوت مهم قالب فرایندهای قالب باز و نیمه صلب قالب فرایند LRTM این است كه عرض فلانج دور قالب در LRTM حدود 25-15 سانتی متر است. قالب فرایندهای قالب باز با فلانج دارای سیستم پاشش، بدون هیچ گونه تغییری میتواند برای قالبگیری IRTM استفاده شوند. بعضی اوقات قالبگیر میتواند برای شروع، یك فلانج به قالب موجود اضافه كند. ولی برای قطعات كوچكتر معمولاً ساخت قالب جدید ساده تر است. ذكر این نكته ضروری است كه چرخه های قالبگیری سریع، نیازمند قالب هایی با كنترل دما هستند كه عملاً فرایند ساخت متفاوتی با قالب های باز دارند. معمولاً در فرایند LRTM، نیمه صلب قالب، نیمه ماده قالب و دارای محفظه خالی و برعكس نیمه انعطاف پذیر قالب، نیمه نر و دارای برجستگی است. نیمه انعطاف پذیر معمولاً یك كامپوزیت چند لایه است كه با روش لایه چینی دستی از رزین های وینیل استر و الیاف كوتاه تولید می شود. استفاده از قالب های شفاف از این جهت سودمند است كه به قالبگیر اجازه مشاهده جریان رزین در داخل محفظه قالب را می دهد. البته این مسأله برای قالبگیران ماهر و باتجربه از اهمیت كمتری برخوردار است. نیمه انعطاف پذیر قالب معمولاً روی نیمه صلب قالب ساخته میشود و برای ایجاد فضای خالی بین دو نیمه، از ورقهای موم استفاده می شود (البته روشهای سودمند دیگری نیز وجود دارد كه دارای نتایج مطلوبی هستند). فلانج نیمه بالای قالب بایستی با فلانج نیمه پایینی هماهنگ باشد. همچنین نیمه بالایی قالب باید دارای اجزای مشخصی باشد كه نقشی كلیدی در پیشرفت و موفقیت فرایند دارند. این اجزا عبارتند از واشرهای داخلی و خارجی فلانج برای آب بندی در ایجاد خلاء، روزنه یا روزنه های تزریق و دست كم دو روزنه خلاء كه معمولاً یكی از آنها در نزدیكی مركز قطعه تعبیه می شود. از این روزنه همچنین برای تزریق مایع جداكننده استفاده می شود. علاوه بر قالب، پمپ تزریق رزین و پمپ خلاء ازجمله تجهیزات ضروری این فرایند به شمار می آیند. سیستم خلاء میتواند شامل دو پمپ ونتوری ساده 20 دلاری و یا دارای تجهیزات 10،000 دلاری باشد. برای پمپ رزین اغلب قالبگیران از هرآنچه در دسترس است یا با آن آشنایی دارند استفاده می كنند. نمونه هایی از پمپ های مورد استفاده عبارتند از پمپ دنده ای، پمپ دیافراگمی، پمپ دودی و... فرایند در این فرایند قطعات میتوانند بدون پوشش ژلی یا با پوشش ژلی بر روی یك یا هردو سطح تولید شوند. آماده سازی قالب و اعمال پوشش ژلی همانند بر روی یك یا هر دو سطح تولید شوند. آماده سازی قالب و اعمال پوشش ژلی همانند فرایند قالبگیری باز است. هنگام اعمال پوشش ژلی، فلانج های قالب توسط كاغذ یا ماسك های قابل استفاده مجدد پوشانده می شوند. به طور ایده آل هنگامی كه پوشش ژلی هنوز چسبناك است تقویت كننده ها در محفظه مادگی قالب قرار می گیرند. پوشش چسبناك ژلی كمك می كند كه تقویت كننده ها هنگام بسته شدن قالب در جای خود ثابت باشند. انواع مختلف تقویت كننده ها و الیاف میتوانند مورداستفاده قرار گیرند ولی استفاده از مواد ویژه باعث تسهیل فرایند و افزایش سرعت آن میشود. سایر تقویت كننده ها و انواع مغزی ها میتوانند به همراه مت های شكل پذیر به كار گرفته شوند تا نتایج مطلوب به دست آید. پس از آنكه همه مغزی ها و تقویت كننده ها در جای مناسب خود قرار داده شدند قالب بسته می شود. این عمل با قراردادن نیمه بالایی قالب روی نیمه صلب قالب با دست انجام می شود. معمولاً نیروی جاذبه همراه با لرزش های كوچك، فشار كافی را جهت بسته شدن قالب و آب بندی آن توسط واشر محیطی فلانج ایجاد می كند. در این لحظه خلاء كاملی در فضای بین واشرهای داخلی و خارجی فلانج اعمال می شود. این خلاء باعث ایجاد فشاری معادل چندین تن حتی روی قالبهای كوچك میشود. هنگامی كه دو نیمه قالب به طور كامل فشرده شدنداز طریق روزنه مركزی نیمه بالایی قالب یك خلاء نسبی اعمال میشود. در این هنگام قالب آماده دریافت رزین است. رزین از نقطه ای خارج از لبه قطعه و درون واشر داخلی وارد می شود. هنگامی كه تقویت كننده ها در قالب قرار داده می شوند یك فضای خالی بین الیاف و واشر درونی باقی می ماند كه این فضا محلی برای جریان رزین است. در نتیجه قبل از آنكه رزین به داخل تقویت كننده ها نفوذ كند دور تا دور آن را در قالب فرا می گیرد. برای قطعاتی كه طول آنها بیش از 120 سانتی متر است معمولاض بیش از یك روزنه تزریق به كار گرفته می شود. با آغاز جریان رزین درون تقویت كننده رزین به سمت روزنه خلاء كه در مركز قطعه قرار گرفته است پیش می رود. پس از آنكه قالب به طور كامل پر شد پمپ تزریق خاموش شده و لوله تزریق جدا می شود. هردوی خلاء های كامل و نسبی باید تا زمانی وجود داشته باشند كه قطعه به قدر كافی پخت شده و بتواند از قالب جدا شود. هنگام جدایش قالب، از طریق روزنه مركزی اعمال خلاء، فشار ملایم هوا اعمال می شود تا عمل جدایش قالب تسهیل شود. ذكر این نكته ضروری است كه در روش RTM سنتی تزریق تا زمانی كه مشاهده شود قالب پر شده است ادامه می یابد ولی در روش LRTM میزان رزین موردنیاز پیش بینی شده و قالب تا آن زمان پر می شود. بنابراین قطعه ای با دقت و كیفیت بالا تولید شده و از بیرون ریختن رزین اضافی جلوگیری میشود. -
ریخته گری در قالب دوغابی مزايا و محدوديتها الف: مهمترين مزاياي روش ريخته گري دقيق عبارتند از : - توليد انبوه قطعات با اشكال پيچيده كه توسط روشهاي ديگر ريخته گري نمي توان توليد نمود توسط اين فرايند امكان پذير مي شود. - مواد قالب و نيز تكنيك بالاي اين فرايند،- امكان تكرار توليد قطعات با دقت ابعادي وصافي سطح يكنواخت را ميدهد. - اين روش براي توليد كليه فلزات و آلياژهاي ريختگي به كار مي رود . همچنين امكان توليد قطعاتي از چند آلياژ مختلف وجود دارد. - توسط اين فرآيند امكان توليد قطعاتي با حداقل نياز به عملايت ماشينكاري و تمام كاري وجود دارد. بنابراين محدوديت استفاده از آلياژهاي با قابليت ماشينكاري بد از بين مي رود. - در اين روش امكان توليد قطعات با خصوصا متالورژيكي بهتر وجود دارد. - قالبت تطابق براي ذوب و ريخته گري قطعات در خلاء وجود دارد. - خط جدايش قطعات حذف مي شود و نتيجتا موجب حذف عيوبي مي شود كه در اثر وجود خط جدايش به وجود مي آيد.. – ب:مهمترين محدوديتهاي روش ريخته گري دقيق عبارتنداز : - اندازه و وزن قطعات توليد شده توسط اين روش محدود بوده و عموما قطعات با وزن كمتر از 5 كيلوگرم توليد مي شود . - هزينه تجهيزات و ابزارها در اين روش نسبت به ساير روشها بيشتر است. انواع روشهاي ريخته گري دقيق: در اين فرايند دو روش متمايز در تهيه قالب وجود دارد كه عبارتند از روش پوسته اي و روش توپر به طور كلي اين دو روش درتهيه مدل با هم اختلاف ندارند بلكه در نوع قالبها با هم تفاوت دارند. فرايند قالبهاي پوستهاي سراميكي پوسته اي سراميكي درريخته گري دقيق: براي توليد قعطات ريختگي فولادي ساده كربني ، فولادهاي آلياژي ،فولاد هاي زنگ نزن، مقاومت به حرارت وديگر آلياژهايي با نقطعه ذوب بالاي اين روش به كار مي رود به طور شماتيك روش تهيه قالب را در اين فرآيند نشان مي دهند كه به ترتيب عبارتند از : الف : تهيه مدلها : مدلهاي مومي يا پلاستيكي توسط ورشهاي مخصوص تهيه ميشوند. ب : مونتاژ مدلها : پس از تهيه مدلهاي مومي يا پلاستيك معمولا تعدادي از آنها ( اين تعداد بستگي به شكل و اندازه دارد) حول يك راهگاه به صورت خوشه اي مونتاژ مي شوند در ارتباط باچسباندن مدلها به راهگاه بار ريز روشهاي مختلف وجود دارند كه سه روش معمولتر است و عبارتند از : روش اول: محل اتصال در موم مذاب فرو برده مي شود و سپس به محل تعيين شده چسبانده مي شود . روش دوم: اين روش كه به جوشكاري مومي معروف است بدين ترتيب است كه محلهاي اتصال ذوب شده به هم متصل مي گردند . روش سوم: روش سوم استفاده از چسبهاي مخصوص است كه محل اتصال توسط جسبهاي مخصوص موم يا پلاستيكي به هم چسبانده مي شود. روش اتصال مدلهاي پلاستيكي نيز شبيه به مدلهاي مومي مي باشد.. ج : مدل خوشه اي و ضمائم آن در داخل دو غاب سراميكي فرو برده مي شود. درنتيجه يك لايه دو غاب سراميكي روي مدل را مي پوشاند د:در اين مرحله مدل خوشه اي در معرض جريان باران ذرات ماسه نسوز قرار ميگيرد.تايك لايه نازك درسطح آن تشكيل شود . ه: پوسته سراميكي ايجاده شده در مرحله قبل كاملاخشك مي شوند تا سخت و محلم شوند. مراحل ( ج ) (د) ( ه) مجددا براي جند بار تكرار مي شود . تعداد دفعات اين تكرار بستگي به ضخامت پوسته قالب مورد نياز دارد. معمولا مراحل اوليه از دوغابهايي كه از پودرهاي نرم تهيه شده ،استفاده شده و بتدريج مي توان از دو غاب و نيز ذرات ماسه نسوز درشت تر استفاده نمود. صافي سطح قطعه ريختگي بستگي به ذرات دو غاب اوليه و نيز ماسه نسوز اوليه دارد. ز: مدول مومي يا پلاستيكي توسط ذوب يا سوزانده از محفظه قالب خارج مي شوند، به اين عمليات موم زدايي مي گويند . درعمليات موزدايي بايستي توجه نمود كه انبساط موم سبب تنش وترك در قالب نشود ح: در قالبهاي توليد شده عمليات بار ريزي مذاب انجام مي شود ط: پس از انجماد مذاب ،پوسته سراميكي شكسته ميشود. ي: در آخرين مرحله قطعات از راهگاه جدا مي شوند. مواد نسوز در فرآيند پوسته اي دقيق: نوعي سيليس به دليل انبساطي حرارتي كم به طور گسترده به عنوان نسوز در روش پوسته اي دقيق مورد استفاده قرار مي گيرد.اين ماده نسوز براي ريخته گري آلياژهاي آهني و آلياژهاي كبالت مورد استفاده قرار مي گيرد. زير كنيم شايد بيشترين كاربرد را به عنوان نسوز در فرآيند پوسته اي دارد. اين ماده بهترين كيفيت را در سطوح قطعه ايجاد نموده و در درجه حرارتهاي بالا پايدار بوده و نسبت به خورديگ توسط مذاب مقاوم است. آلومين به دليل مقاومت كم در برابر شوك حرارتي كمتر مورد استفاده قرار ميگيرد. به هر حال در برخي موارد به دليل مقاومت در درجه حرارت بالا ( تا حدودc ْ1760 مورد استفاده قرار مي گيرد. چسبها :مواد نسوز به وسيله چسبها به يكديگر مي چسبد اين چسبها معمولا شيميايي مي باشند سليكات اتيل ،سيليكات سديم و سيليس كلوئيدي . سيليكات اتيل باعث پيدايش سطح تمام شده بسيار خوب ميشوند. سيليس كلوئيدي نيز باعث بوجود آمدن سطح تمام شده عالي مي شود. اجزاي ديگر: يك تركيب مناسب علاوه بر مواد فوق شامل مواد ديگري است كه هر كدام به منظور خاصي استفاده مي شود. اين مواد به اين شرح است : - مواد كنترل كننده ويسكوزيته - مواد تركننده جهت كنترل سياليت دو غاب و قابليت مرطوب سازي مدل - مواد ضد كف جهت خارج كردن حبابهاي هوا - مواد ژلاتيني جهت كنترل در خشك شدن و تقليل تركها فرايند تهيه قالبهاي توپر در ريخته گري دقيق: شكل به طول شماتيك مراحل تهيه قالب به روش توپر را نشان مي دهد كه عبارتند از : الف : تهيه مدلهاي ذوب شونده ب :مونتاژ مدلها : اين عمليات درقسمت ج: توضيح داده شده ح: مدلهاي خوشه اي و ضمائم آن درداخل درجه اي قرار ميگيرد و دوغاب سراميكي اطراف آن ريخته ميشودتا درجه با دو غاب ديرگداز پر شود. به اين دو غاب دو غاب پشت بند نيز گفته ميشود . اين دو غاب در هوا سخت مي شود و بدين ترتيب قالب به اصطلاح توپر تهيه مي شود د: عمليات بار ريزي انجام ميشود ه : قالب سراميكي پس ازانجماد مذاب شكسته مي شود و: قطعات از راهگاه جدا مي شوند شكل دادن به روش ريخته گري دو غابي مقدمه اين طريقه شبيه كار فيلتر پرس است ، به اين معنا كه مقدار آب به مواد اوليه اضافه شده تا حالت دو غابي به خود بگيرد. بايد خارج شود ،به اين دليل براي ساختن اشيا روش كندي است . به طور كلي اين روش موقعي مورد استفاده قرار ميگيرد كه شكل دادن به روشهاي اقتصادي تر غير ممكن باشد. ازطرف ديگر مواقعي از اين روش اسفتاده مي كنند كه تعدااد زيادي از قطعه مورد درخاواست نباشد . برتري بارز اين روش در توليد قطعات پيچيده است . دوغاب،داخل قالبهاي گچي متخلخل كه شكل مورد نظر را دارد، ريخته مي شود . آب دو غاب جذب قالب شده و دراثر اين عمل يك لايه از مواد دو غاب به ديواره قالب بسته مي شود و شكل داخل قالب را به خود مي گيرد.دو غاب در داخلي قالب باقي مي ماند تا زماني كه لايه ضخامت مورد نظر را پيدا كند. اگر ريخته گري تو خالي نباشد ،نيازي به تخليه دو غاب نيست ، ولي براي قطعاتي كه توخالي باشند، قالب برگدانده ميشود . دو غاب اضافي كه روي سطح قالب قرار دارد،به وسيله كرادكي تراشيده مي شود . سپس لايه اضافي با كمك چاقو در ناحيه ذخيره برداشته مي شود . جدارة تشكيل دشه كه همان قطعه نهايي موردنظر است، درقالب باقي مي ماند تا زماني كه كمي منقبض شده و از قالب جدا شود. سپس مي توان آن را از قالب در آورد . بعد از اينكه قطعه مورد نظر خشك شد،كليه خطوط اضافي كه دراثر قالب روي آن ايجاد شده است، با چاقو زده و يا به وسيله اسفنج تميز مي شود در اين مرحله قطعه آماده پخت است . چون آب اضافي دو غاب حين ريخته گري خارج شده ، سطح دو غاب در داخل قالب پايين مي آيد. به اين دليل معمولا يك حلقه بالاي قالب تعبيه مي شود تا دو غاب را بالاي قعطه مورد نظر نگه دارد. اين حلقه ممكن است از گچ و يا از لاستيك ساخته شود . اگر ازگچ ساخه شود ، داخل آن نيز دو غاب به جدا بسه شده و با كمك چاقو تراشيده ميشود. وقتي كه جسم داخل قالب گچي كمي خشك شد،اسفنجي نمدار دور آن كشيده مي شود تا سطحي صاف به دست آيد . اين روش كه در بالا به ان اشاره شد ، براي ريخته گري اجسامي است كه داخل آنها خالي است . مانند گلدان، زير سيگاري ، و غيره ... اما طريقه اي هم هست كه براي ساختن اجسام توپر به كار مي رود ، به اين تريتب كه دو غاب داخل قالب مي ماند تا اينكه تمام آن سف شود. براي ساختن اشيايي كه شكل پيچيده دارند ، ممكن است قالب گچي ازچندين قعطه ساخته شود تا بتوانيم جسم داخل آن را از قالب خارج كنيم ، هر قطعه قالب شامل جاي خالي است كه قعطه قالب ديگر در آن جا مي گيرد. (نروماده ) اگر قالب داراي قطعات زيادباشد،لازم است در حين ريخته گري خوب به هم چسبد اين كار را مي توان به وسيله نوار لاستيك كه محكم به دور آن مي بنديم انجام دهيم . هنگام در اوردن جسم از قالب بايد اين نوار لاستيكي را باز كرده و برداريم. غلظت مواد ريخته گري بايد به اندازه كافي باشد كه باعث اشباع شدن قالب از آب نشود . بخصوص موادي كه شامل مقدار زيادي خاك رس هستند،غلظت آنها به قدري كم خواهد شد كه ريخته گري آنها مشكل شده و معايبي هم در حين ريخته گري ايجادمي شود. براي اينكه دو غاب را به اندازه كافي روان كنيم . مواد روانسازي به دو غاب اضافه مي شود. ريخته گري دو غابي تجهيزات مورد نياز: مواد مورد نياز - مواد اوليه - آب - روانساز( سودا و سيليكات سديم يا آب شيشه ) ابزار مورد نياز - همزان الكتريكي - ترازو ( با دقت 1/0و01/0 گرم) - پارچ دردار - قالب گچي مورد نياز ( قالب قوري - لوله و قالب هاون آزمايشگاهي - دسته هاون آزمايشگاهي - دسته هاون ) - ويسكوزيته متر ريزشي با بروكفيد - لاستيك نواري - ميز كار آماده سازي دو غاب توزين و اختلاط مواد اوليه :در توليد فرآورده هاي سراميكي ،عمل توزين مواد اوليه به طور كلي مي تواند به دو روش انجام شود. (توزين به روش خشك ) (توزين به روش تر )در مرحله تهيه و آماده سازي بدنه ،روش توزين عامل بسيار مهم و تعيين كننده اي است. توزين درحالت خشك : در اين روش ،عمل توزين هنگامي صورت مي گيرد كه مواد اوليه به صورت خشك و يا تقريبا خشك باشند و هنوز تبديل به دو غاب نشده باشند . هنگام توزين ،حتما بايد آب موجود درمواد اوليه و به طور عمده در مواد پلاستيك (كه از محيط اطراف جذب شده و يا در معدن در اثر ريزش برف و باران مرطوب و نمدار شده است )منظور شود . البته بايد توجه داشت كه تعيين دقيق مقدار رطوبت موجود در مواد اوليه،عملا غير ممكن است و اين موضوع ، يعني عدم دقت ، نقص بزرگ توزين به روش خشك است . در عمل از تك تك مواد اوليه نمونه برداري كنيد ،و بعد از توزين آن را در خشك كن آزمايشگاهي در دماي ( ) قرار دهيد بعد از 24 ساعت نمونه را دوباهر توزين كنيد . اختلاف وزن نسبت به وزن اوليه را محاسبه كنيد تا درصد رطوبت خاك مشخص شود . بعد از تعيين درصد رطوبت ، درصد فوق را در توزين نهايي مواد اوليه منظور كنيد . توزين در حالت تر: در اين روش،عمل توزين بعد از تبديل هر يك از مواد اوليه به دو غاب انجام مي شود. بديهي است كه هريك از مواد اوليه به دو غاب انجام مي شود . بديهي است كه در روش خشك گفته شد ، وجود نخواهد داشت . البته در صنعت به لحاظ نياز اين روش به چاله هاي ذخيره سازي كه فضاي بيشتري با سرماهي گذاري اوليه بالاتري را مي طلبد ،كمتر استقبال مي شود. در مورد توزين به روش تر ،حتما اين روش مطرح خواهد شد كه چگونه مي توان به مقدار مواد خشك موجود در دو غاب هر يك از مواد اوليه پي برد. در عمل براي تعيين مقدار مواد خشك موجود درغابها از رابطه برونينارت استفاده مي شود . W=(p-1) W= وزن ماده خشك موجود در يك سانتيمتر مكعب از دو غاب (گرم ) P= وزن ماده خشك موجود در يك سانتيمتر مكعب = وزن مخصوص ( دانسيته ) دو غاب درعمل با توزين حجم مشخصي از دو غابها،مي توان به وزن مخصوص يا دانسيته آنها پي برد. در مورد وزن مخصوص مواد خشك بايد اشاره شود كه به طور معمول اين مقدار حدود 5/2 تا6/2 گرم بر سانتيمتر مكعب است. بنابراني اگر با تقريب ،وزن مخصوص را 5/2 اختيار كنيد ، مقدار كسري برابر با خواهد بود . پس تنها عامل در اكثر موارد،دانسيته دو غابها است . الك كردن : عمل توزين مواد اوليه چه به صورت تر باشد و چه در حالت خشك ،ابعاد ذرات دو غاب بدنه موجود در حوضچه هاي اختلاط نبايد از حدو مورد نظر بزرگتر باشد. تعيين ابعاد ذرات موجود در دو غاب،قسسمتي از اعمال روزمره آزمايشگاهها ي خطوط توليد است و اين عمل در پايان نمونه برداري در حين سايش انجام گيرد و سپس تخليه انجام مي گيرد. در هر صورت ،انتخاب دانه بندي مناسب بستگي به فاكتور هاي ذيل دارد: - نوع بدنه ( چيني ظروف- چيني بهداشتي ،- نوز) - نوع مواد اوليه و درصد انها (- بالكي) - خواص ريخته گري ( تيكسوتراپي ،- سرعت ريخته گري) - جذب آب - عمل الك كردن براي جداسازي ذرات درشت و كنترل خواص دوغاب بسيار ضروري است. زيرا اولا وجود ذرات درشت عوارض گسترده اي بر پروسس ريخته گري ،- خواص دو غاب ،- خواص حين پخت و خواص محصول نهايي دارد. ثانيا ،- كنترل دانه بندي براي خواص دو غاب شديدا تحت تاثير دانه بندي بوده و نبايد از حد متعارفي كمتر باشد . انتخاب و شماره الك توسط استاد كار انجام خواهد شد. عموما به لحاظ وجود ذرات درشت و حضور ناخالصيهاي گسترده در مواد اوليه نظير موادآلي ،ريشه درختان ،كرك و پشم كه به منظور افزايش استحكام خام به بعضي از مواد اوليه زده مي شود ،غالبا چشمه هاي الك زود كورمي شود و ادامه عمل الك كردن را با مشكل مواجه مي كند. لذا غالبا الكهارا چند طبقه منظور كرده و طبقات نيز از مش كوچك به مش بزرگ از بالا به پايين قرار مي گيرند تا دانه هاي درشت تر بالاو دانه هاي كمتري روي الك زيرين كه داراي چشمه هاي ريزتري است ،قرار گيرد . آهن گيري: مي دانيد كه اهن با ظرفيتهاي مختلف در مواد اوليه يا بدنه هاي خام وجود دارد، در مجموع چهار شكل متفاوت آهن وجود دارد. - به صورت يك كاتيون در داخل شبكه بلوري مواد اوليه - به صورت كانيهاي مختلف كه به عنوان ناخالصيهاي طبيعي با مواد اوليه مخلوط مي شوند . - به صورت ناخالصيهاي مصنوعي كه در اثر سايش صفحات خرد كننده سنگ شكنها و آسيابها به وجود آمده اند . فقط در حالت اخير آهن به صورت فلزي يا آزاد وجود دارد. لذا در اين حالت توانايي مي توان عمل اهن گيري را انجام داد. - به صورت تركيبات دو وسه ظرفيتي آهن كه در اثر زنگ زدگي خطوط انتقال دو غاب ،- وارد دوغاب ميشوند.در توليد فرآورده هاي ظريف براي تخليص دو غاب از ذرات آهن موجود ،- از دستگاههاي آهنر يا مگنت دستي استفاده مي شود . دستگاههاي آهنربا اگر چه عامل بسيار موثري در حذف آهن و تخليص دو غاب هستند،- ولي ماسفانه بايد توجه داشت كه اين دستگاهها قادر به جذب تمام مواد وذرات حاوي آهن نيستند . در بين كانيهاي مهم آهن، كانيهاي مگنيت ( ) سيدريت ( )و هماتيت( ) به ترتيب داراي بيشترين خاصيت مغناطيسي هستند و بنابراين ،به وسيله دستگاههاي آهنربا جذب مي شوند . در كانيهاي ليمونيت ( ) ماركاسيت و پيريت ( ) خاصيت مغناطيسي به ترتيب كاهش يافته و به همين دليل در عمل ، احتمال جدا سازي اين كانيها به وسيله دستگاههاي آهنربا بسيار كم است . در مورد آهن فلزي بديهي است كه دستگاههاي آهنربا به راحتي قادر به جذب آنها هستند. تنظيم خواص رئولوژيكي بعد از اينكه دو غاب الك و آهنگيري شد، دو غاب رابه چاله ذخيره يا به ظرف مخصوص انتقال مي دهيم . در حالي كه همزن الكتريكي با دور كم در حال هم زدن آرام دو غاب است ، از چاله نمونه برداري كرده و آزمونهاي زير را اعمال مي كنيم تا فرم پيوست تكميل شود. همان طوريكه در فرم ملاحظه مي شود ، شامل مراحل زير است :اولين مرحله تنظيم دانسيته دوغاب است . بدين معنا كه سرعت ريخته گري يا مدت زماني كه لازم است دو غاب در قالب گچي بماند و به ضخامت مورد نظر برسد، تنظيم شود . بدين منظور در ابتدا قالب گچي مناسب را كه داراي عمر مشخص و درصد آب به گچ ثابت و معيني است آماده مي كنيم و يا اينكه مي توانيم از يك مدل مشخص در خط توليد استفاده كنيم بعد از بستن قطعات قالب، آنها را با كمك يك نوار پهن لاستيكي نظير تيوپ دوچرخه يا لاستيكي كه از تيوپ ماشين معمولي بريده شده است ، كاملا در كنار هم جذب و محكم كنيد . دو غاب حاصل را به داخل قالب گچي بريزيد . و بعد از مدت زمان مشخصي ،در نتيجه واكنشهاي متقابل بين دو غالب وقالب گچي ،لايه اي درمحل تماس دو غاب و قالب ايجاد مي شود .واضح است كه قطر لايه ايجاد شده بستگي به زمان توقف دو غالب در قالب دارد. بعد از گذشت مدت زمان مورد نظر ، دو غاب اضافي موجود قالب تخليه مي شود . اين زمان به طور عمده بستگي به قطر فراورده مورد نظر وسرعت ريخته گري دو غاب دارد . بايد توجه داشت كه تراكم قالب گچي نيز عامل موثري در زمان ريخته گري است . ولي براي ايجاد زمينه اي در ذهن دانش آموزان بايد اشاره شود كه با توجه به كليه عوامل موثر زمان ريخته گري به عنوان مثال براي فرآورده ها بهداشتي به قطر حدود 10 يا 11ميليمتر،معمولا حدود تا 2 ساعت ،براي ظروف غذا خوري از جنس ارتن و ريا پرسلان با قطر2 تا 3 ميليمتر ، حدود 15 تا 25 دقيقه و براي چيني استخواني به همين قطر حدود 2 تا 5 دقيقه است .سپس قالب و فرآورده شكل يافته در آن براي مدتي به حال خود گذاشته مي شود تا لايه ايجاد شده ،تا حدودي خشك و در نتيجه كوچكتر شود .(دراثر انقباض تر به خشك ) بعد از اين مرحله قطعه شكل يافته به راحتي از قالب جدا شده و مي توان آ نرا از داخل قالب گچي خارج كرد درهنگام تشكيل لايه در محل تماس قالب و دوغاب،حجم دو غاب موجود در غاب به مرور كمتر وكمتر مي شود . به همين دليل لازم است كه مجددا مقاديري دو غاب به داخل قالب گچي ريخته شود. با توجه به اينكه انجام اين عمل نيازمند نيروي انساني بيشتر و نيز مراقيت دايم است، در عمل قطعه اي در دهانه قالب گچي تعبيه شده كه اصطلاحا به آن ((حلقه 45)) گفته مي شود. اين حلقه باعث ايجاد ستوني از دو غاب برفراز قطعه ساخته شده مي شود. در نتيجه با كاهش حجم دو غاب موجود در قالب ،نيازي به اضافه كردن مجدد دو غاب نيست. در بعضي موارد به جاي تعبيه حلقه از قيف استفاده مي شود . حلقه ها مي توانند از جنس لاستيك و يا گچ باشند. در صورتي كه حلقه ها از جنس گچ باشند، در سطح داخلي حلقه ،در محل تماس دو غاب با گچ نيز لايه اي ايجاد ميشود . اين لايه اضافي و نيز ديگر قسمتهاي اضافي ( به عنوان مثال اضافات ايجاد شده در محل درز قالبها)در مرحله پرداخت بريده و جدا مي شوند . قالبهاي گچي به ندرت يك تكه هستند. بدين معني كه معمولا فراورده ها در قالبهاي چند تكه شكل مي يابند. از طرف ديگر در مورد بعضي از شكلهاي پيچيده لازم است مدل اصلي به چند قعطه مختلف تجزيه شده و هر يك از قسمتها جداگانه شكل بگيرند . سپس، بعد از خروج از قالبها به يكديگر متصل شوند. به عنوان مثال ، در مورد ظروف خانگي دسته فنجانها و يا لوله قوريها به صورت مجزا شكل يافته و پس از خروج از قالب، به بدنه اصلي چسبانده مي شوند . مرحله چسباندن قطعات در شكل دادن فراورده ها داراي اهميت زياد است . درشكل دادن به روش ريخته گري به صورت كاملا ساده نشان داده شده است . تعيين زمان ريخته گري دو غابي وسايل مورد نياز مواد اوليه مورد نياز تعداد پنج عدد قالب گچي دو غاب تنظيم شده ليواني كوليس يا ريز سنج كاغذ ميليمتري سيم يا فنر براي برش دادن خط كش كرنومتر مدت زماني كه دو غاب در داخل قالب باقي مي ماند ، در قطر لايه ايجاد شده ويا به عبارت ديگر در ضخامت بدنه خام ، تاثير بسيار زيادي دارد. بدني معني كه چنانچه دو غاب اضافي همچنان در قالب باقي مانده و تخليه نشود و اصطلاحا (( زمان بيشتر به دو غاب داده شود ))،قطر لايه ايجاد شده افزايش خواهديافت . بايد توجه داشت كه با گذشت زمان ،سرعت تشكيل ثابت نبوده و به مروركند تر مي شود . چرا كه در اين شرايط ،خود لايه ايجاد شده به صورت سدي در ماقابل نفوذ آب به داخل گچ ،عمل مي كند. همچنانكه مشاهده مي شود ، اين عامل كه اصطلاح (( ريخته گري)) به آن اتلاق مي شود، عامل مهمي درتعيين قطر بدنه خام (ودر نتيجه ديگر خصوصيات بدنه ) و نيز سرعت توليد است . به همين دليل ،يكي از مهمترين خواص دوغابها مقدار ( سرعت ريخته گري) آنها است. به طور مشخص ،سرعت ريخته گري عبارت است از ضخامت ايجاد شده در واحد زمان و عوامل موثر در ان كلا عبارتند از : فشار، درجه حرارت ،وزن مخصوص دو غاب و بالاخره مقاومت لايه ريخته گري شده در برابر عبورآب . دو عامل اخير وبخصوص آخرين عامل ، مهمترين مواردي هستندكه عملادرصنعت مورد توجه قرار مي گيرند . مقاومت لايه ريخته گري شده در برابر عبور آب ، خود به عوامل ديگري بستگي دارد كه به طور خلاصه عبارتند از:نوع و يا دانه بندي مواد و نيز چگونگي و يا شدت روان شدگي ( به عبارت ديگر تجمع و ياتفرق ذرات )ضمنا بايد توجه داشت كه در سرعت ريخته گري ،عوامل خارجي ديگري كه ربطي به خواص دو غاب ندارند نيز موثر هستند. مانند تراكم و يا تخلخل قالب گچي و درصد رطوبت موجود در آن.ضخامت لايه ايجاد شده رابطه مستقيم با جذر زمان ريخته گري دارد. بنابراين ،بين زمان و ضخامت لايه رابطه زير بر قرار خواهد بود: ويا در رابطه فوق ، 1ضخامت لايه ايجاد شده ( به ميلي متر )و t زمان (به دقيقه)وk ضريب ثابت است . به همين دليل سرعت ريخته گري معمولا به صورت بيان مي شود . رابطه فوق بدين معني است كه به عنوان مثال چنانچه ساخت فرآورده اي به ضخامت يك ميليمتر ،چهاردقيقه زمان احتياج داشته باشد، ساخت فراورده ديگر به ضخامت 2 ميليمتر در همان شرايط به شانزده دقيقه زمان نياز دارد. با اين توضيحات ، براي تعيين سرعت ريخته گري و در كنار آن زمان ريخته گري، به صورت زير عمل كنيد: نخست روي قالبهاي گچي به ترتيب شماره يك تا پنج بزنيد ، سپس دو غاب را به ترتيب در اولين قالب ريخته و بلافاصله كرنومتر را بزنيد .بلافاصله قالب گچي ديگر و درنهايت پنجمين قالب گچي را از دو غاب پركنيد. بعد از يك دقيقه اولين قالب را و بعد بترتيب زيرا قالبهاي ديگر را تخليه كنيد : بعد از اينكه آخرين قطرات دو غاب از چكه كردن باز ايستاد ،قالب را به حال خود بگذاريد و بعد از زمان مشخصي كه جداره تشكيل شده در اثر انقباض از قالب جدا شد، آن را از قالب بيرون آورد. با ريز سنج يا با كمك كوليس اندازه گيري كنيد.سپس با كمك كاغذ ميليمتر و با انتخاب دو محور xوy به ترتيبx را به عنوان زمان و y را به عنوان ضخامت با كمك نقطعه يابي رسم كنيد. در اين حالت با رسم 1 بر حسب خواهيد توانست ضريب خط را بدست آوريد كه همان سرعت ريخته گري است . و از انجا مي تونيد به راحتي هر ضخامتي را كه مي خواهيد ، تعيين و زمان آن را محاسبه كنيد. مثلا اگر سرعت ريخته گري 5/0 باشد،يعني ( ميليمتر مربع بر دقيقه) براي داشتن بدنه اي به ضخامت 8/0 سانتيمتر به صورت زير محاسبه مي كنيم . دقيقه َ 2.8 = 60 ÷ 128 يعني بايد 2 ساعت و 8 دقيقه زمان بدهيد تا جداره مورد نظر تشكيل شود.يكي از عوامل موثر درسرعت ريخته گري ، وزن مخصوص دو غاب و يا به عبارت ديگر نسبت بين مواد جامد و آب است . علاوه بر اين مورد افزايش مقار اب در دو غاب ريخته گري باعث اشباع سريعتر قالبها مي شود كه به نوبه خود خشك كردن كامل قالبها باعث فرسودگي سريعتر آنها و نهايتا كاهش بازدهي قالبهامي شود . وزن مخصوص دو غابهاي ريخته گري بايد حتي المقدور بالا باشد. علت اساسي استفاده از روان كننده ها در دوغابهاي ريخته گري ،همين مورد است . چرا كه بدون استفاده از روان كننده ها تهيه دو غابهايي با وزن مخصوص بالا ، تقريباً غير ممكن است . به همين دليل يكي از خواص مخصوص آنها است . در توليد فرآورده هاي سراميك ظريف به طور معمول وزن مخصوص دو غاب ريخته گري بين 5/1 تا است. يكي ديگر از خصوصيات بسيار مهم در دو غابهاي ريتخه گري و يسكوزيته آنهاست .ويكسوزيته يك دو غاب علي رغم وزن مخصوص بسيار بالاي آن بايد درحدي باشد كه درمقياس صنعتي ، دوغاب به راحتي از الكها و يا خطوط لوله عبور كند و درعين حال بتواند تمامي زواياو گوشه هاي قالب را پركند. مساله مهم درارتباط بين وزن مخصوص ويسكوزيته و روان كننده اين موضوع است كه اگر چه تغييرات وزن مخصوص ويا به عبارت ديگر مقدار آب و نيز تغييرات مقدار روان كننده در ويسكوزيته موثر هستند. ولي تغييرات مقدار روان كننده در مقدار وزن مخصوص بيتاير است ودر نتيجه در خطوط توليد كارخانه ها ،با اندازه گيري و يسكوزيته و وزن مخصوص در بسياري موارد مي توان به تغييرات مقدار روان كننده پي برد. علاوه برسرعت ريخته گري ،وزن مخصوص و ويسكوزيته عامل ديگري نيز دردو غاب بدنه خام اهميت دارد و آن تيكسو تروپي است ؛ خاصيت تيكسوتر را به طور خلاصه مي توان به صورت «افزايش ويسكوزيته دو غاب دراثر سكون و ركود و كاهش ويسكوزيته دراثر هم خوردن» تعريف كرد. دو غابي كه داراي تيكسوتر و پي زيادي است بلافاصله بعد از هم خوردن ممكن است داراي رواني مناسبي باشد. ولي بعد از مدتي سكون ، ويسكوزيته آن به شدت افزايش مي يابد. افزايش ويسكوزيته در اثر خاصيت تيكسوتروپي، گاه به حدي است كه چنانچه ظرف حاوي دو غاب بعد از مدتي سكون ،وارونه شود، دو غاب داخل آن از ظرف خارج نمي شود. در دو غابهاي ريخته گري به طور معمول مقادير كمي تيكسوتروپي مطلوب است. چراكه تيكسوتروپي باعث افزايش سرعت ريخته گري شده و درعين حال استحكام و ثبات خاصي را در قطعه ريخته گري شده ايجاد مي كند.( بايد دقت شود كه منظور ، ايجاد استحكام و در حالت پلاستيك است ( درصورتي كه استحكام خشك مد نظر باشد، خلاف اين موضوع صحيح است . بدين معني است كه رسهاي روان شده به دليل تراكم بيشتر داراي استحكام خشك بسيار بيشتري هستند. استحكام خشك زيادتر فرآروده هايي كه به روش ريخته گري شكل مي يابند نيز به همين دليل است ). از طرف ديگر وجود مقدار زيادي تيكسوتروپي دردوغاب نيز باعث بروز اشكالاتي مي شود؛ تيكسوتروپي زياد در دو غاب باعث سست شدن فراورده ريختهگري مي شود ،به نحوي كه چنين فرآورده هايي را مي توان به راحتي تغيير شكل داده و با تكان دادن ممكن است مجددا به دو غاب تبديل شوند. به عنوان يك قانون كلي ، روان كننده ها نه تنها باعث كاهش ويكسوزيته مي شوند، بلكه تيكسوتروپي رانيز كاهش مي دهند. بنابراين ،مقدار مصرف روان كننده بايد به نحوي تنظيم شود كه با ايجاد بيشترين مقدار رواني ، مقادير كمي تيكسوتروپي در دو غاب ايجاد شود. دليل استفاده مشترك از سليكات و كربنات سديم به عنوان روان كننده همين مورد است. سيليكات سديم اگر چه باعث رواني دو غاب مي شود. ولي تيكسوتروپي ار ينز به طور كامل از بين مي برد . در حالي كه كربنات سديم درعين حال كه باعث كاهش ويسكوزيته مي شود، مقادير كمي تيكسوتروپي در دو غاب باقي ميگذارد. استفاده توام از اين دو روان كننده باعث ايجاد بيشترين حد رواني و در عين حال وجود مقدار كمي تيكسوتروپي در دو غاب مي شود. روشهاي ساخت ماهيچه هاي سراميكي: ماهيچه هاي سراميكي به خاطر دقت ابعادي بالا در ريخته گري قطعات دقيق به كاربرده مي شوند. اين ماهيچه ها به دو روش دو غابي و فشاري ساخته مي شوند كه از نظر نوع نسوز يكسان بوده ولي چسبهاي آنها با هم تفاوت دارد. دو روش ساخت ماهيچه ها در ذيل به اختصار شرح داده مي شود: الف ) ماهيچه هاي ساخت سراميك به روش دو غابي در اين روش يك مدول مومي به شكل ماهيچه موردنظر ( با احتساب انقباضات موم و مواد سراميكي پس از خشك شدن) ساخه مي شوند. پس اين مدل مومي را در داخل يك قالب مي گذاريم به طوريكه يك قسمت از مدل جهت خروج موم و وارد كردن دو غاب سراميك به آن درنظر گرفته شود. پس دو غاب گچي آماده شده را در درون قالب حاوي مدل مومي مي ريزيم و پس ازسفت شدن دو غاب گچ آنرا از قالب خارج كرده و در خشك كن قرار مي دهيم پس از خشك شدن قالب گچي مدل مومي را ذوب كرده و از قالب گچي خارج مي نماييم. دو غاب سراميكي تهيه شده به نسبت 70% پودر نسوز و 30% آب را درون قالب گچي تهيه شده مي ريزيم و پس ازخشك شدن مواد سراميكي قالب گچي را شكسته و ماهيچه سراميكي شكل گرفته را خارج مي نماييم . اين ماهيچه را پس از خشك كردن در دمايي حدود950 درجه سانتي گراد پخت مي كنيم. ماهيچه تهيه شده پس از پخت كامل و خنك شدن آماده استفاده مي باشد. قابل ذكر است كه چسبهاي مورد استفاده دراين روش از نوع سيليكاتها مي باشد ونسوز مصرفي داراي عدد ريز دانگي 200يا325 مش است. بـ )ساخت ماهيچه هاي سراميكي به روش فشاري: در اين روش پودر نسوز مورداستفاده كه ازنوع زيركني يا آلومينيايي يا آلوميناسيليكاتي مي باشد را با رزين مخصوص(موم و..)مخلوط كرده و به صورت خمير در مي آوريم خمير تهيه شده ار در درون قالب ماهيچه كه عمدتااز جنس فلز مي باشدبه روش فشاري تزريق مي كنيم . ماهيچه تهيه شده را حرارت داده تا به آرامي موم آن خارج گردد. سپس اين ماهيچه رادر دماي 950 درجه سانتيگراد تحت عمليات نهايي پخت قرار مي دهيم. پس ازپخت كامل ماهيچه و خنك نمودن آن تا دماي محيط ماهيچه مذكور مورد استفاده قرار مي گيرد. منبع:mehdi518.blogfa.com