رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'لاستیک'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی
  • مکانیک در صنعت مکانیک در صنعت Topics
  • شهرسازان انجمن نواندیشان شهرسازان انجمن نواندیشان Topics
  • هنرمندان انجمن هنرمندان انجمن Topics
  • گالری عکس مشترک گالری عکس مشترک Topics
  • گروه بزرگ مهندسي عمرآن گروه بزرگ مهندسي عمرآن Topics
  • گروه معماری گروه معماری Topics
  • عاشقان مولای متقیان علی (ع) عاشقان مولای متقیان علی (ع) Topics
  • طراحان فضای سبز طراحان فضای سبز Topics
  • بروبچ با صفای مشهدی بروبچ با صفای مشهدی Topics
  • سفيران زندگي سفيران زندگي Topics
  • گروه طرفدارن ا.ث.میلان وبارسلونا گروه طرفدارن ا.ث.میلان وبارسلونا Topics
  • طرفداران شياطين سرخ طرفداران شياطين سرخ Topics
  • مهندسی صنایع( برترین رشته ی مهندسی) مهندسی صنایع( برترین رشته ی مهندسی) Topics
  • گروه طراحی unigraphics گروه طراحی unigraphics Topics
  • دوستداران معلم شهید دکتر شریعتی دوستداران معلم شهید دکتر شریعتی Topics
  • قرمزته قرمزته Topics
  • مبارزه با اسپم مبارزه با اسپم Topics
  • حسین پناهی حسین پناهی Topics
  • سهراب سپهری سهراب سپهری Topics
  • 3D MAX 3D MAX Topics
  • سیب سرخ حیات سیب سرخ حیات Topics
  • marine trainers marine trainers Topics
  • دوستداران بنان دوستداران بنان Topics
  • ارادتمندان جليل شهناز و حسين عليزاده ارادتمندان جليل شهناز و حسين عليزاده Topics
  • مکانیک ایرانی مکانیک ایرانی Topics
  • خودرو خودرو Topics
  • MAHAK MAHAK Topics
  • اصفهان نصف جهان اصفهان نصف جهان Topics
  • ارومیه ارومیه Topics
  • گیلان شهر گیلان شهر Topics
  • گروه بچه های قمی با دلهای بیکران گروه بچه های قمی با دلهای بیکران Topics
  • اهل دلان اهل دلان Topics
  • persian gulf persian gulf Topics
  • گروه بچه های کرد زبان انجمن نواندیشان گروه بچه های کرد زبان انجمن نواندیشان Topics
  • شیرازی های نواندیش شیرازی های نواندیش Topics
  • Green Health Green Health Topics
  • تغییر رشته تغییر رشته Topics
  • *مشهد* *مشهد* Topics
  • دوستداران داريوش اقبالي دوستداران داريوش اقبالي Topics
  • بچه هاي با حال بچه هاي با حال Topics
  • گروه طرفداران پرسپولیس گروه طرفداران پرسپولیس Topics
  • دوستداران هامون سینمای ایران دوستداران هامون سینمای ایران Topics
  • طرفداران "آقایان خاص" طرفداران "آقایان خاص" Topics
  • طرفداران"مخربین خاص" طرفداران"مخربین خاص" Topics
  • آبی های با کلاس آبی های با کلاس Topics
  • الشتریا الشتریا Topics
  • نانوالکترونیک نانوالکترونیک Topics
  • برنامه نویسان ایرانی برنامه نویسان ایرانی Topics
  • SETAREH SETAREH Topics
  • نامت بلند ایـــران نامت بلند ایـــران Topics
  • جغرافیا جغرافیا Topics
  • دوباره می سازمت ...! دوباره می سازمت ...! Topics
  • مغزهای متفکر مغزهای متفکر Topics
  • دانشجو بیا دانشجو بیا Topics
  • مهندسین مواد و متالورژی مهندسین مواد و متالورژی Topics
  • معماران جوان معماران جوان Topics
  • دالتون ها دالتون ها Topics
  • دکتران جوان دکتران جوان Topics
  • ASSASSIN'S CREED HQ ASSASSIN'S CREED HQ Topics
  • همیار تاسیسات حرارتی برودتی همیار تاسیسات حرارتی برودتی Topics
  • مهندسهای کامپیوتر نو اندیش مهندسهای کامپیوتر نو اندیش Topics
  • شیرازیا شیرازیا Topics
  • روانشناسی روانشناسی Topics
  • مهندسی مکانیک خودرو مهندسی مکانیک خودرو Topics
  • حقوق حقوق Topics
  • diva diva Topics
  • diva(مهندسین برق) diva(مهندسین برق) Topics
  • تاسیسات مکانیکی تاسیسات مکانیکی Topics
  • سیمرغ دل سیمرغ دل Topics
  • قالبسازان قالبسازان Topics
  • GIS GIS Topics
  • گروه مهندسین شیمی گروه مهندسین شیمی Topics
  • فقط خودم فقط خودم Topics
  • همکار همکار Topics
  • بچهای باهوش بچهای باهوش Topics
  • گروه ادبی انجمن گروه ادبی انجمن Topics
  • گروه مهندسین کشاورزی گروه مهندسین کشاورزی Topics
  • آبروی ایران آبروی ایران Topics
  • مکانیک مکانیک Topics
  • پریهای انجمن پریهای انجمن Topics
  • پرسپولیسی ها پرسپولیسی ها Topics
  • هواداران رئال مادرید هواداران رئال مادرید Topics
  • مازندرانی ها مازندرانی ها Topics
  • اتاق جنگ نواندیشان اتاق جنگ نواندیشان Topics
  • معماری معماری Topics
  • ژنتیکی هااااا ژنتیکی هااااا Topics
  • دوستداران بندر لیورپول ( آنفیلد ) دوستداران بندر لیورپول ( آنفیلد ) Topics
  • group-power group-power Topics
  • خدمات کامپپوتری های نو اندیشان خدمات کامپپوتری های نو اندیشان Topics
  • دفاع دفاع Topics
  • عمران نیاز دنیا عمران نیاز دنیا Topics
  • هواداران استقلال هواداران استقلال Topics
  • مهندسین عمران - آب مهندسین عمران - آب Topics
  • حرف دل حرف دل Topics
  • نو انديش نو انديش Topics
  • بچه های فیزیک ایران بچه های فیزیک ایران Topics
  • تبریزیها وقزوینی ها تبریزیها وقزوینی ها Topics
  • تبریزیها تبریزیها Topics
  • اکو سیستم و طبیعت اکو سیستم و طبیعت Topics
  • >>سبزوار<< >>سبزوار<< Topics
  • دکوراسیون با وسایل قدیمی دکوراسیون با وسایل قدیمی Topics
  • یکم خنده یکم خنده Topics
  • راستی راستی Topics
  • مهندسین کامپیوتر مهندسین کامپیوتر Topics
  • کسب و کار های نو پا کسب و کار های نو پا Topics
  • جمله های قشنگ جمله های قشنگ Topics
  • مدیریت IT مدیریت IT Topics
  • گروه مهندسان صنایع گروه مهندسان صنایع Topics
  • سخنان پندآموز سخنان پندآموز Topics
  • مغان سبز مغان سبز Topics
  • گروه آموزش مهارت های فنی و ذهنی گروه آموزش مهارت های فنی و ذهنی Topics
  • گیاهان دارویی گیاهان دارویی صنایع غذایی شیمی پزشکی داروسازی
  • دانستنی های بیمه ای موضوع ها
  • Oxymoronic فلسفه و هنر

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. چکیده: این مقاله به بررسی تأثیرات ذرات لاستیک بر برخی از ویژگیهای بتن میپردازد. خرده های لاستیک از تایرهای مصرف شده وسیله های نقلیه و کامیونها به دست می آیند. آنها برای مدتها در بهره برداری مجدد از منابع به عنوان یک نوع سنگدانه در بتن مورد مطالعه قرارگرفته اند که منجر به تشکیل «اختلاط بتن لاستیک» می شود که به راحتی در مصارف گوناگون با تأثیراتی امیدبخش مورد استفاده قرارمیگیرد . بتن لاستیک یک محصول نهایی با ویژگیهای مکانیکی مناسب ارائه میکند و همچنین معرف یک روش مؤثر و ارزان در بازیافت تایرهای دور ریختنی است. هدف ازاین کار معرفی نتایج یک تحقیق تجربی است که برای شناسایی بهترین مقادیر و گونه های سنگدانه در اختلاطهای بتنی جهت کاربردهای مهندسی،صورت گرفت. بعضی از ویژگیهای بررسی شدهاز این قرارند: تراکم سنگدانه های لاستیکی، کارپذیری، احتباس هوا و مقاومت فشاری. سه مدل ذرات لاستیکی (لاستیک خاکسترشده، لاستیک خرده شده و چیپس تایر)در لاستیکی کردن. نویسندگان: •سارا اسگوبا، CTG ، برگامو، ایتالیا •مارسلو مولفتا، CTG ، بریندیزی، ایتالیا •ماسیمو بورشا، CTG ، برگامو، ایتالیا •جوزپه کارلو مارانو، DIASS ، دانشگاه فنیBari ، تارانتو، ایتالیا ترجمه : مهندس شادی مشتاقی، مهندس آریا احمدوند لاستیک بازیافتی و سنگدانه.pdf
  2. چرا انگشتان شما بعد از حمام، چروکیده می شوند؟ "انگشتان چروکیده " ممکن است مسخره به نظر برسد، اما پشت این قضیه یک دلیل علمی جدی وجود دارد. اگر وقت زیادی را در استخر گذرانیده اید ویا به منظور رفع خستگی بعد از یک روز کاری سخت، ساعتها در وان حمام غوطه ور بوده اید، احتمالآ با پدیده " انگشتان چروکیده" آشنا هستید. باور کنید یا نه، دانشمندان برای چندین دهه در حال مطالعه بر روی این پدیده بوده اند، و تلاش می کردند تا دریابند چرا دستان (و گاهی پاهای شما) وقتی خیس می شوند، چروکیده می شوند. یکی از ایده های معروف این است که پوست شما به راحتی از آب اشباع می شود. براساس نظریه کتابخانه کنگره (Library of Congress) ، اپیدرم ، یا لایه خارجی پوست، از سلولهای مرده کراتین تشکیل شده که وقتی برای مدت طولانی در آب قرار می گیرند، به جذب رطوبت می پردازند. این جذب رطوبت باعث می شود که سلول ها متورم شوند، اما چون آنها هنوز به بافت زیرین متصل هستند، و بافت زیرین نمی تواند گسترده شود، بافت بیرونی باید چروک شود تا به جبران سطح بزرگتر بپردازد. این موضوع مثل این است که روکش یک تخت بزرگسال را برای یک تخت خرد سال استفاده کنیم ! پارجه اضافی جایی ندارد و مجبور است به صورت نامرتب و پر چین و چروک قرار گیرد. اما چرا فقط انگشتان دست و پا تحت تاثیر رطوبت قرار می گیرند- چرا کل سطح بدن چروک نمی شود؟ دانشمندان می گویند زیرا دستان و پاهای ما ضخیم ترین لایه اپیدرم را دارا می باشند و به همین علت آنها دارای سلولهای کراتین بیشتری که آب جذب می کنند ، هستند( ناخن های شما نیز دارای کراتین می باشند، به همین علت بعد از شستن ظرف ها نرمتر می شوند). آیا پشت این چروکیده شدن هدفی وجود دارد؟ مشکل این تئوری این است که برای زمانی که اعصاب انگشتان دست و پا بخاطر جراحی و یا صدمات ناشی از مرض قند آسیب می بینند و پوست آنها چروک نمی شود ، توضیحی ندارد.. بر اساس فرضیه دیگری می توان این را توضیح داد، که بیان می کند عمل چروکیدگی پوست براساس اشباع پوستی نیست ؛ بلکه براساس واکنش سیستم عصبی مرکزی می باشد.--- "مشکل مکانیک کلاسیک" ، بر اساس توضیحات دکتر ژی چن ، مهندس بیومکانیک دانشگاه کلومبیا ، در" اخبار طبیعت". فرضیه مکانیک بر اساس نظریه انقباض عروق و یا باریک شدن رگهای خونی می باشد. در واقع، زمانی که انگشتان دست یا پا در آب سرد یا گرم فرو برده می شوند، انتهای سلولهای عصبی سیگنالی ارسال می کنند که موجب شود رگهای خونی و در نتیجه بافت زیرین سطح پوست، منقبض می شوند. این امر به نوبه خود، خارجی ترین لایه پوست را مجبور به چروک شدن می کند. اما تحقیقات جدید نشان می دهند ممکن است دلایل بیشتری برای چروکیدگی پوست وجود داشته باشد. دانشمند نوروبیولوژیست تکاملی، دکتر مارک چنگیزی، و تیمش در آزمایشگاه 2AI در آیداهو، در حال کار کردن برای اثبات این فرضیه که چروکیدگی انگشتان دست و پا تنها محصول تغییرات ناگهانی پوستی نیست، بلکه آنها یک پدیده ژنتیکی مشابه آج های لاستیک یا کفش ها یند که راه رفتن در شرایط بارندگی را میسر می سازند. چنگیزی معتقد است که این به اصطلاح آج ها بر روی دست و پاها در طول سالیان ، در DNA به وجود آمده اند تا عمل گرفتن اشیا را بهبود ببخشند. دکتر چنگیزی در مقاله ای که برای Forbes نوشته است می گوید: چروکیدگی انگشتان در رطوبت ، ممکن است بخش مهمی از تکامل اولیه پستانداران یاشد. زمانی که رفته رفته ناخن جای پنجه را در پستانداران گرفت، در اینجا ، آج ضرورت وجودش را به جای پنجه نشان می دهد. دکتر چنگیزی و تیمش برای تایید این تئوری ، شباهت 28 عکس از چروکیدگی انگشتان را مورد بررسی قرار دادند. همه این عکس ها، دارای چروک هایی بودند که کانالهای عمودی را ، احتمالا برای خروج آب از نوک انگشتان ایجاد می کردند.او اینگونه توضیح داد که:"برای اینکه یک دست بتواند یک سطح خیس را بدون لیز خوردن بگیرد ، احتیاج دارد که تمامی آب میان پوست و سطحی را که می خواهد بگیرد را حذف کند، و بهترین راه این است که آب را به سمت کانال ها هدایت کند". برای اثبات فرضیه چنگیزی تحقیقات بیشتری مورد نیاز است، او در حال حاضر به سختی در حال کار و مطالعه،در این زمینه است. بر اساس خبر نشریه اخبار طبیعت، موضوع بعدی مورد مطالعه او عبارت است از :آیا در حقیقت چروکیدگی به گرفتن بهتر اجسام کمک می کند وآیا پستاندارانی که در مناطق مرطوب ، زندگی می کنند، احتمال چروکیدگی انگشتانشان، بیشتر از پستاندارانی است که در خشکی زندگی می کنند. او می گوید اگر این نظریه صحت داشته باشد، ما ممکن است بتوانیم از آن ، در بهبود تکنولوژی لاستیک ها و کفش های آج دار استفاده کنیم. او می نویسد "بجای یک امر غیر لازم تلقی شدن ، اینک وجود انگشتان چروکیده ، نشانه دیگری از پیروزی تکامل است". منبع:[Hidden Content]
  3. mim-shimi

    صنعت رنگ و رزین

    چكيده: پوشش هاي پودري شامل رنگدانه ها و افزودني هاي پخش شده در يك بايندر تشكيل دهنده فيلم ( رزين و عامل پخت) مي باشند كه بصورت پودرهاي ريز توليد مي شوند . چنين پودرهايي با يك تفنگ الكترواستاتيك بر روي سطوح مورد نظر پاشش مي‌گردند. ذرات پودر در تفنگ باردار شده و لايه نازك چسبناكي را روي سطح مورد نظر تشكيل مي‌دهند و پس از عبور از يك كوره در اثر حرارت ، ذرات پودري ذوب شده و پس از ايجاد چسبندگي و باند عرضي يك پوشش سخت ، بادوام و غيرقابل انحلال را ارائه مي‌دهند. لغت پوشش پودري به هر دو پوشش پخت شده و حالت پودري اطلاق مي‌شود و هيچ گونه ابهامي در بكار بردن آن وجود ندارد ولي ترم پودر پوششي فقط براي حالت پودري استفاده مي‌شود . دانلود
  4. *mishi*

    مواد اولیه صنایع لاستیک

    تاریخچه از نظر قدمت تاریخی برای صنایع لاستیک منشا دقیقی نیست. اما اعتقاد این است که بومیان آمریکای مرکزی از برخی از درختان شیرابه‌هایی استخراج می‌کردند که این شیرابه‌ها که بعدها نام " لاتکس" را بخود گرفت اولین مواد لاستیکی را تشکیل می‌دادند. پدیده ولکانیزاسیون در سال 1829، "گودیر" از آمریکا و "مکین تاش" از انگلستان، این دو متوجه شده‌اند که در اصل مخلوط کردن لاتکس طبیعی با سولفور و حرارت دادن آن، ماده‌ای قابل ذوب و قابل شکل دادن ایجاد می‌شود که می‌توان از آن، محصولات مختلفی از قبیل چرخ ارابه یا توپ تهیه کرد. این پدیده همان پدیده ولکانیزاسیون است که در طی آن لاستیک اکسیده می‌شود و سولفور کاهیده و به سولفید تبدیل می‌شود. البته این عمل در دمای 110 درجه سانتیگراد تهیه می‌‌شود. نتیجه این کشف تولید مواد لاستیکی مثل لاستیکهای توپر، پوتین و ... است. کائوچوی طبیعی و مصنوعی کائوچوی طبیعی در شیره درختی به نام هوا، Hevea وجود دارد و از پلیمر شدن هیدروکربنی به نام 2- متیل- 1 و 3- بوتادین معروف به ایزوپرن بوجود می‌آید. با توجه باینکه در فرمول ساختمانی کائوچو یا لاتکس طبیعی هنوز یک پیوند دوگانه وجود دارد، به همین دلیل وقتی کائوچو را با گوگرد یا سولفور حرارت دهیم، این منومرها، پیوند پی را باز می‌کنند و با ظرفیت‌های آزاد شده، اتم گوگرد را می‌گیرند. در نتیجه کائوچو به لاستیک تبدیل می‌گردد. حرارت دادن کائوچو با گوگرد و تولید لاستیک را اصطلاحا ولکانیزاسیون می‌نامند. به همین دلیل، لاستیک حاصل را نیز، "کائوچوی ولکانیزه" گویند. چند نوعی کائوچوی مصنوعی نیز ساخته شده‌اند که از مواردی مانند 1 و 3- بوتادی ان و جسمی به نام 2- کلرو- 1 و 3- بوتادین معروف به "کلروپرن" و جسم دیگری به فرمول 2 و 3- دی متیل- 1 و 3- بوتادین بتنهایی یا مخلوط درست شده‌اند. کلروپرن به راحتی بسپاریده (پلیمریزه) شده و به نوعی کائوچوی مصنوعی به نام "نئوپرن" تبدیل می‌شود. تکامل در صنعت لاستیک بعدها در سال 1888 خواص مکانیکی لاستیکهای تهیه شده توسط گودیر و مکین تاش با استفاده از کربن سیاه به عنوان یک ماده پرکننده و افزودنی بسیار بهبود بخشیده شده و در نتیجه لاستیکهای بادی دانلوب، "تیوپ" تهیه شد. بعد از آن لاستیکهای سنتزی تهیه و به بازار عرضه شد مانند ایزوپرن، بوتادی ان و لاستیکهای تیوکل. بعدها لاستیکهای سنتزی مثل کوپلیمرهای استیرن و بوتادی ان تهیه شد که در سال 1941 مصرف آن صفر بود. اما در سال 1945 مصرف آن 700000000 می‌رسید. به موازاتی که مصرف لاستیکهای سنتزی بالا می‌رود، مصرف لاستیکهای طبیعی پایین می‌آید. چون لاستیکهای سنتزی اقتصادی‌تر هستند.
  5. mim-shimi

    مقدمه‌ای بر پلیمر

    پلیمر یک واژه یونانی است. و از اتصال زنجیرهای کوچک منومرساخته میشود. که انصال این زنجیره ها را پلیمریزاسیون گویند. فرایند پلیمریزاسیون عموماً به دو صورت انجام میشود که خود نیاز به یک بحث طولانی و پیچیده میباشد. ویژگی برتر این مواد پلیمری ‍‍: سبکی، سختی و در عین حال انعطاف پذیری، مقاومت در برابر خوردگی، رنگ پذیری، شفافیت، سهولت در شکل پذیری و بسیاری از خواص مورد استفاده در کاربردهای مختلف. پلیمرها عموماً به دو دسته پلاستیکها و لاستیکها تقسیم میشوند. وهر دو گروه نیز خود به پلیمرهای گرمانرم(termoplast) و گرما سخت (termoset) تقسیم میشوند که بطور مفصل شرح داده خواهد شد. به خاطر اینکه مواد پلیمری به تنهایی نمی توانند مورد مصرف قرار گیرند در محل تولید (پتروشیمی) یا صنایع پایین دستی بنا به شرایط و کاربرد آنها از مواد افزودنی (addetive) استفاده میشود. به طور مختصر بعضی از این افزودنی ها ذکر میشود. مواد پرکننده (filler): مانند خاک رس یا در اکثر موارد کربنات کلسیم یا سیلیکا استفاده میشود و علت افزودن آنها کاهش قیمت است و تأثیری در افزایش خواص ندارد. از افزودنی مثل الیاف کوتاه یا پولک جهت بهبود خواص مکانیکی استفاده میشود. منظور از خواص مکانیکی کاهش خزش و استحکام در برابر تنش و ... میباشد. روان کننده ها (lubricant): این مواد ویسکوزیته پلیمر مذاب را کاهش داده و شکل پذیری در قالب ها را آسان تر میکند. مانند استارات کلسیم. رنگدانه ها (pigment): جهت ایجاد رنگهای گونگون در پلاستیکها به کار میروند. نرم کننده ها (plasticizers): موادی با وزن مولکولی و طول زنجیره کمتر نسبت به رنجیره پلیمرها که خواص و مشخصه شکل گیری پلیمرها را کمتر میکند. بهترین نمونه کاربرد آن DOP دی اکتیل فتالات، در تهیه PVC پلی وینیل کلراید میباشد که باعث انعطاف پذیری آن میشود. پی وی سی تقریباٌ سخت میباشد و در موارد استفادهایی که انعطاف پذیری نیاز داریم بوسیله این ماده آن را نرم میکنیم. مثال ساده استفاده در سفره ها (به بوی خاص و تند آن توجه کنید همان DOP است) و دمپایی ها و داشبوردهای پیکان های مدل قدیم! میباشد. و اگر به ترک! داشبورد بعضی از آنها توجه کنیم مربوط به از بین رفتن (پریدن) این افزودنی میباشد. استحکام دهنده ها(reinforcement) : با افزودن موادی نظیر الیاف شیشه یا الیاف کربن مقاومت و سفتی پلیمرها افزایش و بهبود می یابد. نظیر فایبر گلاس ها یا بدنه هواپیما و بعضی از خودروها مانند سیناد2 ! پایدار کننده ها(stabilizers) : این افزودنی ها از فساد و تخریب پلیمرها در مقابل عوامل محیطی مانند نور خورشید (اشعه UV) و رطوبت و ... جلوگیری میکند. مانند مواد ضد اکسایش که به پلاستیکهایی نظیر ABS اکریو نیتریل-بوتادین- استایرن ، پلی اتیلن و پلی استایرن اضافه میشود و پایدارکننه های حرارتی که معمولاٌ برای شکل دهی PVC به کار میرود. مواد ضد آتش زا(inflammable) : از این مواد در پلیمرهای استفاده میشود که خطر آتش سوزی در محل میباشد. بعضی از پلیمرها مانند PVC که حوای ماده کلر(ضد آتش) میباشد، در هنگام آتش سوزی خود اطفا میباشد و خاموش میشود. همچنین گاز وجود گاز خنثی نیتروژن در فوم های پلی استایرن (سقف کاذب) نیز باعث اطفاء حریق میباشد.
  6. روشهای سریع شناسایی پلاستیکهای پرمصرف اهميت شناخت مواد: يكي از بزرگ­ترين مشكلات مبتلا به صنايع پليمري و بازیافت پلیمرها، عدم شناخت مراكز توليدي و یا فروش مواد اولیه از مواد پلیمری است و همين امر سبب مي­گردد مواد مناسبی خریداری نشود و یا قطعه تولید شده با افت کیفیت مواجه گردد. برای مثال: 1- پس از اتمام مواد، جايگزيني آن­ها درست انجام نمی شود و خواصّ محصول جديد با مشخصات توليدات قبلي تفاوت­هاي محسوسی دارد، حتي اگر جنس و نوع انتخاب شده ساخت همان شرکت قبلي باشد ولي به دلیل متفاوت بودن گونه افت خواصّ زيادی در قطعات جديد بوجود می آید. 2- مواد پلاستیکی زیادی خریداری می شود بدون تست کردن صحت نوع مواد ادعا شده از طرف فروشنده.برای مثال ادعا می شود که 10 تن فیلم پ.پ است در حالی که پی وی سی است.یا گرانول پلی اتیلن است در حالیکه گرانول پ.پ است. 3- قطعه ای با خواص عالی برای مثال پ.پ تقویت شده در زمینه کاری ما از شرکت رقیب به دستمان رسیده که می بایست از ماهیت آن مطلع شویم. پس براي ورود علمي و آگاهانه در اين حوزه و جلوگيري از انتخاب غلط مواد پليمري بايد ابتدا با سه واژه­ي جنس، نوع و گونه پليمر آشنا شد و سپس از پارامترهاي فني آن­ها اطلاعات لازم را به­دست آورد. هفت پلاستيك پلي­اتيلن سنگين، پلي­اتيلن سبک، پي­وي­سي، پلي­استايرن، پت , پلی پروپیلن و ABS از اهميت صنعتي و بازرگاني بسيار بالايي برخوردار هستند در www.polymeresabz.com به اطلاعات بیشتری در این زمینه پرداخته شده است. در این دوره به بررسی روشهای شناسايي كيفي این پلاستيك­ها پرداخته می شود. برای این منظور سه مبحث زير بسيار مهم است: الف: روش‌هاي ساده­ي تشخيص پلاستيك‌ها از لاستيك‌ها ب: روش‌هاي تشخيص پلاستيك‌هاي گرمانرم از گرماسخت پ: آزمایشهای ساده و کم هزینه برای تشخیص پلاستیکها از چه موادی تشکیل شده اند؟ يك آميزه پلاستيكي كه شناخت و معرّفي آن­ها الزامي است عبارتند از: 1 . پليمر پايه (مهمترين جزء آن قطعه است.) 2 . پركننده‌ها 3 . نرم كننده (در صورت امكان) مهمترين قسمت يك آميزه، پليمر پايه آن است بنابراين اگر شناسايي جنس و نوع درست انجام ‌شود، با اهميت‌ترين بخش فرآيند با موفقيّت صورت ‌پذيرفته است در غير اين حالت اگر تنها افزودني‌هاي آميزه درست شناسايي شده باشند، گزارش­كار گمراه‌كننده و فاقد ارزش خواهد بود. بنابراین شناسايي كيفي يك قطعه پلاستيكي عبارتست از مشخص نمودن جنس اجزاء اصلي شركت‌كننده در آميزه (فرمولاسيون) آن قطعه، كه معمولاً جنس پليمرپايه آن مشخص مي­شود (صرف­نظر از مقدار آن در آميزه). مراحل اوليه شناسايي كيفي پلاستيك­ها با استفاده از آزمایش های ساده اولين گام در شناسايي كيفي يك پلاستيك گام اول براي شناسايي كيفي يك پلاستيك مجهول عبارتست از استفاده از خواصّ ظاهري و مكانيكي است: به‌عنوان مثال آیا نمونه شفاف است يا كدري؟ انعطاف­پذير است يا خیر؟ خاصیت كشسانی‌ دارد؟ سخت است یا نرم؟ دانسيته­ي آن چقدر است؟ و شرايط كاركرد قطعه چیست؟ از هر كدام از اين اطّلاعات مي‌توان سر نخ‌هاي اوليه شناسايي كيفي را به دست آورد. مثال: از بررسی­های یک نمونه فیلم شفاف نتایج مقدماتی زیر گرفته شده است: الف. فیلم نمونه مجهول شفاف است ب. نمونه در برابر حرارت در محدوده حرارتی (111 ˚C) ذوب می­شود پ. در دمای نمونه فیلمی روی سطح آب شناور باقی می­ماند به عبارت دیگر دانسیته آن کمتر از یک گرم بر سانتیمتر مکعب است ت. در اثر تماس با آب جذب آب نمی­کند ث. در اثر ذوب فیلم توده­ای به دست آمد که دارای ظاهری کدر و ابری رنگ می­باشد ج. هنگام ذوب شدن و خصوصا با بالا رفتن حرارت بعد از ذوب پلاستیک بویی شبیه به موم و واکس از نمونه به مشام می­رسید. جمع بندی و استفاده از این اطّلاعات در مباحث آینده مطرح خواهد شد گام دوم آزمون‌هاي اوليه شناسايي كيفي پلاستيك­ها آزمايش‌هاي مقدّماتي كه در اين مبحث معرفي مي­شوند در عين سادگي، ارزاني و امكان انجام سريع، اطّلاعات كليدي و مهمي را از ماهيّت پليمر مجهول آشكار مي‌سازند. 2-1 آزمون­هاي تجزيه حرارتي در بررسي­هاي مقدماتي و غير کمّي، از دو روش تجزيه حرارتي (پيروليز) و سوزاندن زياد استفاده مي­شود . نتايج هر دو روش مکمل هم بوده و براي دستيابي به اطلاعات مورد نياز به کار مي­رود. نکته قابل تذکر اين است که، کاربرد اين دو روش، بايد قوه تشخيص، حس بويايي قوي، تجربه لازم و صبر و دقت کافي در پردازش اطّلاعات فراوان به دست آمده از اين روش­ها را داشته باشد. 2-2 تعيين PH گازهاي حاصل از تخريب حرارتي پليمر قطعه كوچكي از يك پلاستيك به اندازه يك عدس بزرگ را درون يك بوته چيني يا لوله آزمايش كوتاه در معرض هوا، به صورت تماس غيرمسقيم با شعله يك چراغ الكلي، حرارت مي‌دهند تا پليمر به تخريب حرارتي خود برسد و گازهايي كه در اثر تخريب و تجزيه حرارتي از عوامل و عناصر سازنده پلاستيك به­وجود آمده‌اند، متصاعد گردند. در چنين حالتي PH گازهاي خارج شده را توسط معرفّ­ها (انديكاتورها) اندازه‌گيري مي‌كنند، در اثر اين تجزيه ملكولي، برخي از عناصر كليدي تشكيل­دهنده زنجيره پليمر و گروه‌هاي جانبي آن مشخّص مي‌گردند. بسته به ماهيت اسيدي، خنثي يا بازي بودن PH گازهاي متصاعد شده، گروهي كه پليمر مجهول به آن وابسته است مشخص مي­شود. 2-3آزمون شعله آزمون شعله غالباً در راستاي شناسايي كيفي پلاستيك‌ها و الياف كاربرد فراوان دارد، در حقيقت هدف از انجام اين آزمايش بررسي و تحقيق پيرامون رفتار و پديده‌هايي ‌است كه يك پلاستيك هنگامي كه در داخل شعله قرار مي‌گيرد، در درون آتش و پس از خروج از آتش از خود بروز مي‌دهد. از ويژگي‌هاي آزمون شعله سرعت انجام، سهولت آزمايش و اقتصادي‌بودن آن است ضمن اين كه مجموعه اطّلاعات به دست آمده، متنوع و بسيار كاربردي هستند. توجه: معمولاً تنها با انجام يك آزمايش مانند شعله نمي­توان از صحّت شناسايي كيفي يك پلاستيك مجهول مطمئن شد، همان­طور كه در مبحث قبل بيان گرديد با تعيين PH گازهاي حاصل از يك نمونه مجهول نيز به تنهايي شناسايي جنس پلاستيك مجهول امكان پذير نبود، با اين مقدمه بايد اذعان كرد جنس پلاستيك مجهول را با مجموعه­اي از نتايج چند آزمون مختلف كه كنار هم گذاشته شوند تا اطمينان كامل از صحّت تشخيص كيفي فراهم گردد. نتايج حاصل از آزمايش شعله گرم نمونه را به وسيله اسپاتول فلزي روي لبه خارجي شعله بگيريد. مقدار کمي در حدود نيم اگر نمونه بلافاصله شعله­ور نشد، به مدت چند ثانيه آن را درون شعله قرار دهيد و سپس آن را از شعله دور کنيد. سهولت در شعله وري، بو، خود اطفائي، تغيير رنگ، ذوب و تجزيه نمونه، سوختن نمونه، رنگ شعله بايد مورد توجه قرارگيرد. پس از آن نمونه بايد به منظور تعيين جنس خاکستر نيز سوزانده شود. با پاسخ به سوالات زير و در نظر داشتن عناصر تشکيل دهنده پليمر مجهول و جداول پيوست مي­توان پلاستيك را تاحدودي شناسايي کرد . الف- آيا نمونه به حالت مذاب در مي­آيد؟ ب- آيا پلاستيك به آساني شعله­ور مي­شود؟ پ- آيا ماده به سختي مي­سوزد؟ ت- شعله چه رنگي است؟ ث- آيا از نمونه در حال سوختن قطره مي­چكد؟ ج- آيا قطرات در حين چكيدن مشتعل هستند؟ چ- آيا نمونه پس از سوختن از خود خاکستر بجا مي­گذارد؟ ح- آيا نمونه پس از بيرون آمدن از شعله خود به خود خاموش مي­شود؟ خ- آيا نمونه ذغالي مي­شود؟ د- چه بويي از سوختن پلاستيك حاصل مي­شود؟ هر كدام از اين ويژگي­هاي ده­گانه به عناصر شركت­كننده در واحد تكرار شونده، ساختار ملكولي و پيوندهاي فيزيكي بين زنجيرها بستگي دارد كه آشنايي با آن­ها باعث شناسايي كيفي پلاستيك تحت آزمون خواهد شد. بررسي بوهاي متصاعد شده در حين آزمون شعله پلاستيك‌ها بوهايي كه از سوختن پلاستيك‌ها ايجاد مي‌شود برانگيخته از ساختار ملكولي و مواد افزودني آن­ها است، اغلب پلاستيك‌هاي گرمانرم خالص، در حين سوختن بوهاي كاملاً مشخصي توليد مي‌كنند. بايد توجه داشت كه پركننده‌هاي آلي، پايداركننده‌ها، و ساير افزودني‌هاي اضافه شده به آميزه پلاستيك در حين سوختن روي بوي پليمر خالص تاثير مي­گذارند، بنابراين هرقدر پليمر خالص­تر باشد بوي متصاعد شده بهتر قابل تشخيص خواهد بود. چند مثال برای تشخیص : بويي كه از سوختن پلي‌اتيلن نسبتاً خالص بوجود مي‌آيد رايحه‌ی پارافين‌ها و واكس‌ها را تداعي مي‌كند زيرا با ساختمان ملكولی آن­ها تشابه دارد. بويي كه از سوختن پلي‌استايرن خالص به مشام مي­رسد عطر‌ی نسبتاً خوش و شبيه به شكلات دارد كه سوختن آن با ايجاد دوده همراه است. پلي‌آميدها بخاطر مشابهت ملكولي با پلي‌پپتايدها كه پروتئين‌ها از آن­ها مشتق مي شوند اغلب بويي شبيه سوختن شاخ حيوانات (داراي پايه پروتئيني هستند) را منتشر مي سازند. 2-4 آزمون بررسي گستره ذوب پلاستيك‌هاي گرمانرم در پديده ذوب يك پليمر، حرارت دريافت شده نيروهاي بين زنجيرهاي پلاستيك را تا آن حد كاهش مي‌دهد كه زنجيرها مي‌توانند روي هم بلغزند و جاري شوند يا تحت تنش وارد بر آن، ملكول‌هاي پلاستيك مذاب به­حركت در آيند آن­چه شايان دقّت است پديده ذوب در پلاستيك­ها فقط در گروه پلاستيك­هاي بلوري و نيمه بلوري ديده مي­شود، و اين تغيير حالت فيزيكي پلاستيك در آمورف­ها حتي در زير دستكاه ميكروسكوپ داراي صفحه داغ[1] چندان ملموس نيست. چون در فرآيندهاي پليمريزاسيون مواد پليمري توزيع جرم ملكولي وجود دارد و همه زنجيرها داراي جرم ملكولي يكسان نيستند، در حين ذوب ابتدا زنجيرهاي سبك‌تر و سپس سنگين‌تر ذوب مي شوند كه همين امر موجب به­وجود آمدن پديده­ي گستره ذوب در پلاستيك­ها مي‌شود. در جدول (1) گستره ذوب شش پلاستيك مهم ارائه شده است. جدول (1) ارائه گستره ذوب شش پلاستيك مهم [TABLE] [TR] [TD] گستره ذوب [/TD] [TD] نام پلاستيك [/TD] [/TR] [TR] [TD] 115 ± 4 °C [/TD] [TD=width: 178] LDPE [/TD] [/TR] [TR] [TD=width: 170] 127 ± 4 °C [/TD] [TD=width: 178] HDPE [/TD] [/TR] [TR] [TD=width: 170] 125 ± 4 °C [/TD] [TD=width: 178] LLDPE [/TD] [/TR] [TR] [TD=width: 170] 165 ± 5 °C [/TD] [TD=width: 178] PP [/TD] [/TR] [TR] [TD=width: 170] 255 ± 5 °C [/TD] [TD=width: 178] PET [/TD] [/TR] [TR] [TD=width: 170] 328 ± 5 °C [/TD] [TD=width: 178] PTFE(Teflon) [/TD] [/TR] [/TABLE] آزمون تعيين دانسيته دانسيته يا وزن مخصوص هر قطعه عبارتست از وزن واحد حجم آن، و مقدار آن از فرمول d = M/V gr/cm3 محاسبه مي‌شود. هر قدر قطعه­ي پليمري كه در نظر است وزن مخصوص آن اندازه­گيري شود خالص‌تر باشد (داراي مواد افزودني كمتر)، دانسيته آن به مقادير مندرج در كتب و جداول نزديك‌تر خواهد بود. در جدول (4) دانسيته تقريبي تعدادي از مهمترين پلاستيک­های صنعتی و پرمصرف با‌هم مقايسه شده‌اند. تعيين دانسيته يك قطعه پلاستيكي از نظر كنترل كيفيت بسيار مهم، ولي از جهت كمك به شناسايي كيفي حائز اهميت زيادي نيست. جدول (4) مقايسه دانسيته تقريبي تعدادي از مهمترين پلاستيک­های صنعتی و پرمصرف [TABLE=width: 434] [TR] [TD] Density (g/cm3 ) [/TD] [TD=width: 322] Material [/TD] [/TR] [TR] [TD=width: 111] 0.85-0.92 0.89-0.93 0.94-0.98 1.04-1.06 1.04-1.08 1.34-1.40 1.38-1.41 2.1-2.3 [/TD] [TD=width: 322] Polypropylene (PP) High-pressure (low-density) polyethylene (LDPE) Low-pressure (high-density) polyethylene (HDPE) Acrylonitrile-butadiene-styrene copolymers (ABS) Polystyrene (PS) Polyethylene terephthalate (PET) Rigid PVC Polytetrafluoroethylene [/TD] [/TR] [/TABLE] آزمون قابليت انحلال در آزمون حلالیّت مساله­ی انحلال یا عدم انحلال یک پلاستیک در یک یا چند حلال در دمای محیط یا بالاتر مورد بررسی قرار می­گیرد. حلاليت نه تنها به اجزاي تشکيل دهنده يک پليمر بلکه به درجه پليمرشدن، ميزان شاخه اي بودن، شبکه­اي بودن و ايزومري ، نظم فضايي، و بلورينگي مواد پليمري بستگي دارد. در آزمون انحلال، بايد موارد زير يادداشت شود و بر مبنای این مشاهدات نتیجه­گیری به عمل آید: الف - آيا پليمر در حلال متورم مي­شود؟ ب - آيا مقدار کمي­ از پليمر حل ميشود؟ پ - آيا محلول گرانرو مي­شود؟ ت - آيا تغييري در رنگ محلول ايجاد مي­شود؟ ث – آيا محلول کدر مي­شود؟ در صورت بروز هرگونه شبهه درباره مواد حل شده، محلول بايد روي يک شيشه ساعت براي تعيين مواد حل شده تبخير شود. با پاسخ به سوالات يک تاپنج و با استفاده از جداول مربوطه ميتوان پليمر مجهول را تاحدودي شناسايي کرد. آزمون رنگ آزمون رنگ، بر اساس واکنش پليمر بامعرف است که منجر به تشکيل رنگ ناشي از توليد فراورده مي­شود . واکنش­هاي تشکيل رنگ هنوز مفيدترين آزمون براي شناسايي مشخصات ساختاري و گروههاي عاملي حتي در آزمايشگاه­هايي که داراي تجهيزات پيشرفته هستند، مي­باشد . از مزاياي آزمون رنگ، مي­توان به­ حساسيت، مهارت، صرفه اقتصادي، زمان، مکان و حداقل تجهيزات با کاربري آسان اشاره نمود. نتیجه­گیری: هدف از طرح مباحث فوق این است که به محض ديدن يك قطعه پليمري با استفاده از ابتدايي‌ترين حركات و آزمون‌ها مانند بازتاب قطعه در برابر كشيدن، خم كردن، پيچاندن، فشار دادن آن بين دو ناخن، ارزيابي برجهندگي و عكس‌العمل آن در اثر برخورد با زمين، شفافيّت ظاهري و ساير آزمایش های اوليه نظیر دانسیت ,پ هاش متری و حلالیت بتواند به‌سرعت تشخيص دهد که پليمر مجهول به كدام يك از خانواده‌هاي پلاستيك يا لاستيك وابسته است و در ادامه بتواند استنباط كند که مجهول مورد نظر به کدام يک از گروه­هاي پلاستيک­ها تعلق دارد و متناسب با ماهيت آن بايد راه‌كارهاي عملي را براي تشخيص نوع آن در پيش گيرد. بيشتر پليمرها در مجموعه­ي پلاستيك‌ها جاي دارند و لاستيك‌ها از نظر تعداد در مقايسه با پلاستيك‌ها بسيار محدودترند، بنابراين ضروري است كه کاربر پليمر، اطّلاعات وسيع در زمينه‌هاي مختلف پلاستيك‌ها داشته باشد. منابع و مآخذ Hawley G G., The Condensed Chemical Dictionary, Van Nostrand Reinhold Comp., 1981. Polymers, identification and analysis preliminary test method, ISIRI 8391, 1st edition, 1384. Braun D. , Identification of plastics, Hanser publication, Germany, 1984. 4. كراوس آ، لانگ آ، آشنايي با تجزيه شيميايي پلاستيك­ها(تئوري و عملي)، ترجمه دكتر محمود محراب­زاده، مركز نشر دانشگاهی، چاپ اول، 1365. 5. نعمتي سعيد ، آناليز و شناسايی کيفی و کمّی پليمرها(تئوري و عملي)، جهاد دانشگاهی اميرکبير، چاپ اول، 1391 مولف:مهندس سعید نعمتی شرکت پویاپلیمرامیرکبیر
  7. پرینترهای سه‌بعدی از شکل و ظاهر کاملا متفاوتی برخوردارند که بیشتر از یک پرینتر به یک دستگاه CNC کوچک و مینیاتوری شبیه‌اند. نکته مشترک در تمامی ابزارهای این رده، یک نازل عمودی با امکان حرکت آزادانه در هر سه جهت و صفحه‌ای برای شکل‌گیری محصول نهایی در بخش پایینی است؛ جایی‌که شیء مد نظر کاربر به‌صورت لایه‌لایه با حرکت نازل و انتقال ماده اولیه روی صفحه ساخته شده و اصطلاحا پرینت می‌شود. برای انجام یک پرینت در این دسته، نخستین گام تهیه طرح سه‌بعدی متناسب با نرم‌افزار دستگاه است. این طرح سه‌بعدی توسط نرم‌افزارهای مختلف و گوناگونی قابل تهیه است که از جمله برترین نمونه‌های رایگان آن می‌توان به Google Sketchup، Wings 3D، ٍBlender Sulptris و Make Human اشاره کرد که این آخری برای طراحی سه‌بعدی اندام‌های انسانی مورد استفاده قرار می‌گیرد. یک نکته مهم در این میان، توجه به خروجی مختلف این نرم‌افزارهاست که طیف وسیعی از فرمت‌ها را دربر می‌گیرد و از آن جمله می‌توان به OBJ، PLY، STL، AC3D، DXF و VRML اشاره کرد. این فرمت‌ها با این‌که همگی از حجم‌پذیری و شکل سه‌بعدی پشتیبانی می‌کنند، اما تنها برخی از آن‌ها می‌توانند رنگ‌های متفاوت و بافت‌های حجیم (Texture) را در تصویر نهایی منعکس نمایند. البته برای یک پرینت سه‌بعدی معمولی نیاز چندانی به فراگیری دانش طراحی نیست و بسیاری از سایت‌های مرتبط در این زمینه اقدام به ارائه فایل آماده پرینت از برخی طرح‌های محبوب نموده‌اند؛ دو نمونه از این‌گونه وب‌سایت‌ها Thingiverse و GrabCAD است که مجموعه‌ای از طرح‌های مختلف در هر دو به چشم می‌خورد. برای پرینت نیز علاوه بر پرینترهای سه‌بعدی شخصی می‌توان از سرویس سایت‌های مختلف با امکان دریافت فایل سه‌بعدی و ارائه محصول نهایی پرینت شده با قیمتی عادلانه استفاده کرد. Formlabs Formفرصت‌ها و تهديدها استفاده از پرینترهای سه‌بعدی دریچه جدیدی را پیش روی علم نوین گشوده است که از جمله مي‌توان به امکانات بی‌شماری برای ساخت پیچیده‌ترین طرح‌های انتزاعی اشاره كرد که تا پیش از این مجالی برای تحقق در دنیای واقعی پیدا نمی‌کردند. اما از سوی دیگر، عمومی‌شدن استفاده از پرینترهای سه‌بعدی با خطرات بالقوه‌ای نیز همراه است که یکی از مشهودترین آن‌ها، امکان پرینت و ساخت آزادانه انواع اسلحه توسط افراد عادی است. ماه گذشته یکی از این اسلحه‌ها با امکان شلیک پیاپی 600 گلوله به‌نمایش گذاشته شد. مواد اولیه مورد استفاده مواد قابل استفاده برای ساخت اشیاي مختلف در پرینترهای سه‌بعدی به‌جز موارد معمولی مانند پلاستیک‌های فشرده و پودرهای سرامیکی شامل فولاد، تیتانیوم، طلا و نقره در دسته فلزات و لاستیک، کاغذ، شکر، ماسه و طیف وسیعی از خوراکی‌ها حتی گوشت می‌شود که در این میان برای ساخت ابزارهای معمول، استفاده از پلاستیک‌های با پایه رزین با شکل‌پذیری و استحکام فراوان، کاربرد بالایی دارد. دو نمونه از این پلاستیک‌ها ABS و PLA هستند که به‌صورت قرقره‌‌های بزرگ در اکثر پرینترهای این رده دیده می‌شوند.
  8. پژوهشگران دانشگاه صنعتی اصفهان برای نخستین بار موفق به تولید انواع کودهای عناصر ریز مغذی و ماده اصلاحی خاک با بهره گیری از لاستیک های فرسوده خودروها شدند. دکتر امیرحسین خوشگفتار منش رئیس مرکز پژوهشی کشت بدون خاک دانشگاه صنعتی اصفهان با اعلام این خبرگفت: بر اساس تحقیقات صورت گرفته در 6 سال اخیر از طریق پایان نامه های متعدد کارشناسی ارشد و همچنین طرح های مختلف تحقیقاتی در این مرکز و با تکیه بر شیوه های نوین مبتنی بر فناوری­های زیستی و نانو، از لاستیک های فرسوده خودورها انواع کودهای عناصر ریز مغذی و ماده اصلاحی خاک با کیفیت بسیار بالا و کمترین ناخالصی تولید شد. وی انباشتگی لاستيك هاي فرسوده خودروها را یکی از معضلات زيست محيطي در اغلب کشورهای دنیا از جمله ایران عنوان کرد و افزود: با توجه به توليد سالانه بيش از 250هزار تن لاستيك در کشور و بنابر آمارهای رسمی متعلق به سال 85، انباشت بيش از 7ميليون حلقه معادل تقریبی220 هزار تن لاستیک فرسوده در سال، پاكسازي محيط از این گونه ضايعات اهمیت بسزایی دارد. خوشگفتار آتش سوزی و تبعات مخرب زیست محیطی، بوجود آمدن زیستگاهی برای جانوران موذی و مشکلات متعدد در خاک، آب وهوا را از جمله تأثیرات مخرب رهاسازی لاستیک های فرسوده در محیط بیان کرد و گفت: این عوامل ضمن به خطر انداختن سلامت انسان ها، هزینه های بسیاری را نیز به بخش های مرتبط با سلامت ومحیط زیست تحمیل خواهد کرد. عضو هیأت علمی دانشکده کشاورزی دانشگاه صنعتی اصفهان عدم وجود یک متولی مشخص به منظور بازیافت این گونه ضایعات و نیز غیر اقتصادی بودن روش های کنونی بازیافت آن ها توسط برخی نهادهای ذی ربط را از دیگر مشکلات انباشتگی لاستیک های فرسوده و تبعات ناشی از این مشکل بیان کرد. خوشگفتارمنش افزود: محققان شرکت تعاونی دانش بنیان زیست فناوران آرمان واقع در مرکز پژوهشی کشت بدون خاک دانشگاه صنعتی اصفهان برای نخستین بار در دنیا و با بهره گیری از فناوری های نوین زیستی و نانو، راهکاری مناسب به منظور بازیافت لاستیک های فرسوده خودروها و تولید انواع کودهای عناصر ریزمغذی و ماده اصلاحی خاک با کیفیت بسیار بالا و کمترین ناخالصی ابداع نموده اند. این پژوهشگر، قیمت بسیار مناسب، وجود همزمان چند عنصر ضروری گیاه، سازگار بودن با شرایط خاک های کشور، کارایی بالاتر و امنیت زیست محیطی بسیار مناسب را از جمله مزایای کودهای تولیدی با استفاده از لاستیک های فرسوده در مقایسه با سایر کودها و مواد اصلاحی موجود در بازار عنوان کرد. خوشگفتارمنش با بیان اینکه مواد اولیه تولید این محصولات به طور کامل داخلی است، تصریح کرد: با توجه به دسترسی مناسب به مواد اولیه این نوع کود ابداعی، ضمن تولید محصولی با کیفیت برتر و با هزینه بسیار پائین تر، کاهش وابستگی کشور به محصولات مشابه خارجی، دفع خطرات ومضرات ناشی از انباشت این لاستیک ها ودر نهایت تبدیل یک تهدید به فرصتی سازنده و اقتصادی محقق گردیده است. رئیس مرکز پژوهشی کشت بدون خاک دانشگاه صنعتی اصفهان افزود: بر مبنای تحقیقات صورت گرفته در فرآیند اجرایی این طرح، تاکنون ضمن ثبت 6 اختراع در اداره ثبت اختراعات و مالکیت صنعتی و نیز انتشار 5 مقاله ISI در مجلات معتبر بین المللی، 2 مقاله علمی پژوهشی در مجلات داخل کشور و همچنین 9 مقاله کنفرانسی ملی و بین المللی، محصولات تولید شده با این شیوه نیز در جشنواره ها و نمایشگاه های مختلف ارائه شده است. منبع : خبرگزاری مهر
  9. چندسازه های چوب- پلاستیك بسیاری از تولیدكنندگان اسباب بازی و لوازم خانگی مواد سازگار با محیط زیست ایجاد كردند كه موافق CPSIA بوده و با چند سازه های چوب- پلاستیك باعث كاهش وابستگی این مواد به پلاستیك های پتروشیمیایی میشود. یك گروه جدید از مواد كه در تولید اسباب بازی كاربرد پیدا كرده اند زیست چندسازه های گرمانرمی هستند كه توسط شركت كانادائی JER به همراه انجمن علمی محققان كانادا (NRC) برای اولین بار ایجاد شده است. این اختراع از مواد زاید و یا محصولات جانبی صنایع مانند لیف های چوب یا پوش برنج برای تولید گروهی از مواد سازگار با محیط زیست استفاده می كند و دوام پلاستیك را با كارایی و ظاهر چوب دارا است. فناوری زیست چندسازه های JER موادی با عمر طولانی و مقاوم در برابر پوسیدن، قالب گیری، حشرات و آب دارا میباشد. درحالیكه چندسازه های چوب پلاستیك (WPC) یكی از شاخه های در حال رشد در صنایع پلاستیك امروزی میباشد، اغلب محصولات رایج WPC (ازآنجایی كه این مواد قابلیت قالب گیری تزریقی ندارند) در مواردی مانند عرشه كشتی و یا نرده به كار میروند. برعكس، تركیبات مهندسی شده زیست چندسازه گرمانرم JER میتواند با تزریق به شكل های موردنظر قالب گیری شوند. فناوری ثبت شده JER و فرآیندهای خاص تولید به آن این اجازه را می دهد كه برای قالب گیری تزریقی فرمول هایی با 30 تا 50 درصد الیاف و یا فرمول های با مقدار 60 درصد الیاف مستربچ تهیه شود. وابسته به نیازهای كاربری نهایی ضایعات یا مواد جانبی، یا مواد الیافی پوست بلوط، كاج یا برنج با گرمانرم اولیه یا گرمانرم بازیافت شده شامل پلی پروپیلن (PP)، پلی اتیلن پرچگالی (HPE)، پلی استایرن (PS)، یا الفین گرمانرم (TPO) تركیب میشوند. برای قالب گیری این محصولات، دمای قالب گیری كمتری موردنیاز میباشد كه امكان ذخیره انرژی تا 30 درصد را برای مشتری فراهم می كند. راه حل های پایدار و سازگار با محیط زیست دیگر تولیدكنندگان اسباب بازی و لوازم خانگی نیز به سوی استفاده از مواد پلاستیكی بازیافت شده سازگار با محیط زیست متمایل هستند. برای یاری كردن مشتری ها، PolyOne Corporation ماده ای تهیه كرده كه محصولات را از نظر رسیدن به استانداردهای قابلیت نوسازی، بازیافت، كار مجدد و تركیبات تعیین می كند. رسیدن به رنگهای مختلف كه معمولاً در اسباب بازیها یا لوازم خانگی به كار می روند، میتواند یك نكته قابل رقابت در كاربرد پلاستیك های بازیافتی باشد. رنگ های رایج طراحی شده توسط PolyOne به مشتریان كمك می كند كه به رنگ های موردنظر خود برسند. اسباب بازی ها و لوازم خانگی زیست چندسازه قطعات بازی زیست چندسازه Rolco تولیدكننده قطعات بازی خاص Rolco اخیراً یك خط تولید قطعات بازی تخته تشكیل شده از تركیبات زیست چندسازه گرمانرم فناوری JER راه اندازی كرده است. Rolco بخش تحقیق و توسعه را در ارتباط با مواد و خصوصاً رنگ و قالب گیری تزریقی چندگانه، برای ایجاد قابلیت های بیشتر در تولید با مواد جدید هدایت می كند. Rolco به دنبال رسیدن به تعدادی از مزایای استفاده از زیست چندسازه های گرمانرم JER بعنوان جایگزین بسپارهای خالص میباشد. زیست چند سازه ها نسبت به بسپارهای خالص بسیار در قیمت مؤثرند و ضربه پذیری تولیدكننده را با بی ثباتی شدید قیمت نفت خام كاهش می دهد. قطعات بازی می توانند در دماهای كمتری قالب گیری شوند كه منجر به كاهش مصرف انرژی تا 30 درصد میشود. این قطعات سازگار با محیط زیست همچنین محصولاتی با ویژگی هایی یكنواخت ارائه می دهند كه میتواند قطعات بازی Rolco را از بقیه رقیبان متمایز سازد. مشابه دیگر تولیدكنندگان اسباب بازی صنعت بازی صفحات تخت نیز از طرف مشتریان و فروشندگان برای سازگاری بیشتر با محیط زیست تحت فشار میباشد. توجه به مسائل زیست محیطی توسط انجمن صنایع اسباب بازی به عنوان یكی از پنج نكته كلیدی رقابت در زمینه فروش اسباب بازی در آمریكای شمالی میباشد. اسباب بازی های سازگار با محیط زیست Sprig شركت اسباب بازی Sprig از ابتدا بر تولید اسباب بازی های بدون باتری، سازگار با محیط زیست و بدون رنگ برای بچه ها متمركز بود. انرژی درصورت لزوم با حركت خود كودك یا پمپ اسباب بازی تولید میشود. علاوه بر این، كمپانی میخواست از یك زیست چندسازه پلی پروپیلن قابل قالب گیری تزریقی استفاده كند كه آنها چوب Sprig را برای تولید اسباب بازی های سازگار با محیط زیست و بدون رنگ ابداع كردند. آنها برای ایجاد مواد موردنیاز براساس فناوری محیطی JER و برای قالب گیری انواع اسباب بازی به سمت فنآوری Bay متمایل شدند. محصولات محیط زیستی Sprig از سری پیشرفته با بهترین فروش اسباب بازی و كامیون های اسباب بازی جدید سازگار با محیط زیست از چندسازه های چوبی Sprig ساخته شده است كه خود چندسازه متشكل از ضایعات محصولات چوبی و پلاستیك های بازیافتی میباشد كه از رزانه ها (dyes) برای حذف استفاده از پوشرنگ های تزئینی كمك می گیرد. برای محصولات سازگار با محیط زیست حداقل بسته بندی استفاده میشود كه آن هم از كاغذ و مقوای بازیافتی میباشد. JER فرمول بندی مواد برای خطوط جدید تولید اسباب بازی توسط Sprig را ادامه داد و جایگزین هایی براساس بسپارهای مختلف را به منظور تولید ماده ای برای Sprig كه بیشترین محتوای مواد بازیافتی را داشته باشد، امتحان كرد. اسباب بازی های اخیر Sprig مربوط به بازی با شن، آب و باغچه قادر به استفاده از 10 تا 20 درصد چوب بیشتر نسبت به سری های قبلی میباشند. لوازم خانگی مبتنی بر پلاستیك های زیست محیطی شركت Coza شركت Coza از برزیل خطی از محصولات آشپزخانه و حمام را از مخلوط پلی پروپیلن و 40 تا 50 درصد از چوب یا الیاف نارگیل به ترتیب با عنوان Bios و Native ایجاد كرده است. تمام محصولات در گروه محصولات Bios كه هم زیستی بین چوب و پلاستیك میباشد شامل lignin نیز میباشند. محصولات گروه Native از 40 درصد الیاف نارگیل تهیه شده است و توجه Coza به آنها جلب شده است. این لوازم خانگی زیست پایه كه در برزیل به خوبی فروش رفتند، توجه دیگران را نیز به خود جلب كردند. اسباب بازی های با پلاستیك بازیافتی و لوازم خانگی "سبز" اسباب بازی های سبز محصولات HDPE بازیافت شده موفق را ارائه می دهد. شركت اسباب بازی های سبز، اسباب بازی های سازگار با محیط زیست (برای مثال وسایل بچه، وسایل پخت، ظروف غذاخوری و چای خوری، وسایل بازی با شن و ماشین های اسباب بازی)تولید می كند كه در ایالات متحده آمریكا از HDPE بازیافتی از پاكت های شیر و بسته های غذای ساخته شده از مقوا بدون استفاده از مواد سلفون قالب گیری میشود. هیچگونه BPA فتالات یا رنگ مصوبه در این اسباب بازی های مطابق CPSIA استفاده نمی شود، همچنین استانداردهای غذایی FDA نیز در آنها رعایت شده است. لوازم خانگی سبز در نمایشگاه بین المللی اخیر لوازم خانگی در شیكاگو ظروف پلاستیك زیست و بر پایه غلات از طرف طراح لوازم خانگی نیویورك كازابلا به نمایش گذاشته شد و به خرده فروشان معرفی شد. طراحی لوازم خانگی كازابلا از نظر ظاهری بسیار مدرن میباشد. منبع : بسپار
  10. مواد هوشمند در آينده­ايي نچندان دور بازار خوبي را به خود اختصاص خواهند داد و با توجه به خواص خوبي كه از خود نشان مي­دهند، كاربردهاي زيادي در آينده پيدا خواهند كرد. مطلب زير كه به معرفي پليمرهاي هوشمند پرداخته است، توسط دكتر هاشمي مديرعامل شركت گسترش مواد پيشرفته (وابسته به سازمان گسترش و نوسازي صنايع ايران) به شبكه ارسال گرديده است: هوشمندي در مواد، خاصيتي است كه مختص به گروه خاصي نبوده و در اغلب گروه­هاي مواد ديده مي­شود. پليمرها نيز از اين قضيه مستنثنا نيستند و در برابر محرك­هاي مختلف مثل دما، ميدان­هاي الكتريكي و ميدانهاي مغناطيسي، عكس‌العمل­هاي متفاوتي از خود نشان مي‌دهند. اين پليمرها به گروه‌هاي مختلفي تقسيم ‌مي‌شوند و داراي خواص و كاربردهاي متفاوتي مي‌باشند. در ذيل به معرفي، تقسيم‌بندي، كاربردها و بازار اين مواد به طور مختصر اشاره شده است: 1) پليمرهاي فعال الكتريكي (EAP) مكانيزم هوشمندي در اين مواد، عكس‌العمل‌ در برابر تحريكات الكتريكي خارجي است. اين عكس‌العمل، تغيير در ابعاد و هندسه ماده را شامل مي شود. اين پليمرها كه در سال 1990 شناخته شده­اند، كاربردهاي زيادي در پزشكي، صنعت و مهندسي عمران دارند. اين پليمرها به دو دسته عمده تقسيم مي‌شوند: الف)پليمرهاي فعال الكتريكي الكترونيكي كه به منظور حفظ تغيير مكان ايجاد شده در اثر اعمال ولتاژ DC مورد استفاده قرار مي‌گيرند و كاربردهاي زيادي در رباتها دارند. اين دسته خود از جنبه كاربردي به دو گروه تقسيم مي‌شود كه عبارتند از: گروهي كه در حسگري خود از رسانايي و هدايت الكتريكي بهره مي‌برند و گروهي كه از فعاليت الكتريكي خود در اثر تحريك خارجي به عنوان محرك استفاده مي‌كنند. كاربردهاي اين پليمرها در صنايع مختلفي است كه مي‌توان از جمله آنها مواد الكترواستاتيك در لباسهاي ضد الكتريسيته، چسب‌هاي رسانا، حفاظ‌هاي الكتريكي و مغناطيسي، تخته‌هاي مدار چاپي الكترونيكي، رشته‌هاي اعصاب مصنوعي، سازه‌هاي هواپيما و پيزوسراميك­ها را نام برد. ب)پليمرهايفعالالكتريكييوني هستند كه در غشاهاي مبادله­گر يوني، محرك‌هاي الكترومكانيكي، سنسورهاي حرارتي- شيميايي، الكتروليت­هاي جامد، باطري‌هاي قابل شارژ و سيستم‌هاي رهايش دارو در پزشكي كاربرد دارند. پليمرهاي فعال الكتريكي به عنوان دي­الكتريك نيز مورد استفاده قرار مي‌گيرند. به عنوان نمونه پليمرهاي كه داراي سفتي (Stiffness) و ثابت دي­الكتريك بالا مي‌باشند، در محرك­هاي(Actuator) با كرنش بالا مورد استفاده قرار مي‌گيرند كه به طور نمونه در پيزوالكتريك­ها كاربرد دارند. قابل ذكر است كه الاستومرهاي بلور مايع، الاستومرهاي الكتروويسكوالاستيك، پليمرهاي فروالكتريك، نانولوله‌هاي كربن و پليمرهاي رسانا كه بعنوان شناساگرهاي گازهاي سمي (حسگرهاي يوني) در پالايشگاهها و صنايع نظامي كاربرد دارند، نيز در اين گروه قرار مي‌گيرند. 2) سيالات مغناطيسي و رئولوژيكي (MRF) در اين نوع از پليمرهاي هوشمند، با تغيير ميدان مغناطيسي، ويسكوزيتة آنها تغيير مي‌كند و عملكرد آنها مشابه سيالات الكتريكي رئولوژيكي مي‌باشد. 3) سيالات الكتريكي رئولوژيكي (ERF) اين سيالات اساس پليمري دارند و در برابر ميدان الكتريكي از خود تغيير ويسكوزيته نشان مي‌دهند كه مي­توان با اين تغيير ابعاد را تحت تاثير قرار داد. به طور مثال اين مواد در كمك فنرهاي خودرو در خودروهاي جديد كاربرد دارند و با تغيير جريان مي‌توان ارتفاع خودرو را تنظيم نمود. اين نوع پليمرها در راه‌سازي، پل‌سازي و صنعت ساختمان نيز استفاده مي‌شود و امروزه در تكيه‌گاه خيلي از پل‌ها خصوصاً پل‌هاي معلق از اين مواد استفاه مي‌شود. سيالات ERF داراي سه نوع مثبت، منفي و مواد نوري الكتريكي هستند. اگر با اعمال ميدان الكتريكي، ويسكوزيته افزايش يابد ERF مثبت است، اگر با افزايش ميدان الكتريكي ويسكوزيته كاهش يابد ERF منفي است و اگر با تاباندن اشعه ماوراء بنفش ويسكوزيته تغيير كند ERF از نوع نوري و الكتريكي مي‌باشد. 4) ژل‌هاي پليمري هوشمند با تغيير در زنجيره پليمرها مي‌توان ژل­ها را ساخت كه اين كار با تعويض بعضي از مونومرهاي زنجيره با مواد شيميايي صورت مي‌گيرد. تفاوت اصلي ژل­ها با پليمرها سازگاري شيميايي و ترموديناميكي آنها با حلال‌ها مي‌باشد و نيز خاصيت رطوبت‌گيري كه در آنها وجود دارد. ژل­ها براساس ويژگي‌هايي نظير طبيعت گروه‌هاي تشكيل­دهنده، خواص مكانيكي، ويژگي‌هاي ساختاري و شكل شبكه تقسيم‌بندي مي‌شوند و در برا بر محرك‌هاي مختلف فيزيكي و شيميايي نظير دما، ميدان الكتريكي و مغناطيسي، نور، فشار و PH، از خود عكس‌العمل‌ نشان مي‌دهند و در صنايع دفاعي، زيستي، داروسازي و غيره مورد استفاده قرار مي‌گيرند. 5) پليمرهاي با حافظه شكلي مشابه آلياژهاي حافظه‌دار هستند به اين ترتيب كه در اثر تغييرات دمايي از خود تغييرات ابعادي نشان مي‌دهند كه علت آن تغيير در مورفولوژي زنجيره‌ها است. اين پليمرها در مواردي مثل جيگ و فيكسچرهاي ماشينكاري كاربرد دارند. بررسي بازار پليمرهاي هوشمند هنوز خيلي تجاري نشده‌اند، بنابراين بازار خيلي بزرگي را به خود اختصاص نمي‌دهند. البته 5 تا 15 سال آينده اين بازار رشد بسيار خوبي خواهد داشت زيرا كاربردهاي آينده اين مواد كه در حوزه‌هاي مختلفي چون پزشكي، كامپيوتر، خودرو، تلويزيون، پول الكترونيكي، كنترل­كننده‌هاي بهداشتي، هوافضا، بيوتكنولوژي، صنايع نظامي، الكترونيك و فناوري نانو خواهد بود، نويددهنده بازار بزرگي براي اين مواد است. در بين سال­هاي 2010-1992 بر اساس پيش­بيني­هاي انجام شده، در برخي از كاربردهاي اصلي اين مواد مثل غلافها و پوششهاي سيم و كابل، باطري‌هاي ذخيره انرژي با ظرفيت بالا و سپرهاي تجهيزات الكترونيك كه در فضاپيماها و محافظ‌هاي الكترونيك كاربرد دارند، روند مصرف رو به افزايش است و بازار خوبي را به خود اختصاص خواهند داد. مثال­هاي زير به صحت اين ادعاها اشاره دارد: از سال 2000-1992 مصرف اين مواد رو به افزايش بوده بطوري كه مصرف پليمرهاي هادي استفاده در باطري‌ها در سال 2000 معادل 500 هزار پوند بالغ بر 50 ميليون دلار بوده است. بازار سپرهاي الكترونيك در سال 1988، 116 ميليون دلار و در سال 1993، 165 ميليون دلار بوده است و امروزه پوشش­هاي هادي و صفحات پليمري 75 درصد بازار مواد مشابه را به خود اختصاص داده­اند. هزينه پوشش­هاي پلاستيكي نسبت به ساير مواد پايين‌تر است و 1.25 تا 2.5 دلار به ازاي هر فوت مربع ذكر شده است. البته عمده بازار مواد هوشمند پليمري در كشورهاي پيشرفته است و بايد اين بازار را به كشورهاي در حال توسعه گسترش داد و اين نياز را براي اين كشورها به وجود آورد. پيش‌بيني انجام­شده در مورد بازار اين مواد تا سال 2010 بالغ بر 457 ميليون دلار خواهد بود.
  11. mim-shimi

    لاستیک و پلاستیک

    به منظور اتصال قطعات پلاستیکی به قطعات دیگر که یا بسیار بزرگند یا بسیار پیچیده، از چسب و چسباندن حلالی، بست مکانیکی و انواع روش‌های جوشکاری استفاده می‌شود. در تمام این موارد هدف، تشکیل یک قطعه مونتاژ شده‌ی یکپارچه است. سامانه‌های چسب کاری، چند کاره هستند و در مواقعی که نیازمند اتصالات محکم و بادوام هستیم، نتایجی پایدار و قابل پیش بینی به بار می‌آورند. جوشکاری، تنها برای گرمانرم‌ها (و نه گرماسخت‌ها) مناسب است. در این روش سطوح مورد اتصال در محل تماس ذوب می‌شوند تا پیوندهای مولکولی قوی تشکیل گردند. جوشکاری پلاستیک در صنعت پلاستیک و به منظور درزگیری بسته‌بندی‌ها بسیار مورد استفاده قرار می‌گیرد. هر دو روش استفاده از چسب و جوشکاری پلاستیک در صنعت خودرو به صورت گسترده‌ای مورد استفاده قرار می‌گیرند. پشتیبانی فنی توسط متخصصان سازندگان بسپار پیشنهادات و پشتیبانی‌های فنی لازم برای اتصال و مونتاژ قطعات ساخته شده از موادشان را ارائه می‌کنند. شرکت Lanxess در راهنمای محصولاتش به این موضوع می‌پردازد که مهندسان طراح در ابتدا باید توجه کنند که چگونه می‌خواهند با اتصال اجزای مجزا، آن ها را به واحدهای عملیاتی تبدیل کنند. در این نوشته بست‌های مکانیکی شامل پیچ‌ها و میخ‌پرچ‌‌ها یکی از ارزان‌ترین و معمول‌ترین روش ها برای مونتاژهایی که می‌بایست قابل جداشدن باشند معرفی شده است. هم چنین جهت اتصال دائمی، چسب‌های حلالی در زمره‌ی ارزان‌ترین روش‌های اتصال ذکر شده است. در روش اتصال توسط چسب، چسب‌های دو جزیی اپوکسی و پلی‌یورتان می‌توانند استحکام پیوندی عالی ایجاد کنند. در این راهنما آمده است: چسب‌های بر پایه‌ی سیانو اکریلات‌ها می‌توانند پیوندهای سریعی ایجاد کنند ولی از طرفی به بسپار‌های پلی‌کربنات می‌توانند صدمه وارد کنند مخصوصاً اگر قطعات تنش درونی زیادی داشته باشند یا در فشار کاری زیادی قرارگیرند. چسب‌های اکریلیک دوجزیی استحکام پیوندی بالایی را نشان می‌دهند اما اغلب شتاب هنده‌شان به آمیزه‌های پلی کربناتی صدمه وارد می‌کنند. Lanxess توصیه می‌کند تمام قطعات برای تعیین یک چسب مناسب قبلاً آزموده و مدل شوند. پلاستیک‌ها را می‌توان هم به روش حرکت مکانیکی مانند ارتعاش جوش داد و هم با به کارگیری حرارت به منظور ذوب کردن محل اتصال. مونتاژ فراصوتی یکی از روش‌های پرکاربرد در گرمانرم‌ها است که به اتصالات دائمی، زیبا و دل پذیری می‌انجامد. ارتعاش مکانیکی با بسامد زیاد برای ذوب سطوح محل اتصال در اغلب روش‌های فراصوتی (جوشکاری، ردی (staking) ، جوشکاری نقطه‌ای و درونه ی فراصوتی (ultrasonic inserts)) استفاده می‌شود. هم چنین در این راهنما آمده است مقادیر کم از پرکننده‌ها، مانند الیاف شیشه مانع جوشکاری نخواهند شد. اگر مقدار الیاف شیشه‌ای از 30% فراتر برود منجر به یک پیوند ضعیف می‌شود و می‌تواند در وسایل جوشکاری فرسایش ایجاد کند. عوامل رها کننده‌ی قالب، روان کننده ها و عوامل تأخیر اندازنده‌ی آتش اثر منفی بر کیفیت جوش دارند. شرکت Sabic Innovative Plastics در کتاب مرجع خود در مورد جوشكاري پلاستيك‌ها نوشته است که جوشكاري ارتعاشی، که به نام‌های جوشكاري خطی و جوشكاري مالشی خطی نیز نامیده می‌شود، برای جوش قطعات گرمانرم در طول شکاف صاف مناسب است. در این فرآیند، قطعاتی که می‌بایست به هم متصل شوند بر روی يكديگر تحت فشار مالیده می‌شوند. در ماشین‌های جوشکاری ارتعاشی تجاری، نیمی از قطعه توسط القاء یک سامانه جرم دار و فنری سفت که به خوبی تنظیم شده، و به وسیله‌ی یک نیروی نوسانی تحمیلی خارجی مرتعش می‌شود. انواع دیگر جوشکاری مالشی شامل جوشکاری چرخشی، ارتعاشی زاویه‌ای و جوشکاری دورانی می‌باشد. شرکت Sabic نشان می‌دهد که پلاستیک‌ها و چندسازه‌های پلاستیکی به طور فزاینده‌ای در ساختارهای پیچیده که در آن ملاحظات اتصال و قیمت مهم هستند استفاده می‌شوند. بسپار های گرمانرم پرشده و پرنشده ی قابل جوشکاری در بسیاری از کاربردهای ساختاری پرتقاضا که نیازمند اتصالاتی با توان تحمل فشارهای خستگی و ساکن هستند استفاده می‌شوند. شرکت Sabic مثالی از یک سپر خودرو را ذکر می‌کند که از بسپارSabic's Xenoy@ 1102 که یک ترکیب نه کاملاً گرمانرم است ساخته شده است. این سپر توسط جوشکاری ارتعاشی دو قطعه‌ی قالب‌گیری شده به روش تزریق تولید شده است. به گفته‌ی این شرکت، فناوری جوش پلاستیک به دلیل ورود چندسازه‌های گرمانرم بسیار کارا، مهم‌تر شده است که این موضوع انقلاب روش‌های مونتاژ در کاربردهای فضایی را نوید می‌دهد. در کتاب راهنمای مذکور آمده است: به تازگی توجه به برگشت‌پذیری مواد، موضوع جوشکاری را پراهمیت‌تر کرده است زیرا بر خلاف چسب‌ها در جوشکاری، مواد اضافی وارد مونتاژ قطعات نمی‌شود. انواع دیگر جوشکاری استفاده شده در گرمانرم ها شامل جوشکاری توسط لیزر و جوش مقاومتی و القایی می‌باشد. در جوشکاری لیزری امواج رادیویی لیزر یا نور از میان قطعه‌ی پلاستیکی اول عبور داده می شود تا جایی که قطعه‌ی دوم آن را جذب کند و منجر به ایجاد حرارت و ذوب در محل تماس شود. در جوشکاری مقاومتی با به کارگیری یک مقاومت الکتریکی کاشته شده بین سطوح مورد اتصال، حرارت مورد نیاز برای اتصال جوش تامین می‌گردد. در جوشکاری القایی از یک پیچه (کویل) برای تولید میدان مغناطیسی متناوب استفاده می‌شود که منجر به القاء جریان در سطوح اتصال می‌شود. مقاومت ماده در برابر این جریان باعث تولید حرارت می‌شود. اجزای جوشکاری فراصوتی مونتاژ فراصوتی از ارتعاشی که توسط یک مبدل تولید شده است استفاده می‌کند. این مبدل انرژی الکتریکی را با استفاده از یک شیپور صوتی به انرژی مکانیکی تبدیل می‌کند. انرزی از میان قطعه به محل اتصال انتقال داده می‌شود، در آن جا از طریق مالش گرما تولید می‌شود و پس از آن با ذوب پلاستیک پیوند تشکیل می‌گردد. شرکت Branson Ultrasonics که در زمینه اتصال مواد و تمیزکاری دقیق، یک رهبر جهانی است؛ سامانه های فرا صوتی کاملاً دیجیتال را توسعه داده است. سامانه های Branson's 2000X در بسامدهای 20، 30 و 40 کیلو هرتز همراه با توان خروجی افزایش یافته برای تمام بسامدها قابل استفاده می‌باشد. این شرکت معتقد است انعطاف پذیری و محدوده‌ی این سامانه‌های جوشکاری، دست مصرف‌کنندگان را در انتخاب قطعات تشکیل دهنده باز می‌گذارند تا بتوانند قطعه‌ی مونتاژ شده‌‌ای با مصارف خاص تولید کنند. دستگاه‌های "خود کنترل شونده‌ی رومیزی" جهت تولید دستی و تک ایستگاهی و ابزار کمک- دستی جهت مونتاژ قطعات بزرگ و به منظور استفاده در سطوح اتصالی که به سختی قابل دستیابی هستند از جمله‌ی آنهاست. مجزا بودن قطعات تشکیل دهنده‌ی این دستگاه شامل سامانه محرک و منبع انرژی ضمیمه شده‌ی جداگانه از شاخصه‌های این سامانه است. تمام محصولات Branson را می‌توان جهت اتوماسیون خطوط و ایجاد سامانه‌های تولید کاملاً جامع جهت مونتاژ به کار برد. همچنین قطعات OEM (تولید کننده‌ی تجهیزات اصلی(قطعات اصلی)) جهت استفاده در اتوماسیون را می‌توان از کارخانه‌ای که فناوری‌های اتصال آن به جوشکاری خطی، دورانی و ارتعاشی- حرکتی قابل برنامه‌ریزی، صفحه داغ (hot plate) و جوشکاری چرخشی گسترش داده باشد به دست آورد. محصولات سری 40 شرکت Branson، سامانه‌های فرا صوت خود کنترل شونده‌ی به نسبت خودکار با تکیه بر قابلیت شکل پذیری و سرعت تولید بالا جهت مونتاژ پلاستیک‌ها هستند. این دستگاه‌ها دارای قابلیت جوشکاری، ردی، درونه گذاری، سنبه کاری یا جوش نقطه‌ای گرمانرم‌ها هستند. محصولات سری 40 می‌توانند شامل ایستگاه‌های فراصوتی چندگانه باشند یا می‌توانند با سامانه‌های فراصوتی دیگر مثل جوش دهنده‌های چرخشی یا عملیات ثانویه‌ی دیگر مثل آزمون نشت‌یابی ترکیب شوند. شرکت Herrmann Ultrasonics، یک تولیدکننده‌ی آلمانی دارای شرکت‌های تابعه در آمریکا و چین، فناوری های پیشرفته ای در زمینه‌ی اتصال فراصوتی به دست آورده است. این سازنده اخیراً ماشین جوشکاری فراصوتی تکامل یافته‌ی HiQ را تولید کرده است که دارای مشخصه‌ی تغییر سریع ابزار (quick-tool-change) و ابداعات دیگری است تا بتواند تولید را افزایش دهد و زمان بیکاری و مصرف انرژی را نیز کاهش دهد. این سامانه همراه با ژنراتورهای دیجیتالی 20، 30 و 35 کیلوهرتزی در مدل‌های محدوده‌ی 1200 تا 6000 وات قابل استفاده است. شرکت مذکورMedialog را در فضاهای عاری از آلودگی پیشنهاد می‌دهد که برای سازندگان تجهیزات پزشکی و هم چنین کاربری‌های دیگری که نیازمند فرآیند تولید بدون حضور آلودگی هستند مناسب می‌باشد. هوای ورودی به یک استاندارد بالاتری تصفیه شده و هوای خروجی جمع آوری می‌شود که می‌توان آن را از میان یک سامانه ی تهویه موجود هدایت کرد. واحدهای Medialog در دو اندازه موجودند: HS در 20 و 30 کیلوهرتز و PS در 35 کیلوهرتز. ژنراتورهای دیجیتال تا 5000 وات بالا می‌روند. پردازش اطلاعات سریع شرکت Dukane Corp. سامانه‌های پرس فراصوتی سری iQ برای جوش گرمانرم‌ها تولید کرده است. این شرکت یک تامین کننده‌ی جهانی جوش‌دهنده‌های فراصوتی، چرخشی، لیزری، ارتعاشی و صفحه داغ و همچنین دستگاه‌های پرس حرارتی، ابزارآلات و نرم افزارها برای بازارهای مونتاژ محصولات پلاستیکی تجاری و OEM می‌باشد. گفته می‌شود دستگاه پرس فراصوتی سری iQ به دلیل معماری فرآیندی چند هسته‌ای دارای سرعت پردازش اطلاعات بالاتری در صنعت است (سرعت به روز شده‌ی 0.5 میلی ثانیه). به گفته‌ی Dukane این سامانه اطلاعات جوش شامل توان، انرژی، فاصله، نیرو، بسامد و زمان را در سرعتی معادل دو برابر تجهیزات سری قدیمی‌تر و با دقت و استحکام جوش بالاتر پردازش می‌کند. دستگاه پرس فراصوتی سری iQ برای جوشکاری گرمانرم‌ها، پردازش اطلاعات بسیار سریع و استحکام و دقت جوش بالاتری را نسبت به تجهیزات سری قدیمی‌تر شرکت Dukane فراهم می‌کند. سری iQ دارای سامانه پرس 30/40 کیلوهرتزی با مکانیزم لغزشی سبک و دقیق می‌باشد و جهت کاربردهای کوچک، حساس و دارای رواداری کم طراحی شده است. به علاوه دستگاه‌های پرس 20 کیلوهرتزی توسط Dukane Ultra ridged H-frame support جهت کاربری‌های دقیق و با نیروی زیاد قابل دسترس است.پیکربندی این محصول با توجه به نیازهای استفاده کننده به صورت پودمانی طراحی شده و قابل اضافه و کم کردن است. کنترل گر‌های این محصول از ابتدایی (فقط زمان) تا پیشرفته (زمان، انرژی، فاصله، نیرو و حداکثر قدرت فرستنده) متنوع هستند و دارای اعتبار و واسنجی شده (کالیبراسیون) جهت کاربردهای پزشکی می‌باشند. فشار دوگانه در واحد اصلی استاندارد می‌شود. واحدهای پیشرفته دارای مبدل نیرو و شیر فشار شکن الکترونیکی حلقه بسته می‌باشند که هنگامی که با کنترل گر سرعت هیدرولیک Dukane جفت می‌شوند قادر به کنترل دقیق سرعت ذوب خواهند بود. شرکت Sonics & Materials, Inc. یک تولید کننده‌ی تجهیزات جوش از دستگاه‌های قابل حمل و دستگاه‌های پرس مدل رومیزی تا سامانه‌های کاملاً خودکار می‌باشد. این شرکت خودش را در زمینه‌ی فناوری جوش فراصوتی متمایز کرده است. ابداعات اخیر شامل دستگاه‌های قابل حمل جوش فراصوتی 40-20 کیلوهرتز همراه با کنترل گرهای بر پایه زمان دیجیتال یا انرژی ثابت می‌شود. ابزارها مشخصاً جهت کاربری‌های جوشکاری، ردی(staking)، درونه گذاری (inserting) و جوش نقطه‌ای طراحی شده‌اند. یک بست تپانچه‌ای اختیاری جهت حمل و نقل آسان‌تر تعبیه شده است. لوازم یدکی دیگر شامل یک پرس دستی و یک پدال پایی می‌شود. جوشکاری قطعات مدور جوشکاری چرخشی روشی برای جوش قطعات گرمانرم با استفاده از یک حرکت چرخشی دایره‌ای و فشار کاربردی است. یک قطعه توسط یک فک ثابت نگه داشته می‌شود تا قطعه‌ی دیگر حول آن بچرخد. حرارت تولید شده توسط مالش مابین دو قطعه منجر به ذوب محل تماس دو قطعه شده و در نتیجه یک آب بندی محکم و سحرآمیز ایجاد شود. شرکت Brandson Ultrasonics سامانه جوش چرخشی خود تنظیم SW300 را جهت جوشکاری قطعاتی با محل تماس دایره‌ای را پیشنهاد می‌کند. گفته می‌شود جوش دهنده‌های چرخشی رومیزی همراه با یک صفحه‌ی نمایش لمسی 6 اینچی دارای دقت موتور خود تنظیم برابر با 1/0± درجه می‌باشند. SW300 را می‌توان در حالت های عملکردی دستی، نیمه خودکار و کاملاً خودکار به کار برد. حداکثر بار کاربردی 142 کیلوگرم است. سامانه جوشکاری چرخشی خود تنظیم SW300 از شرکت Brandson Ultrasonics برای جوش قطعاتی با محل تماس دوار طراحی شده است. شرکت ToolTex جوش دهنده های چرخشی رومیزی ای ساخته است که دارای گشتاور بالایی برای قطعات تا قطر 5/63 سانتی متر می‌باشد. این شرکت در زمینه‌ی سازگاری محصولاتش با خطوط ماشین ‌کاری مشتری متبحر شده است و می تواند دستگاه‌های جوش خود را در خطوط موجود مشتری جای دهد. هم چنین آن‌ها می‌توانند دستگاه‌های خود را به صورت مستقل راه‌اندازی کنند. جوش‌دهنده‌های چرخشی خود تنظیم SW750 این شرکت دارای گردش با دقت 1/0 درجه و تحمل بار 5/90 کیلوگرم هستند. این دستگاه مجهز به یک کنترل گر صفحه‌ی نمایش لمسی است. شرکت PAS (Plastic Assembly Systems)، تجهیزات جوشکاری استفاده شده و جدید شامل محصولات جوش چرخشی خودتنظیم، جوش دهنده‌های فراصوتی و سامانه‌های مونتاژ حرارتی را ارائه می‌کند. مدل STS2000 یک سامانه حرارتی خودتنظیم است که مجهز به فناوری جدید خود تنظیم جهت کنترل دقیق کاربردهای حرارتی در تماس مستقیم با ابزارهای گرم شده می‌باشد. STS2000 می‌تواند به عنوان یک دستگاه مستقل یا همراه با خطوط اتوماسیون به کار برده شود. خط تولید PAS برای قطعات کوچک، متوسط و بزرگ و جهت کاربری با دقت بالا و قابلیت تکرارپذیری قابل استفاده است. فنون جوشکاری لیزری فناوری جوش لیزری یک روش اتصال انعطاف پذیر و غیر تماسی است که جوش‌های قوی و تمیز با کمترین تکانه (شوک) حرارتی در نقاط اتصال ایجاد می‌کند. در این روش هیچ ذره‌ای در محل اتصال رها نمی‌شود. این روش دارای دقت زیاد بدون سایش ابزارآلات است و در آن هیچ ماده‌‌ی مصرفی جوشکاری استفاده نمی‌شود. شرکت Stanmech Technologies که با شرکتLeister Process Technologies ادغام شده طرز ساخت پلاستیک‌ها و تجهیزات جوشکاری را شامل سامانه‌های اتصال لیزری بر اساس خواست مشتری ابداع کرده است. چهار سامانه جوش لیزریNovolas™ جهت برآوردن نیازهای خاص قابل دستیابی است. سامانه اصلی اجازه می‌یابد در سامانه‌های ساخت همراه با کنترل گرهای فرآیندی خودشان ادغام شود. مدل‌های دیگر، OEMها جهت ادغام پیشرفته، WS (ایستگاه کاری( جهت ایستگاه کاری دستی کمی خودکار و maskwelding Micro برای اتصال قطعات باریک و ریز می‌باشند. این شرکت یک آزمایشگاه کاملاً کاربردی جهت ارزیابی نیاز مشتریان ارائه کرده است. پیشرفت جدید در این زمینه، تولید دستگاه Leister Weldplast $2 hand-extruder است که یک وسیله‌ی کامل طراحی شده جهت تولید محصولات اکسترود شده‌ی تا 5/2 کیلوگرم (5/5 پوند) در ساعت جهت اتصال قطعات گرمانرم است. این دستگاه مجهز به یک کفشک جوش چرخشی 360 درجه جهت تسهیل کار کردن در بالای سر است. هم چنین از این شرکت ابزار دستی هوای داغ از سبک وزن Hot Jet S و قلم جوش تا مدل‌های بزرگ‌تر مانند Diode و Triac S در دسترس است. این ابزارها برای دمیدن هوای داغ مستقیم به شکاف اتصال و الکترود جوشکاری استفاده می‌شوند. شرکت Laser and electronics specialist LPKF در آلمان سامانه‌هایی جهت جوش لیزری پلاستیک‌ها همراه با سامانه‌های تولید پودمانی (modular) ساخته است. جوش لیزری انتقالی، قطعات گرمانرمی را که دارای مشخصات جذب متفاوت هستند را متصل می‌کند. لیزر در لایه‌ی بالایی که نسبت به آن طول موج شفاف است نفوذ می‌کند اما به وسیله‌ی لایه‌ی پایینی جذب می‌شود، این عمل منجر به تولید حرارت و پیوند سطوح به یکدیگر می‌شود. خطوط تولید جوش لیزری LPKF شامل LQ-Power جهت عملیات دستی و LQ-Integration با فناوری یکپارچه‌سازی بدون درز در خطوط تولید می‌شود. فناوری جوش لیزری ثبت اختراع شده با نام Clearweld®، توسط شرکت‌های Gentex Corp. و TWI, Ltd. که گروه‌های تحقیق و توسعه‌ی صنعتی انگلیسی هستند ابداع شده است. فرآیند Clearweld که توسط Gentex تجاری شده است، از پوشش‌های ویژه و افزودنی‌های بسپار با قابلیت جوش لیزری استفاده می‌کند تا بتواند رنگ یکنواخت و انعطاف پذیری طراحی در جوش پلاستیک‌های با ارزش و پشت پوش ایجاد ‌کند. این فناوری، اختصاصاً برای وسایل و لوله‌های پزشکی ساخته شده است زیرا این ابزارها با به کارگیری چسب‌ها و ذرات ناشی از استفاده از جوشکاری فراصوتی آلوده می‌شوند. LPKF یک شریک در شبکه‌ی جهانی Gentex شامل سازندگان تجهیزات، integrators، تامین کنندگان مواد و مونتاژکاران پلاستیک می‌باشد. شریک دیگر Branson Ultrasonics است که یک سامانه لیزری انحصاری جهت فرآیندهای Clearweld ابداع کرده است. این سامانه به گونه‌ای طراحی شده است که لوله‌های پزشکی را بدون چرخش آن‌ها جوش دهد. کمک از لیزر برای قطعات ترکیبی فرآیند ابتکاری کمک از لیزر برای اتصال پلاستیک‌ها و فلزات توسط موسسه Fraunhofer Institute for Laser Technology (ILT) در آلمان ابداع شده است. در این فرآیند طبق ثبت اختراع انجام شده Liftec®، امواج لیزر از میان یک قطعه‌ی پلاستیکی عبور می‌کنند تا جزء فلزی که در مقابل آن پرس شده است داغ شود. پس از آن که پلاستیک ذوب شد، فشار مکانیکی روی قطعه‌ی فلزی اعمال می‌شود و آن را به درون پلاستیک هل می‌دهد. شکل هندسی مناسبی برای قطعه‌ی فلزی طراحی شده است و یک پیوند مثبت و جامد پس از سرد شدن تشکیل می‌دهد. سرامیک‌ها و پلاستیک‌های مقاوم در برابر حرارت نیز می‌توانند در این فرآیند به کار گرفته شوند. شرکت Kamweld Technologies یک متخصص در زمینه‌ی محصولات جوش پلاستیک، تفنگ هوای داغ صنعتی و وسایل خمش صفحه‌ی پلاستیکی و متعلقاتش است که اخیراً جوش-دهنده‌های سری Fusion با وزن کم و قابل حمل توسط دست را همراه با کنترل گرهای دیجیتال دقیق جهت کنترل دمای جریان هوا ابداع کرده است. چهار مدل از دستگاه FW-5 قابل دسترس اند، که همگی دارای گرم کن های خطی هستند. مدل‌های FW-5C و FW-5D دستگاه‌های کامل با کمپرسورهای داخلی هستند. چسب‌های ساختاری محکم چسب‌های پیشرفته جهت پیوند پلاستیک‌ها از طیف گسترده‌ای از سازندگان قابل دسترس هستند. شرکت ITW Plexus، سردمدار فناوری‌های چفت و بست زدن، اتصال، درزبندی و پوشش، چسب‌های ساختاری ثبت شده Plexus® را برای پیوند گرمانرم‌ها، مواد چندسازه و فلزات ساخته است. چسب‌های ساختاری یا اجرایی معمولاً در کاربردهای تحمل بار استفاده می‌شوند زیرا آنها به استحکام محصولات پیوندخورده می‌افزایند. ITW Plexus راهنمایی برای اتصال پلاستیک‌ها، چندسازه‌ها و فلزات ارائه کرده است که در پایان این متن آورده شده است.سه چسب ساختمانی جدید Plexus® انعطاف پذیری در موقع عملکرد از خود نشان می‌دهند و برای کاربردهای ساخت قایق و دیگر مونتاژهای بزرگ بسیار مناسب اند.ابداعات اخیر Plexus شامل سه نوع چسب متاکریلات ساختاری دو جزیی است که در دمای اتاق پخت می‌شوند و پیوندهای استثنایی و البته انعطاف‌پذیری را بر روی چندسازه‌ها، بدون آماده سازی سطح یا با آماده سازی سطح کم ایجاد می‌کنند. MA530 با زمان عملکردی 40-30 دقیقه، برای پر کردن شکاف‌هایی تا 78/17 میلی‌متر طراحی شده است. MA560-1 دارای زمان عملکردی بالاتری است (تا 70 دقیقه) و برای پر کردن شکاف‌هایی تا 14/25 میلی متر مناسب است. MA590 با زمان عملکردی تا 105 دقیقه بسیار مناسب برای قایق‌های الیاف شیشه ای بزرگ است. به گفته‌ی شرکت مذکور، این چسب‌ها هم چنین پیوندهایی عالی روی فلزات و دیگر کارپایه ها ایجاد می‌کنند. بر خلاف دیگر چسب‌ها و بتونه‌ها، این چسب‌ها به طور شیمیایی FRPها، چندسازه‌ها و تقریباً تمام بسپار‌های پلی استر و ژل‌پوشه ها را درهم می‌آمیزد. این شرکت یادآور می‌شود به دلیل این‌ که چسب‌هایش نیازی به آماده‌سازی سطح ندارند، بنابراین می‌توانند زمان مونتاژ را تا 60% کاهش دهند. این‌ شرکت اضافه می‌کند چسب‌های مذکور پیوندهای بسیار قوی‌ای ایجاد می‌کنند به طوری که کارپایه ها (substarates) قبل از اینکه پیوند ایجاد شده خراب شود لایه لایه می‌شوند. گفته می‌شود این چسب‌ها انعطاف پذیری استثنایی، استحکام ضربه و مقاومت در برابر سوخت، مواد شیمیایی و آب از خود نشان می‌دهند. شرکت مذکور، دستگاه های پخش کننده‌ی چسب با نام Fusionmate™ بهینه شده برای چسب‌های متاکریلات Plexus را نیز ارائه کرده است. این سامانه با هوای کارگاهی در فشار psi 100 کار می‌کند و پمپاژ حجمی مثبت مداومی با نسبت‌های حجمی با دقت از 6:1 تا 15:1 را فراهم می‌کند. خروجی از سرعت جریان 38/0 تا 92/4 لیتر بر دقیقه قابل تنظیم است. گیربکس‌های زنجیری مستقل برای پمپ‌های چسب و فعال کننده به صورت جداگانه طراحی شده است که پاکسازی آنها را به طور مجزا امکان‌پذیر می‌سازد. چسباندن قطعات خودرو سالیان متمادی است که چسب‌ها در کاربردهای خودرو مورد استفاده قرار می‌گیرند و با پیشرفت فناوری چسب، اهمیت آن‌ها نیز افزون شده است. شرکت Dow Automotive که تولید کننده‌ی چسب برای خودرو است گزارش می‌دهد که فناوری چسب در کاربردهای‌گسترده‌تری همراه با پشتیبانی قطعات اصلی خودرو (OEM) جهت حصول اطمینان و کاهش وزن کلی استفاده می‌شود. چسب با دوام در برابر ضربه با عنوان Betamate™ از این شرکت توسط شرکت خودروسازی Audi جهت استفاده در پروژه‌ی A8 که یک خودرو جدید با بدنه‌ی آلومینیومی است انتخاب شده است. فناوری Betamate در کاربردهایی که نیازمند کارایی زیاد هستند می‌تواند استفاده شود و جهت پیوند قطعات گرمانرمی، چندسازه‌ها، شیشه، آهن‌آلات، تزئینات خودرو، و آلیاژهای فولاد، آلومینیوم و منیزیم قابل استفاده است. چسب‌های ساختمانی می‌توانند جای گزین جوشکاری و چفت و بست‌های مکانیکی در اتصال انواع زمینه‌های مشابه و غیر مشابه شوند و اثرات شکست و فرسودگی پیدا شده در اطراف جوش های نقطه‌ای و بست‌ها را حذف کنند. به گفته‌ی شرکت Dow این چسب عملیات درزگیری را در برابر شرایط آب و هوایی که منجر به خوردگی می‌شود نیز می‌تواند انجام دهد. این شرکت هم چنین سامانه‌های پیوند شیشه Betaseal™ را ساخته است که برای نصب شیشه‌های خودکار در خودروها استفاده می‌شود. شرکت IPS سازنده‌ی چسب‌های ساختمانی بسیار قوی متاکریلات WeldOn® اخیراً چسبWeld-On SS 1100 را جهت چسباندن قطعات گرمانرم، چندسازه و فلزی و هم چنین کارپایه هایی که به سختی چسبانده می‌شوند مانند نایلون و فلزات گالوانیزه شده ساخته است. این چسب ها دو جزیی بوده و جهت اتصال فلزات به پلاستیک‌ها بسیار مناسب هستند و دارای زمان عملکردی 4 تا 17 دقیقه می‌باشند. به گفته‌ی شرکت مذکور، این محصول دارای کاربردهای گسترده‌ای شامل حمل و نقل، دریایی، ساختمانی و مونتاژ محصول است و نیازی به آماده‌سازی سطح ندارد (یا نیازمند آماده سازی سطح کمی است). پروژه‌های چسباندن بزرگ شرکت Gruit توسعه دهنده و سازنده‌ی مواد چندسازه، چسب‌های اپوکسی Spabond را ارائه کرده است که جهت ایجاد اتصالات بسیار محکم و با دوام طراحی شده است که اغلب قوی‌تر از خود مواد مورد اتصال است. این چسب در اندازه‌ها و درجه‌بندی‌های گوناگون به منظور پاسخگویی به نیازهای مختلف عرضه شده است. چسب بسیار کارای Spabond340LV برای چسباندن سازه‌های بزرگ مانند تنه‌ی قایق‌ها و پره‌های توربین‌های بادی طراحی شده است. گفته می‌‌شود این چسب دارای قیمت مناسب به نسبت کاراییش و هم چنین خواص مکانیکی و حرارتی خوبی است. به منظور چسباندن سازه‌های بزرگی که هندسه‌ی سطح ناصافی دارند، شرکت Gruit چسب Spabond 345 را پیشنهاد می‌دهد که دارای غلظت بالا و خمیر مانند است و می‌تواند بدون شره کردن به کار رود. چسب اپوکسیSpebond 5-Minute در موارد سریع خشک، کاربردهای عمومی و کارهای تعمیری در طیف گسترده‌ای از کارپایه ها با جنس های مختلف استفاده می‌شود. در مواردی که امکان به کارگیری گیره‌های مرسوم نیست این چسب در ترکیب با محصولات دیگر Spabond به عنوان سامانه "جوش نقطه‌ای" می‌تواند استفاده شود. چسب‌های Spabond در کارتریج‌ها، ظروف و درام‌های دستگاه‌های اختلاط و پراکنش گر‌ قابل استفاده است. چسب‌های ویژه شرکت Dymax سازنده‌ی طیف گسترده‌ای از چسب‌های صنعتی و محصولات قابل پخت توسط امواج فرابنفش از جمله چسبUltra-Red™ Fluorescing 1162-M-UR، جهت چسباندن پلاستیک به فلز در کاربردهای پزشکی است. ترکیب ثبت شده‌ی Ultra-Redاز آن سبب است که این چسب‌ها تحت نور کم شدت "black"، قرمز قهوه‌ای به نظر می‌رسند که به شدت با اغلب پلاستیک‌ها که به طور طبیعی نور آبی پس می‌دهند تمایز دارند. این تضاد رنگی به بازرسی خط چسب کمک می‌کند. کارپایه های قابل چسباندن شامل پلی-کربنات، فولاد ضدزنگ، شیشه، PVC و ABS می‌باشد. شرکت Master Bond تولیدکننده‌ی چسب‌ها، درزگیرها، پوشش‌ها، بتونه‌ها، ترکیبات دربرگیری (encapsulation) و بسپار‌های سیرشده، به تازگی تولید یک نوع چسب دوجزیی اپوکسی را اعلام کرده است که گفته می‌شود این چسب رسانائی گرمائی بسیار استثنایی ایجاد می‌کند. چسب EP21AN، گفته‌ می‌شود یک عایق الکتریکی عالی است که چسبندگی بسیار خوبی روی کارپایه های گوناگون از جمله بسیاری از پلاستیک‌ها، فلزات، سرامیک‌ها و شیشه ایجاد می‌کند. هم چنین به گفته‌ی شرکت مذکور، پیوندها ثبات ابعادی مناسبی از خود نشان می‌دهند و پدیده‌ی جمع شدگی بعد از پخت به طور استثنایی پایین است. چسب جدید اپوکسی EP21AN از شرکت Master Bond که یک عایق الکتریکی عالی است، هدایت گرمایی زیاد و چسبندگی بسیار خوبی در بسیاری از کارپایه‌ها ایجاد می‌کند. شرکت Flexcon، چسب اکریلیک حساس به فشار V-778 را ارائه می‌دهد که گفته می‌شود مناسب پلاستیک‌هایی با انرژی سطحی کم مانند TPO است. این محصول نیاز به آماده‌سازی سطح TPO (به روش آستری زدن یا استفاده از شعله) را حذف می‌کند و در نتیجه در زمان و هزینه صرفه‌جویی می‌شود. به گفته‌ی این شرکت، آزمایش ها نشان می‌دهد که این چسب، چسبندگی و دوامی عالی روی TPOها و آلیاژهای پلی اولفینی و سطوح پوشش داده شده با رنگ پودری از خود نشان می‌دهد. شرکت مذکور نوارچسب‌های انتقالی از جنس اکریلیک و بسیار کارا را نیز ارائه می‌کند. شرکت Evonik Cyro LLC تولید کننده‌ی محصولات اکریلیک ویژه، به تازگی Acrifix™ از انواع عوامل چسباننده‌ی ویژه (SBAs) را تولید کرد که محصولات چسباننده‌ی جدیدی جهت استفاده با گرمانرم‌ها هستند. به گفته‌ی شرکت مذکور این چسب‌ها به طور خاص جهت چسباندن محصولات اکریلیکی Acrylite™ طراحی شده‌اند و شامل انواع زیر است: Acrifix 2R 0190 فعال‌ترین SBA چند کاره، Acrifix 2R 0195 عامل چسباننده‌ی فعال با جلای نهایی و Acrifix 1S 0117 تنها عامل چسباننده در بازار آمریکای شمالی که در متیلن کلرید حل نمی‌شود. SBAها نوعاً جهت چسباندن قطعات در معرض دید از جمله در نمایشگاه‌ها، موزه‌ها، قاب‌های عکس، روشنایی‌ها و آکواریوم‌ها استفاده می‌شوند. آماده‌سازی جهت اتصال بهتر جهت پیوند مناسب چسب، به سطوح تمیز و عاری از چربی، گریس و آلودگی‌های دیگر نیاز است. در صنایع خودرو و پزشکی به منظور بهبود اتصال قطعات به هم به آماده‌سازی سطح جهت زدودن گرد و غبار، روغن و چربی نیاز است. طبق توضیحات سامانه‌‌های آماده‌سازی سطح Enercon، حلال‌های تمیز کننده مثل تولوئن، استن، متیل اتیل کتون و تری کلرواتیلن می‌توانند استفاده شوند ولی آنها پس از تبخیر یک باقی مانده‌ی فیلم از خود به جای می‌گذارند که چسباندن را به تأخیر می‌اندازد. این شرکت محصولاتی را جهت آماده‌سازی سطح پلاستیک‌ها و مواد دیگر ارائه می‌کند تا به وسیله‌ی آنها چسبانندگی چسب‌ها، برچسب‌ها، چاپ و پوشرنگ‌زنی بهبود یابد و در موارد اکستروژن و روکش قطعات قالبی نیز کاربرد دارد. شرکت Enercon محصول جدیدی را تولید کرده است که به منظور حکاکی، تمیز کردن، فعال سازی، سترون کردن و عامل دار کردن انواع سطوح رسانا و نارسانایی که به سختی آماده می‌شوند، طراحی شده است. محصول Dyne-A-Mite™ IT Elite دارای فناوری آماده-سازی سطح پلاسمای پیشرفته‌ی blown-ion و سامانه real-time Plasma Integrity Monitoring جهت انواع فرآیندها است. این سامانه ی پودمانی قابل توسعه با چهار نوع آماده سازی سطح است که منجر به قابلیت اتصال/قطع سریع می‌شود. این محصول یک تخلیه‌ی الکتریکی blown-ion متمرکز شده تولید می‌کند به طوری که سطح ماده با سرعت بالای تخلیه‌ی الکتریکی یون‌ها بمباران می‌شود. گفته می‌شود این روش در آماده سازی و تمیزکاری سطح بسیاری از بسپارهای گرمانرم‌ و گرماسخت، لاستیک ها، شیشه و حتی سطوح رسانا بسیار مؤثر است. محصول Dyne-A-Mite™ IT Elite دارای فناوری آماده سازی سطح پلاسمای پیشرفته‌ی blown-ion جهت بالا بردن چسبندگی چسب‌ها است. یک سامانه real-time Plasma Integrity Monitoring تمام انواع فرآیندها را به دنبال دارد. فهرست راهنمای چسباندن چسب‌های شرکت Plexus کتابچه‌ی منتشر شده توسط شرکت ITW Plexus، راهنمایی جهت چسباندن پلاستیک‌ها، چندسازه‌ها و فلزات است که ده خانواده‌ی چسب معمول که به عنوان چسب‌های ساختاری نامیده می‌شوند را فهرست کرده است: اکریلیک، بی هوازی، سیانواکریلیک، اپوکسی، ذوبی (hot-melt)، متاکریلات‌ها، فنولیک، پلی یورتان، چسب حلالی و نوارچسب‌ها. به گفته‌ی این راهنما هفت مورد زیر معمول‌ترین آنهاست؛ راهنمای مذکور، مشخصات اولیه‌ی این چسب‌ها را به شرح زیر مورد تاکید قرار داده است: • چسب‌های اپوکسی، که نسبت به دیگر چسب‌های مهندسی بیشتر در دسترس هستند، پرکاربردترین چسب ساختاری هستند. پیوندهای اپوکسی استحکام برشی خیلی زیادی دارند و معمولاً صلب هستند. سامانه‌های دوجزیی بسپار/عامل پخت شکاف‌های ریز را به خوبی و بدون جمع شدگی پر می‌کنند. • چسب‌های اکریلیک سطوح کثیف‌تر و کمتر آماده ای که اغلب متصل به فلزات هستند را تحمل می‌کنند. آن‌ها با اپوکسی‌ها در استحکام برشی رقیب هستند و پیوندهایی انعطاف‌پذیر همراه با مقاومت ضربه و مقاومت در برابر ورکنی(peeling) خوبی ارائه می‌دهند. این چسب‌های دوجزیی خیلی سریع پیوند تشکیل می‌دهند. • چسب‌های سیانواکریلات سرعت پخت بسیار زیادی دارند و جهت موارد دقیق بهترین هستند. آن‌ها جزء سیالاتی با گرانروی‌ به نسبت کم بر پایه‌ی تکپارهای اکریلیک و مناسب چسباندن سطوح کوچک هستند. مقاومت ضربه‌ی ضعیفی دارند و در برابر حلال‌ها و رطوبت آسیب‌پذیرند. • چسب‌های بی‌هوازی با فقدان اکسیژن پخت می‌شوند. بر پایه‌ی بسپار‌های پلی-استر اکریلیک هستند و با گرانروی‌هایی از مایعات رقیق تا خمیرهای تیکسوتروپ و گرانرو قابل دسترس اند. • چسب‌های ذوبی (hot-melt) در حدود 80% استحکام پیوندی را در همان ثانیه‌های اول به دست می‌آورند و مواد نفوذپذیر و نفوذناپذیر را می‌توانند بچسبانند. آن‌ها معمولاً نیازی به آماده‌سازی سطحی دقیقی ندارند. این چسب‌ها به رطوبت و بسیاری از حلال‌ها غیرحساسند اما در دماهای زیاد نرم می‌شوند. • چسب‌های متاکریلات تعادلی بین کشش پذیری زیاد، استحکام برشی و استحکام در برابر پوسته شدن به علاوه‌ی مقاومت در برابر ضربه، فشار و تصادف ناگهانی در طیف دمایی گسترده ایجاد می‌کنند. این مواد فعال دوجزیی بدون آماده‌ سازی سطح در پلاستیک‌ها، فلزات و چندسازه‌ها می‌توانند استفاده شوند. آن‌ها در برابر آب و حلال‌ها مقاومت می‌کنند تا یک پیوند نفوذناپذیر ایجاد شود. • چسب‌های پلی یورتان نوعاً دوجزیی هستند و به ویژگی‌های انعطاف پذیری و چقرمگی حتی در دماهای کم معروفند. آن‌ها مقاوت برشی خوب و همچنین مقاومت عالی در برابر آب و رطوبت هوا دارند، اگرچه یورتان‌های پخت نشده در برابر رطوبت و دما حساسند. واژه‌های اختصاصی چسب Adhesive چسباندن Bonding اتصال دادن – پیوند دادن Jointing جوش دادن – جوشکاری Welding چسب بر پایه‌ی سیانو اکریلات Cyanoacrylate-based adhesive مونتاژ فراصوتی Ultrasonic assembly جوشکاری ارتعاشی Vibration welding جوشکاری خطی Linear welding جوشکاری مالشی خطی Linear friction welding جوشکاری چرخشی Spin welding ارتعاش زاویه‌ای Angular vibration جوشکاری دورانی Orbital welding جوشکاری لیزری Laser welding جوشکاری مقاومتی و القایی Resistance and induction welding تولیدکننده‌ی تجهیزات اصلی Orginal Equipment Manufacturer (OEM) عوامل چسباننده‌ی ویژه Specialty Bonding Agents (SBAs) سامانه‌های توزیعِ سنجش-اختلاط Meter-mix dispensing system چسب‌های ساختاری Structural adhesives برگردان: مهندس احسان قنادیان
  12. mim-shimi

    ترموستینگ ها

    [TABLE=class: pn-listpages-table-border, width: 100%, align: center] [TR] [TD=colspan: 2, align: right]ترموستينگ [/TD] [/TR] [TR] [TD=align: justify][/TD] [TD=class: pn-normal, align: justify]ترموست (به انگليسي: Themoset) يا گرماسخت به پليمرهايي گفته مي‌شود كه در اثر اعمال حرارت در آنها پيوندهاي عرضي با واكنش‌هاي شيميايي ايجاد مي‌شود و در نتيجه وزن مولكولي متوسط آنها بالا رفته و به حالت يكپارچه صلب درمي‌آيند. ترموستها ۱) سيليكونها : سيليكونها داراي مقاومت حرارتي بسيار خوبي هستند . خواص مكانيكي با تغيير درجه حرارت تغيير كمي ميكند .يكي از مواد تشكيل دهنده اين ماده سيليسيم است كه ديگر پلاستيكها چنين نيستند. سيليكونها بعنوان تركيبات قالبگيري ، رزينهاي ورقه اي و بعنوان عايق در موتورهاي برقي استفاده مي شود اما مقاومت آنها در مقابل مواد شيميايي كم است . ۲) پلي استرها : پلاستيكهاي پلي استر ، داكرون ، ديپلون و ويبرين داراي مقاومت خوردگي شيميايي ضعيفي هستند .مورد استفاده اصلي پلي استر ها در كامپوزيتها بصورت الياف مي باشد . مثلا كامپوزيت پلي استر تقويت شده و شيشه داراي چنا ن مقاومتي ميشود كه در بدنه اتومبيل و قايق مورد استفاده مي گردد . ۳) فنوليكها : مواد فنوليكي(باكليت) ،دارز ، رزينوكس از قديمي ترين و معروفترين پلاستيكها هستند .اين مواد عمدتا بر اساس فنول فرم آلدييدها هستند. كاربردهاي آن عبارتند از : بدنه راديو ، تلفن ، پريز ، پمپ ، سر دلكو و غلطكها . [/TD] [/TR] [/TABLE] منبع: پترونت
  13. sookut

    لاستیک ها و پلاستیکها

    لاستیکها از ویژگی برجسته لاستیکها مدول الاستیسیته پایین آنها است همچنین مقاومتشیمیایی و سایشی و خاصیت عایق بودن آنها باعث کاربردهای بسیار در زمینه خوردگیمیگردد . مثلا لاستیکها با اسید کلریدریک سازگارند و به همین دلیل لوله ها وتانکهای فولادی با روکش لاستیکی سالهاست مورد استفاده قرار میگیرند . نرمی لاستیکها نیز یکی دیگر از دلایل کاربرد فراوان این مواد میباشد مانندشیلنگها، نوارها و تسمه ها ، تایر ماشین ‍‍و … لاستیکها به دو دسته تقسیم میشوند : 1. لاستیکهای طبیعی 2.لاستیکها ی مصنوعی بطور کلی لاستیکهای طبیعی دارای خواص مکانیکی بهتری هستند مانند مدول الاستیسیتهپایینتر ، مقاومت در برابر بریدگی ها و توسعه آنها اما در مو رد مقاومت خوردگیلاستیکهای مصنوعی دارای شرایط بهتری هستند .
  14. همیشه دیدن تکنولوژی هایی که روزی آرزوی رسیدن به آنها را داشتیم و پس از سالها در اختیارمان قرار میگیرند،لذت بخش است.اکنون کمپانی Bridgestone یکی از دیگر از آرزوهای بشریت را تولید نموده است.این کمپانی با استفاده از رزین لاستیک های بدون هوا و مشبکی ایجاد کرده که میتوانند براحتی وزن خودرو را تحمل کنند. این تایرها که با نام non-pneumatic شناخته میشوند نمونه اولیه و حقیقی از طرحی که هفت سال پیش توسط Michelin ارائه شد هستند،این تایرها کاملا قابل بازیافت میباشند و مهم ترین تفاوت آنها با لاستیک های معمولی در ساختار داخلی تایر و پره های لاستیکی حمایت کننده است که با مقاومت و استحکام بیشتر نسبت به تایرهای معمولی قادر به عبور از موانع سخت و دشوار بدون ایجاد نگرانی هایی مانند پنچر شدن است. این تایرها برای اولین بار در نمایشگاه Tokyo Motor ژاپن رونمایی شدند اما هنوز تاریخ انتشار و قیمت مشخصی از آنها در دست نیست،همچنین شرکت سازنده تایرها اعلام کرده است که در حال آزمایش بیشتر این تایر در وسایل نقلیه الکتریکی کوچک میباشد.
  15. مطالعات اخیر توسط دو شرکت European Bioplastics و European Polysaccharide Network of Excellence نشان می دهد که پلاستیک های با پایه پلیمرهای طبیعی این توانایی را دارند که در بیش از ۹۰% مصارف جایگزین پلاستیک های مصنوعی شوند. با این حال این پیش بینی تا آینده نزدیک به دلیل پایین بودن قیمت نفت، بالا بودن هزینه تولید، و ظرفیت محدود تولیدات با پایه پلیمر های طبیعی، بر آورده نخواهد شد. ظرفیت تولید پلاستیک طبیعی در سال ۲۰۰۷ مقدار ۳۶۰,۰۰۰ تن اعلام شده است که تنها ۰٫۳% کل پلاستیک تولید شده بوده و پلاستیک های مصنوعی بیشترین میزان تولید را داشته است. با این حال بازار پلاستیک های طبیعی از سال ۲۰۰۳ تا سال ۲۰۰۷ به میزان ۳۸% رشد داشته است. بر اساس این گزارش ظرفیت تولید پلاستیک با پایه پلیمر های طبیعی تا سال ۲۰۱۳ به ۲٫۳ میلیون تن خواهد رسید، یعنی رشدی معادل ۳۷% در سال. اگر این صنعت تحت یک شرایط معمول به رشد خود ادامه دهد، در سال ۲۰۲۰ تولیدات آن به ۲٫۹۴ ملیون تن در سال خواهد رسید. اما اگر زمینه برای رشد این صنعت به مقدار لازم فراهم نشود، نصف مقدار اعلام شده برای سال ۲۰۱۳ در سال ۲۰۲۰ تحقق می یابد و از سمت دیگر اگر زمینه ها به خوبی فراهم شود، شاهد افزایش ظرفیت تولید حتی تا دو برابر مقدار اعلام شده در سال ۲۰۱۳ خواهیم بود. نمودار زیر این سناریوهای مختلف را نشان می دهد. مدیر عامل شرکت European Bioplastics گفت: در گذشته پلاستیک ها توانستند جایگزین موادی مانند آهن و استیل بشوند و این اتفاق ممکن است به زودی برای پلاستیک های طبیعی بیفتد و آن ها نیز جایگزین پلاستیک های مصنوعی شوند. تا کنون پلیمرهای استاندارد و پرمصرفی از قبیل پلی اتیلن، پلی پروپیلن، PVC و یا PET، و همچنین پلیمرهای مهندسی مانند پلی آمید و یا پلی استر به صورت کامل و یا جزئی توسط مواد اولیه با منشا طبیعی جایگزین شده اند. همچنین این گزارش اطلاعات مفیدی در مورد پلاستیک های نشاسته، پلیمرها با پایه سلولز، پلی لاکتیک اسیدها، پلی اتیلن ها با منشا طبیعی، پلی وینیل کلراید با پایه پلی اتیلن طبیعی، پلی آمید ها با پایه طبیعی، پلی هیدروکسی الکانوات ها ودیگر پلیمر های طبیعی در اختیار قرار می دهد.
  16. در حال حاضر روغن های موتور به سه نوع کلی تقسیم می شوند: الف: مینرال (ارگانیک) ب: سنتتیک چ: نیمه سنتتیک (Premium) الف مینرال: روغنی است که برپایه نفت خام ساخته می شود و سالهاست در خودرو ها به کار می رود و همه ما با آن آشنایی داریم ب سنتتیک: روغنی است که از ترکیبات شیمیایی یا پولیمراسیون هیدروکربن ها (Olefins)تولید می شود نه از تصفیه نفت خام. این نوع روغن اولین بار در موتورهای جت بهکار گرفته شد و به دلیل مزایایی که نسبت به نوع مینرال داراست، در سالیان اخیر مصرف آن در خودرو ها نیز فزونی یافته است. روغن های سنتتیک انواع مختلف با مواد تشکیل دهنده متفاوت دارند که این موضوع آن ها را از لحاظ کیفیت و نوع مصرف نیز با یکدیگر متمایز می کند. از بین صد ها نوع روغن سنتتیک با فرمولاسیون های مختلف که هر یک محاسن و معایبی دارند، نوعی که برپایه Poly alpha olefins یا به اختصار(PAO) ساخته می شود و مقادیر کمی هم Esterدارد، دارای کارایی و مقبولیت بیشتری است. بیشتر روغن های سنتتیک از مزایای زیر برخوردارند: 1. کاهش مصرف روغن به دلیل عمر بیشتر آن 2. غیرخورنده و غیرسمی بودن 3. تبخیر شوندگی پایین 4. دمای سوختن بالا 5. مقاومت در برابر اکسیداسیون بالا 6. دارا بودن شاخص ویسکوزیته بالا به صورت طبیعی (عكس العمل سریع در مقابل تغییرات دما) 7. نقطه روان شدن پایین 8. قابلیت استفاده از روغن های با گستره ویسکوزیته زیاد بدون نگرانی از شکست پلیمر ها 9. کاهش مصرف سوخت تا4.2دصد نیمه سنتتیک: مخلوطی است از روغن سنتتیک و مینرال (ارگانیک). این نوع روغن کیفیت روغن های سنتتیک را ندارد اما در شرایط سخت نظیر دماهای بالا و یا بار زیاد عملکرد بهتری نسبت به نوع مینرال از خود نشان می دهد و بیشتر در وانت ها و SUV ها مصرف می شود و قیمت آن نیز کمی بیشتر از مینرال هاست. برای آگاهی از این که کدام روغن برای خودروی شما مناسب است، بهترین منبع و مأخذ دفترچه راهنمای خودرو یا برچسب های داخل محفظه موتور(در صورتی که نوع روغن مشخص نشده، معنای آن استفاده از همان نوع قدیمی مینرال است.) استفاده از روغن مینرال یا نیمه سنتتیک برای موتوری که تنها استفاده از روغن سنتتیک در آن توصیه شده، می تواند برای موتور خطرآفرین باشد اما در مقابل استفاده از روغن های سنتتیک یا نیمه سنتتیک برای موتورهایی که برای استفاده از نوع مینرال طراحی شده اند با تمهیدات خاصی، از نظر تولیدکنندگان روغن های سنتتیک بلامانع است، اما بسیاری از متخصصان به دلایل زیر این کار را نیز اشتباه و مضر می دانند: 1. هر یک از انواع مختلف روغن های سنتتیک با توجه به فرمول شیمیایی، قابلیت تطابق با برخی انواع لاستیک ها و الاستومر ها را ندارد و در نتیجه اگر از روغن سنتتیکی با فرمول خاصی برای موتورهای با واشرها و درزبندهایی که با آن فرمول روغن سازگار نباشد، استفاده شود باعث نشتی روغن و مسائلی از این قبیل خواهد شد. روغن های مینرال سبب تورم واشر ها و جلوگیری از نشتی آن ها می شوند اما روغن های سنتتیک در مورد برخی انواع واشر ها فاقد این خاصیت هستند و حتی بعضی از آن ها باعث خورده شدن برخی از انواع واشر ها می شوند. حتی استفاده از روغن سنتتیک با مواد تشکیل دهند های متفاوت با مندرجات دفترچه راهنمای خودرو، برای خودروهایی که با این نوع روغن کار می کنند نیز می تواند خطرساز باشد، چه رسد به استفاده از این نوع روغن ها در موتورهایی که برپایه استفاده از روغن مینرال طراحی شد ه اند. به عنوان مثال روغن سنتتیک برپایه Poly glycol با پلی استرها، پلی کربنیک ها،ABS، پلی ونیل کلرین ها و Buna S ، بوتیل ، Neoprene و لاستیک طبیعی سازگاری خوبی ندارد و یا روغن سنتتیک برپایه PAO نیز که بیشتر روغن های سنتتیک موجود در بازار بر این پایه هستند، سازگاری ضعیفی دارد. مزیت برخی از انواع روغن های سنتتیک و قابلیت تطابق آن ها با انواع الاستومر ها و لاستیک ها، همچنین حلالیت هر کدام در افزودنی ها و لجن موتور به همراه خواص و عدد VIهر کدام را در نمودار می بینید. 2. روغن های سنتتیک در مقایسه با روغن های مینرال با لایه نازکتری روی قطعات موتور می نشیند (به همین دلیل فاصله قطعات ثابت و متحرک موتورهایی که با روغن سنتتیک کار می کنند،کمتر است) لذا استفاده از این نوع روغن برای موتورهایی که براساس تکنولوژی قدیمی مینرال طراحی شده اند باعث نشتی پیستون خواهد شد. البته این مورد از طرف سازندگان روغن های سنتتیک با دلایل قابل قبولی رد می شود اما در عمل این مشکل در خودروهای قدیمی دیده شده است. اگر سالهاست از روغن مینرال استفاده می کنید و خودرویتان دارای تکنولوژی قدیمی است، از این نوع روغن ها استفاده نکنید اما در صورتی که خودرویی با تکنولوژی نسبتاً جدید دارید و از بی خطر بودن تعویض روغن از مینرال به سنتتیک یا نیمه سنتتیک مطمئن هستید، از نوعی که برپایه PAO ساخته شده است استفاده کنید و این موضوع را نیز از یاد نبرید که با تعویض روغن از مینرال به سنتتیک، رسوبات پخته شده روغن های مینرال از روی قطعات موتور کنده و در موتور غوطه ور می شوند و پس از مدتی موتور از کار می افتد. به همین علت قبل از این تعویض باید موتور را یا به طور کامل رسوب زدایی و یا از روغن های فلاشینگ(Flush Oil) استفاده کنید (این نوع روغن فقط مخصوص تمیزکردن موتور است)؛ به این ترتیب که روغن مینرال را بدون تعویض ***** تخلیه و روغن فلاشینگ را جایگزین کنید و اجازه دهید موتور ٢٠ دقیقه در جا کار کند، پس از آن می توانید روغن فلاشینگ را تخلیه، ***** را تعویض و روغن سنتتیک یا نیمه سنتتیک را جایگزین کنید. خلاصه برای داشتن روغن موتور خوب و مناسب... روغن پایه باید خاصیت ھای زیر را داشته باشد: بالا بودن شاخص گرانروی پایداری در برابر اکسیداسیون نقطه ریزش پایین Low Pour Point پایین بودن فراریت Low Volality با توجه به موارد بالا ...روغن موتور تولید شده دارای خاصیت ھای زیر است: داشتن گرانروری(Viscosity) مناسب برای شرایطی که بکار میرود . بالا بودن عدد شاخص گرانروی نقطه اشتعال بالا(High Flash Point) نقطه ریزش پایین(Low Pour Point) مقاومت در برابر تولید کف داشتنن خاصیت قلیایی مناسب داشتن خاصیت پاک کنندگی مناسب پایین بودن فراریت(Low Volality )
  17. خواص مکانیکی و شکل شناسی لاستیک آکریلونیتریل بوتادی ان تقویت شده با الیاف کوتاه نایلون مؤلف/مؤلفان: غلامرضا بخشنده, ; شهره سادات محسنیان, ; قاسم نادری, ; صدیقه سلطا نی نشريه علمي پژوهشي علوم و تكنولوژي پليمر
  18. موارد استفاده از فناوری نانو، اعم از نانوفیلرها و نانوکامپوزیت هاست که خواصی ویژه به لاستیک ها می دهد. بر اساس آمار BSF. بازار نانو کامپوزیت در ۲۰۰۵ به میزان ۲۰۰ میلیارد یورو و در ۲۰۱۵ به میزان ۱۲۰۰ میلیارد یورو پیش بینی شده است. در سال ۲۰۰۲ ژاپن ۱۵۰۰ میلیون یورو در زمینه تحقیقات مرتبط با فناوری نانو صرف کرده است. امروزه تحقیقات در زمینه فناوری نانو را امروزه نمی توان نادیده رها کرد. اکثر کشورهای دنیا تحقیقات و فعالیت در زمینه نانو را شروع کرده اند. مثلاً هند تولید نانوکامپوزیت SBR را شروع کرده است. همچنین، صنعت خودروی دنیا به سمت استفاده از نانوپلی پروپیلن سوق پیدا کرده و علت اصلی آن، خواص مناسب از جمله سبکی، مقاومت حرارتی و مقاومت ضربه ی این گونه موارد است. رسیدن به خواص مطلوب، ضرورت توجه به نانوفناوری را بیش از هر چیز دیگر نمایان می سازد. در این مقاله، پایداری حرارتی و بهبود خواص مکانیکی اکثر پلیمرها و بویژه لاستیک های تقویت شده توسط نانو کربنات کلسیم را مورد بررسی قرار می دهیم. به عنوان نتیجه ای تجربی، پایداری حرارتی R/nano CaCO۳ تا حد بالایی افزایش یافته و همچنین با افزایش درصد این نانو ذرات، دمای تبدیل شیشه ای تقریبا ثابت می ماند و این در حالی است که خواص مکانیکی لاستیک های تقویت شده تا حد قابل قبولی افزایش می یابد. از دیگر دلایل گرایش به افزودن نانو ذرات و بویژه نانو ذرات کربنات کلسیم، افزایش استحکام و elongation در کامپوزیت مربوطه است. با توجه به تحقیقات صورت گرفته، ۴ ماده نانومتری در صنعت لاستیک سازی کاربرد فراوانی دارند که عبارتند از: ▪ اکسید روی نانومتری ▪ نانو کربنات کلسیم ▪ الماس نانومتری ▪ ذرات نانومتری خاک رس با افزودن این مواد به ترکیبات لاستیک، به دلیل پیوندهایی که در مقیاس اتمی بین آنها و ترکیبات لاستیک صورت می گیرد، علاوه بر این که خواص فیزیکی آنها بهبود می یابد، می توان به افزایش مقاومت سایش، افزایش استحکام، بهبود خاصیت مکانیکی، افزایش حد پارگی و حد شکستگی اشاره کرد. همچنین بر زیبایی ظاهری لاستیک نیز تاثیر گذاشته و باعث لطافت، همواری، صافی و ظرافت شکل ظاهری لاستیک می شود. این خواص باعث می شوند تا محصولات نهایی، مرغوب تر، با کیفیت بالا، زیبا و در نهایت بازارپسند باشند و واجد توانایی رقابت در بازارهای داخلی و جهانی باشند. امروزه الاستومرهایی مانند لاستیک های طبیعی (NR)، پلی ایزوپروپن، لاستیک های بوتادین استایرن، لاستیک های بوتیل، Poly crylic، الاستومرهای فلوئوری و ... گستره وسیعی در تولید تایرها، لوله های داخلی، قطعات خودرو، لوازم خانگی و ساختمانی، تجهیزات کشاورزی و روکش مخازن و... دارند. الاستومرها معمولاً با کربن یا سیلسیم به عنوان پرکننده، تقویت می شوند. این تقویت خواص، عمدتا بر اساس فعل و انفعالات فیزیکی بین زمینه و *****ها صورت می گیرد. در سال های اخیر، افزودن نانو ذرات ترکیبات مختلف به منظور بهبود خواص لاستیک ها و به طور خاص تایرها، کاربرد فراوانی پیدا کرده است. این نانو ذرات عاملی برای سفت تر شدن و بهبود خواص مکانیکی و حرارتی شده اند. از جمله این نانو ذرات می توان به ذرات رس، nano SiO۲، nano Al۲۰۳، nano CaCO۳ اشاره کرد که در این بین، نانو ذرات کلسیم کربنات به دلیل صرفه اقتصادی، دسترسی فراوان و نسبت ابعاد به حجم قابل قبول، گسترش بیشتری یافته اند. ● کاربرد اکسید روی نانومتری (NanoZnO) در لاستیک اکسید روی نانومتری ماده ای غیرآلی و فعال است که کاربردی گسترده در صنعت لاستیک سازی دارد. کوچکی کریستال ها و خاصیت غیرچسبندگی آنها باعث شده است که اکسید روی نانومتری به صورت پودرهای زردرنگ کروی و متخلخل باشد. از جمله خصوصیات استفاده از این تکنولوژی در صنعت لاستیک، می توان به پایین آمدن هزینه ها، بازدهی بالا، ولکانیزاسیون خیلی سریع و هوشمند و دامنه دمایی گسترده اشاره کرد. اثرات سطحی و فعالیت بالای اکسید روی نانومتری ناشی از اندازه بسیار کوچک، سطح موثر بسیار زیاد و کشسانی خوب آن است. استفاده از اکسید روی نانومتری در لاستیک باعث بهبود خواص آن می شود، از جمله می توان به زیبایی و ظرافت، صافی و همواری شکل ظاهری، افزایش استحکام مکانیکی لاستیک، افزایش مقاومت سایشی (خاصیت ضد اصطکاکی و سایش)، پایداری دمایی بالا، طول عمر زیاد و همچنین افزایش حد پارگی ترکیبات لاستیک اشاره کرد که تمامی آنها به صورت تجربی ثابت شده است. بر اساس نتایج به دست آمده می توان نتیجه گرفت که بهبود خواص فیزیکی لاستیک در اثر اضافه شدن ZnO ناشی از پیوند ساختار نانومتری اکسید روی با مولکول های لاستیک است که در مقیاس اتمی صورت می گیرد. اکسید روی نانومتری در مقایسه با اکسید روی معمولی دارای اندازه بسیار کوچک اما سطح موثر بسیار زیاد بوده و از لحاظ شیمیایی بسیار فعال و همچنین به دلیل پیوندهای بین اکسید روی نانومتری و لاستیک در مقیاس مولکولی خواص فیزیکی و خواص مکانیکی نظیر حد پارگی، مقاومت سایشی و ... ترکیبات لاستیک را بهبود می بخشد. ● کاربرد نانوکربنات کلسیم در لاستیک نانوکربنات کلسیم به طوری گسترده در صنایع لاستیک به کار می رود زیرا اثراتی بسیار خوب در مقایسه با کربنات معمولی بر خواص و کیفیت لاستیک دارد. استفاده از نانوکربنات کلسیم در صنایع لاستیک باعث بهبود کیفیت و خواص ترکیبات لاستیک می شود. از جمله مزایای استفاده از نانوکربنات کلسیم می توان به توانایی تولید در مقیاس زیاد، افزایش استحکام لاستیک، بهبود بخشیدن خواص مکانیکی (افزایش استحکام مکانیکی) و انعطاف پذیر شدن ترکیبات لاستیک، اشاره کرد. علاوه بر بهبود خواص فیزیکی، ترکیبات لاستیک در شکل ظاهری آنها نیز تاثیر می گذارد و زیبایی و ظرافت به آنها می بخشد که این خود در مرغوبیت کالا و بازارپسندی آن تاثیری بسزا دارد. نانوکربنات کلسیم سبک بیشتر در پلاستیک و پوشش دهی لاستیک به کار می رود. برای به دست آوردن مزایای یاد شده، نانوکربنات کلسیم به لاستیک های طبیعی و مصنوعی نظیر NP،EPDM،SBS،BR ،SBR اضافه می شود. نتایج به دست آمده نشان می دهند که استحکام لاستیک، بسیار بالا می رود. استحکام بخشی نانوکربنات کلسیم، ناشی از پیچیدگی فیزیکی پیوستگی در پلیمرهای این ماده و واکنش های شیمیایی ناشی از سطح تعمیم یافته آن است. نانوکربنات کلسیم، سختی لاستیک و حد گسیختگی پلیمرهای لاستیک را افزایش داده و حداکثر توانی که لاستیک می تواند تحمل کند تا پاره شود را بهبود می بخشد. همچنین، مقاومت لاستیک را در برابر سایش افزایش می دهد. به کار بردن نانوکربنات کلسیم، هزینه ها را کاهش داده، سود زیادی را به همراه دارد و باعث به روز شدن تکنولوژی و توانایی رقابت در عرصه جهانی می شود. به طور کلی، نانوکربنات کلسیم در موارد زیادی به طور کلی یا جزئی، با هدف افزایش استحکام ترکیبات لاستیک، به آ نها افزوده می شود. ● کاربرد ساختارهای نانومتری الماس در لاستیک الماس نانومتری، به طوری گسترده در کامپوزیت ها و از جمله لاستیک ها، مواد ضد اصطکاک و مواد لیزکننده، به کار می رود. این ساختارهای نانومتری الماس با روش احتراق، تولید می شوند و خواص برجسته آنها عبارتند از: ۱) ساختار کریستالی (بلوری) ۲)سطح شیمیایی کاملا ناپایدار ۳) شکل کاملا کروی ۴) ساختمان شیمیایی بسیار محکم ۵) فعالیت جذب سطحی بسیار بالا در روسیه، الماس نانومتری با درصدهای مختلف در لاستیک طبیعی، Poly Soprene Rubber, FluorineRubber با هدف ساخت لاستیک هایی که در صنعت کاربرد دارند (تایر خودروها، لوله های انتقال آب و ...) مورد استفاده قرار می گیرد. نتایج به دست آمده نشان می دهند که با افزودن ساختارهای نانومتری الماس به لاستیک ها، خواص آنها به شکلی قابل توجه بهبود می یابد، مثلا: ▪ ۴ تا ۵ برابر شدن خاصیت انعطاف پذیری لاستیک ▪ افزایش ۲ تا ۵/۲ برابری درجه استحکام ▪ افزایش حد شکستگی تا حدود ▪ ۳ برابر شدن قدرت بریده شدن آنها ▪ بهبود آشکار در خاصیت ضدپارگی لاستیک در دمای بالا و پایین ● کاربرد ذرات نانومتری خاک رس در لاستیک ذرات نانومتری خاک رس یکی از مواد نانومتری است که کاربردهای تجاری گسترده ای در صنعت لاستیک پیدا کرده و شرکت های بزرگ لاستیک سازی به طوری گسترده از آن در محصولات خود استفاده می کنند. با افزودن این ماده به لاستیک، خواص آن به طوری قابل ملاحظه بهبود می یابد که مهم ترین آنها عبارتند از: ▪ افزایش مقاومت لاستیک در برابر سایش ▪ افزایش استحکام مکانیکی ▪ افزایش مقاومت گرمایی ▪ کاهش قابلیت اشتعال ▪ بهبود بخشیدن اعوجاج گرمایی ● ایده های طرح ▪ افزایش دمای اشتعال لاستیک: تهیه نانوکامپوزیت الاستومرها از جمله SBR مقاوم، به عنوان مواد پایه در لاستیک سبب بهبود برخی خواص از جمله افزایش دمای اشتعال و استحکام مکانیکی بالا می شود و دلیل اصلی آن حذف مقدار زیادی از دوده است. ▪ کاهش وزن لاستیک: تهیه و بهینه سازی نانوکامپوزیت الاستومرها با وزن کم از طریق جایگزین کردن این مواد با دوده در لاستیک، امکان حذف درصد قابل توجهی دوده توسط درصد بسیار کم از نانوفیلر وجود دارد. به طوری که افزودن حدود ۳ تا ۵ درصد نانوفیلر می تواند استحکام مکانیکی معادل ۴۰ تا ۴۵ درصد دوده را ایجاد کند. بنابراین با افزودن ۳ تا ۵ درصد نانوفیلر به لاستیک، وزن آن به مقدار قابل توجهی کاهش می یابد. ▪ افزایش مقاومت در مقابل نفوذپذیری گاز: نانوکامپوزیت الاستومرها بویژه EPDM به دلیل دارا بودن ضریب عبوردهی کم نسبت به گازها (بویژه هوا) می توانند در پوشش داخلی تایر و تیوب ها مورد استفاده قرار گیرند. یکی از ویژگی های نانوکامپوزیت EPDM مقاومت بسیار بالای آن در برابر نفوذ و عبور گازهاست. این نانوکامپوزیت ها می تواند جایگزین موادی باشند که امروزه با هدف پیشگیری از نشت هوا استفاده می شوند. نانوکامپوزیت های مورد بحث از جمله الاستومرهایی هستند که می توانند در آلیاژهای مختلف با ترموپلاستیک ها، کاربردهای وسیعی را در صنعت خودرو داشته باشند. ▪ قطعات لاستیکی خودرو: نانوکامپوزیت ترموپلاست الاستومرها می توانند به عنوان ماده ای پرمصرف در صنایع ساخت و تولید قطعات خودرو به کار روند. از ویژگی های این مواد، بالا بودن مدول بالا، مقاومت حرارتی، پایداری ابعاد، وزن کم و مقاومت در برابر شعله است. نانوکامپوزیت ترموپلاستیک الاستومرهای پایه EPDM و PP می توانند تحولی چشمگیر در ساخت قطعات خودرو ایجاد کنند. ▪ افزایش مقاومت سایشی لاستیک: استفاده از نانوسیلیکا و نانواکسید روی در ترکیبات تایر زمینه ساز تحولی عظیم در صنعت لاستیک خواهد شد. با افزودن این مواد به لاستیک، علاوه بر خواصی ویژه که به لاستیک می دهند، امکان افزایش مقاومت سایشی لاستیک های تولیدی نیز وجود دارد. ▪ نسبت وزن تایر به عمر آن: با افزودن میزان مصرف یکی از نانوفیلرها، می توان مصرف دوده را کاهش داد. به بیانی دیگر، اگر وزن تایر کم شود، عمر لاستیک افزایش می یابد. بنابراین، برای بالا بردن عمر لاستیک کافی است تا با افزودن یک سری مواد نانومتری به لاستیک، عمر آن را افزایش دهیم. ● اثرات نانوکربنات کلسیم مطالعات اندکی در زمینه چگونگی تاثیر این نانو ذرات بر روی پلیمرها صورت گرفته است. هدف ما در این مقاله بررسی جزئی تاثیر نانو ذرات کربنات کلسیم بر خواص مکانیکی و حرارتی پلیمرها و در پی آن، تایرهاست. در صنعت، این تاثیرات با روش هایی دقیق و قابل قبول نظیر TGA۱، DSC۲ و UTM۳ صورت می پذیرد. ● بررسی های تجربی مواد و آماده سازی نمونه: ابعاد نانو ذرات کربنات کلسیم مورد استفاده در این آزمایش در حدود و متوسط پراکندگی آنها ۲۰ ۳۰ gr/m۲ در سطحی خاص است. این سطح، شامل اسید چرب است. تمام موارد یا دنده به کمک TGA اندازه گیری می شود. در جدول ۱، چند ترکیب پلیمری دیده می شود که درصد نانو ذرات هایی کربنات کلسیم افزوده شده به آنها، بین ۵ تا ۲۰ درصد متغیر است. برای تقویت و بهبود مواد پلیمری مورد نیاز تولید تایرها، مراحل زیر را پیش رو خواهیم داشت: جدول 1 ▪ ابتدا مواد لاستیکی را با Zno، stearic acid و antioxidant ترکیب کرده و در ماشین آسیاب دو محوره و درجه حرارت ۶۰ درجه سانتی گراد، به مدت ۵ دقیقه مخلوط می کنیم. ▪ در مرحله بعد، نانوکربنات کلسیم را به ترکیب افزوده و مانند حالت قبل، اما به مدت ۲۰ دقیقه درون آسیاب مخلوط می کنیم. ▪ در مرحله سوم، سولفورها و شتاب دهنده ها۴ افزوده شده و در دمای ۶۰ درجه سانتی گراد به مدت ۱۰ دقیقه درون آسیاب مخلوط می کنیم. ▪ ورقه حاصل از مراحل زیر، ضخامتی حدود ۲ میلی متر دارد. در این مرحله، آن را به کمک پرس داغ الکتریکی۵ جوش می دهیم این مخلوط باید به مدت ۲ ساعت در دمای ۱۶۰ درجه سانتی گراد بماند. ● خصوصیات و اندازه گیری پایداری حرارتی نمونه از ۳۰ تا ۶۰۰ درجه سانتی گراد مورد بررسی قرار گرفته و توسط یک آنالیزر )TGA ۲۹۵۰( با نرخ شارش حرارت در جو نیتروژن، محاسبه می شود. دستگاه تغییرات دمای تبدیل شیشه ای را در محدوده منفی ۱۰۰ درجه سانتی گراد تا ۱۰۰ درجه سانتی گراد با نرخ شارش حرارتی معادل و جو نیتروژن محاسبه می کند. ● بحث و تحلیل نتایج در جو نیتروژن و با کمک دستگاه TGA، خواص حرارتی یک لاستیک تقویت شده با نانو ذرات کربنات کلسیم، مورد بررسی قرار می گیرد. عامل پایداری حرارتی یک پلیمر به موارد زیر بستگی دارد: ۱( دمای آغازین تجزیه (IDT) ۲( دما در حالت بیشترین کاهش وزن (Tmax) ۳( میزان ذغال در ۸۵۰ درجه سانتی گراد که توسط TGA محاسبه می شود. نتایج مربوط به خواص حرارتی لاستیک ها در جدول ۲ ارائه شده است. همانطور که در جدول ۲ مشاهده می شود، با افزایش درصد نانو ذرات افزوده شده IDT،Tmax ،Char content افزایش یافته و به تبع آن، خواص حرارتی پلیمر مورد استفاده در تایرها، بهبود می یابد. در لاستیکی که هیچ ترکیب تقویت کننده ای به آن افزوده نشده باشد، تخریب در دمای ۳۳۰ درجه سانتی گراد آغاز می شود، در حالی که با افزودن نانو ذرات کربنات کلسیم IDT، نمونه ها حداقل ۱۵ درجه نسبت به لاستیک های فاقد افزودنی، افزایش می یابند. این نتایج را می توان با افزودن مقادیر جزیی نانو کربنات کلسیم نیز مشاهده کرد. جدول ۲ از دیگر مواردی که در این جدول مورد توجه قرار می گیرد، درصد زغال باقیمانده است نتیجه ای مشابه را می توان با افزودن نانو کربنات کلسیم به Rubber latex گرفت. در این بخش، تغییرات دمای تبدیل شیشه ای را بررسی می کنیم. این خواص، توسط DSC محاسبه و ارزیابی می شود. DSC چگونگی تاثیر نانو کربنات کلسیم را بر ترکیبات مورد استفاده در تایرها را بررسی می کند. در جدول ۳، داده های مربوط به این بررسی ارائه شده است. جدول ۳ بر اساس مندرجات ۳، با افزایش درصد نانو کربنات کلسیم افزوده شده به نمونه، Tg نیز بالا می رود. مثلا، می توان نانو کربنات کلسیم را به ترکیب پلیمری pp/rubber powder بیفزاییم تا نتیجه ای مشابه بگیریم. برری تاثیر نانوکربنات کلسیم بر خواص مکانیکی پلیمرها، بویژه لاستیک ها را می توان با اندازه گیری انرژی پارگی نیز بررسی کرد. این عامل با تست trouser beam در دمای اتاق محاسبه می شود. راهی دیگر برای محاسبه این عامل مهم، متوسط گیری از داده های به دست آمده از فرمول زیر است: که در آن، نیروی اعمالی برای کشش نمونه است و بر حسب N محاسبه می شود و t پهنای نمونه ای است که مورد تست قرار می گیرد. در شکل ۱ مقادیر مربوط به انرژی پارگی کامپوزیت حاوی نانو ذرات کلسیم کربنات بر حسب درصد نانو ذرات موجود در نمونه، نشان داده شده است. شکل ۱ همانطور که در شکل دیده می شود با افزودن نانو کربنات کلسیم تا ۱۵wt% خواص مکانیکی نمونه تا حدی قابل قبول بهبود می یابد. اگر نمونه ای فاقد افزودنی را مورد آزمایش قرار دهیم، انرژی پارگی محاسبه شده در حدود است، با افزودن تقویت کننده های مورد نظر، این میزان تا ۵۰ درصد افزایش یافته و به حدود می رسد. علت این امر آن است که با افزایش میزان نانو ذرات کربنات کلسیم، تمایل واکنش مولکول ها و ایجاد پیوند بین زنجیره های لاستیک افزایش می یابد زیرا نانو ذرات کلسیم کربنات، تفرق قابل قبولی را بین ذرات لاستیک ایجاد و در نتیجه درگیری زنجیره ها را بیشتر می کنند. بررسی چگونگی تاثیر نانو ذرات کلسیم کربنات را بر خواص مکانیکی لاستیک ها می توان با محاسبه مقادیر استحکام کششی و elongation انجام داد. با توجه به شکل ۲ که مقادیر استحکام کششی و elongation را بر حسب درصد نانو ذرات اضافه شده نشان می دهد، می توان به نتایج شکل ۲ رسید. با افزودن درصد نانو ذرات اضافه شده تا ۱۵ درصد به نمونه، می توان هر دو عامل یاد شده را بهبود بخشید. با افزایش بیشتر، استحکام کششی همچنان بیشتر می شود، اما elongation مقداری تقریبا ثابت به خود می گیرد و تغییراتی ملموس را از خود نشان نمی دهد. این موضوع، نشانگر این واقعیت است که نانو ذرات افزوده شده، باعث پراکنده شدن ذرات زمینه شده و به دنبال آن، فعل و انفعالات بین ذرات و درگیری بین زنجیره ها بیشتر می شود. شکل ۲ ● نتیجه گیری استحکام بخشی نانوکربنات کلسیم برخواسته از پیچیدگی فیزیکی ناشی از پیوستگی در پلیمرهای آن و واکنش های شیمیایی، ناشی از سطح تعمیم یافته آن است. نانوکربنات کلسیم سختی لاستیک و حد گسیختگی پلیمرهای لاستیک را افزایش داده و حداکثر توانی را که لاستیک می تواند تحمل کند تا پاره شود، بهبود می بخشد. همچنین، مقاومت لاستیک را در برابر سایش، افزایش می دهد. به کار بردن نانوکربنات کلسیم هزینه ها را پایین می آورد، سود زیادی را به همراه دارد و همچنین باعث به روز شدن تکنولوژی و توانایی رقابت در عرصه جهانی می شود. به طور کلی، نانوکربنات کلسیم در موارد زیادی با هدف افزایش استحکام لاستیک به طور کلی یا جزئی به ترکیبات آن افزوده می شود. پانوشت ۱ . Thermo Gravimetric Analysis ۲ . Differential Scanning Calorimetry ۳ . Universal Test Machine ۴ . accelerator ۵ . Electrical heated press منابع ۱. [Hidden Content] [Hidden Content] ۲. M. Morton, Rubber Technology, Van Nostrand Reinhold Company, NewYork, ۱۹۸۷, p. ۱. ۳.S.J. Park, J.S. Kim, Carbon ۳۹ (۲۰۰۱) ۲۰۱۱. ۴. S.J. Park, K.S. Cho, S.K. Ryu, Carbon ۴۱ (۲۰۰۳) ۱۴۳۷. ۵.F.L. Jin, K.Y. Rhee, S.J. Park, Matۀer. Sci. Eng. A ۴۳۵ ۴۳۶ (۲۰۰۶) ۴۲۹. ماهنامه صنعت خودرو ( [Hidden Content] )
  19. تكنولوژي و صنعت پليمر, به عنوان يكي از شاخه هاي جديد علم مواد، در سالهاي اخير كانون توجه سياستگذران مواد ايران بوده و سرمايهگذاري‌هاي عظيمي در اين بخش صورت گرفته است. با توجه به اين مسئله، برنامهريزي و سياستگذاري صحيح در زمينه توسعة صنعت پليمر ميتواند منشاء توسعه و تحول در تكنولوژي پليمر كشور شده و منجر به دستيابي به تكنولوژي ساخت و توليد پليمرهاي ويژه كه از ارزش افزودة بالا برخوردارند، گردد. در اين ميان آگاهي از روند توسعة اين صنعت در كشورهاي توسعهيافته ميتواند به برنامهريزيها و جهت‌گيري‌هاي تحقيقاتي كشور كمك نمايد. در متن زير،اشارهاي به روند فعلي علم و تكنولوژي پليمر در اروپا شده و آينده‌اي كه اروپاييان براي اين علم ترسيم مي‌كنند، بيان شده است. اهميت صنعتي توليد، تبديل و فراوري پليمرها در صنعت اروپا از اهميت بالايي برخوردار است. امروزه توليد جهاني پليمرها از توليد فولاد فراتر رفته است، به‌طوري كه اين رقم در سال 2000 بالغ بر 180 ميليون تن بوده است. سهم اروپا از اين مقدار حدود 28 درصد (50 ميليون تن)، معادل با 100 ميليارد يورو مي­باشد. فراوري پلاستيك‌ها متمايز از توليد(سنتز) پلاستيك‌ها است و مشخصه و نيروي كار مخصوص به خود را دارا است. زماني كه سنتز پليمرها در سراسر جهان و همچنين در بعضي از شركت‌هاي بزرگ اروپا (صنايع شيميايي) از اهميت بالايي برخوردار است، هزاران صنعت كوچك و بزرگ اروپا در فراوري پليمرها فعال ميباشند و تنها در آلمان 2500 شركت با 220000 نفر كارمند در اين زمينه پيدا ميشود. در حدود 60 درصد از توليد پليمرها، جهت تامين مواد ساختاري (Structural Material) روانه بازار ميشود و 40 درصد بقيه مواد كاركردي (Fanctional Material) را تحت پوشش قرار مي­دهند. مواد ساختاري (Structural Material) بيشتر پليمرهايي كه به عنوان مواد ساختاري و تحت عنوان "پلاستيكهاي استاندارد" توليد مي­شوند، بر پاية پلياولفينها (پلياتيلن، پليپروپيلن) و كوپليمرهاي هيدروكربني مشابه هستند. اين پليمرها داراي كاربردهاي زير هستند: بسته‌بندي (41 درصد)، ساختمان (20 درصد)، عايقهاي الكتريكي(9 درصد)، قطعات خودرو (7 درصد)، كشاورزي (2 درصد) و مواد متنوع ديگر(21 درصد). كاربرد پلاستيك‌ها به عنوان جايگزين براي مواد رايج و سنتي صنايع بسته‌بندي از قبيل فلزات، شيشه و سراميك‌ها يا به مثابه يك منبع ثابت در توسعة تكنولوژيهاي جديد (مانند ديسكهاي صوتي و تصويري) درحال تكامل صنعتي ميباشد. همچنين اخيراً با توسعة خواص فرايندپذيري و مشخصات فيزيكي پلي اولفينها (با استفاده از اختراع و سازگار ساختن كاتاليستهاي جديد كه براي كنترل بهتر ساختار ماكرومولكولي صورت گرفته است)، جايگزيني مناسب براي پليمرهاي ويژه بسيار گرانقيمت پيدا شده است. لازم به ذكر است كه پليمرهاي ويژه، جايگاه محكمي در صنعت مدرن دارند و اغلب مشخصات يك تكنولوژي پيشران را دارا ميباشند. به عنوان يك مثال در اين زمينه ميتوان به توليد، كاربرد و تكامل اپوكسي در جهت بهبود كارايي آن اشاره كرد كه به عنوان مواد عايق و بستهبندي در صنايع الكتريكي و الكترونيكي كاربرد دارد. مواد كاركردي(functional materials) پليمرهاي كاركردي داراي كاربردهاي متنوعي به عنوان افزودني‌ها، كمكفرايندها، چسبها، پوششها، منظمكنندة ويسكوزيته و روانكننده هستند. پليمرهاي كاركردي داراي زمينههاي مصرف زير ميباشند: مواد دارويي و آرايشي، در انواع غذاهاي نيم‌آماده، جوهرهاي چاپ و رنگ‌ها، روانكنندهها، به عنوان اتصالدهنده، تصفيه فاضلاب‌ها و به عنوان چسب در توليدات سخت‌افزاري و وسايل الكترونيكي كه اينها فقط مقدار كمي از كاربردها را شامل ميشود. پيشرفت جديد در پليمرهاي كاركردي، تاثيرات انقلابي در صنايع داشته است و اين مواد يك پايه تكنولوژيكي پيشران را براي سيستمهاي توليد جديد و پيشرفته ايجاد كردهاند. تهية مواد كاركردي جديد بر توسعة خطوط توليد و ماشينآلات صنايع موثر است كه يك نمونه بارز آن صنعت چاپ ميباشد كه پيشرفت در اين صنعت عمدتاً متكي بر تهيه مركبهايي جديد و بهينهشده­اي براي ماشين چاپ است كه كارايي خود را در سرعتهاي بالاي چاپ حفظ ميكنند. مشابه اين قضيه در تكنيك چاپ ليزري هم صادق است كه سرعت در اين تكنيك عمدتاً بر سرعت فرايند تحويل كاغذ كه بر پايه پليمر است، بستگي دارد. كاربرد بيوپزشكي پليمرها لازم است كه كاربردهاي بيوپزشكي پليمرها نيز ذكر گردد. پليمرها نقش فزايندهاي را در ايمپلنتها (موادي كه در داخل بدن به كار برده ميشوند)، دندانپزشكي، جراحي بافت‌ها و رگ‌ها دارند كه اين كاربردها، بازار بزرگي براي پليمرها و فعاليتهاي تحقيقي بين‌رشتهاي ايجاد كرده است. سنتز پليمرها پيشرفت در سنتز پليمرهاي مهندسي و معمولي تحت تأثير كاتاليزورهاي جديد ميباشد. تلاش براي يافتن اصول و قواعد جديد، جهت بهبود كاتاليزورهايي كه هم‌اكنون در كارخانجات بزرگ توليد پليمر دنيا رايج است، امري حياتي به حساب ميآيد. طراحي ساختار مولكولي شامل "توزيع جرم طول زنجير، شكل فضايي زيرساختار و ساختار كوپليمري"، جهت افزايش كارآيي و فرايندپذيري پليمرها، كليد اصلي رشد اين صنعت ميباشد. سنتز پليمرهاي ويژه، با هدف توليد پليمرهاي كاركردي و پليمرهاي پيشران (پليمرهاي كه موجب تحول در صنعت ميشوند) انجام ميگيرد. پليمرهاي جديد در توسعه موارد زير نقش كليدي دارند: 1) وسايل الكترو- نوري در ارتباطات مدرن (ديودهاي انتشار سبك، نمايشگرها، سنسورها، باتري‌ها) 2) كاربردهاي بيوپزشكي (لنزها، اتصال‌ها، پوست و رگ‌هاي مصنوعي). پيشرفت در شبيهسازي كامپيوتري رفتارهاي مورد انتظار از كاربرد پليمرها، ميتواند فرايند تحقيق و توسعه را سرعت ببخشد؛ اگر چه درك تئوري برهم‌كنش مولكولي پليمرها، هنوز در دوران اوليه رشد خود قرار دارد. نرم‌افزارهاي مربوط به پليمرها هنوز نتوانسته است انتظارات را برآورده سازند. مشابه اين قضيه در بررسي تئوريك و كامپيوتري فرايندهاي كاتاليزوري هم صادق است. انواع مونومرها آنقدر زياد است كه بيشتر نيازهاي ما را براي ساخت مواد مختلف تامين ميكند. بنابراين تحقيق براي توليد مونومرهاي جديد، اهميت كمتري نسبت به سنتز ساختارهاي مولكولي جديدتر بر پايه مونومرهاي موجود دارد. اكستروژن واكنشي(reactive extrusion) يا (در حالت كلي) فرايندهاي واكنشي موضوع ديگري است كه كنترل محاسباتي نسبت‌هاي واكنش‌گرها در آن بسيار مهم ميباشد. فرايندها و سنتزهاي با اهميت و ارزش بالا در بسياري مواقع باعث پيشرفتهاي جديد ميشود و اين فرايندها و سنتزها نياز به مهارت و توانايي قابل توجهي دارد. مثالها در اين زمينه عبارتند از كاربردهاي بيوپزشكي بينظير (كه وجود محصولات جانبي سمي در آنها مجاز نيست) و يا در الكترونيك ( كه ورود و باقي‌ماندن مقادير كوچكي از محصولات جانبي باعث خراب شدن وسيله ميگردد). تحليل ساختار پليمرها توسعه بيشتر روشهاي تحليلي جهت بررسي ساختار و كارآيي پليمرها در محدودة فضا و زمان، از جمله پيش‌شرطهاي لازم براي بهبود و توسعه اين مواد است. تكنيكهاي سريع و مناسب تعيين توزيع جرم مولكولي در پليمريزاسيون و يا فرايند، از اهميت بالايي برخوردار است. هم اكنون تكنيك‌هاي تحليلي بررسي ساختار اوليه (شاخهاي- فوقشاخهاي، شبكهاي و غيره), در عمل غيردقيق و غيرقابل استفاده هستند، بنابراين لازم است كه روشهاي تحليل جديد و سريع پيدا شوند. ساختار فرامولكولي خواص و كاربردهاي پليمرها و بيوپليمرها، بر پاية برهم‌كنشهاي ضعيف اما طولاني در محدودة اجزاء مولكولي ميباشد. هنوز به خوبي معلوم نشده كه چرا و چگونه اين واكنشهاي دروني منجر به ساختارهاي منظم و (در بيشتر حالات) منجر به خواص فيزيكي و مهندسي وابسته به زمان مي­شود. تعيين و ايجاد ساختار كنترل شده، مؤثرترين راه ايجاد كارايي بالا است. بهرهبرداري بيشتر از خواص ذاتي پليمرها بستگي دارد به "چگونگي كنترل برهمكنش بين اجزاء ماكرومولكول‌ها و مواد ديگر پليمري (رنگ‌دانهها، پايداركنندهها، عوامل تقويت‌كننده) در طي فرايند". فرايندهاي جديدي در مورد پليمرهاي ويژه نياز است تا خواص لازم جهت كاربرد آنها در ميكرو و ماكروالكترونيك و در مواد پزشكي كه در داخل بدن به كار برده ميشوند، را تامين كنند. مورد فوق براي پليمرهايي كه در فرايندهاي جداسازي به عنوان غشاهاي فعال يا قابل نفوذ، جاذب­ها يا مواد كروماتوگرافي به كار مي‌روند نيز صادق است. در باتري‌ها يا پيلهاي سوختي، پليمرها به عنوان مواد انتقال‌دهندة يون و مواد جداكننده عمل مي­كنند و نياز شديدي براي بهبود خواص مربوطه وجود دارد و لازم است كه دانش ما از چگونگي پديدة انتقال و ديناميك مربوط به ساختار مولكولي بيشتر شود. استراتژيهاي حامي علم پليمر فقط علم پايه براي كاربردهاي صنعتي و تأمين كالاهاي مصرفي براي مصرف‌كنندگان نيست, بلكه اين علم نقشي اساسي در پيدايش مفاهيم جديد در حوزههاي مختلف علوم دارد. مسائل مربوط به فرايندهاي شناسايي مولكولي، فرايند تبادل اطلاعات بين مولكولي و پروتئينها، مشكلات كنوني علم پليمر هستند. تكنولوژي كه در تحليل ژن و در روشهاي تركيبي تحقيقات دارو به كار برده ميشود، به طور عمده بر پايه مواد پليمري ويژه است. از طرف ديگر بايد به نقش پليمر به عنوان منبع توليد مسائلي در فيزيك نظري، علم كامپيوتر و رياضيات اشاره كرد. بنابراين، دلايل بسيار خوبي براي حمايت از علم پليمر به عنوان يكي از علوم پيش‌برنده مدرن وجود دارد. ممكن است كه تمايل صنعت براي سرمايهگذاري و تحقيقات در توليد فرايند پليمرهاي رايج و معمولي، باعث درك اشتباه گردد. چرا كه روند كنوني اين صنايع، اهداف علم پليمر را براي فرارفتن از نيازهاي كنوني اين صنايع و نيل به پليمرهاي ويژه محدود نميكند. علاوه بر اين، نيازهاي اين صنايع در مواقعي كه اين شركت‌ها ادغام و يا خريد و فروش ميشوند به خوبي تعريف نشدهاند و اين باعث ايجاد نوساني تقريبي در موقعيت تحقيقات صنعتي و توسعه رشته پليمر شده است. بنابراين، استحكام تحقيقات دانشگاهي در آن است كه در زمينههايي كه در صنعت كمبود داريم فعال شوند. نقش اتحاديه اروپا در اين زمينه مهم است و نياز است كه علم پليمر جايگاهي در برنامههاي توسعه اتحاديه اروپا داشته باشد. [Hidden Content]
  20. *mishi*

    اکسترودر

    معرفی: اکسترودر ماشینی است که به آمیزه لاستیکی و پلاستیکی تجزیه شده نیرو واردساخته تا با فشار در انتهای دستگاه از میان یک قالب عبور نموده و محصولی نواری شکل با سطح مقطع خاص تولید نماید. ماشینهای اکسترودر با کاربردهای متنوع بطور گسترده در صنعت لاستیک و پلاستیک مورد استفاده قرار میگیرند. در خط تولید، ماشینهای اکسترودر برای شکل دهی اولیه لاستیک و پلاستیک جهت عملیات بعدی و نیز برای شکل دادن به محصولات نهائی مورد استفاده قرار میگیرند. کلیه این کاربردها باعث می شوند که نیازهای عملی هر کاربرد خاص در ماشین طراحی شود و طیف گسترده طرحهای موجود ماشینهای اکسترودر نیز منعکس کننده همین مطلب است. * محصولات اکسترودری: 1- انواع شلنگها 2- ترد تایر(آج تایر) 3- سایدوال تایر( قسمت کناری رویه ی تایر 4- درزگیرها 5- پروفیلها و نوارها 6- سیمها و کابلها 7- و کلا" تمام محصولاتی که به صورت پیوسته می باشند. تقسیم بندی اکسترودر ها از نظر تغذیه: اکسترودر هایی که از روی دمای مواد مورد تغذیه آنها که برای انجام عملیات ضروری میباشد تفکیک می شوند دو دسته اند: - اکسترودر تغذیه گرم - اکسترودر تغذیه سرد معمولا" تغذیه مورد نیاز برای اکسترودر های گرم که در صنعت لاستیک به کار گرفته شده اند قبلا" طی عملیاتی جداگانه پیش گرم می شوند. در روشهای معمول اکستروژن گرم معمولا از یک میل برای این کار استفاده میشود.اکسترودر های سرد که با استفاده ازیک نوار لاستیکی یا لاستیکهای دانه ای در دمای محیط کار میکند.ثانیا" اکسترودرها را میتوان با توجه به کاربردشان طبقه بندی و تفکیک کرد. بسیاری از کارخانجات ماشینی میخواهند که اگر به اندازه کافی مؤثر نیست حداقل بتواند با موفقیت و بطور صحیح انواع آمیزه ها را با اختلاط متفاوت فرآیند نماید.در اینجا روی به حداقل رساندن زمان تعویض دای و برگرداندن ماشین به وضعیت عملیاتی مناسب و سهولت پاکسازی لازم و کافی برای به حداقل رساندن آلودگی ها ناشی از تغییر کامپاند تأکید می شود. وقتی قرارباشد دستگاهی برای یک مدت طولانی با ترکیبات لاستیکی که دارای خواص روانی و سیلانی محدودی هستند کار کند،مارپیچ سره ودای میتوانند طوری طراحی شوند تا هم میزان خروجی مواد بالا باشد و هم کنترل خوبی از لحاظ ابعاد وجود داشته باشد.همچنین علیرغم تغییرات جزئی در مواد تغذیه می توان قسمت تغذیه و تسمه کشش و نیز سیستم کنترل را طوری انتخاب کرد که کنترل ابعادی مناسب حاصل گردد. تفاوت عمده فیزیکی میان اکسترودرهای سرد وگرم در نسبت طول به قطر مارپیچشان میباشد. برای ماشینهای گرم که قسمت قابل ملاحظه ای انرژی جهت گرم کردن و پلاستیکی کردن مخلوط لاستیک روی میل انجام شده عمل مارپیچ اکسترودر صرفا" انتقال و اعمال فشار میباشد. این باعث میشود که ماشینها کوچک بوده و دارای طولهای مارپیچی بر حسب قطر آنها از 3d تا 5d باشند. علاوه بر عملیات انتقال و فشار بوسیله مارپیچ ، در اکسترودرهای سرد میبایستی مارپیچ بتواند در لاستیک کارهای مکانیکی لازم جهت بالا بردن دما و رسیدن به درجه حرارت مورد نظر را انجام دهد و نرمی مواد هنگام خروج از دای را بوجود آورد.این امر باعث میشود که مارپیچها دارای طولهایی بیشتر در محدوده 9d تا 15d باشندو حتی در بعضی کاربردها ممکن است از مارپیچهایی بزرگتر از این هم استفاده شود. اکسترودر های سرد در حد وسیعی جای انواع گرم را در خطوط تولید گرفته اند. این جایگزینی بیشتر در خطوطی صورت گرفته که با کار دراز مدت و یا دقت در اندازه گیری ابعادی صحیح مورد نظر بوده است این ماشین با پیشرفتهای قابل ملاحظه ای که ناشی از تنوع طرح های توسعه یافته و اطلاع از فنون کار بوده در بدست گرفتن بازار ماشین آلات سهم بسزایی داشتند. - قیف تغذیه : محلی است که آمیزه(مواد) وارد اکسترودر میشود. بسته به نوع تغذیه شکل قیف فرق میکند. دو چیز درمورد قیف تغذیه مهم است: 1- اندازه قیف 2- یکنواختی تغذیه ** تغذیه یکنواخت باعث تولید محصول یکنواخت میشود. -پوسته یا بدنه اکسترودر: یک استوانه فلزی است که مارپیچ را احاطه میکند.در داخل این استوانه حفره هایی تعبیه میشود تا با عبور آب سرد وگرم بتوانیم درجه حرارت اکسترودر را کنترل کنیم. اگر درجه حرارت آمیزه کنترل نشود آمیزه داغ میشود که باعث میشود محصول خروجی به صورت برشته یا سوخته دار خارج شود (یا در اصل اسکورچ شود). -مارپیچ: در یک اکسترودر با تغذیه سرد همچنان که از نامش بر می آید،آمیزه لاستیکی در درجه حرارت محیط تغذیه میشود.خوراک ممکن است بصورت نوار یا دانه باشد مارپیچ باید به مقدار کافی انرژی مکانیکی انتقال دهد تا هم آمیزه نرم شده و هم با فشار عقب برنده دای مقابله نماید. در طراحی مارپیچهای بکار برده شده در اکسترودر با تغذیه سرد ،بررسی های خاص لازم است.برای آنکه خرد شدن(Mastication) به مقدار لازم صورت گیرد باید ارتفاع پره مارپیچ کم و طول مارپیچ زیاد باشد. مارپیچ یک اکسترودر ساده دارای سه قسمت تغذیه ،قسمت انتقالی یا سنجش و قسمت فشرده شدن میباشد. هر قسمت مارپیچ نقش جداگانه ای دارد .قسمت تغذیه،مواد را از قیف تغذیه انتقال میدهد.قسمت انتقالی مواد را حرارت داده،مخلوط مینماید. قسمت فشرده سازی یکنواخت کننده است و فشار لازم برای راندن مواد از درون دای در آن ایجاد میگردد. درون مارپیچ هم کنترل درجه حرارت وجود دارد.داخل مارپیچ مجراهایی تعبیه شده که از داخل آن آب میتواند عبور کند تا کنترل درجه حرارت داشته باشیم. سرعت مارپیچ در دمای اکسترودر تأثیر زیادی دارد در مقدار تغذیه ثابت افزایش سرعت مارپیچ باعث افزایش دمای محصول خروجی از اکسترودر میشود. * سرعت ایده آل در اکسترودرهای مارپیچی: حد سرعتی است که بتواند لاستیک را از تغذیه دریافت و از جمع شدن آن در قیف تغذیه جلوگیری کند. -هد(کلگی): هدف از بکار گیری هد متعادل ساختن و یکنواخت نمودن فشار و انتقال آمیزه به سمت قالب است. شکل هد باید طوری طراحی شود تا بتواند نیازهایی را که لازم است تأمین کند: 1- تأمین حداکثر محصول خروجی بدون هیچ مشکل وبی نظمی 2- جبران تغییر شکل ناشی از خواص بازگشت الاستیک آمیزه 3- حذف نواحی ساکن و ایستا که احتمالا" در مسیر آمیزه ایجاد میشود. -قالب(دای): قالب جسمی است که بر روی کلگی(هد) قرار می گیرد و باعث می شود آمیزه هنگام خروج شکل مورد نظرما را به خود بگیرد.به طور کلی طراحی دای نیاز به مهارت وتجربه فراوان است. [Hidden Content]
  21. برگردان: مهندس کاوه ساریخانی Kaveh.sarikhani@gmail.com در این مقاله سعی شده است تا به معرفی مواد جدید ارایه شده در سال 2008 و بعد از نمایشگاه K پرداخته شود. هر چند ارائه تمام این مواد در این صفحه نمی گنجد اما سعی شده است تا به معرفی مهمترین این ترکیبات و مواد پرداخته شود. برگردان: مهندس کاوه ساریخانی Kaveh.sarikhani@gmail.com در این مقاله سعی شده است تا به معرفی مواد جدید ارایه شده در سال 2008 و بعد از نمایشگاه K پرداخته شود. هر چند ارائه تمام این مواد در این صفحه نمی گنجد اما سعی شده است تا به معرفی مهمترین این ترکیبات و مواد پرداخته شود. اولین TPE بر پایه‌ی مواد زیستی شرکت Merquinsa از اسپانیا، اولین TPV به دست آمده از منابع زیستی - کشاورزی را در جهان تولید کرده است. پلی‌ال‌های مورد استفاده برای تهیه دو گونهEco Pearl Bond و Pearl thane Eco از این سری TPV ها، همگی از منابع تجدیدپذیر مانند روغن‌های گیاهی و اسیدهای چرب تهیه شده‌اند. این شرکت، سری محصولات ECO را با محدوده‌ی میزان مواد تجدیدناپذیر از 40 تا 95 درصد را روانه بازار کرده است. گفته می‌شود که این مواد جدید خواصی معادل و در بعضی موارد بهتر از TPV های متداول در اختیار دارند. نمونه‌های اولیه این گونه‌ها فراهم شده‌اند و فعالیت برای تجاری‌سازی این محصولات در سال گذشته صورت گرفته است. از این سری از مواد، سه گونه برای قالب گیری تزریقی و پوشش‌دهی اکستروژنی در محدوده گسترده‌ای از سختی به بازار ارائه خواهند شد. کاربردهای هدف برای این مواد شامل کف کفش‌های ورزشی، قطعات الکترونیکی و خودرو است. نسبت به TPV های متداول هیچ گونه اصلاح روی فرآیند مورد نیاز نيست و قیمت این مواد نیز با مواد متداول قدیمی قابل مقایسه است. TPE دیگری بر پایه مواد زیستی توسط شرکت Arkema فرانسه معرفی شده است. نام این ماده Pebax Renew است و گفته می‌شود که اولین TPE مهندسی ساخته شده از منابع تجدیدپذیر تجاری‌سازی شده است. این ماده یک پلی اتر –‌‌‌ آمید دسته‌اي (PEBA) با میزان 20 تا 90 درصد مواد تجدیدپذیر و بر پایه روغن کرچک است. روغن کرچک هم‌چنین ماده اصلی برای تولید محصول دیگری از Arkema به‌نام Rilsan PA 11 (نایلون 11) است. این محصولات با محدوده سختی بینD25 تا D72 برای کاربردهایی مثل قطعات ورزشی، الکترونیکی و خودرو مناسب است. محصول جدید دیگر از Arkema، همبسپار پلی‌آمید با نام PLatamid HX 2656 Renew است که طبق گفته‌ها اولین چسب ذوبي (Hot Melt) 100 درصد بر پایه مواد زیستی است. این ماده ساخته شده از روغن گیاهی، به گونه‌ای طراحی شده است تا قابل اکسترود شدن به فیلم، ورق‌کاری یا الیاف بدون بافت برای کاربردهایی مثل چند لایه‌های داخلی خودرو و کاربردهای مشابه باشد. در پاسخ به علاقمندی صنایع خودروسازی و دیگر صنایع، شرکت BASF محصول نایلون 610 خود را پس از یک غیبت طولانی ارائه کرده است. این محصول دارای حدود 60 درصد اسید سباسیک روغن کرچک است. نایلون 610 در مقایسه با نایلون 6 دارای چگالی کمتر، چقرمگی بهتر در دمای كم، جذب آب کم‌تر و پایداری ابعادی بالاتر است. گروه Radici از ایتالیا نیز در سال گذشته تولید نایلون 610 را تولید کرده است. در مورد بسته‌بندی‌های زیست‌تخریب‌پذیر نیز شرکت BASF یک دانه‌ی اسفنجي قابل انبساط با نام Ecovio L را ارائه کرده است که دارای 75 درصد پلی‌لاکتیک اسید (PLA) مخلوط شده با پلی‌استر زیست‌تخریب‌پذیر Ecoflex از شرکت Basf است (این ماده از مواد پتروشیمیایی بدست آمده است). Novamont از ایتالیا نیز خبر از دو پیشرفت روی ماده بسپاری بر پایه نشاسته خود یعنی mater-Bi داده است. اول این‌که به توسعه گونه‌ای خاص برای پوشش‌دهی اکستروژنی یا لایه‌گزاری روی کاغذ با شرایط عملیاتی و ماشین‌آلات استاندارد پرداخته است. مورد دوم اینکه این شرکت Mater-Bi Nano starch را ارایه کرده است این ماده یک اصلاح کننده برای Mater-Bi است که به فیلم‌های انعطاف‌پذیر با استحکام بيشتر و ضخامت کمتر، امکان قابلیت اکسترود شدن حتی در شرایط رطوبتی پایین را می‌دهد. با این اصلاح‌کننده شفافیت فیلم‌ها نیز تا حدودی بهبود یافته است. ماده‌ی افزودنی بکار برده شده ذرات عامل‌دارشده‌ی نشاسته هستند که به طور غیر شیمیایی با ماتریس گرمانرمی مثل Mater-Bi فرآیند می‌شود. گونه‌های جدیدی از Mater-Bi با 25 تا 40 درصد نانونشاسته در سال گذشته ارائه شده‌اند. شرکت صنایع Toray از کشور ژاپن نیز در حال کار بر روی آلیاژ های نانو می‌باشد که شامل مقادیر بسیار کمی از گرمانرم‌های مهندسی متداول در مقیاس نانو می‌باشد که در ماتریسی از زیست‌بسپاري PLA پخش شده‌اند. در سال 2005، این شرکت به منظور افزودن مقاومت حرارتی و شعله در بدنه رایانه‌های قابل حمل (Lap Lop) ، پلی‌کربنات را با PLA مخلوط کرد. سپس، Toray یک شارژ تلفن همراه از آلیاژ PLA را تولید کرد که در حال حاضر نیز بر روی بدنه تلفن ها فعالیت می کند. این شرکت نام Ecodear را برای مواد بر پایه ی PLA خود استفاده می کند. ترکیبات و پیشرفت های اخیر در زمینه نانو فناوری اخیرا شرکت Lehmann & Voss از آلمان یک ترکیب با سطح لیز از PEEK را ارائه کرده است که دارای الیاف کربن، پودر گرافیت و یک افزودنی انحصاری از نانو می باشد. این ماده با نام تجاری Luvocom 1105-7373 و دارای اصطکاک و سایش به مراتب کمتری نسبت به ترکیب PEEK با 10 درصد الیاف کربن و 10 درصد تفلون (PTFE) است. کاهش اصطکاک سطح، با افزایش دما از 150 به 250 درجه سانتی گراد چشمگیرتر می شود. طبق اظهارنظر شرکت، عدم استفاده از تفلون باعث بهبود فرآیند پذیری و استحکام مکانیکی می شود. ترکیبات نانو با سطح لیز با نام تجاری Luvocom برای PPS نیز در دسترس هستند. بسیاری از تحقیق و توسعه ها در زمینه نانو کامپوزیت ها شامل نانو تیوب های کربنی است. این نانوتیوب‌ها خواص هدایت الکتریکی فوق العاده‌ای را در درصدهای کمی از پر کننده به ماده می‌دهد. شرکت Lehman & Voss ترکیبات هادی الکتریسیته جدیدی از Peek را با استفاده از نانوتیوب‌های کربن تولید کرده است. شرکت Prenix Oy از فنلاند نیز ترکیب جدید Pre-Elec None را از پلی‌کربنات و نانوتیوب‌های کربن ارائه کرده است. این محصول از نظر فرآیندی پاک بوده و هدایت الکتریکی بسیار یکنواختی را در محدوده ی 104 تا 109 ohm/sq دارا می‌باشد. نایلون های جدید یکی از نوآوری ها در زمینه نایلون ها Ultramid high speed از BASF است. سه سال بعد از ارائه ی PBT جریان بالا، BASF همان تکنولوژی را برای افزایش 100 درصدی میزان جریان نایلون 66 و بدون از دست دادن خواص مکانیکی یا حرارتی آن بکار برده است. این امر با استفاده از افزودنی های آلی خاصی انجام می شود که در حین فرآیند ذوب می شوند اما با سرد شدن مذاب به شکل نانو ذرات جامدی در می آیند. در حال حاضر سه ماده‌ی جدید به عنوان نمونه ارائه شده‌اند. که با 60 و 50 درصد شیشه و هم‌چنین با شیشه و پرکننده‌های معدنی پر شده‌اند. این مواد جریان یافتن را بهبود می‌دهند و مقاومت فوق العاده‌ای آنها در برابر حرارت، اجازه تولید اجزا بزرگ موتور مثل پوشش سر سیلندر را با استفاده از این مواد می‌دهد. این شرکت هم‌چنین در حال توسعه گونه‌های با جریان روان دیگری از نایلون 6 است. یک نایلون با جریان روان از DSM نیز ارائه شده است که طبق ادعای شرکت، چرخه‌ی قالب‌گیری تزریقی برای کاربردهایی مثل لوازم خانگی را تا 20 درصد کاهش دهد. این نایلون 6 با نام تجاری Akulon ultraflow می باشد که تاب برداشتن پس از قالب‌گیری کمتری نشان می‌دهد، به راحتی رنگ می‌شود و شکل ظاهری سطحی بهتری را در نمونه‌های 50 تا 60 درصد پر شده از شیشه نشان می‌دهد. Rhodian نیز یک سری از گونه‌های نایلون 66 بسپار پر شده با جریان روان را ارائه کرده است. گونه‌هایTechnyl Star AFX زمان چرخه را تا 15 درصد کاهش می‌دهند. در گونه‌های تا 60 درصد تقویت شده، جریان‌پذیری بسیار خوبی حاصل شده است. جریان طولانی‌تر، پر شدن راحت‌تر قالب و سطح تمام شده‌ی این ماده بسیار مناسب‌تر از نایلون 66 معمولی است. در کاربردهای خودروئي، کاربردهای این ماده شامل قاب آیینه پشت سر، اجزا دنده و اجزا ساختاری صندلی می‌باشد. شرکت Lanxess نیز گونه‌های با جریان آسان و بسیار پر شده‌ی را از نایلون 6 و نایلون 66 را ارائه کرده است. یکی از این محصولات دارای 60 درصد شیشه است که مدول کششی در دمای اتاق آن 2.76 میلیون PSI یعنی دو برابر نایلون 6 تا 30 درصد شیشه است که جریان مشابهی را دارا می‌باشد. در مورد نایلون‌ها، مقاومت حرارتی بالا نیز یکی از زمینه‌های کاری کلیدی بوده است. برای کاربردهای پردما، DSM نسل جدید از نایلون 46 از محصول Stanyl خود را معرفی کرده است. Stanyl Diablo OCD2100 بیش از 3000 ساعت را در معرض دمای 230 درجه سانتیگراد با کاهش خواص مکانیکی کمتر از15 درصد را تحمل می کند، نایلون جدید به عنوان راه حلی برای مصرف رو به رشد موتورهای کوچک با فشارهای توربوری بالاتر و جریان مجدد خروج گاز (EGR) است. نایلون دما بالای جدید دیگر توسط شرکت Rhodia برای کاربردهای قطعات اتومبیل است. طبق گزارش‌هات TECHnyl HP حفظ خواص بسیار خوبی را تا 200 درجه سانتیگراد دارا می باشد و می تواند جایگزین PPA شود. این ماده همچنین استحکم شکفتگی بالایی را در دماهای بالا داراست. بر خلاف نایلون 66 استاندارد و دیگر نمونه های با مقاومت حرارتی بالا Technyl HP در برابر رشد ترک‌ها در دمای 200 درجه سانتیگراد تا 1000 ساعت مقاومت می کند. این ماده در گونه‌های با 35 و 50 درصد شیشه موجود است. لاستیک‌های سیلیکونی مایع جدید برای قالب گیری تزریقی شرکت‌های Wacker Chemie و Momentive Performance Materials پیشرفت‌های جدیدی در زمینه لاستیک‌های سیلیکونی مایع (LSR) داشته‌اند. مهم‌ترین این محصولات از این خانواده تجاری از كائوچوهای کاملا فلوئورینه سیلیکونی مایع (FFSL) است. پیش از این از گونه‌های سیلیکون مایع جزئی فلورینه شده (FSL) استفاده می‌شد که به سوخت دیزلی و روغن‌های با دمای بالا مقاوم بود. نمونه‌های جدید FFSL مقاومت شیمیایی کاملی را نسبت به لاستیک‌های سیلیكونی فلوئوری گرماپخت (FVMQ) افزوده‌اند. برای مثال FFSL بر خلاف FSL مقاوم به بنزین است. در زمان یکسان، FFSL با استفاده از پلاتینيم پخت سریع‌تری را نسبت به پخت پراکسیدی FVMQ دارد. محصول جدید دارای سختی Shore A از 30 تا 70 است و شامل گونه‌های مربوط به خودرو، واشر آب‌بندی و نوارهای عایق و اتصال دهنده‌ها می باشد. گونه دیگر، طبق گزارش‌هاي اولین فلوئوروسیليکون روغن‌پس‌دهنده با سختی 40A Shore دارای کاربرد در سیم‌های کمربند و اتصالات الکتریکی است که قابلیت قرار گرفتن در معرض سوخت، روغن و گاز یا هوای گرم را دارد.ماده جدید دیگر شامل خانواده‌ای از LSR هاست که دارای کمترین میزان مانایی فشاری است. اولین گونه‌ی تجاری در این خانواده Silopern است که یک محصول با سختی 30A و خود لیزشونده (Self lubricating) برای عایق‌بندی رابط‌های خودرو در محفظه‌ی موتور و کابل است. این محصول شامل 5 درصد سیال سیلیکونی است که با گذشت زمان به سطح ماده مهاجرت می‌کنند. گفته می‌شود بدون انجام عمليات پخت تكميلي، مانایی فشاری آن در دمای 175 درجه سانتیگراد و بعد از 22 ساعت تنها 10 درصد باشد. Wacker هم‌چنین LSR های روغن‌پس‌دهنده (Oil Bleeding) را برای آب‌بندی رابط‌های خودروئي ارائه کرده است. سری Elastosil LR 384X ، نسخه‌های کنونی این محصولات را ارتقا بخشیده است. گفته می‌شود که این سری از مواد بسیار راحت‌تر فرآیند می‌شوند. با اتکا به محدوده‌ی فرآیندی وسیع، نوسانات فرآیند را تحمل می‌کند. این سری از مواد هم‌چنین استحکام پارگی و کششی بيش‌تری را نسبت به گونه‌های روغن‌پس‌دهنده‌ي قبلی دارند که باعث مقاومت برشی بالا و خطر آسیب كم‌تري در حین نصب رابط‌های لبه تیز می‌شود. شرکت Wacker نیز یک جای‌گزین غیر معمول را برای محصولات روغن‌پس‌دهنده در آب بندی رابط‌های خودروئی ارائه داده است که یک نوع LSR بدون روغن با قابلیت ایجاد سریع سطوح با اصطکاک كم بعد از قالب‌گیری است. بنابراین قطعات با لایه‌ای از روغن پوشیده نمی‌شوند و دیگر لایه‌ي روغنی وجود ندارد تا گردو غبار را جذب کند و یا این‌که سطوح دیگر در تماس با خود را آلوده به روغن کند. محصولات ساخته شده از Elastosil LR 3065 هم‌چنين دارای استحکام کششي زياد و مانایی فشار بسیار كم هستند. از جمله نوآوری‌های دیگر می‌توان به یکLSR قابل پخت با UV از شرکت Momentive برای تولید قطعات بزرگ، ضخیم و شفاف است. قطعات ساخته شده از این ماده باید در ابزاری از جنس شیشه یا بسپار شفاف قالب‌گیری شوند تا اجازه‌ی عبور نور UV را بدهد. با این مواد، یک قطعه 500 گرمی با ضخامت 80 میلیمتر به جای 20 دقیقه در 40 ثانیه پخت می‌شود. با استفاده از این پخت سرد، امکان استفاده از LSR برای قالب گیری دوباره بر روی گرمانرم‌های با مقاومت گرمائي کم‌تر وجود دارد. با این حال مسئله‌ی چسبندگی این لایه به لایه‌های زیرین می‌تواند یک مشکل باشد چرا که چسبندگی معمولا یک فرآیند فعال‌شونده با گرما است. شرکت BASF یک Ultramid seal-Fit جدید را ارائه کرده است تا خطر نقص قطعات الکتریکی ناشی از تماش با رطوبت با روغن را کاهش دهد. این پلی‌آمید خاص، چسبندگی خوبی به فلزات و دیگر نایلون‌ها و PBT دارد که در فرآیند قالب‌گیری تزریقی دو مرحله‌ای بکار می‌رود. تا به امروز، مواد گرمانرم بکار رفته در قاب‌ها دارای مشکلاتی از جمله محدودیت چسبندگی به فلزات و مشکلات تفاوت در انبساط گرمایی بودند که امکان استفاده از پوشش‌های چسبنده را بدون استفاده از چسب‌های سیلیکونی یا ذوبي یا پیش‌پوشش‌دهی فلز مشکل می‌ساخت. اما اکنون قطعات فلزی ابتدا با نایلون جدید پیش‌قالب‌گیری می‌شوند. از شرکت Akrema نیز Rilsan Clear G 350 در سال گذشته به بازار عرضه شده است. که نایلون شفاف طراحی شده برای قالب‌گیری تزریقی قاب‌های عینک، کفش‌های ورزشی، قاب‌های ***** عكاسي و عدسي‌ها و قاب‌های تلفن‌های همراه است. این ماده منعطف، چقرمه و مقاوم به مواد شیمیایی است. در بین نایلون‌های قابل استفاده در قالب‌گیری دمشی، یک گونه‌ی جدید از شرکت صنایع ube به عنوان یک راه حل برای مخازن سوخت کوچک ارائه شده است که باعث جلوگیری از نفوذ سوخت می‌شود. نایلون یک uve 1030 نایلون خاص اصلاح شده است که گرانروي مذاب بيش‌تری نسبت به HDPE دارد و دارای استحکام ضربه بالاتری نسبت به نایلون 6 معمولی است. گروه ایتالیایی Radici دو نایلون 6 جدید برای قالب‌گیری دمشی دارد. گونه‌های تقویت نشده Radilan S BMX مقاومت شیمیایی بالا برای شلنگ‌هاي سوخت دارد. در حالی‌که Radilon S BMW دارای 15 تا 20 درصد شیشه برای کاربردهای قسمت‌های موتوری خودرو است. هر دوی نایلون‌ها می‌توانند خواص حرارتی ضروری برای موتورهای بنزینی و دیزلی را تامین کنند. محدوده‌ای از نایلون‌های جدید برای جای‌گزینی با فلز، توسط EMS – Grivory معرفی شده‌اند. Grivory GVX یک PA با 50 تا 70 درصد شیشه برای قالب‌های فرمان خودرو و قطعات موتور است که مدول كشساني تا 4.2 میلیون psi و امکان قالب‌گیری تزریقی در فشار کم را دارد. علاوه بر این، Grivory LFT یک PA با الیاف بلند جدید با انرژی جذب، مقاومت خزش و گرمائي بالا برای کاربردهای صنعتی و خودرو است. Grivory یک PPA جدید با دمای مذاب بالا (295 درجه سانتی گراد) است که دارای پایداری ابعادی بالا و خزش پایین است. یک گونه تقویت نشده دارای استحکام مذاب زياد و خواص سدگری عالی برای شیلنگ‌های سوخت اکسترود شده است. EMS – Grivory جریان خوب و مقاومت ضربه قاچ‌دار تا 40 kj/m2 دارد. مدول كشسان 61.2 میليون psi آن مشابه با دیگر مواد جایگزین فلز مانند PPS پر شده با شیشه و پلی‌سولفون است. بازار مصرف این ماده شامل کاربردهای صنعتی، پزشکی، دریایی، ورزشی است. شرکت ایتالیایی Lati محدوده‌ی نایلون‌ها و آمیزه های PPS جایگزین فلز خود را در کاربردهای بهداشتی، حرارتی و سیستم لوله‌کشی آب توسعه داده است. گونه‌های جدید Latigloss و Latamid، نایلون 66 دارای حداکثر 60 درصد شیشه هستند و اظهار شده است که استحکام قابل مقایسه با آلومینیم دارند. گونه‌های Laramid PPA با الیاف شیشه یا کربن و یا پركننده‌های معدنی با هدف کاربرد در بدنه پمپ هستند، در حالی‌که آمیزه‌های Larton PPS در شیرها بکار می‌روند و دارای حداکثر 40 درصد الیاف شیشه هستند. بسپارهای پركار شرکت BASF اولین پلی فنیل سولفون (PPSU) خود را سال گذشته تحت نام تجاری ultrason 3010 به بازار ارائه کرد. این پلاستيك‌هاي گرمانرم بی‌ريخت، شفاف، پر دما، مقاوم به مواد شیمیایی و ذاتا مقاوم به شعله است و به نظر می‌رسد که خواص کلی آن مشابه با Radel R – 5000 از بسپارهای پیش‌رفته Solvay باشد، با این تفاوت که دمای HDT برای Ultrason P در 264 psi برابر با 385 درجه فارنهایت است که 20 درجه کمتر از Radel R است. آلیاي دما بالا و دارای استحکام بالای جدیدی از شرکت Victrex که ارائه شده است که شامل victrex peek و پلی‌ایمید گرمانرم Extem از Sabic Innvative Plastics می باشد. مجموعه max بر طبق گزارش‌ها کارایی مکانیکی عالی را در محدوده‌ی دمایی 150 تا 275 درجه سانتی‌گراد ارائه می‌دهد. گونه‌های پر نشده آن شامل M1000 غنی از PEEK و M2000 غنی از TPI است. پتانسیل‌های بازار برای این محصول شامل فرآیندهاي نفتي و گازي و نیمه رساناهاست.شرکت SABIC آمیزه‌سازی این محصول و VIctrex بازاریابی آن را به عهده دارد. شرکت ایتالیایی Lati نیز خانواده‌ی جدیدی از تقویت‌شده‌ها با الیاف کربن را ارائه کرده است که شامل آميزه‌هايي با سختی بسیار زياد نایلونPEEK, PPS, PPA, است. بسته به نوع بسپار و میزان پرکننده مدول كشسان می‌تواند تا 7.25 میلیون psi بالا رود که در مقایسه با مدول 2.2 میلیون psi برای با الياف کربن، قابل توجه است. هدف‌های کاربرد این مواد در قطعات تحت بار هوا فضا ، خودرو و پزشکی است. شرکت آمریکایی RTP، الیاف بسیار بلند PEEK (VLF) را برای کاربردهای نظامی معرفی کرده است. محصول RTP 2299 X108 578 دارای 50 درصد الیاف شیشه و دارای مقاومت ضربه آيزود برابر با j/m 240 است که این مقدار 65 درصد بیشتر از PEEK تقویت شده با 50 درصد الیاف کوتاه شیشه است. مدول خمشی آن mpa 19306 و دمای HDT آن در 1.8 mpa برابر با 316 در جه سانتیگراد است. کاربرد این آميزه‌ي جدید در بست‌ها، فرآیندهاي نفتي و کمپرسورهاست. شرکت بسپارهای پیشرفته‌ی Solvay،خانواده‌یSolviva را ارائه کرده است که مواد زیستی جهت کاربردهای قطعات پزشکی قابل کاشت درون بدن هستند. این مواد شامل PEEK، PPSU، پلی‌سولفون و گونه‌های پلی فنيلن خود تقویت شده برا ی اکستروژن و تزریق هستند. شرکت مواد شیمیایی Zeon در حال توسعه‌ي گونه‌ی جدید از بسپارهای الفینی حلقوی خود با نام Zeonex برای تجهیزات ضبط و آزمایش DVD های Blu – Ray با ظرفیت بالاست. Zeonex 34cr با شفافیت بالا مناسب برای عدسي‌ها و منشورهاست. Ticana پنج استال جدید را به بازار روانه کرده است که محدوده‌ای از مشخصات خاص را فراهم می‌کنند. محصول Hostaform Anti – Crob دارای مقاومت در برابر باکتری در مقیاس مولکولی است که در برابر آب جوش نیز مقاومت بوده و دارای تاییدیه FDA برای تماس مستقیم مواد غذایی است. در قطعات داخلی خودرو، گونه‌یHostaform جدید بدون رنگ شدن دارای ظاهر متالیک و براق است. آن‌گونه که گزارش شده است، این ماده دارای سختی بیشتری نسبت به آلیاژهای PC/ABS است. گونه‌ي جدید در دستگیره درب Honda Civic استفاده شده است. Hostaform c9021XAP LS نیز ماده‌ی جدیدی است که برای نشانه‌گذاری لیزری کلیدها و دستگیره‌های کنترلی در قطعات داخلی وسیله نقلیه کاربرد دارد. نسل دوم استال‌های کم بو با نام Hostaform XAP است که گزارش‌ها، به مقدار قابل توجهی نسبت به گونه‌های قبلی دارای بوی کمتری است. Hostafarom Ec140xf نیز یک استال رسانای الکتریسیته جدید از شرکتTiconn برای سامانه‌هاي سوخت خودرو می باشد. این ماده در برابر سوخت‌های دیزلی که امروزه گرم‌تر هستند دارای پایداری بیشتری است. Siemens VDO این ماده را در سیستم انتقال Ford بکار برده است. واژه نامه گونه: grade پوشش‌دهی اکستروژنی: Extrusion Coating گرما ذوب: Hot Melt به آمیزه‌های گرمانرمی گفته می شود که در حالت طبیعی در دمای اتاق جامدند، اما در اثر گرما به حالت سیال در می‌آیند. از این آمیزه‌ها به عنوان چسب و پوشش استفاده می شود. چند‌لایه: Laminated زیست‌تخریب‌پذیر: Biodegradable آمیزه ی لیز: Lubricated Compound جریان بالا - جریان روان: High Plow پر دما: High Temperature: تاب برداشتن: Warpage مانایی فشاری: Compression set خود‌لیزشونده: Self Lubricating پخت تكميلي: Post Cure حرارت فعال: Heat - Activated پیش‌پوشش‌دهی: Pre Coating چقرمه: Tough قالب‌گیری دمشی: Blow Molding قاچ‌دار: Notched بی‌ريخت: Amorphous ماده‌زیستی: Bio Material روغن ‌پس‌دهنده: Oil – Bleeding اولین TPE بر پایه‌ی مواد زیستی شرکت Merquinsa از اسپانیا، اولین TPV به دست آمده از منابع زیستی - کشاورزی را در جهان تولید کرده است. پلی‌ال‌های مورد استفاده برای تهیه دو گونهEco Pearl Bond و Pearl thane Eco از این سری TPV ها، همگی از منابع تجدیدپذیر مانند روغن‌های گیاهی و اسیدهای چرب تهیه شده‌اند. این شرکت، سری محصولات ECO را با محدوده‌ی میزان مواد تجدیدناپذیر از 40 تا 95 درصد را روانه بازار کرده است. گفته می‌شود که این مواد جدید خواصی معادل و در بعضی موارد بهتر از TPV های متداول در اختیار دارند. نمونه‌های اولیه این گونه‌ها فراهم شده‌اند و فعالیت برای تجاری‌سازی این محصولات در سال گذشته صورت گرفته است. از این سری از مواد، سه گونه برای قالب گیری تزریقی و پوشش‌دهی اکستروژنی در محدوده گسترده‌ای از سختی به بازار ارائه خواهند شد. کاربردهای هدف برای این مواد شامل کف کفش‌های ورزشی، قطعات الکترونیکی و خودرو است. نسبت به TPV های متداول هیچ گونه اصلاح روی فرآیند مورد نیاز نيست و قیمت این مواد نیز با مواد متداول قدیمی قابل مقایسه است. TPE دیگری بر پایه مواد زیستی توسط شرکت Arkema فرانسه معرفی شده است. نام این ماده Pebax Renew است و گفته می‌شود که اولین TPE مهندسی ساخته شده از منابع تجدیدپذیر تجاری‌سازی شده است. این ماده یک پلی اتر –‌‌‌ آمید دسته‌اي (PEBA) با میزان 20 تا 90 درصد مواد تجدیدپذیر و بر پایه روغن کرچک است. روغن کرچک هم‌چنین ماده اصلی برای تولید محصول دیگری از Arkema به‌نام Rilsan PA 11 (نایلون 11) است. این محصولات با محدوده سختی بینD25 تا D72 برای کاربردهایی مثل قطعات ورزشی، الکترونیکی و خودرو مناسب است. محصول جدید دیگر از Arkema، همبسپار پلی‌آمید با نام PLatamid HX 2656 Renew است که طبق گفته‌ها اولین چسب ذوبي (Hot Melt) 100 درصد بر پایه مواد زیستی است. این ماده ساخته شده از روغن گیاهی، به گونه‌ای طراحی شده است تا قابل اکسترود شدن به فیلم، ورق‌کاری یا الیاف بدون بافت برای کاربردهایی مثل چند لایه‌های داخلی خودرو و کاربردهای مشابه باشد. در پاسخ به علاقمندی صنایع خودروسازی و دیگر صنایع، شرکت BASF محصول نایلون 610 خود را پس از یک غیبت طولانی ارائه کرده است. این محصول دارای حدود 60 درصد اسید سباسیک روغن کرچک است. نایلون 610 در مقایسه با نایلون 6 دارای چگالی کمتر، چقرمگی بهتر در دمای كم، جذب آب کم‌تر و پایداری ابعادی بالاتر است. گروه Radici از ایتالیا نیز در سال گذشته تولید نایلون 610 را تولید کرده است. در مورد بسته‌بندی‌های زیست‌تخریب‌پذیر نیز شرکت BASF یک دانه‌ی اسفنجي قابل انبساط با نام Ecovio L را ارائه کرده است که دارای 75 درصد پلی‌لاکتیک اسید (PLA) مخلوط شده با پلی‌استر زیست‌تخریب‌پذیر Ecoflex از شرکت Basf است (این ماده از مواد پتروشیمیایی بدست آمده است). Novamont از ایتالیا نیز خبر از دو پیشرفت روی ماده بسپاری بر پایه نشاسته خود یعنی mater-Bi داده است. اول این‌که به توسعه گونه‌ای خاص برای پوشش‌دهی اکستروژنی یا لایه‌گزاری روی کاغذ با شرایط عملیاتی و ماشین‌آلات استاندارد پرداخته است. مورد دوم اینکه این شرکت Mater-Bi Nano starch را ارایه کرده است این ماده یک اصلاح کننده برای Mater-Bi است که به فیلم‌های انعطاف‌پذیر با استحکام بيشتر و ضخامت کمتر، امکان قابلیت اکسترود شدن حتی در شرایط رطوبتی پایین را می‌دهد. با این اصلاح‌کننده شفافیت فیلم‌ها نیز تا حدودی بهبود یافته است. ماده‌ی افزودنی بکار برده شده ذرات عامل‌دارشده‌ی نشاسته هستند که به طور غیر شیمیایی با ماتریس گرمانرمی مثل Mater-Bi فرآیند می‌شود. گونه‌های جدیدی از Mater-Bi با 25 تا 40 درصد نانونشاسته در سال گذشته ارائه شده‌اند. شرکت صنایع Toray از کشور ژاپن نیز در حال کار بر روی آلیاژ های نانو می‌باشد که شامل مقادیر بسیار کمی از گرمانرم‌های مهندسی متداول در مقیاس نانو می‌باشد که در ماتریسی از زیست‌بسپاري PLA پخش شده‌اند. در سال 2005، این شرکت به منظور افزودن مقاومت حرارتی و شعله در بدنه رایانه‌های قابل حمل (Lap Lop) ، پلی‌کربنات را با PLA مخلوط کرد. سپس، Toray یک شارژ تلفن همراه از آلیاژ PLA را تولید کرد که در حال حاضر نیز بر روی بدنه تلفن ها فعالیت می کند. این شرکت نام Ecodear را برای مواد بر پایه ی PLA خود استفاده می کند. ترکیبات و پیشرفت های اخیر در زمینه نانو فناوری اخیرا شرکت Lehmann & Voss از آلمان یک ترکیب با سطح لیز از PEEK را ارائه کرده است که دارای الیاف کربن، پودر گرافیت و یک افزودنی انحصاری از نانو می باشد. این ماده با نام تجاری Luvocom 1105-7373 و دارای اصطکاک و سایش به مراتب کمتری نسبت به ترکیب PEEK با 10 درصد الیاف کربن و 10 درصد تفلون (PTFE) است. کاهش اصطکاک سطح، با افزایش دما از 150 به 250 درجه سانتی گراد چشمگیرتر می شود. طبق اظهارنظر شرکت، عدم استفاده از تفلون باعث بهبود فرآیند پذیری و استحکام مکانیکی می شود. ترکیبات نانو با سطح لیز با نام تجاری Luvocom برای PPS نیز در دسترس هستند. بسیاری از تحقیق و توسعه ها در زمینه نانو کامپوزیت ها شامل نانو تیوب های کربنی است. این نانوتیوب‌ها خواص هدایت الکتریکی فوق العاده‌ای را در درصدهای کمی از پر کننده به ماده می‌دهد. شرکت Lehman & Voss ترکیبات هادی الکتریسیته جدیدی از Peek را با استفاده از نانوتیوب‌های کربن تولید کرده است. شرکت Prenix Oy از فنلاند نیز ترکیب جدید Pre-Elec None را از پلی‌کربنات و نانوتیوب‌های کربن ارائه کرده است. این محصول از نظر فرآیندی پاک بوده و هدایت الکتریکی بسیار یکنواختی را در محدوده ی 104 تا 109 ohm/sq دارا می‌باشد. نایلون های جدید یکی از نوآوری ها در زمینه نایلون ها Ultramid high speed از BASF است. سه سال بعد از ارائه ی PBT جریان بالا، BASF همان تکنولوژی را برای افزایش 100 درصدی میزان جریان نایلون 66 و بدون از دست دادن خواص مکانیکی یا حرارتی آن بکار برده است. این امر با استفاده از افزودنی های آلی خاصی انجام می شود که در حین فرآیند ذوب می شوند اما با سرد شدن مذاب به شکل نانو ذرات جامدی در می آیند. در حال حاضر سه ماده‌ی جدید به عنوان نمونه ارائه شده‌اند. که با 60 و 50 درصد شیشه و هم‌چنین با شیشه و پرکننده‌های معدنی پر شده‌اند. این مواد جریان یافتن را بهبود می‌دهند و مقاومت فوق العاده‌ای آنها در برابر حرارت، اجازه تولید اجزا بزرگ موتور مثل پوشش سر سیلندر را با استفاده از این مواد می‌دهد. این شرکت هم‌چنین در حال توسعه گونه‌های با جریان روان دیگری از نایلون 6 است. یک نایلون با جریان روان از DSM نیز ارائه شده است که طبق ادعای شرکت، چرخه‌ی قالب‌گیری تزریقی برای کاربردهایی مثل لوازم خانگی را تا 20 درصد کاهش دهد. این نایلون 6 با نام تجاری Akulon ultraflow می باشد که تاب برداشتن پس از قالب‌گیری کمتری نشان می‌دهد، به راحتی رنگ می‌شود و شکل ظاهری سطحی بهتری را در نمونه‌های 50 تا 60 درصد پر شده از شیشه نشان می‌دهد. Rhodian نیز یک سری از گونه‌های نایلون 66 بسپار پر شده با جریان روان را ارائه کرده است. گونه‌هایTechnyl Star AFX زمان چرخه را تا 15 درصد کاهش می‌دهند. در گونه‌های تا 60 درصد تقویت شده، جریان‌پذیری بسیار خوبی حاصل شده است. جریان طولانی‌تر، پر شدن راحت‌تر قالب و سطح تمام شده‌ی این ماده بسیار مناسب‌تر از نایلون 66 معمولی است. در کاربردهای خودروئي، کاربردهای این ماده شامل قاب آیینه پشت سر، اجزا دنده و اجزا ساختاری صندلی می‌باشد. شرکت Lanxess نیز گونه‌های با جریان آسان و بسیار پر شده‌ی را از نایلون 6 و نایلون 66 را ارائه کرده است. یکی از این محصولات دارای 60 درصد شیشه است که مدول کششی در دمای اتاق آن 2.76 میلیون PSI یعنی دو برابر نایلون 6 تا 30 درصد شیشه است که جریان مشابهی را دارا می‌باشد. در مورد نایلون‌ها، مقاومت حرارتی بالا نیز یکی از زمینه‌های کاری کلیدی بوده است. برای کاربردهای پردما، DSM نسل جدید از نایلون 46 از محصول Stanyl خود را معرفی کرده است. Stanyl Diablo OCD2100 بیش از 3000 ساعت را در معرض دمای 230 درجه سانتیگراد با کاهش خواص مکانیکی کمتر از15 درصد را تحمل می کند، نایلون جدید به عنوان راه حلی برای مصرف رو به رشد موتورهای کوچک با فشارهای توربوری بالاتر و جریان مجدد خروج گاز (EGR) است. نایلون دما بالای جدید دیگر توسط شرکت Rhodia برای کاربردهای قطعات اتومبیل است. طبق گزارش‌هات TECHnyl HP حفظ خواص بسیار خوبی را تا 200 درجه سانتیگراد دارا می باشد و می تواند جایگزین PPA شود. این ماده همچنین استحکم شکفتگی بالایی را در دماهای بالا داراست. بر خلاف نایلون 66 استاندارد و دیگر نمونه های با مقاومت حرارتی بالا Technyl HP در برابر رشد ترک‌ها در دمای 200 درجه سانتیگراد تا 1000 ساعت مقاومت می کند. این ماده در گونه‌های با 35 و 50 درصد شیشه موجود است. لاستیک‌های سیلیکونی مایع جدید برای قالب گیری تزریقی شرکت‌های Wacker Chemie و Momentive Performance Materials پیشرفت‌های جدیدی در زمینه لاستیک‌های سیلیکونی مایع (LSR) داشته‌اند. مهم‌ترین این محصولات از این خانواده تجاری از كائوچوهای کاملا فلوئورینه سیلیکونی مایع (FFSL) است. پیش از این از گونه‌های سیلیکون مایع جزئی فلورینه شده (FSL) استفاده می‌شد که به سوخت دیزلی و روغن‌های با دمای بالا مقاوم بود. نمونه‌های جدید FFSL مقاومت شیمیایی کاملی را نسبت به لاستیک‌های سیلیكونی فلوئوری گرماپخت (FVMQ) افزوده‌اند. برای مثال FFSL بر خلاف FSL مقاوم به بنزین است. در زمان یکسان، FFSL با استفاده از پلاتینيم پخت سریع‌تری را نسبت به پخت پراکسیدی FVMQ دارد. محصول جدید دارای سختی Shore A از 30 تا 70 است و شامل گونه‌های مربوط به خودرو، واشر آب‌بندی و نوارهای عایق و اتصال دهنده‌ها می باشد. گونه دیگر، طبق گزارش‌هاي اولین فلوئوروسیليکون روغن‌پس‌دهنده با سختی 40A Shore دارای کاربرد در سیم‌های کمربند و اتصالات الکتریکی است که قابلیت قرار گرفتن در معرض سوخت، روغن و گاز یا هوای گرم را دارد.ماده جدید دیگر شامل خانواده‌ای از LSR هاست که دارای کمترین میزان مانایی فشاری است. اولین گونه‌ی تجاری در این خانواده Silopern است که یک محصول با سختی 30A و خود لیزشونده (Self lubricating) برای عایق‌بندی رابط‌های خودرو در محفظه‌ی موتور و کابل است. این محصول شامل 5 درصد سیال سیلیکونی است که با گذشت زمان به سطح ماده مهاجرت می‌کنند. گفته می‌شود بدون انجام عمليات پخت تكميلي، مانایی فشاری آن در دمای 175 درجه سانتیگراد و بعد از 22 ساعت تنها 10 درصد باشد. Wacker هم‌چنین LSR های روغن‌پس‌دهنده (Oil Bleeding) را برای آب‌بندی رابط‌های خودروئي ارائه کرده است. سری Elastosil LR 384X ، نسخه‌های کنونی این محصولات را ارتقا بخشیده است. گفته می‌شود که این سری از مواد بسیار راحت‌تر فرآیند می‌شوند. با اتکا به محدوده‌ی فرآیندی وسیع، نوسانات فرآیند را تحمل می‌کند. این سری از مواد هم‌چنین استحکام پارگی و کششی بيش‌تری را نسبت به گونه‌های روغن‌پس‌دهنده‌ي قبلی دارند که باعث مقاومت برشی بالا و خطر آسیب كم‌تري در حین نصب رابط‌های لبه تیز می‌شود. شرکت Wacker نیز یک جای‌گزین غیر معمول را برای محصولات روغن‌پس‌دهنده در آب بندی رابط‌های خودروئی ارائه داده است که یک نوع LSR بدون روغن با قابلیت ایجاد سریع سطوح با اصطکاک كم بعد از قالب‌گیری است. بنابراین قطعات با لایه‌ای از روغن پوشیده نمی‌شوند و دیگر لایه‌ي روغنی وجود ندارد تا گردو غبار را جذب کند و یا این‌که سطوح دیگر در تماس با خود را آلوده به روغن کند. محصولات ساخته شده از Elastosil LR 3065 هم‌چنين دارای استحکام کششي زياد و مانایی فشار بسیار كم هستند. از جمله نوآوری‌های دیگر می‌توان به یکLSR قابل پخت با UV از شرکت Momentive برای تولید قطعات بزرگ، ضخیم و شفاف است. قطعات ساخته شده از این ماده باید در ابزاری از جنس شیشه یا بسپار شفاف قالب‌گیری شوند تا اجازه‌ی عبور نور UV را بدهد. با این مواد، یک قطعه 500 گرمی با ضخامت 80 میلیمتر به جای 20 دقیقه در 40 ثانیه پخت می‌شود. با استفاده از این پخت سرد، امکان استفاده از LSR برای قالب گیری دوباره بر روی گرمانرم‌های با مقاومت گرمائي کم‌تر وجود دارد. با این حال مسئله‌ی چسبندگی این لایه به لایه‌های زیرین می‌تواند یک مشکل باشد چرا که چسبندگی معمولا یک فرآیند فعال‌شونده با گرما است. شرکت BASF یک Ultramid seal-Fit جدید را ارائه کرده است تا خطر نقص قطعات الکتریکی ناشی از تماش با رطوبت با روغن را کاهش دهد. این پلی‌آمید خاص، چسبندگی خوبی به فلزات و دیگر نایلون‌ها و PBT دارد که در فرآیند قالب‌گیری تزریقی دو مرحله‌ای بکار می‌رود. تا به امروز، مواد گرمانرم بکار رفته در قاب‌ها دارای مشکلاتی از جمله محدودیت چسبندگی به فلزات و مشکلات تفاوت در انبساط گرمایی بودند که امکان استفاده از پوشش‌های چسبنده را بدون استفاده از چسب‌های سیلیکونی یا ذوبي یا پیش‌پوشش‌دهی فلز مشکل می‌ساخت. اما اکنون قطعات فلزی ابتدا با نایلون جدید پیش‌قالب‌گیری می‌شوند. از شرکت Akrema نیز Rilsan Clear G 350 در سال گذشته به بازار عرضه شده است. که نایلون شفاف طراحی شده برای قالب‌گیری تزریقی قاب‌های عینک، کفش‌های ورزشی، قاب‌های ***** عكاسي و عدسي‌ها و قاب‌های تلفن‌های همراه است. این ماده منعطف، چقرمه و مقاوم به مواد شیمیایی است. در بین نایلون‌های قابل استفاده در قالب‌گیری دمشی، یک گونه‌ی جدید از شرکت صنایع ube به عنوان یک راه حل برای مخازن سوخت کوچک ارائه شده است که باعث جلوگیری از نفوذ سوخت می‌شود. نایلون یک uve 1030 نایلون خاص اصلاح شده است که گرانروي مذاب بيش‌تری نسبت به HDPE دارد و دارای استحکام ضربه بالاتری نسبت به نایلون 6 معمولی است. گروه ایتالیایی Radici دو نایلون 6 جدید برای قالب‌گیری دمشی دارد. گونه‌های تقویت نشده Radilan S BMX مقاومت شیمیایی بالا برای شلنگ‌هاي سوخت دارد. در حالی‌که Radilon S BMW دارای 15 تا 20 درصد شیشه برای کاربردهای قسمت‌های موتوری خودرو است. هر دوی نایلون‌ها می‌توانند خواص حرارتی ضروری برای موتورهای بنزینی و دیزلی را تامین کنند. محدوده‌ای از نایلون‌های جدید برای جای‌گزینی با فلز، توسط EMS – Grivory معرفی شده‌اند. Grivory GVX یک PA با 50 تا 70 درصد شیشه برای قالب‌های فرمان خودرو و قطعات موتور است که مدول كشساني تا 4.2 میلیون psi و امکان قالب‌گیری تزریقی در فشار کم را دارد. علاوه بر این، Grivory LFT یک PA با الیاف بلند جدید با انرژی جذب، مقاومت خزش و گرمائي بالا برای کاربردهای صنعتی و خودرو است. Grivory یک PPA جدید با دمای مذاب بالا (295 درجه سانتی گراد) است که دارای پایداری ابعادی بالا و خزش پایین است. یک گونه تقویت نشده دارای استحکام مذاب زياد و خواص سدگری عالی برای شیلنگ‌های سوخت اکسترود شده است. EMS – Grivory جریان خوب و مقاومت ضربه قاچ‌دار تا 40 kj/m2 دارد. مدول كشسان 61.2 میليون psi آن مشابه با دیگر مواد جایگزین فلز مانند PPS پر شده با شیشه و پلی‌سولفون است. بازار مصرف این ماده شامل کاربردهای صنعتی، پزشکی، دریایی، ورزشی است. شرکت ایتالیایی Lati محدوده‌ی نایلون‌ها و آمیزه های PPS جایگزین فلز خود را در کاربردهای بهداشتی، حرارتی و سیستم لوله‌کشی آب توسعه داده است. گونه‌های جدید Latigloss و Latamid، نایلون 66 دارای حداکثر 60 درصد شیشه هستند و اظهار شده است که استحکام قابل مقایسه با آلومینیم دارند. گونه‌های Laramid PPA با الیاف شیشه یا کربن و یا پركننده‌های معدنی با هدف کاربرد در بدنه پمپ هستند، در حالی‌که آمیزه‌های Larton PPS در شیرها بکار می‌روند و دارای حداکثر 40 درصد الیاف شیشه هستند. بسپارهای پركار شرکت BASF اولین پلی فنیل سولفون (PPSU) خود را سال گذشته تحت نام تجاری ultrason 3010 به بازار ارائه کرد. این پلاستيك‌هاي گرمانرم بی‌ريخت، شفاف، پر دما، مقاوم به مواد شیمیایی و ذاتا مقاوم به شعله است و به نظر می‌رسد که خواص کلی آن مشابه با Radel R – 5000 از بسپارهای پیش‌رفته Solvay باشد، با این تفاوت که دمای HDT برای Ultrason P در 264 psi برابر با 385 درجه فارنهایت است که 20 درجه کمتر از Radel R است. آلیاي دما بالا و دارای استحکام بالای جدیدی از شرکت Victrex که ارائه شده است که شامل victrex peek و پلی‌ایمید گرمانرم Extem از Sabic Innvative Plastics می باشد. مجموعه max بر طبق گزارش‌ها کارایی مکانیکی عالی را در محدوده‌ی دمایی 150 تا 275 درجه سانتی‌گراد ارائه می‌دهد. گونه‌های پر نشده آن شامل M1000 غنی از PEEK و M2000 غنی از TPI است. پتانسیل‌های بازار برای این محصول شامل فرآیندهاي نفتي و گازي و نیمه رساناهاست.شرکت SABIC آمیزه‌سازی این محصول و VIctrex بازاریابی آن را به عهده دارد. شرکت ایتالیایی Lati نیز خانواده‌ی جدیدی از تقویت‌شده‌ها با الیاف کربن را ارائه کرده است که شامل آميزه‌هايي با سختی بسیار زياد نایلونPEEK, PPS, PPA, است. بسته به نوع بسپار و میزان پرکننده مدول كشسان می‌تواند تا 7.25 میلیون psi بالا رود که در مقایسه با مدول 2.2 میلیون psi برای با الياف کربن، قابل توجه است. هدف‌های کاربرد این مواد در قطعات تحت بار هوا فضا ، خودرو و پزشکی است. شرکت آمریکایی RTP، الیاف بسیار بلند PEEK (VLF) را برای کاربردهای نظامی معرفی کرده است. محصول RTP 2299 X108 578 دارای 50 درصد الیاف شیشه و دارای مقاومت ضربه آيزود برابر با j/m 240 است که این مقدار 65 درصد بیشتر از PEEK تقویت شده با 50 درصد الیاف کوتاه شیشه است. مدول خمشی آن mpa 19306 و دمای HDT آن در 1.8 mpa برابر با 316 در جه سانتیگراد است. کاربرد این آميزه‌ي جدید در بست‌ها، فرآیندهاي نفتي و کمپرسورهاست. شرکت بسپارهای پیشرفته‌ی Solvay،خانواده‌یSolviva را ارائه کرده است که مواد زیستی جهت کاربردهای قطعات پزشکی قابل کاشت درون بدن هستند. این مواد شامل PEEK، PPSU، پلی‌سولفون و گونه‌های پلی فنيلن خود تقویت شده برا ی اکستروژن و تزریق هستند. شرکت مواد شیمیایی Zeon در حال توسعه‌ي گونه‌ی جدید از بسپارهای الفینی حلقوی خود با نام Zeonex برای تجهیزات ضبط و آزمایش DVD های Blu – Ray با ظرفیت بالاست. Zeonex 34cr با شفافیت بالا مناسب برای عدسي‌ها و منشورهاست. Ticana پنج استال جدید را به بازار روانه کرده است که محدوده‌ای از مشخصات خاص را فراهم می‌کنند. محصول Hostaform Anti – Crob دارای مقاومت در برابر باکتری در مقیاس مولکولی است که در برابر آب جوش نیز مقاومت بوده و دارای تاییدیه FDA برای تماس مستقیم مواد غذایی است. در قطعات داخلی خودرو، گونه‌یHostaform جدید بدون رنگ شدن دارای ظاهر متالیک و براق است. آن‌گونه که گزارش شده است، این ماده دارای سختی بیشتری نسبت به آلیاژهای PC/ABS است. گونه‌ي جدید در دستگیره درب Honda Civic استفاده شده است. Hostaform c9021XAP LS نیز ماده‌ی جدیدی است که برای نشانه‌گذاری لیزری کلیدها و دستگیره‌های کنترلی در قطعات داخلی وسیله نقلیه کاربرد دارد. نسل دوم استال‌های کم بو با نام Hostaform XAP است که گزارش‌ها، به مقدار قابل توجهی نسبت به گونه‌های قبلی دارای بوی کمتری است. Hostafarom Ec140xf نیز یک استال رسانای الکتریسیته جدید از شرکتTiconn برای سامانه‌هاي سوخت خودرو می باشد. این ماده در برابر سوخت‌های دیزلی که امروزه گرم‌تر هستند دارای پایداری بیشتری است. Siemens VDO این ماده را در سیستم انتقال Ford بکار برده است. واژه نامه گونه: grade پوشش‌دهی اکستروژنی: Extrusion Coating گرما ذوب: Hot Melt به آمیزه‌های گرمانرمی گفته می شود که در حالت طبیعی در دمای اتاق جامدند، اما در اثر گرما به حالت سیال در می‌آیند. از این آمیزه‌ها به عنوان چسب و پوشش استفاده می شود. چند‌لایه: Laminated زیست‌تخریب‌پذیر: Biodegradable آمیزه ی لیز: Lubricated Compound جریان بالا - جریان روان: High Plow پر دما: High Temperature: تاب برداشتن: Warpage مانایی فشاری: Compression set خود‌لیزشونده: Self Lubricating پخت تكميلي: Post Cure حرارت فعال: Heat - Activated پیش‌پوشش‌دهی: Pre Coating چقرمه: Tough قالب‌گیری دمشی: Blow Molding قاچ‌دار: Notched بی‌ريخت: Amorphous ماده‌زیستی: Bio Material روغن ‌پس‌دهنده: Oil – Bleeding
  22. كاربردهاي مستقيم و جايگزيني مواد ابداعي جديد در صنعت خودرو و بوي‍ژه در قطعات پليمري، به دليل فشارهاي شديد قيمت در حال شكل‌گيري هستند. يكي از مهمترين جايگزيني‌ها،‌ جايگزيني مواد ترموپلاستيك الاستومر (TPE) با ترموست الاستومرهاست. ترموپلاستيك الاستومرها كه گاهي «ترموپلاستيك رابرها» نيز ناميده مي‌شوند،‌ دسته‌اي از كوپليمرها يا تركيبي فيزيكي از پليمرها (عموماً يك پلاستيك و يك رابر) هستند كه هم داراي خواص ترموپلاستيك‌ها بوده و هم از خواص الاستومرها برخوردارند. اغلب الاستومرها، ترموست هستند و غيرقابل بازيافت. اين الاستومرها داراي فرايند توليد گران و نسبتاً پيچيده‌اي بوده اما خواص الاستيكي آنها كاربردهاي وسيع دارد. ترموپلاستيك‌ها داراي فرايند توليد نسبتاً آسانتري هستند. در واقع،‌ ترموپلاستيك الاستومرها مزاياي ويژه هر دو گروه مواد ترموپلاستيك و الاستومر را از خود نشان مي‌دهند. براي مثال مي‌توانند همانند ترموپلاستيك‌ها براحتي فرايند و بازيافت شده و همانند الاستومرها، خاصيت الاستيكي و جذب شوك را از خود نشان دهند. معرفي الاستومرها به صورت كلي به دو دسته ذيل تقسيم مي‌شوند: ترموپلاستيك‌ها ترموست‌ها ساختار ترموپلاستيك الاستومرها، موادي هستند كه وقتي گرم مي‌شوند،‌ مكرراً نرم/ ذوب مي‌شوند و وقتي سرد مي‌شوند، سخت مي‌گردند. در واقع، ترموپلاستيك‌ها در دماي مناسب ذوب شده و فرايند شكل‌دهي (به عنوان مثال قالبگيري يا اكستروزن) بر روي آنها اعمال شده و پس از سرد شدن، ‌شكل دلخواه را به خود مي‌گيرند. اغلب ترموپلاستيك‌ها، در حلال‌هاي مخصوص حل مي‌شوند و تا برخي درجات مي‌سوزند. دماي نرم‌شدگي يا ذوب با نوع گونه (گريد) پليمر تغيير مي‌كند. به خاطر حساسيت دمايي ترموپلاستيك‌ها مي‌بايستي مراقب تخريب، تجريه و احتراق اين مواد بود. اغلب زنجيره‌هاي مولكولي در ترموپلاستيك‌ها را مي‌توان مستقل و همانند رشته‌هاي درهم پيچيده اسپاگتي، در نظر گرفت (نمودار1). نمودار1: زنجيره‌هاي ترموپلاستيك اين مواد،‌ وقتي گرم مي‌شوند (مثلاً براي قالبگيري) لغزش زنجيره‌هاي منفرد آنها باعث جريان پلاستيك مي‌شود و وقتي سرد مي‌شوند زنجيره‌هاي مولكولي و اتمي،‌ مجدداً محكم نگه داشته مي‌شوند. خاصيت امكان تكرار چرخه ذوب و سخت شدن،‌ امكان بازيافت ترموپلاستيك‌ها را از قطعات توليدي و نيز تبديل مجدد آنها به محصول جديد را به وجود آورده است. البته با هر بار ذوب شدن، خواص كيفي محصول جديد،‌ افت خواهد كرد. در تعداد چرخه‌هاي حرارتي و سرمايشي محدوديت‌هايي تجربي وجود دارد. اين محدوديت‌ها را مي‌توان قبل از اينكه خواص ظاهري و مكانيكي ترموپلاستيك‌ها تحت تاثير قرار گيرند، به آنها اعمال كرد. ترموست الاستومرها، فقط يك تغيير شيميايي را تحمل مي‌كنند. اين امر باعث غيرقابل حل/ ذوب‌شدن دائمي آنها مي‌شود. اين فرايند ولكانيزاسيون يا پخت ناميده مي‌شود كه پس از شكل‌دهي از طريق اعمال حرارت،‌ شكل قطعه تثبيت مي‌شود و به دليل ايجاد اتصالات عرضي بين زنجيره‌هاي مولكولي،‌ امكان ذوب مجدد قطعه وجود ندارد. تفاوت اصلي ترموست الاستومرها و ترموپلاستيك الاستومرها، نوع پيوندهاي اتصالات عرضي در ساختار آنهاست. در واقع، اتصالات عرضي، عامل ساختاري بحراني اين مواد بوده و در خواص الاستيك آنها سهم بسزايي دارد. اتصالات عرضي در پليمرهاي ترموست، پيوند كووالانسي است كه طي فرايند ولكانيزاسيون ايجاد مي‌شود. اتصالات عرضي پليمرهاي ترموپلاستيك الاستومر، پيوندهاي هيدروژني،‌ يا دو قطبي ضعيف‌تر بوده و يا تنها در يكي از فازها وجود دارد. از آنجا كه مواد TPE مي‌توانند قالبگيري يا اكسترود شده و مجدداً همانند ترموپلاستيك‌ها مورد استفاده مجدد قرار گيرند، از قابليت بازيافت برخوردار بوده و مضافاً داراي خواص ويژه الاستيك رابرها نيز هستند كه به دليل دارا بودن مشخصات ترموستي، برگشت‌پذير نيستند. همانگونه كه در نمودار 2 مي‌توان ديد،‌ هنگامي كه ترموست‌ها سفت شده يا پخت مي‌شوند، اتصالاتي عرضي بين مولكول‌هاي مجاور تشكيل مي‌شوند و شبكه‌اي به هم پيوسته و پيچيده را به وجود مي‌آورد. نمودار2: شبكه به هم پيوسته ترموست الاستومر پس از پخت اين پيوندهاي عرضي، از لغزش زنجيره‌هاي منفرد جلوگيري كرده و مانع از جريان پلاستيك به هنگام افزوده شدن دما مي‌شوند. اگر بعد از تكميل پيوندهاي عرضي، دماي بيش از اندازه به ترموست الاستومر داده شود، پليمر بجاي ذوب، تخريب خواهد شد. فرايند قابليت تكرار فرايند در ترموپلاستيك الاستومرها، عمده‌ترين مزيت TPEها نسبت به ترموست رابرهاست. ديگر تفاوت‌هاي كليدي فرايند، در جدول 1 ارائه شده است. جدول 1: تفاوت‌هاي كليدي فرايند در نمودار 3، تفاوت مراحل فرايند بين توليد با TPE و رابرها نمايش داده شده است. براساس اين نمودار، كاهش مراحل توليد، كاهش زمان توليد و بازيافت محصول، كاملاً مشهود است. نمودار3: فرايند در ترموپلاستيك الاستومر و رابر مزيت‌هاي TPE نسبت به ترموست‌ها انعطاف طراحي هزينه توليد كمتر زمان فرايند كوتاهتر اختلاط كم يا بدون نياز به اختلاط بازيافت ضايعات سازگاري محصولات امكان قالبگيري دمشي امكان ترموفرم مصرف انرژي پايين‌تر كنترل كيفيت بهتر بر روي محصول فرايند ساده‌تر محدوده وسيع‌تر چگالي هزينه تمام‌شده محصول پائين‌تر به ازاي هر قطعه زيست سازگاري بهتر يكي از مزيت‌هاي اصلي كاربرد TPEها، زيبايي محصول و قدرت تزييني آنهاست. در شكل يك چند مثال از تاثيرات بصري استفاده از TPEها به جاي رابرها، ارائه شده است. شكل 1: معايب ترموپلاستيك الاستومرها در مقايسه با الاستومرها يا ترموست‌ها دسته جديد TPEها، واحد عيب عمده قيمت بالاتر مواد اوليه است. (شكل2) همچنين عدم امكان استفاده از پركننده‌هاي ارزان‌قيمت مانند دوده در آنها كه باعث مي‌شود نتوان از TPEها در توليد تاير استفاده كرد. از ديگر معايب آنها مي‌توان به مقاومت پايين حرارتي و شيميايي (در برابر روغن) اشاره كرد. همانطوريكه در شكل 2 ديده مي‌شود، مقاومت رابرهاي مقاوم مشهور، بالاتر است. البته پيشرفت‌هاي اخير باعث توليد مواد TPE با مقاومت شيميايي (در برابر روغن) و حرارتي بالا شده است. اين بهبود با افزايش قيمت مواد اوليه فلوئور و الاستومرها، سيليكون‌ها و آكريليك‌ها همراه است. جدول 2: عيوب TPEها نكته مهم، مانايي فشاري بسيار بالاي TPEهاست. سختي و مانايي فشاري، دو عامل كليدي براي دستيابي به خواص عملكردي رابرها هستند. شكل 3 مقايسه بين سختي و متنايي فشاري بين TPEها، PVC و رابرها را نشان مي‌دهد. شكل 3: مقايسه سختي و متنايي فشاري TPEها، PVC و رابرها البته بنا به اظهار سازندگان مواد اوليه، ايراد مقاومت حرارتي/شيميايي و مانايي فشاري در گريدهاي جديد توليد شده مرتفع شده است. (جدول 3). يكي از موانع جايگزيني TPE در بسياري از كاربردهاي رابرها، ضعيف‌تر بودن خاصيت مقاومت حرارتي/ آسودگي تنش اعمالي آن است. جدول 3: مزاياي توليد با TPE رويكرد جهاني و اهميت موضوع در ساخت و توليد قطعات خودرو بديهي است كه مي‌بايستي از موادي استفاده كرد كه از توانايي دستيابي به الزامات مواد و فرايند صنعت خودرو، برخوردار باشند. در جدول 4، الزامات مواد و فرايند در صنعت خودرو ارائه شده و مثال‌هاي عملي از چگونگي دستيابي و بهبود اين خواص با استفاده از قطعات توليدي با گونه‌هاي مختلف TPE مطرح شده است. مشاهده مي‌كنيد كه با استفاده از مواد TPE امكان دستيابي و بهبود تمامي خواص نظير كاهش وزن، كاهش هزينه‌هاي توليدي، نرمي سطح، براقيت پايين، مقاومت روغني، بدون بو بودن و ديگر مواد، وجود دارد. جدول 4: قابليت مواد ترموپلاستيك الاستومر در دستيابي به الزامات مواد و فرايند در صنعت خودرو TPEهاي مورد استفاده در بسياري از قطعات، از قابليت رقابت با ترموست الاستومرها برخوردارند. بويژه در تمامي نوارهاي آب‌بندي شامل نوارهاي: دور در، دور درب صندوق، زير درب‌موتور، آبگيرهاي داخلي، آبگيرهاي خارجي، آب‌بندي دور كلاف شيشه درب‌هاي جانبي، آب‌بندي دور شيشه جلو و عقب و encapهاي دور شيشه. تمامي اين نوارها، عموماً با لاستيك EPDM توليد مي‌شوند. در تصاوير مختلف شكل 4، نمونه‌هايي از نوارهاي آب‌بندي توليدي با TPEها ارائه شده است. شكل 4: نمونه نوارهاي آب‌بندي توليد شده با TPE TPEها از قابليت توليد ديگر قطعات پليمري نظير درپوش‌ها، ضربه‌گيرها، كوركن‌ها و انواع بست‌ها برخوردارند. (جدول 5) جدول 5: استفاده از TPE در توليد درپوش‌ها و كوركن هاچ در جداول 6و7، مزاياي توليد اين قطعات با TPE بيان شده است. جدول 6: مزاياي توليد درپوش‌ها و كوركن‌ها با TPE جدول 7: مزاياي توليد ضربه‌گيرها با استفاده از TPE در تصاوير مختلف شكل 5: نمونه‌هاي درپوش‌ها، كوركن‌ها و ضربه‌گيرهاي توليدشده با TPE نشان داده شده است. شكل 5: درپوش‌ها، كوركن‌ها و ضربه‌گيرهاي توليدي با TPE شكل شماتيك 6، قطعاتي را نشان مي‌دهد كه در توليد آنها،‌ رقابت TPE با الاستومرها آشكار است. شكل 6: قطعات خودروي توليدي با TPE در رقابت با الاستومرها فناوري‌هايي كه از مواد ترموپلاستيك الاستومر استفاده مي‌كنند، جايگاه خود را در صنعت خودرو كاملاً مستحكم كرده‌اند. در جدول 8، مثال‌هايي از فناوري‌هاي بهره‌گيرنده از مواد TPE در صنعت خودروي ژاپن و اروپا ارائه شده است. جدول 8: مثال‌هايي از تكنولوژي‌هاي ژاپني و اروپايي در به‌كارگيري TPE در صنعت خودرو براي آشنايي بيشتر با ميران رقابت‌پذيري PVC و TPE با رابرها در ساخت قطعات خودرويي، در جدول 9 امكان توليد قطعات مختلف با گونه‌هاي مختلف TPE و PVC ارائه شده است. مشاهده مي‌شود كه TPE به دليل نسبت بالاتر كارايي به قيمت،‌ داراي پتانسيل بالاتري در رقابت با رابرها نسبت به PVC است. در جدول 10، مقدار رابر مصرفي در هر قطعه به ازاي هر خودرو كه مي‌تواند معياري از بازار هدف براي TPE براي نوارهاي آب‌بندي دور درب‌ها و شيشه‌ها متصور است. نكته مهم اين است كه در محدوده نوارهاي دور درب، گونه مصرفي TPE ترموپلاستيك الاستومراليفينيك بوده، اما در نوارهاي دور شيشه، ترموپلاستيك الاستومر اليفينيك و SEBSها با هم رقابت دارند. جدول 9: رقابت TPE و PVC با رابرها در توليد قطعات خودرويي جدول 10: ميزان مصرف رابر در قطعات مختلف نمودار 4، نمايانگر ميزان رشد مصرف TPE در توليد نوارهاي آب‌بندي دور كلاف شيشه بين سال‌هاي 1999 تا 2005 در ژاپن، اروپا و امريكاست. نكته قابل توجه، توسعه وسيع اين مواد در ژاپن است. در سال 2005، كشورهاي اروپايي و امريكايي نيز در توليد اين قطعه به TPE روي آورده‌اند. نمودار 4: رشد كاربرد TPE در توليد نوار دور كلاف شيشه در قطعات داخلي نظيركيسه‌هاي هوا و رودري‌ها (5كيلوگرم به ازاي هر خودرو) گرچه از رابر استفاده نمي‌شود، اما TPE از قابليت رقابت با آن برخوردار است (نمودارهاي 5 تا 7). رشد سالانه تقاضاي جهاني براي مصرف TPEها، 2/6 درصد است. تا پايان سال 2007، صرفاً تقاضاي شركت‌هاي امريكايي درخصوص اين مواد، حدود 5/1ميليارد پوند وزني يا 5/1ميليارد دلار خواهد رسيد. پيش‌بيني مي‌شود كه اين تقاضا تا پايان سال 2009 به 1/3 ميليون تن متريك نيز برسد. وسائط نقليه موتوري در سطح جهان، همچنان بزرگترين بازار مصرف TPEها را به خود اختصاص داده است. در امريكا، نزديك به 30 درصد از كل مصرف TPEها، در حيطه صنعت خودرو صورت مي‌پذيرد. البته گفتني است كه TPEها كاربردهاي وسيعي نيز در ديگر صنايع نظير صنايع الكترونيك، لوازم خانگي، آب‌بند‌ها و درزگيرهاي صنعتي، لوازم ورزشي، لوازم پزشكي، صنايع بسته‌بندي مواد غذايي و نوشيدني دارد. با توجه به مصرف بالاي رابرها و بويژه EPDM در خودروهاي توليدي شركت ايران خودرو و نيز با توجه به مزاياي نسبي توليد قطعات و بويژه نوارهاي آب‌بندي با TPE نسبت به EPDM، تحقيق و مطالعات دقيق‌تر در زمينه جايگزيني EPDM با TPE، مي‌تواند يكي از راه‌حل‌هاي افزايش كيفيت قطعات و كاهش قيمت‌ها باشد. منابع: 1. Global trends in olefinc TPEs by Robert Eller associate, Inc. 2. wikipedia web site. 3. GLS corporation web site. 4. Innovation in glazing and sealing systems by THE ITB GROUP, LTD. 5.World Thermoplastic Elastomers Industry Report. By Freedonia Group Inc.
  23. خلاصه : هسته و تعريف اوليه فناوري نانو، مونتاژ اتم‌ها بود كه اولين منبع ثبت شده مـربـوط بـه آن را در سـال 1959 فيـزيكدانـي بـه نام ريچـارد فيـنمن به چاپ رسانده است. فناوري نانو يك فناوري معكوس (پايين به بالا) است كه اجزاي مواد را در ساختار بسيار كوچك كنار هم گذاشته و ساختاري متفاوت از مواد متداول توليد شده به روش بالا به پايين ايجاد مي‌كند. بنابراين مواد توليد شده به اين روش نقايص كمتر و كيفيت بالاتري دارند. هسته و تعريف اوليه فناوري نانو، مونتاژ اتم‌ها بود كه اولين منبع ثبت شده مـربـوط بـه آن را در سـال 1959 فيـزيكدانـي بـه نام ريچـارد فيـنمن به چاپ رسانده است. فناوري نانو يك فناوري معكوس (پايين به بالا) است كه اجزاي مواد را در ساختار بسيار كوچك كنار هم گذاشته و ساختاري متفاوت از مواد متداول توليد شده به روش بالا به پايين ايجاد مي‌كند. بنابراين مواد توليد شده به اين روش نقايص كمتر و كيفيت بالاتري دارند. نانوكامپوزيت‌هاي پليمري در بيست سال اخير در مجامع علمي و صنعتي مورد توجه قرار گرفته‌اند. به عنوان مثال تنها در آمريكا در سال 1997، 116 ميليون دلار براي تحقيق در اين زمينه هزينه شده است كه در سال 2004 اين رقم به 961 ميليون دلار رسيده است يعني در هفت سال تقريباً 9 برابر شده است. شركت Business communications Co. Inc. (BCC) در يك بررسي اقتصادي نشان داده است كه بازار نانوکامپوزيت‌هاي پليمري در سال 2003،24.5 ميليون پوند به ارزش 90.8 ميليون دلار بوده است و پيش بيني مي‌شود كه اين رقم با رشد متوسط 18.4 درصد در سال 2008 به 211.1 ميليون دلار برسد. حتي پيش‌بيني شده است كه اگر پيشرفت فناوري نانو با موارد فني همگام روبه‌رو شود در بعضي از كاربردها اين بازار با سرعت بيش‌ از 20 درصد در سال رشد كند. نانوکامپوزيت‌هاي پليمري جايگزيني قوي براي پليمرهاي پرشده (حاوي پركننده) يا آلياژهاي پليمري متداول هستند. بر خلاف كامپوزيت‌هاي متداول كه تقويت در آنها در ابعاد ميكرون روي مي‌دهد، در نانوکامپوزيت‌ها اين ابعاد به چند نانومتر مي‌رسد. ارزش افزوده نانوکامپوزيت‌هاي پليمري تنها بر اساس بهبود خواص مكانيكي پليمر‌ها يا جايگزيني پركننده‌هاي متداول‌ نيست بلكه پركننده‌هاي نانو در مقادير بسيار كم، خواص ويژه‌اي را بدون ايجاد تغيير زياد در خواص مكانيكي يا فرآيند‌پذيري، در پليمرها ايجاد مي‌كنند كه پليمر اوليه فاقد آن است، متداول‌ترين پركننده‌هاي نانو در پليمرها، سيليكات‌هاي لايه‌اي نانو و نانولوله‌هاي كربني هستند. پركننده‌هاي لايه‌اي نانو سيليكا سيليكات‌هايي كه در ساخت نانوکامپوزيت‌ها به كار مي‌روند، ساختاري لايه‌اي با ضخامت حدود يك نانو متر دارند كه طول آنها متغير است و به چند ميكرون هم مي‌رسد. بنابراين نسبت منظر (نسبت طول به ضخامت) آن بسيار بالا و بيشتر از هزار است. اين لايه‌ها توده‌اي تشكيل مي‌دهند كه در بين آن فاصله‌هايي وجود دارد كه از اين پس آنها را با نام بين‌لايه‌ها (interlayer) خواهيم شناخت. با جايگزيني ايزومورفيك بين لايه‌ها (جايگزيني Mg+2 با Al+3) يك بار منفي ايجاد مي‌شود كه ساختار آلكالي يا آلكالين كاتيون‌هاي معدني درون بين لايه‌ها را موازنـه مـي‌كند. سطح كاتيـون‌ها مانند يـون‌هاي توده‌اي (bulky) آلكيل آمونيوم، فاصله بين لايه‌ها را افزايش داده و انرژي سطحي پركننده را كاهش مي‌دهد. بنابراين اين پركننده‌هاي اصلاح شده كه به رس آلي(OrganoClay) معروفند، با پليمرها سازگارترند و نانوکامپوزيت‌هاي لايه‌اي با سـيـليــكـا شــكل مـي‌گـيـرد. مـونـت‌مـوريـلـونـيـت (montmorillonite)، هكتوريت (hectorite) و ساپونيت (saponite) متداول‌ترين پركننده‌هاي سيليكايي لايه‌اي هستند. روش‌هاي ساخت نانوکامپوزيت‌ها از آنجا كه در صنايع پليمري نانوسيليكات‌ها، متداول‌تر از بقيه مواد نانو هستند از اين پس بيشتر به اين مواد خواهيم پرداخت. روش‌هاي مختلفي براي ساخت نانوکامپوزيت‌هاي سيليكات‌هاي لايه‌اي به كار رفته است.اما سه روش، استفاده بيشتري دارند. 1- پليمريزاسيون درجا insitu-polymerization)): اين روش براي اولين بار در تهيه مواد پليمري حاوي نانوکلي(clay) بر پايه پلي‌آميد-6 به كار رفته است. در اين روش سيليكاهاي لايه‌اي به وسيله مونومر مايع يا محلول مونومر، متورم مي‌شود، سپس مونومرها به درون لايه‌ها سيليكات نفوذ كرده و پليمريزاسيون در بين لايه‌ها اتفاق مي‌افتد. 2- روش محلولي: اين روش مشـابه روش قبـلي است. ابـتـدا رس آلي در يك حلال قطبي مانند تولوئن يا NَN,- دي متيل فرماميد متورم شده، سپس پليمر حل شده در حلال به محلول قبلي افزوده شده و بين لايه‌ها جاي مي‌گيرد. مرحله نهايي كار، تبخير حلال است كه معمولاً در خلا اتفاق مي‌افتد. مزيت اين روش اين است كه براي همه مواد پليمري قابل اجراست اما اشكال عمده آن غير قابل اجرا بودن آن در مقياس صنعتي مي‌باشد. 3- روش اختلاط مذاب: در اين روش پليمر مذاب كه داراي ويسـكوزيـتـه پاييـني است با پركننـده نـانوکليِ(clay) آميخته مي‌شود. در اين روش به دليل افزايش بي‌نظمي، پليمر به داخل لايه‌هاي كلي(clay) نفوذ مي‌كند(شكل1). اين روش، به دليل پتانسيل بالايي كه براي اجرا در مقياس صنعتي دارد به شدت مورد توجه قرار گرفته است و نانوکامپوزيت‌هاي كلي(clay) بسيار زيادي به روش اكستروژن توليد شده است. تعداد زيادي از ترموپلاستيك‌هاي قطبي مانند پلي‌آميد-6، اتيل وينيل استات و پلي استايرن به اين روش درون لايه‌هاي سيليكاتي نفوذ كرده‌‌اند اما در مورد پلي اولفين‌ها كه مصرف بسيار زيادي نيز دارند اين فرآيند موفق نبوده است. اجراي اين روش در لاستيك‌ها به دليل ويسكوزيته بسيار زياد و پديده‌هاي الاستيك با موانع زيادي روبرو است و همين امر دليل عدم پيشرفت قابل توجه نانوکامپوزيت‌هاي الاستومري در مقايسه با پلاستيك‌ها است. شكل1- روش ساخت نانو كامپوزيت‌هاي كلي(clay) به ساختار نانوکامپوزيت‌هاي كلي(clay) بسته به طبيعت اجزاي يك نانوکامپوزيت مانند نوع پليمر، ماتريس و سيليكات لايه‌اي يا كاتيون آلي بين لايه‌هاي سيليكاتي سه ساختار در نانوکامپوزيت‌ها ممكن است ايجاد شود (شكل 2): 1- ساختار فاز‌هاي جدا: اگر پليمر نتواند بين لايه‌هاي سيليكاتي نفوذ كند يك ميكروكامپوزيت توليد مي‌شود كه مانند كامپوزيت‌هاي متداول بوده و امكان جدايي فازي در آن وجود دارد. به جز اين نوع متداول كامپوزيت‌ها، امكان ايجاد دو ساختار ديگر وجود دارد. شكل2- ساختار نانو كامپوزيت‌هاي كلي(clay) 2- ساختار لايه لايه(Intercalated structures): اين ساختار با نفوذ يك يا چند زنجير پليمري به درون لايه‌هاي سيليكا و ايجاد ساختار ساندويچي حاصل مي‌شود. 3- ساختار پراكنده يا پخش شده exfoliated ordelaminated structure)) : اين ساختار وقتي حاصل مي‌شود كه لايه‌هاي پركننده سيليكاتي به طور همگن و يكنواخت در بستر پليمري توزيع شده باشند. اين ساختار لايه‌هاي كاملاً جدا شده از اهميت بسيار ويژه‌اي برخوردار است زيرا بر همكنش لايه‌هاي كلي(clay) و پليمر را به حداكثر رسانده و تغييرات بسيار مشهودي را در خواص فيزيكي مكانيكي پليمر ايجاد مي‌كند. خواص نانوکامپوزيت‌ها نانوکامپوزيت‌ها در مقادير 5-2 درصد وزني، خواص پليمرهاي خالص را به طرز قابل توجهي بهبود مي‌دهند. اين ارتقاي خواص عبارتند از: • خواص عبور پذيري (barrier) مانند نفوذپذيري و مقاومت در برابر حلال‌ها؛ • خواص نوري ؛ • هدايت يوني خواص ديگر حاصل از ساختار لايه‌اي نانو سيليكات‌ها در نانوکامپوزيت‌هاي پليمري، افزايش پايداري حرارتي و مقاومت در برابر شعله (آتش) در مقادير بسيار كم پركننده مي‌باشد. نانوکامپوزيت‌هاي مورد استفاده در صنعت پلاستيك قيمت پايين نانوکلي(clay) نسبت به ساير پركننده‌هاي نانو و امكان استفاده از روش اختلاط مذاب در پلاستيك‌ها باعث شده است كه اين شاخه ازنانوکامپوزيت‌ها رشد سريعي داشته و محصولاتي بر پايه پلاستيك‌هايي مانند پلي پروپيلن (PP)، پلي‌اتيلن ترفتالات (PET)، پلي‌اتيلن (PE)، پلي‌استايرن (PS) و نايلون به بازار عرضه شود. در ادامه به چند نمونه از اين كاربردها اشاره شده است. شركت معروف توليد كننده خودرو، جنرال موتورز،جزء اولين استفاده كنندگانِ نانوکامپوزيت‌هاست. شكل 3 قسمتي از يك وانت را نشان مي‌دهد كه 7 پوند نانوکامپوزيت رنگي در ساخت‌ قطعات و اجزاي قسمت مخصوص بار آن به كار رفته است. شكل 4 پشت صندلي جديد توليد شركت Nobel polymer را با نام تجاري Forte نشان مي‌دهد. اين قطعه قبلاً از پلي‌پروپيلن تقويت شده با الياف شيشه ساخته مي‌شد كه باعث مشكلات فرآيندي، نقايص ساختاري قابل رويت و تاب برداشتن (warpage) مي‌شد، اما در حال حاضر اين قطـعه از نانوکامپوزيت PP و كلي(clay) ساخته شده و در اتومبيل Honda Acoratl 2004 كار گذاشته شده است. شكل 3- در قسمت مخصوص بار اين وانت ( مدل GM Hummer 2005) ساخت جنرال موتورز از 7 پوند نانو كامپوزيت استفاده شده است و بالاخره شكل 5 بطري نوشيدني ساخته شده Honeywell از PET به وسيله شركت را نشان مي‌دهد كه در ساختار آن از نانوکامپوزيت نايلون 6 و نانوکلي(clay) استفاده شده است و در اواخر سال 2003 با نام تجاري Aegis به بازار عرضه شده است. گفته مي‌شود اين بطري داراي يك ساختار سه لايه است كه امكان نگه‌داري 26 هفته‌اي محتوياتش را فراهم مي‌كند. نانوکامپوزيت‌هاي مورد استفاده در صنعت لاستيك با توجه به مسائلي كه پيش‌تر به آن اشاره شد و مشكلات اجراي روش اختلاط مذاب در مورد الاستومرها، هنوز محصولات زيادي از نانوکامپوزيت‌هاي الاستومري به بازار عرضه نشده است، اما تحقيقات بسيار گسترده‌اي در شركت‌ها و مراكز تحقيقاتي مختلف بر روي اين نانوکامپوزيت‌ها در حال اجراست. به عنوان مثال بنيان‌گذاران شركت Inmat به دنبال استفاده از نانوکلي(clay) در ساختار قطعات لاستيكي ورزشي هستند و يك روكش نانوکامپوزيتي به ضخامت 30-10 ميكرون با خواص نفوذنا‌پذيري و انعطاف‌پذيري بسيار بالا با پايه آلي ساخته‌اند. كه مي‌تواند بدون پارگي تا بيش از 20% كشيده شده و در ساخت قطعات لاستيكي نفوذنا‌پذير به كار روند. آنها ادعا مي‌كنند كه با استفاده از اين روكش‌ها، توپ‌هاي تنيس تا 12 ماه باد درون خود را نگه مي‌دارند، توپ‌هاي فوتبال و بسكتبال به مدت زياد نياز به باد كردن مجدد ندارند و تايرها به جاي هر سه ماه يكبار باد كردن هر سال يكبار باد مي‌شوند كه منجر به كاهش تصادفات ناشي از مشكل باد تايرها خواهد شد. با توجه به ضخامت ناچيز اين روكش‌ها (30-10ميكرون) افزايش وزن و تغيير خواص مكانيكي لاستيكي در اثر استفاده از اين روكش‌ها قابل اغماض است. لازم به ذكر است روش محلولي در ساخت اين نانوکامپوزيت به كار رفته است. اين شركت با همكاري شركت Michelin در حال آزمايش مشابه اين فناوري براي آب‌بندي كردن درون تاير، كاهش مقدار لاستيك بيوتيل مورد نياز، سبك‌تر و ارزان‌تر كردن تاير و ساخت تايرهاي سردتر (cooler running) مي‌باشد. اما آيا صنعت تاير نيز به صورت گسترده تحت تأثير فناوري نانو قرار خواهد گرفت؟ در آينده با توجه به رشد روزافزون نانو در عرصه الكترونيك، نور و... احتمالاً بتوان تمام مراحل توليد تاير را در ابعاد نانو مشاهده و كنترل كرد اما بازار امروز صنعت تاير نيز با جايگزيني مواد متداول با مواد نانو ساختار مي‌تواند از خواص و مزيت‌هاي آنها بهره‌ گيرد. به عنوان مثال شركت Goodyear پروژه‌هايي را بر پايه فناوري نانو و با بهره‌گيري از روش‌هاي مكانيكي و شيميايي دنبال مي‌كند كه هدف از آنها كنترل ساختار، خواص مكانيكي و پاسخ الاستومر‌هاي پخت شده به فركانس‌هاي مختلف است.آنها در نظر دارند تقويت كنندگي و پخت را در ابعاد زير ميكرون كنترل كرده و بهبود دهند تا كارآيي تايرها، هم با مواد جديد و هم با مواد سنتي، ارتقاء يابد. شكل 4 - پشت صندلي جديد توليد شركت Nobel polymer كه از نانو كامپوزيت PP و كلي(clay) ساخته شده و در اتومبيل Honda Acoratl 2004 كار گذاشته شده است آنها مواد بسيار جديد را نيز بررسي نموده‌اند آئروژل‌هاي سيليكاتي يكي از اين مواد هستند. نانو ايروژل‌ها از 98% هوا (به صورت حباب‌هاي نانو) در بستر سيليكا ساخته شده‌اند كه علاوه بر سبك بودن، مقاومت حرارتي بسيار بالايي دارند. محققان دانشگاه ميسوري آمريكا ادعا كرده‌اند كه نانوآئروژل خاصي ساخته‌اند كه مي‌تواند به جاي تايرهاي لاستيكي استفاده شود. شركت Goodyer نيز از اين نانو آئروژل‌ها در ساخت تاير استفاده كرده، نتايج تحقيق خود را به صورت اختراع ثبت كرده است. و بالاخره يكي از بهترين اين تحقيقات را شركت Cabot صورت داده است. در سال 2003 شركت Cabot يك نمونه از پركننده‌هاي نانو، توليد شركت nano products (با نام تجاري PüreNano) را در تاير به كار برده است. استفاده از پركننده نانو سيليكون كاربيد منجر به بهبود قابل توجه مقاومت لغزندگي (skid resistance) و كاهش 50 درصدي سايش شده است كه در نهايت منجر به توليد تايرهايي با ايمني بسيار بالا و طول عمر 2 برابر تايرهاي متداول خواهد شد. تلاش آميزه‌كاران و مهندسان صنعت لاستيك بر اين است كه با استفاده از تجهيزات موجود از فناوري نانو بهره جسته، بتوانند در مقياس نانو فرآيند ساخت را كنترل و محصولي با كيفيت بالاتر و يكدست به بازار عرضه كنند. با توجه به گسترش روز افزون فناوري نانو به نظر مي‌رسد كه در آينده‌اي نه چندان دور توليد تاير نيز مانند توليد ساير محصولات كاملاً دگرگون شود. منبع:[Hidden Content]
  24. پلیمرها در زندگی روزمره به وفور یافت می‌شوند. از لفاف و پوشش‌های مواد خوراکی گرفته تا کیسه‌های مورد استفاده برای زباله، پلیمرهایی هستند که در گوشه و کنار یافت می‌شوند. خودروها نیز از این قاعده مستثنی نیستند. پلیمرها افزودن بر ۴۰ درصد از هر خودروی مدرن را تشکیل می‌دهند. قطعاتی همچون فرش، صندلی، لایی، موکت، دستگیره، سویچ و داشبورد، از یک یا چند پلیمر تشکیل شده‌اند. صنعت‌گران و استفاده‌کنندگان از مواد پلیمری، با توجه به تنوع خواص فیزیکی، شیمیایی و مکانیکی این مواد در مصارف گوناگون، ناگزیر به تعیین نوع و شناسایی نمونه پلیمری بوده، اما اغلب فاقد آزمایشگاهی مجهز و افراد مجرب در این زمینه‌اند. ● طیف‌سنجی مادون قرمز به روش FTIR طیف‌سنجی مادون قرمز یکی از روش‌های خوب و متداولی است که از سال‌ها پیش برای تجزیه و شناسایی پلیمرها و برخی افزودنی‌های آنها، مورد استفاده قرار گرفته است. فرکانس تشعشع الکترومغناطیس در ناحیه مادون قرمز (IR) مطابق با فرکانس ارتعاش طبیعی اتم‌های یک پیوند است و پس از جذب امواج مادون قرمز در یک مولکول، باعث ایجاد یک سری حرکات ارتعاشی در آن می‌شود که اساس و مبنای طیف‌سنجی مادون قرمز را تشکیل می‌دهد. ساده‌ترین نوع حرکات ارتعاشی در یک مولکول، حرکات خمشی و کششی است. دستگاه FTIR با استفاده از تبدیل ریاضی فوریه مزایای زیادی در مقایسه با دستگاه IR معمولی دارد که نمونه آن سرعت بالای جمع‌آوری اطلاعات و نسبت سیگنال به نویز بهتر است. تقریبا تمامی ترکیباتی که پیوند کوالانسی دارند، اعم از آلی یا معدنی، فرکانس‌های متفاوتی از اشعه الکترومغناطیس را در ناحیه مادون قرمز جذب می‌کنند. ناحیه مادون قرمز، ناحیه‌ای از طیف الکترومغناطیس است که طول موجی بلندتر از نور مرئی (۴۰۰ تا ۸۰۰ نانومتر) و کوتاه‌تر از امواج مایکرو ویو (طول موج بلندتر از ۱mm) دارد. بسیاری از شیمیدانان از واحد «عدد موجی» در ناحیه مادون قرمز طیف الکترومغناطیس استفاده می‌کنند. عدد موجی با واحد Cm-۱ بیان شده و عبارت است از عکس طول موج (با واحد Cm). مزیت این واحد این است که رابطه مستقیمی با انرژی دارد. با استفاده از این واحد، ناحیه ارتعاشی پرکاربرد مادون قرمز (Mid IR) بخشی بین ۴۰۰ تا ۴۰۰۰ Cm-۱ خواهد بود. مشابه دیگر انواع جذب انرژی، هنگامی که مولکول‌ها اشعه مادون قرمز را جذب می‌کنند، به حالت انرژی بالاتر برانگیخته می‌شود. جذب تابش مادون قرمز همانند دیگر فرایندهای جذب، فرایندی کوانتابی است. به این صورت که فقط فرکانس‌های خاصی از تابش مادون قرمز توسط مولکول جذب و باعث ارتعاش کششی و خمشی پیوندهای کوالانسی می‌شود. انرژی جذب شده از نور مادون قرمز توسط پیوندهای شیمیایی یا گروه‌های عاملی خاص در طول موج مشخص، منجر به کاهش شدت عبور نور شده و معمولا به عنوان تابعی از عدد موجی (بر حسب Cm-۱) رسم می‌شود. توجه به این نکته مهم است که تمام پیوندهای مولکول قادر به جذب انرژی مادون قرمز نیستند، حتی اگر فرکانس اشعه با فرکانس حرکت تطبیق کند، فقط پیوندهایی که دارای گشتاور دو قطبی هستند قادر به جذب اشعه مادون قرمز می‌باشند. مثلاً، پیوند موجود در H۲ و Cl۲ و همچنین پیوندهای موجود در آلکن‌ها و آلکین‌های متقارن، اشعه مادون قرمز را جذب نمی‌کنند. باید توجه داشت که هر پیوند دارای فرکانس ارتعاش طبیعی خاصی است. یعنی یک پیوند خاص با جذب فرکانسی مشخص قادر به ارتعاش خمشی و کششی است. یک پیوند، به‌خصوص در دو مولکول مختلف، در محیط‌های متفاوتی از نظر اتم‌ها و پیوندهای پیرامونی خود قرار داشته و هیچ‌گاه دو مولکول با ساختمان‌های متفاوت، طیف مادون قرمز یکسانی نمی‌دهند. با توجه به این مطلب، از طیف مادون قرمز می‌توان همانند اثر انگشت در انسان، برای شناسایی مولکول‌ها استفاده کرد. با مقایسه طیف مادون قرمز دو ماده که تصور می‌شود مشابه باشند، می‌توان پی برد که آیا واقعا یکی هستند یا خیر. اگر تمام جذب‌ها در طیف دو نمونه بر یکدیگر منطبق شوند، به احتمال قریب به یقین، دو ماده یکسان هستند. طیف FTIR علاوه بر موارد گفته شده، اطلاعاتی را در مورد ساختمان شیمیایی یک مولکول، در اختیار ما می‌گذارد. مثلاً، هر جذبی که در ناحیه ۳۰۰۰±۱۵۰Cm-۱ طیف قرار داشته باشد، نشان‌دهنده وجود اتصال C-H در مولکول است و جذبی که در ناحیه ۱۷۰۰±۱۰۰Cm-۱ مشاهده شود معمولا مربوط به پیوند گروه کربونیل (C=۰) در مولکول است. جدول زیر، راهنمایی مفید در زمینه بررسی عدد موجی در طیف FTIR بسیاری از پیوندهاست. با توجه به نکات فوق می‌توان برای تحلیل و شناسایی لاستیک‌ها، پلاستیک‌ها و پاره‌ای از مواد افزودنی آنها، از طیف‌سنجی مادون قرمز استفاده کرد. کلکسیون‌ها و بانک‌های اطلاعاتی وسیعی از طیف FTIR وجود دارد که برای مقاصد شناسایی کیفی می‌توان از آنها استفاده کرد. نمونه آنها، اطلس تحلیل پلیمرها (هامل) است. ● تهیه نمونه به منظور گرفتن طیف FTIR (در پلیمرها) طیف FTIR معمولا از نمونه‌هایی به شکل فیلم به دست می‌آید که معمولا نازک‌تر از ۵۰ µm است. برای تهیه فیلم مناسب از نمونه‌های ضخیم‌تر یا گرانول‌ها، نمونه تا بالای دمای نرمش حرارت داده شده و سپس پرس می‌شود تا فیلم‌هایی به اندازه کافی نازک، برای استفاده مستقیم در طیف‌سنجی FTIR تهیه شود. در ضمن می‌توان از فیلم‌های حلالی نیز استفاده کرد. در این حالت، قطعه کوچکی از نمونه موردنظر در حلال مناسب حل شده و با قرار دادن آن بر روی قرص‌های پتاسیم بروماید و تبخیر کامل حلال، فیلم نازک نمونه مستقیما روی قرص KBr حاصل می‌شود، زیرا KBr در ناحیه مادون قرمز موردنظر هیچ جذبی ندارد. اگر بنا به دلایلی، فیلم قابل تهیه نباشد، می‌توان پلاستیک را بسیار ریز آسیاب کرده و سپس آن را با پودر KBr کاملا مخلوط و توسط دستگاه پرس مخصوص به قرص مناسب برای گرفتن طیف FTIR تبدیل کرد. برای تهیه نمونه مناسب از لاستیک‌ها، می‌توان از روش پیرولیز استفاده کرد. در این روش، نمونه به ابعاد کوچک خرد شده و در لوله آزمایشی ریخته می‌شود. سپس، توسط استون، روغن‌گیری شده، آنگاه استون همراه با روغن استخراج شده از نمونه جدا می‌شود. لوله آزمایش حاوی نمونه، روی شعله حرارت داده می‌شود تا پلیمر لاستیکی به اجزای سازنده خود که عمدتا الیگومرها (زنجیرهایی شامل دو یا سه منومر) هستند، تجزیه شود. سپس، مقدار کمی از مایع جمع‌آوری شده، روی قرص KBr قرار گرفته و طیف FTIR آن مورد بررسی قرار می‌گیرد. ● نواحی جذبی مختلف در طیف FTIR نواحی معمول طیف IR که در آن، انواع مختلف باندهای ارتعاشی مشاهده می‌شود، در چارت زیر ارائه شده است. باید توجه داشت که منطقه بالای خط چین به ارتعاش کششی و ناحیه زیر خط چین به ارتعاش خمشی مربوط است. به طور کلی، پیوندهای سه گانه، قوی‌تر از پیوندهای دوگانه و یا ساده بوده و دارای فرکانس ارتعاشی بالاتر یا به بیانی بهتر، عدد موجی بالاتر هستند. پیوند C-C دارای فرکانس جذب ۱۲۰۰Cm-۱بوده در حالی‌که پیوند دوگانه C=C فرکانس جذب ۱۶۵۰Cm-۱و پیوند سه‌گانه C=C دارای فرکانس جذب ۲۱۵۰Cm-۱ است. همچنین حرکت خمشی راحت‌تر از حرکت کششی صورت می‌پذیرد. مثلا، C-H خمشی در ناحیه ۱۳۴۰Cm-۱و C-H کششی در ناحیه ۳۰۰۰Cm-۱ قرار می‌گیرد. نوع هیبریداسیون نیز بر فرکانس جذب تاثیر می‌گذارد، به طوری که قدرت پیوندها به ترتیب: SP>SP۲>SP۳ بوده و فرکانس ارتعاشی C-H آنها به صورت زیر تغییر می‌کند: محدوده Cm-۱ ا۱۴۰۰ تا Cm-۱ا ۶۰۰ به دلیل کمتر بودن میزان انرژی جذب شده و ارتعاش خمشی اکثر پیوندهای موجود در مولکول، ناحیه‌ای پیچیده و شلوغ است واین موضوع تشخیص همه باندهای جذبی در این ناحیه را مشکل می‌سازد. به دلیل الگوی منحصربه‌فردی که در این ناحیه وجود دارد، به آن ناحیه «اثر انگشت» نیز گفته می‌شود. باندهای جذبی در ناحیه ۴۰۰۰-۱۴۵۰Cm-۱ دارای انرژی جذب شده بیشتری بوده و عموما ناشی از ارتعاش کششی پیوندهای قوی‌تر است و گاهی به این ناحیه، ناحیه فرکانس گروهی نیز گفته می‌شود.
×
×
  • اضافه کردن...