جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'ذرات نانو'.
43 نتیجه پیدا شد
-
الاستومرهاي پلي يورتاني، خانوادهاي از كوپليمرهاي تودهاي بخش شده است كه كاربردهاي مهمي در زمينههاي گوناگون صنعتي و پزشكي پيدا كرده است. اولين پلي يورتان، از واكنش ديايزوسيانات آليفاتيك با ديآمين بهدست آمد. اتو باير و همكارانش اولين بار اين پلييورتان را معرفي نمودندکه به شدت آبدوست بود و بنابراين به عنوان پلاستيك يا فيبر نميتوانست مورد استفاده قرار گيرد. واكنش بين ديايزوسياناتهاي آليفاتيك و گليكولها منجر به توليد پلي يورتاني با خصوصيات پلاستيكي و فيبري گرديد. به دنبال آن، با استفاده از ديايزوسيانات آروماتيك و گليكولهاي با وزن مولكولي بسيار بالا، پلي يورتاني بهدست آمد كه خانواده مهمي از الاستومرهاي ترموپلاستيك به شمار ميرود. خواص يورتانها از مواد ترموست بسيار سخت تا الاستومرهاي نرم تغيير ميكند. از پلي يورتانهاي ترموپلاستيك، در ساخت وسايل قابل كاشت بسيار مهمي استفاده ميشود، چرا كه داراي خواص مكانيكي خوب نظير استحكام كششي، چقرمگي، مقاومت به سايش و مقاومت به تخريب شدن، به علاوه زيست سازگاري خوب ميباشند كه آنها را در گروه مواد مناسب جهت كاربردهاي پزشكي قرار ميدهد. كاربردهاي پلي يورتانها با استفاده از پلي اترها به عنوان پليال، در سنتز پلي يورتان ميتوان كاشتنيهاي طولاني مدت تهيه نمود، كه در قلب مصنوعي، کليه مصنوعي، ريه مصنوعي، هموپرفيوژن، لوزالمعده مصنوعي، *****هاي خوني، کاتترها، عروق مصنوعي، بايپس سرخرگها يا سياهرگها، کاشتنيهاي دندان و لثه، بيماريهاي ادراري، ترميم زخم، رساندن يا خارج كردن مايعات، نمايش فشار عروق، آنژيوپلاستي، مسدود کردن عروق، جراحي عروق آئورت و كرونري، دريچههاي قلب سهلتي و دولتي كاربرد دارند. در صورتي كه از پلي اترها به عنوان پليال، در سنتز پلي يورتان استفاده شود، پلي يورتانهاي زيست تخريب پذير مدت تهيه ميشود كه به طور مثال در کانال هدايت بازسازي عصب، ساختارهاي قلبي –عروقي، بازسازي غضروف مفصل ومنيسک زانو، براي تعويض وجايگزيني استخوان اسفنجي، در سيستمهاي رهايش کنترول شده دارو و براي ترميم پوست كاربرد دارد. شكل (1) برخي از وسايل و ايمپلنتهاي پلييورتاني مورد استفاده در پزشكي را نشان ميدهد. تاثير ساختار شيميايي و مورفولوژي سطح روي خون سازگاري پلي يورتان در اواخر سال 1980 تعدادي از دانشمندان، شيمي، ساختار و مورفولوژي سطح پلييورتانها را مورد بررسي قرار دادند و به تدريج روشهاي جديد پوشش دهي سطح بههمراه پيوندهاي مواد ديگر به سطح پلييورتانها، با هدف بهبود خونسازگاري ابداع شد. در سالهاي اخير، ترکيب شيميايي پلييورتانها جهت بهبود خونسازگاري با تغييرات بسيار زيادي همراه شده است. از جمله اين موارد سنتز پلييورتان يا پلييورتان ِيورا با قسمتهاي نرم آبدوست است. «Cooper»، نيز در مورد ارتباط بين شيمي پليالها و خونسازگاري پلييورتانها، تحقيقاتي را برروي نمونههاي مختلف پلييورتانها با پليالهاي متفاوت نظير PEO، PTMO، PBD (پليبوتادين) و PDMS انجام داد. اين پلييورتانها به روش پليمريزاسيون دو مرحلهاي تهيه شدند و بر روي لولههاي پلياتيلني پوششدهي شده و سپس درون بدن سگ قرار گرفتند تا پاسخ لختهزايي آنها مشخص گردد. پلييورتان با پليال PDMS کمترين لختهزايي را نسبت به نمونههاي ديگر نشان داد. طبيعت آبگريز PDMS باعث بهبود آبگريزي سطح پلييورتان پايه PDMS و در نتيجه توجيهي براي بهبود خونسازگاري آن نسبت به ساير موارد ميشود و ميزان چسبندگي اوليه پلاکتها با افزايش آبدوستي پليالها افزايش مييابد. بنابراين بايد گفت که خونسازگاري پلييورتانها بستگي زيادي به ترکيبات سازنده آن و عوامل مختلف نظير جداسازي ميکروفازها، ناهمگني سطح و آبدوستي سطح خواهد داشت. استفاده از سولفونات يا پوششهايي نظير هپارين در تغيير پاسخ خون به اين مواد نقش بسيار عمدهاي را ايفا ميکنند. محققي به نام Santerre [55]، پلييورتانهايي را بر پايه سولفونات سنتز نمود که داراي گروههاي مختلف سولفور(3.1 % - 1.4%) بود. در نمونههاي با گروههاي سولفونات بيشتر زمان لختهزايي افزايش يافت. روشهاي بهبود خواص سطحي پلييورتانها با توجه به اينکه خونسازگاري يک بيومتريال بستگي مستقيم به شيمي سطح آن دارد، تغيير در وضعيت سطحي کمک بسيار زيادي در حل مشکلات خونسازگاري خواهد نمود. از جمله موادي که در اين مورد نتايج و رضايت بخشي را در بهبود خونسازگاري نشان دادهاند، ميتوان به سولفونات پلياتر يورتان، پيوند سطح اکريل آميد و دي اکريل آميد با پلياتر يورتان، اتصال فسفوريل کولين به سطح پلياتر يورتان با استفاده از پرتو UV و پيوند پروپيل سولفات – پروپيلن اکسايد (PEO-SO3)، اشاره نمود. در سالهاي اخير محققان زيادي براي افزايش بهبود خونسازگاري بيومتريالها از پيوند هپارين به سطح آنها استفاده نمودهاند كه نتايج رضايتبخشي نيز به همراه داشته است. يکي از مهمترين مشکلات در اين راه، پيوند يوني هپارين (surfaces bearing ionically bound heparin ) به سطح پلييورتان است. هپارين ميتواند بصورت کووالاني با گروههاي آمين يا هيدروکسيل آزاد ايزوسيانات پيوند برقرار سازد. در بين تمام روشهايي که باعث تثبيت هپارين ميشود، موثرترين روش استفاده از تابش اکسيژن پلاسماي يونيزه شده است که باعث پيوند با پليمر ميشود. نتايج خونسازگاري حاصل از هپارينيزه شدن پلييورتان، نشانگر فعاليت کمتر پلاکتها و پروتئينهاي پلاسما است که منجر به کاهش تشکيل لخته خون ميشود. همچنين چسبندگي سلولهاي تک هستهاي و ترشح فاکتور نکروز تومور در تماس با پلييورتان هپارينيزه شده کمتر گزارش شده است. از ديگر راههايي که ميتوان بدون استفاده از پوششهاي هپاريني به يک پلييورتان خون سازگار دست يافت، پوشش دهي يا تثبيت شيميايي داروهاي ضد لخته زا يا مولکولهايي نظير مشتقات Urookinase ، Prostacyclin، ADPase، Dipyridamol، Glucose و اتمهاي نقره گزارش شده است. پلييورتانهاي داراي گروههاي سولفونات، لخته زايي بسيار کمي نسبت به پلييورتانهاي معمولي داشت. پلييورتانهاي سولفونات شده ترومبين (آنزيم مؤثر براي ايجاد لخته) را مصرف کرده و بر پليمريزه شدن فيبرينوژن تأثير مستقيم ميگذارد. ايجاد پيوند کووانسي پپتيد Arg-Gly-Asp (RGD)، با ستون اصلي پليمر نيز يکي ديگر از روشهاي بهبود خواص خونسازگاري پلييورتانها است كه در نتيجه چسبندگي سلولهاي اندوتليال به سطح پليمر افزايش مييابد. تخريب پلي يورتانها همه پليمرها امكان تخريب دارد و پلي يورتانها نيز از اين قاعده مستثني نيست جهت جلوگيري از تخريب پلي يورتانها روشهاي مختلفي وجود دارد. كه شامل هيدروليز، فتوليز، سلوليز، توموليز، پيروليز (تجزيه در اثر حرارت) وتخريب بيولوژيك، ترك بر اثر استرس محيطي، اكسيد شدن و تخريب بوسيله ميكروب و قارچها ميشود. در حالت بيولوژيك تنش محيطي باعث ايجاد ترك ميشود كه در نهايت شكست ممكن است بهوجود آيد و باعث ايجاد تخريب سطحي ويژه در پليمر شود. آنزيمها نيز ميتوانند باعث تخريب پلي يورتانها شود. تخريب ميكروبي، يك واكنش تجزيه شيميايي است كه بهوسيله حمله ميكرو ارگانيسمها صورت ميگيرد. آنزيمها و قارچها نيز ممكن است پلي يورتانها را تخريب كند. پيوندهاي مستعد براي تخريب هيدروليتيك در پلي يورتانها، پيوندهاي استري و يورتاني است. استرها به اسيد و الكل تجزيه ميشود و پيوندهاي يورتاني در نتيجه تخريب شدن به كرباميك اسيد و الكل هيدروليز ميشود. تركيبات مسئول تخريب پليمرها در بدن شامل آب، نمك، پراكسيدها و آنزيمها است. بهطور كلي مولكولهايي مانند ويتامينها و راديكالهاي آزاد باعث تسريع كردن تخريب ميشود. اگر پلي يورتان هيدروفوب باشد تخريب معمولاً در سطح مواد انجام ميشود. اگر پلي يورتانها هيدروفيل باشد، آب در توده پليمر وارد شده و تخريب در سرتاسر ماده اتفاق ميافتد. تخريب پليمر در مايع Media ( پلاسما و بافت ) به طوركلي شامل مراحل زير است. 1) جذب مديا در سطح پليمر، 2) جذب مديا به توده پليمر، 3) واكنشهاي شيمايي با پيوندهاي ناپايدار در پليمر و 4) نقل و انتقال توليدات تخريب از ماتريكس پليمر و جذب سطحي محصولات تخريب از سطح پليمر. تاثير آبدوستي بر ميزان تخريب پلي يورتانهاي يكي از مشكلات اصلي كاشت پلي يورتانها در حالت vivo in تمايل آنها براي آهكي شدن و تخريب شدن است. اكثر ايمپلنتهاي پلي يورتاني در حالت in vivoاز طريق هيدروليز تخريب ميشود. الاستومرهاي زيست تخريب پذيردر ايمپلنتهاي قلبي و عروقي، داربستها براي مهندسي بافت، ترميم غضروف مفصل، پوست مصنوعي و درتعويض و جانشيني پيوند استخوان اسفنجي استفاده ميشود. مواد هيدروفيل مانند هيدروژلها، به عنوان سدي براي چسبندگي بافتها استفاده ميشود. موادي با هيدروفيلي كم، باعث چسبندگي تكثير سلولها ميشود كه براي داربستهاي مهندسي بافت مناسب است. واكنش پلي يورتان زيست تخريب پذير با استئوبلاستها و كندروسيتها و ماكروفاژها كاربرد پليمرهاي زيست تخريب پذير به عنوان يكي از پيشرفتهاي عمده در تحقيقات مواد درپزشكي مطرح است. مواد زيست تخريب پذيركاربردهاي بيشماري در پزشكي و جراحي دارند واين مواد طوري طراحي شده است كه در حالت in vivo تخريب شود. تصور كلي از زيست سازگاري بر اساس واكنش ميان يك ماده و محيط بيولوژيك است. واكنش بافتها و سلولها در خيلي از موارد بوسيله پاسخ التهابي مشخص ميشود. در مهندسي بافت از ماتريسها و داربستهاي زيست تخريبپذير پليمري به عنوان حامل سلول براي بازسازي بافتهاي معيوب استفاده ميشود. بهطور كلي، ايمپلنتها نبايد باعث پاسخ غيرعادي در بافتها و باعث توليد مواد سمي يا تأثيرات سرطان زائي در بافت شوند. در تحقيقات جديد، پلي يورتانهاي زيست تخريب پذير زيست سازگاري مطلوبي از خود نشان ميدهد. اين پلي يورتانها هر چند كه باعث فعال شدن ماكروفاژها ميشود ولي تأثيرات سمي و سرطان زائي در بدن ندارد. در تحقيقات in vivo، فوم پلي يورتان زيست تخريب پذير،زيست سازگاري مطلوبي را از خود نشان داده است. در يك تحقيق جديد، جهت ارزيابي زيست سازگاري از فوم پلي استر پلي يورتان زيست تخريب پذير با سايز سوراخها 100-400 m استفاده شده و واكنش كندروسيتهاي و سلولهاي استئوبلاست موش [line Mc3T3-E1] با فوم پلي يورتان زيست تخريب پذير( Degrapol -foam) مورد بررسي قرار گرفته شده است پاسخ سلولي که شامل: رشد، فعاليت سلولها و پاسخ سلولي استئوبلاستها و ماكروفاژها به محصولات تخريب در نظر گرفته شد. سلولهاي استئوبلاستها و كندرويستها از موشهاي صحرايي نر بالغ جدا شده بود. جهت سنتز اين كوپليمر نيز مقدار برابر از PHB– ديال و پلي کاپرولاکتون ديال در 1 و2 دي كلرو اتيلن حل شده وبه صورت آزئوتروپيكالي بهوسيله برگشت حلال تحت نيتروژن خشك، سنتز شد. اين پلي استريورتان، يك بخش آمورف و يك بخش كريستالي دارد و همچنين دي ال با PHB تشكيل حوزههاي كريستالي ميدهد و دي ال با پلي كاپر.لاكتون تشكيل حوزههاي آمورف ميدهد. پس از كشت سلولي، اسكن بهوسيله ميكروسكوپ الكتروني ( SEM) نشان ميدهد كه سلولها در سطح و داخل حفرههاي فوم رشد ميكند و سلولهايي كه در سطح فوم ديده ميشود و به صورت يك نمايش سلولي مسطح و چند لايه سلول متلاقي، ديده ميشود. نتايج بهدست آمده نشانگر اين مطلب است كه استئوبلاستها و ماكروفاژها توانايي بيگانه خواري و فاگوسيتوز محصولات تخريب را دارندو محصولات تخريب در غلظت كم، تأثيري در رشد و عملكرد استئوبلاستها نمي گذارد. بهطور كلي كندروسيتها و استئوبلاستها در فوم زيست تخريب پذير تكثير يافت و فنوتيبشان را نگاه داشت. اين مطلب نشان ميدهد كه اين داربستها براي مراحل ترميم استخوان مفيد است.
- 13 پاسخ
-
- 2
-
- لاک
- لاک پلی یوروتان
-
(و 26 مورد دیگر)
برچسب زده شده با :
- لاک
- لاک پلی یوروتان
- نانو
- نانو فناوری
- نانو پلیمر
- یورتان ترموست
- کاتالیزور واکنش یورتان
- کاربرد پلیمر
- گرما نرم
- پلی یوروتان
- پلی یوروتان گرمانرم
- پلی یورتان
- پلیمر
- پوششهای یورتان
- اسفنج
- اسفنج پلی یوروتان
- اشتعال
- اشتعال گرمایی
- اشتعال پلی یوروتان
- اشتعال پلیمر
- اشتعال اسفنج پلی یوروتان
- بخش نرم
- بخش سخت
- بسپار
- ترموپلاست
- ترموپلاستیک
- دمای انتقال شیشهای
- ذرات نانو
-
مقدمه : نانوکامپوزيتهاي خاک رس / پليمر بهبود فوقالعادهاي در بسياري از خواص فيزيکي و مهندسي پليمرهايي که در آنها از مقدار کمي پرکننده استفاده ميشود، ايجاد ميکند. اين تکنولوژي که امروزه ميتواند کاربرد تجاري نيز پيدا کند، توجه زيادي را طي سالهاي اخير به خود جلب کرده است. عمدة پيشرفتهايي که در اين زمينه بوقوع پيوسته، طي پانزده سال اخير بوده و در اين مقاله به اين پيشرفتها و همچنين مزيتها، محدوديتها و برخي مسايل و مشکلات آن خواهيم پرداخت. هر چند اخيراً پيشرفتهاي عمدهاي در توسعة روشهاي سنتزي و کاربرد آنها در پليمرهاي مهندسي صورت گرفته و تحقيقاتي نيز در مورد خيلي از خواص مهندسي آنها صورت گرفته، ولي با اينحال، براي فهميدن مکانيزمهايي که باعث افزايش کارايي در نانوکامپوزيتهاي مرسوم به الياف تقويت ميشوند، مزيتها و امتيازاتي دارد، ولي هنوز نتوانسته تاثيري در بازار کامپوزيتهايي که در آنها جزء اليافي درصد بالايي دارد، ايجاد کند. موضوع فناوري نانو طي سالهاي اخير بطور فزايندهاي مطرح شده است. عرصة نانو، محدودهاي بين ابعاد ميکرو و ابعاد مولکولي است و اين محدودهاي است که دانشمندان مواد و شيميدانها در آن به مطالعاتي پرداختهاند و اتفاقاً مورد توجه آنها نيز قرار گرفته است، مانند مطالعه در ساختار بلورها. ولي تکنولوژي که توسط علوم مواد و شيمي توسعه يافته و به نانومقياس معروف است، نبايد به عنوان نانوتکنولوژي تلقي شود. هدف اصلي در نانوتکنولوژي ايجاد کاربردهاي انقلابي و خواص فوقالعاده مواد، با سازماندهي و جنبش آنها و همچنين طراحي ابزار در مقياس نانو ميباشد. تعريف نانوکامپوزيتهاي خاکرس / پليمر يک مثال موردي از نانوتکنولوژي هستند. در اين نوع مواد، از خاکرسهاي نوع اسمکتيت (Smectite-type) از قبيل هکتوريت، مونت موريلونيت و ميکاي سنتزي، به عنوان پرکننده براي بهبود خواص پليمرها استفاده ميشود. خاکرسهاي نوع اسمکتيت، ساختاري لايهاي دارند و هر لايه، از اتمهاي سيليسيم کوئورانيه شده بصورت چهار وجهي که به يک صفحه هشت وجهي با لبههاي مشترک از Al(OH) 3 يا Mg(OH) 2 متصل شده، تشکيل شده است. با توجه به طبيعت پيوند بين اين اتمها، انتظار ميرود اين مواد خواص مکانيکي فوقالعادهاي را در جهت موازي اين لايهها نشان دهند ولي خواص مکانيکي دقيق اين لايهها هنوز شناخته نشدهاند. اخيراً با استفاده از روشهاي مدلسازي تخمين زده شده که ضريب يانگ در راستاي لايهها، پنجاه تا چهارصد برابر بيشتر از يک پليمر عادي است. لايهها نسبت صفحهاي (aspect ratio) بالايي دارند و هر لايه تقريباً يک نانومتر ضخامت دارد، در حاليکه شعاع آن از سي نانومتر تا چند ميکرون، متفاوت ميباشد. صدها يا هزاران عدد از اين لايهها بوسيله يک نيروي واندروالسي ضعيف، روي هم انباشته ميشوند تا يک جزء رسي را تشکيل دهند. با يک پيکربندي مناسب اين امکان وجود دراد که رسها را به اشکال و ساختارهاي گوناگوني، درون يک پليمر، به شکل سازمانيافته قرار دهيم. در گذشته، عمدتاً به اين شکل از دانههاي رسي براي افزايش کارايي پليمر استفاده ميشود که آنها را در حد ميکروني خرد ميکردند تا از آنها در توليد پليمرهاي تقويت شده بوسيله پرکنندههاي در اندازه ميکرون، استفاده کنند. همانطور که در شکل 1 نشان داده شده. ميتوان تصور کرد که خواص مکانيکي فوقالعاده لايههاي منفرد در اجزاي خاکرس نتوانند در يک سيستم به طرز موثري عمل کنند و پيوندهاي ضعيف بين دو لايه منشاء ايراد در اين کار ميباشد. معمول است که از ميزان بالايي از خاکرس استفاده شود تا به بهبود کافي هر ضرايب دست يابيم، در حاليکه اين کار باعث کاهش استحکام و سختي پليمر ميشود. شکل 1: اصول کاربردي متفاوت در ساخت ميکرو و نانوکامپوزيتهاي رايج اصلي که در نانوکامپوزيتهاي خاکرس / پليمر رعايت ميشود، اين است که نه تنها دانههاي رسي را از هم جدا ميکنند، بلکه لايههاي هر دانه را نيز از هم جدا ميکنند (همانطور که در شکل 1 بصورت شماتيک نشان داده شده است) با انجام اين عمل، خواص مکانيکي فوقالعاده هر لايه نيز بطور موثر بکار ميآيد و اين در حالي است که در اجزاي تقويتشده نيز بطور چشمگيري افزايش پيدا ميکند، زيرا هر جزء رسي خود از صدها تا هزارات لايه تشکيل شده است. ويژگيها نانوکامپوزيتهاي خاک رس / پليمر يکي از دستاوردهاي تحقيقات اين است که مشخص شده که بسياري از خواص مهندسي هنگاميکه از ميزان کمي معمولاً چيزي کمتر از 5% وزني، پرکننده استفاده شود، بهبود قابل توجهي مييابد. در پليمرهايي چون نايلون (nylon-6) 6 هرگاه از چنين ميزان کمي پرکننده استفاده شود، يک افزايش 103 درصدي در ضريب يانگ، 49 درصدي در قدرت کشساني و 146 درصدي در مقاومت در برابر تغيير شکل بر اثر گرما، از خود نشان ميدهد. ساير خواص فيزيکي بهبود يافته عبارتند از: مقاومت در برابر آتش، مقاومت بارير (barrier resistance) و هدايت يوني. امتياز ديگر نانوکامپوزيتهاي خاک رس / پليمر اين است که تاثير قابل توجهي بر خواص اپتيکي پليمر ندارند. ضخامت يک لايه رس منفرد، بسيار کمتر از طول موج نور مرئي است، بنابراين نانوکامپوزيتهاي خاکرس / پليمر که خوب ورقه شده باشد، از نظر اپتيکي شفاف ميباشد. ميکرو نانوکامپوزيتهايي که تصويرشان در شکل 1 نشان داده شده، از ترکيب خاکرس و پليپروپيلن و با استفاده از روش سرد کردن سريع جهت به حداقل رساندن اثر کريستاليزاسيون، ساخته شدهاند. ميکروکامپوزيتهاي مرسوم، قهوهاي و مات به نظر ميرسند، در حاليکه نانوکامپوزيتها تقريباً شفاف و بيرنگند. با اين دلايل، نتيجه ميگيريم که نانوکامپوزيتهاي خاكرس/ پليمر نمايش خوبي از نانوتکنولوژي ميباشد. با سازماندهي و چينش ساختار کلي در پليمرها در مقياس نانومتر، مواد جديد با خواص نو يافت شدهاند. نکته ديگر در توسعه نانوکامپوزيتهاي خاكرس / پليمر اين است که اين تکنولوژي، فوراً ميتواند کاربرد تجاري پيدا کند، در حاليکه بيشتر نانوتکنولوژيهاي ديگر، هنوز در مرحله مفاهيم و اثبات هستند. كاربردهاي نانوکامپوزيتهاي خاک رس / پليمر اولين کاربرد تجاري اين مواد با استفاده از نانوکامپوزيت خاكرس / نايلون 6 بعنوان روکش نوار زمانسنج براي ماشينهاي تويوتا در همکاري با ube در سال 1991 بود. به فاصله کمي بعد از آن Unikita نانوکامپوزيت نايلون6 را بعنوان محافظ روي موتورهاي GDI شرکت ميتسوبيشي معرفي کرد. در آگوست 2001، ژنرال موتورز و باسل، کاربرد نانوکامپوزيتهاي خاكرس / پليمر را بعنوان جزء مکمل COMC ساخاري و شورلت اکستروژنها به همگان اعلام کرد. اين امر با کاربرد اين نانوکامپوزيتها در دربهاي شورلت ايمپالاز (Impalas) صورت گرفت. اخيراً شرکت نوبل پليمرز (Noble/Polymers) نانوکامپوزيتهاي خاكرس / پليپروپيلن را براي استفاده در صندليهاي هندا آکورد ساخته است و اين در حالي است که Ube دارد نانوکامپوزيتهاي خاكرس / نايلون12 (clay/nylon-12) را براي استفاده در اجزاي سيستم سوخترساني، توليد ميکند. علاوه بر کاربرد در صنعت خودرو، نانوکامپوزيتهاي خاكرس / پليمر، به صنايع نوشيدنيها نيز راه يافتهاند. Alcos CSZ نانوکامپوزيتهاي خاكرس / پليمر چندلايه را در کاربردهاي جديد خود (بعنوان مواد خطي – سدي) (barrier liner materials) بکار ميبرد. شرکت Honey well محصولات نانوکامپوزيت خاكرس / پليمري Aegis TM NC resin را در بستهبندي نوشيدنيها بکار ميبرد و اخيراً شرکتهاي Mitsubishi Gas Chemical و Nano car ، نانوکامپوزيتهاي Nylon-MXD6 را براي ساخت بطريهاي چند لايه (polyethylene terephtalate) PET ساخته است. تاريخچه نانوکامپوزيتهاي خاكرس / پليمر اگرچه تحقيقات در مورد ترکيب خاكرس/ پليمر به قبل از 1980 برميگردد، ولي کارهايي که در آن زمان صورت گرفت را نبايد در تاريخچه نانوکامپوزيتهاي خاكرس / پليمر به حساب آورد، چرا که هيچگاه به نتيجه چشمگيري براي بهبود خواص فيزيکي و مهندس آنها ختم نشد. در حقيقت ميتوان منشاء نانوتکنولوژي خاكرس / پليمر را کارهاي شرکت تويوتا که تلاش براي لايهلايه کردن دانههاي رسي در نايلون6 شروع شد، دانست. آنها فاش ساختند که توانستهاند بهبود قابل توجهي در خواص پليمرها، با تقويتشان بوسيله خاک رس در مقياس نانومتر، ايجاد کنند. از آن موقع به بعد تحقيقات وسيعي در اين زمينه در سطح جهان انجام شده است. در حال حاضر اين بهبودها به ساير پليمرهاي مهندسي از جمله پليپروپيلن (PP) ، پلياتيلن، پلياستايرن، پليوينيل کلريد، آکريلونيتريل، پليمرهاي بوتا اي ان اسنايرن (ABS) ، پليمتيل متاکريلات، PET ، کوپليمرهاي اتيلن سوينيل استات، پلياکريلونيتريل، پليکربنات، پلياتيلن اکسيد (PEO) ، اپوکسي رزين، پلياميد، پليلاکتيد، پليکاپرولاکتون، فنوليک رزين، پليپيفنيلن وينيلن، پليپيرول، لاستيک، استارک (آهار)، پلياوراتان، پليوينيل پيريدين، سرايت کرده. تکنولوژي ساخت نانوکامپوزيتهاي خاکرس / پليمر مرحله نهايي در ساخت نانوکامپوزيتهاي خاكرس / پليمر، جدا جدا کردن لايههاي رسي و پخش آن در پليمر ميباشد. استراتژي کار بستگي دارد به سازگاري و همگون بودن رس و پليمري که استفاده ميشود. اين تعيين ميکند که آيا نياز به عمليات مقدماتي روي خاكرس يا پليمر قبل از مخلوط کردن هست يا نه. اگر سطح لايههاي سيليکاتي با پليمر، سازگار و همگون باشد، اختلاط مستقيم بين اين دو ميتواند اتفاق بيفتد، بدون اينکه نياز به عمليات مقدماتي باشد. چنين مواردي بيشتر وقتي اتفاق ميافتد که پليمر قابل حل در آب، مانند PEO يا PVP استفاده کنيم، چرا که اين پليمرها و سطح لايههاي سيليکات، هر دو آبدوست هستند و نيروهاي دوقطبي يا واندروالسي بين لايههاي سيليکات، باعث سهولت جذب مولکولهاي آبدوست و ايجاد فشارهاي عمودي روي لايه ميشود که در نتيجه باعث جداکردن تکتک لايههاي رسي در اين پليمرها ميگردد. اما به هر حال، بيشتر پليمرها آب گريز و در نتيجه با دانههاي رسي آبدوست، ناسازگار هستند. در اين موارد نياز به يکسري عمليات مقدماتي روي خاکرس يا پليمر داريم. پرکاربردترين روشهاي براي اصلاح دانههاي رسي، استفاده از آمينواسيدها، نمکهاي آمونيم آلي و يا فسفونيم تترا ارگانيکهاست تا سطح آبدوست رسها را به آب گريز تبديل کنيم. دانههاي رسي که به اين روش اصلاح ميشوند، ارگانوکلي ناميده ميشوند. در مورد پليمرهايي که فاقد هرگونه گروه عاملي ميباشند، مانند پليپروپيلن (PP) ، معمولاً از تکنيکهاي افزودن گروه عاملي قطبي روي زنجيره پليمري استفاده ميشود و يا اينکه در طي فرآيند ساخت، پليمرهاي پيوند خورده را بصورت مستقيم وارد ميکنند. مثلاً در نانوکامپوزيتهاي رسي / پليپروپيلن (clay PP) از مالئيک اسيد پيوند خورده به پليپروپيلن، بصورت مستقيم استفاده شده است. در طي پيشرفتهاي اخير، از مخلوطي که پلي پروپيلن، پروپيلن پيوند خورده با مالئيک ايندريد و ارگانوکلي استفاده شده است. روشهاي زيادي در توليد نانوکامپوزيتها استفاده شده، ولي سه روشي که از ابتداي کار توسعه بيشتري يافتهاند عباراند از: پليمريزاسيون insitu ، ترکيب محلول القاشدن و فرآيند ذوبي . روش اينسيتو عبارت است از وارد نمودن يک پيش ماده پليمري بين لايههاي رسي و آنگاه پهن کردن و سپس پاشيدن لايههاي رسي درون ماده زمينه (matrix) با پليمريزاسيون. ابتکار اين روش بوسيله گروه تحقيقاتي شرکت تويوتا بود و زماني رخ داد که ميخواستند نانوکامپوزيتهاي خاكرس / پليمر6 را بسازند. اين روش قابليت و توانايي توليد نانوکامپوزيتهايي با لايه لايه شدگي خوب را دارد و در محدوده وسيعي از سيستمهاي پليمري، کاربرد دارد. اين روش براي کارخانههاي پليمر خام مناسب است تا در فرآيندهاي سنتزي پليمر، نانوکامپوزيتهاي رسي / پليمر بسازند و مخصوصاً براي پليمرهاي ترموستينگ (پليمرهايي که در برابر گرما مستحکمتر ميشوند) بسيار مفيد است. روش ترکيب محلول القا شده (solution induced interceletion) از يک حلال براي بارگيري و پخش رسها در محلول پليمري استفاده ميشود. اين روش هنوز مشکلات و موانع زيادي را در راه توليد تجاري نانوکامپوزيتها پيش رو دارد. قيمت بالاي حلالهاي مورد نياز و همچنين مشکل جداسازي فاز حلال از فاز محلول توليد شده، از جمله اين موانع هستند. همينطور در اين روش، نگرانيهايي از نظر امنيت و سلامتي وجود دارد . با اين وجود اين روش در مورد پليمرهاي محلول در آب قابل اجرا و مقرون به صرفه است، بخاطر قيمت پايين آب که بعنوان حلال استفاده ميشود و همچنين امنيت بيشتر و خطر کمتر آن براي سلامتي. در روش فرآيند ذوبي، ترکيب خاكرس و پليمر در حين ذوب شدن انجام ميشود. بازده و کارآيي اين روش به اندازه روش اينسيتو نيست و کامپوزيتهاي توليد شده، ورقهورقه شدگي کمي دارند. به هر حال اين روش ميتواند در صنايع توليد پليمر قديمي که در آنها از روشهاي قديمي مانند قالبگيري و تزريق (Extrution and injection molding) استفاده ميشود، بکار رود و اتفاقاً نقش مهمي در افزايش سرعت پيشرفت توليد تجاري نانوکامپوزيتهاي رس / پليمر ايفا کرده است. علاوه بر اين سه روش با روشهاي ديگر نيز در حال توسعه هستند که عبارتند از: ترکيب جامد، کوولکانيزاسيون و روش سل-ژل. اين روشها بعضاً در مراحل ابتدايي توسعه هستند و هنوز کاربرد وسيع پيدا نکردهاند. رقابت نانوکامپوزيتهاي خاکرس / پليمر با کامپوزيتهاي اليافي با پيدا شدن سروکله تکنولوژي نانوکامپوزيت، جهشي در زمينه تقويت پليمرها بوجود آمده، و معقول به نظر ميرسد که فکر کنيم نانوکامپوزيتهاي خاكرس / پليمر، بتوانند جاي کامپوزيتهاي تقويت شده با الياف مرسوم را بگيرند. از نظر تئوري، تقويت پليمرها در مقياس نانويي، امتيازات برتري نسبت به کامپوزيتهاي تقويتشده با الياف دارند. ضعف کامپوزيتهاي تقويت شده با الياف، در واقع يک شکست در راه استفاده مفيد از خواص ذاتي و طبيعي مواد است. مثلاً سعي ميکنيم که با بکارگيري پيوندهاي قوي کووالانسي و استفاده از صفحههاي آروماتيک ساختار گرافيتي، مواد کربني را مستحکمتر کنيم. در حاليکه الياف کربني که امروزه استفاده ميشود، تنها 3 تا 4 درصد استحکام نظري صفحات آروماتيک را به دست ميدهند. عدم اتصال داخلي بين صفحات آروماتيک در ساختار الياف کربني، مانع دستيابي به استحکام مطلوب مواد ميشود، در حاليکه اين مشکل در مورد نانوکامپوزيتهاي تقويتشده با پرکنندههاي لايهاي وجود ندارد. هنگاميکه از پرکنندههاي لايهاي و ورقهاي در زمينه پليمري استفاده ميشود، اتصالات و پيوندهاي داخلي بوجود آيد و بنابراين حداکثر استفاده از خواص ذاتي و طبيعي لايههاي منفرد ميشود. در حقيقت خواص مکانيکي بدست آمده، در بهترين نانوکامپوزيتهاي خاكرس / پليمر بسيار کمتر از کامپوزيتهايي است که از درصد بالايي الياف، براي تقويت استفاده ميکنند. در حال حاضر بيشترين پيشرفتها و بهبودها در خواص مکانيکي نانوکامپوزيتهاي خاكرس / نايلون6 بدست آمده که در آنها 4 درصد وزني از خاكرس بارگذاري شده است. شکل 2 ضريب و قدرت کشساني اين نانوکامپوزيت را با نايلون 60 و نايلون 60 تقويت شده با 48 درصد وزني، الياف خرده شيشهاي نشان ميدهد. مشاهده ميشود که بهترين نانوکامپوزيت خاكرس / پليمري، هنگاميکه حجم بالايي از جز را تقويتکننده اليافي مطرح باشد، نميتواند با کامپوزيتهاي اليافي همساني و رقابت کند. به منظور دستيابي به خواص مکانيکي بهتر عناصر تقويتکننده بيشتري در نانوکامپوزيتهاي خاكرس / پليمر مورد نياز است، در حاليکه چنين کاري غيرممکن است. زيرا هنگاميکه عمل لايه لايه شدن اتفاق ميافتد، سطح تماس لايههاي رسي صدها و بلکه هزاران برابر ميشود و اين باعث ميشود که مولکولهاي پليمر کاني، براي خيس کردن تمام سطح تقويتکنندههاي رسي نداشته باشيم. شکل 2 در هر حال، هنگاميکه بحث استفاده از درصد پايين پرکننده مطرح باشد، در اين حالت نانوکامپوزيتهاي خاكرس / پليمر را با کامپوزيتهاي تقويت شده بوسيله الياف، مقايسه کنيم، ميبينيم که نانوکامپوزيتها تقويت بهتري را نسبت به کامپوزيتهاي اليافي مرسوم، نشان ميدهند. اطلاعات بدست آمده بوسيله تحقيقات Fornes و Panl در مورد ضريب يانگ نانوکامپوزيتهاي خاكرس / نايلون6 و کامپوزيتهاي نايلون6 تقويت شده با الياف شيشهاي در محدوده استفاده از 10 درصد وزني پرکننده، در شکل 3 رسم شده است. ميتوان مشاهده نمود که نانوکامپوزيتها کارآيي بيشتري را در بهبود ضريب يانگ نسبت به کامپوزيتهاي اليافي نشان ميدهند. شکل 3 از مقايسه بالا مشهود ميگردد نانوکامپوزيتهاي خاكرس / پليمر در محدوده بارگذاري درصد پايين از الياف، امتيازاتي نسبت به کامپوزيتهاي تقويت شده با الياف دارند و مطمئناً بازار کامپوزيتهاي اليافي مرسوم با حجم پايين از جزء اليافي، با پيشرفت نانوکامپوزيتهاي خاكرس / پليمري تحت تاثير قرار خواهد گرفت، ولي فعلاً تابحال، پيشرفت در نانوکامپوزيتها تاثير کمي روي بازار کامپوزيتهاي تقويت شده با الياف گذاشته است. مشكلات توسعه نانوکامپوزيتهاي خاکرس / پليمر علاوه بر پرکنندهها، عمده مشکلات پيشروي پيشرفت نانوتکنولوژي خاكرس / پليمر عبارتنداز: عدم شناخت مکانيزمهاي موثر در افزايش کارايي، به کاربردي پليمرهاي ترموستينگ و عدم پايداري ارگانوکليها در برابر حرارت. اگرچه مدلسازيهاي زيادي در جهت پيشبرد درک از مکانيزم افزايش کارايي عمده خواص فيزيکي و مهندسي در استفاده از نانوکامپوزيتهاي خاكرس / پليمر انجام شده، ولي هنوز مسافت زيادي را پيشرو داريم. بهعنوان مثال، هنوز خواص فيزيکي مهندسي لايههاي منفرد سيليکات، دقيقا شناخته نشدهاند. از اين رو مشکل است که يک مکانيزم تقويتکننده ايجاد کنيم، و از طرفي، ساختار ذغال باقيمانده ناشي از احتراق نانوکامپوزيت خاكرس / پليمر هنوز روشن نيست. بدون آن ممکن نيست مکانيزمي براي ايجاد مقاومت در برابر آتش، براي آن طراحي کنيم. مدلسازيها و تحقيقات تجربي اساسي، بايد در جهتي هدايت شود که در آينده اين موانع برطرف شوند. به کاربردن پليمرهاي ترموستينگ، مشکل عمده ديگري در توسعه نانوکامپوزيتهاي خاكرس / پليمر ميباشد. ترکيب خاکرس با يک پيش ماده پليمر ترموستينگ ميتواند عامليت يک پليمر را تغيير دهد. تغيير در عامليت بر ميزان اتصالات عرضي تاثير ميگذارد و بخوبي مشخص است که عمده خواص مهندسي پليمرهاي ترموستينگ، تابعي از ميزان تعداد اتصالات عرضي است. با اين وجود گزارشهايي هم وجود داشته مبني بر بهبود خواص مکانيکي سيستمهاي پليمري تروستينگي که ميزان اتصالات عرضي آن پايين بوده است، از جمله اپوکسي رزين با T g پايين و پلي اوراتانها. آخرين مسئله مستقيماً بر ميگردد به نگراني در مورد تجاريسازي نانوتکنولوژي خاكرس / پليمر، کمبود ارگانوکليهاي پايدار در برابر گرما و نيز از نظر تجاري در دسترس، از موانع ثبت شده در اين مسير هستند. بيشتر ارگانوکليهاي در دسترس، از جايگزيني کاتيون فلزي درون ساختار رس، با نمکهاي آمونياک آلي تهيه ميشوند. اين نمکهاي آمونيم در مقابل گرما ناپايدارند و حتي در دماهاي کمتر از 170 درجه سانتيگراد از بين ميروند. مسلماً چنين مواد فعال سطعي (سورفکتنت) براي بيشتر پلاستيکهاي مهندسي هنگاميکه از تکنولوژي فرآيند ذوب شدن براي ساختن نانوکامپوزيتها استفاده شود، صاحب نيستند و ساخت نانوکامپوزيتهايي که در آن از ارگانوکليهاي اصلاح شده بوسيله نمکهاي آمونيم بکار رفته، با استفاده از تکنيکهاي ديگر، به يک معضل تبديل شده است. اگرچه تعداد زيادي سورفکتنت پايدار در برابر گرما، مثل فسفونيم شناخته شدهاند، ولي اين سورفکتنتها براي کاربرد تجاري، مقرون به صرفه نيستند. نوآوريهايي در جهت اصلاح رسهاي آبدوست با استفاده از پليمرها و اليکومرهاي چند عاملي انجام شده تا ارگانوکليهاي پايدار در برابر گرما براي توليد نانوکامپوزيتهاي رس / پليمر بسازند. خلاصه و نتيجهگيري: پيشرفتهاي عمده در توسعه نانوکامپوزيتهاي خاكرس / پليمر به پانزده ساله اخير بر ميگردد و مزيتها و محدوديتهاي اين تکنولوژي روشن شده است. با اين حال، تا شناخت مکانيزمهاي افزايش کارايي و بهبود خواص مهندسي آنها و اينکه بتوانيم ريزساختارهاي آنها را سازماندهي و چينش کنيم تا به خواص مهندسي ويژه دست پيداي کنيم، راه طولاني در پيش رو داريم. در مواقعي که از درصد پايين پرکننده استفاده شود، نانوکامپوزيتهاي خاكرس / پليمر اين پتانسيل را دارند تا جايگزين کامپوزيتهاي مرسوم تقويت شده با الياف شوند.
- 4 پاسخ
-
- 3
-
- نانو
- نانو فناوری
-
(و 8 مورد دیگر)
برچسب زده شده با :
-
مقدمه اين خلاصه مروري دارد بر بازار عايقبندي ساختمان و اينكه فناوري نانو چگونه ميتواند به اين كار كمك كند. به كمك نانو مواد متخلخل، پوششها و پوشرنگهاي (paints) حاوي اين نانوذرات ميتوانند به ذخيرهي انرژي در جامعه كمك كرده و راحتي و سلامتي را در داخل ساختمانها به ارمغان آورند. بخش ساختمانسازي، بزرگترين مصرفكنندهي (40%) انرژي است و اصليترين سهم را در انتشار گازهاي گلخانهاي (GHG) با ميزان بيش از 36% در اتحاديهي اروپا دارد. در حدود 80% از مصرف انرژي مربوط به ساختمان و انتشار گازهاي گلخانهاي مرتبط با انرژي است كه در داخل ساختمان و در طي عمر عمر ساختمان از آن استفاده ميشود، در حالي كه فقط 20% انرژي براي توليد و انتقال مواد در ساختمان به كار ميرود. تفكيك مصرف انرژي در ساختمان نشان ميدهد كه گرمايش و تهويهي هوا (HVAC) تقريباً 36% سهم دارند. در نتيجه، تهويهي هوا حدود 10% از مصرف انرژي اتحاديهي اروپا و انتشار گازهاي گلخانهاي را شامل ميشود. ساختمانها عموماً طول عمر طولاني با ميانگين عمر بيشتر از 60 سال دارند. اين موضوع باعث ميشود كه بهبود بازده انرژي تمام ساختمانهاي اروپا، فقط از طريق عايقبندي مناسب و فناوريهاي مديريت گرما براي همه ي ساختمانها مشكل باشد. براي داشتن تاثير اساسي در زمان كوتاهتر (10 تا 20 سال)، ساختمانهاي موجود بايد از نظر عملكرد گرمايي به روز شوند. فناوري نانو ارزش افزوده ايجاد ميكند بيشتر عايقهاي ساختماني كه اخيراً استفاده ميشوند، پنلهاي نسبتاً ضخيم يا فومهاي ساخته شده از مواد متخلخل آلي و معدني مثل فايبرگلاس، الياف معدني، پلييورتان و پلياستايرن هستند. عايقهاي جديدتر شامل پنلهاي عايق خلأ (VIPs) و هواژلها هستند كه بهترين عملكرد در زمينهي عايقهاي ساختماني با عملكرد عايقي بسيار بالا را دارند، اما محدوديتهايي از جمله قيمت بالا را دارا هستند. گرمانگار ساختمان، با يك ساختمان سنتي در زمينه ـ مرجع: موسسهي Passivhaus براي عايق كردن ساختمان با استانداردهاي بالا با استفاده از مواد مرسوم عايقبندي، لايههاي ضخيمي از اين مواد نياز است. براي مثال، يك خانه كه مطابق با استاندارد Passivhaus ساخته شده است، مجهز به تجهيزاتي است كه كل مصرف انرژي آن را كمتر از 120 kWh/M2/yr مي كند. براي اين منظور به عايقهاي معمولي با ضخامت بيش از 30 سانتيمتر براي ديوارها و 50 سانتيمتر براي سقف، و نيز شيشههاي سه جداره با هوا و چارچوبهاي خاص براي پنجرهها نياز خواهد داشت. اين راهحلهاي عايقبندي ممكن است براي ساختمانهاي جديد نسبتاً عملي باشند، ولي در مورد ساختمانهاي موجود جنبههايي مثل اصلاح نماي خارجي و كاهش متراژ داخلي امكان پذيري آنها را محدود ميكند. نظر به اينكه 80% از ساختمانهاي اروپا در آينده (2030) از قبل وجود داشته و اينكه 30% از ساختمانهاي موجود امروزي ساختمانهاي تاريخي هستند، نياز به راهحلهايي جديد به خصوص براي ساختمانهاي موجود، احساس ميشود. فناوري نانو قادر است مواد عايق جديدي با عملكرد عايقي خاص توليد كند كه با اين مواد ميتوان به نتايجي معادل با محصولات سنتي و با ضخامت كمتر رسيد، همين موضوع باعث شده است براي به روز كردن ساختمانها بسيار مورد توجه قرار گيرد؛ مثالهايي از اين نانومواد شامل هواژلها، نانوفومها و پوششهاي پنجرهها (window coating) است. اما قيمت بالاي اين مواد پذيرفتن آنها را محدود كرده است. فناوري نانو چگونه در اين زمينه كمك ميكند؟ به عنوان يك قانون كلي مواد متراكم تر عملكرد عايقي ضعيفتري از خود نشان ميدهند؛ در مواد متخلخل با اندازهي حفرات بزرگتر نيز انتقال گرما بيشتر و عايقبندي ضعيفتر است. مواد متخلخل در مقياس نانو مانند هواژلها نسبت به جامدهاي ديگر دانسيتهي كمتري دارند، به علاوه به دليل اندازهي حفرات در اندازهي نانو به عنوان عايق، عالي عمل ميكنند. مواد عايق ديگري كه از فناوري نانو در آنها استفاده ميشود شامل پوششها و پوشرنگها (paints) هستند. اين مواد در كاهش انرژي تابشي كه مربوط به انتقال گرما است موثر هستند. هر مادهاي انرژي تابشي را منتشر ، جذب و منعكس ميكند؛ مواد با انتشار كم، موادي هستند كه ميزان كمي از انرژي تابشي را انتشار ميدهند. شيشههاي با انتشار كم معمولاً ولي نه هميشه يك پوشش بسيار نازك از فلزات دارند كه تابش گرماي را بازتاب ميدهند يا انتشار آن را كم ميكنند، با اين كار انتقال گرما از شيشه كاهش مييابد. در زمستان، تابش گرمايي كه در داخل توليد ميشود، دوباره به داخل منعكس ميشود، در حالي كه در تابستان، تابش گرماي فروسرخخورشيد به بيرون منعكس ميشود و داخل خنك ميماند. دو روش براي توليد شيشههاي پوشش داده شده با انتشار كم وجود دارد؛ پوشش سخت شامل استفاده از روش رسوبدهي بخار شيميايي در فشار اتمسفر (APCVD)، و پوشش نرم شامل روش رسوبدهي خلأ كاتدپراني مغناطيسي(MSVD). يك شيشهي پوشش داده شده با روش MSVD عملكرد بهتري نسبت به شيشهي پوشش داده شده با روش APCVD دارد؛ با اين وجود روش دوم با دوامتر است. فيلمهاي پنجرهاي (window films) هم گزينهي مناسب ديگري است كه انتقال گرما به پنجره را كاهش ميدهند. اين فيلمها در مقايسه با پوششها مزايايي دارند، مثلاً آنها ميتوانند طول موج خاصي از نور را بدون كاهش شفافيت شيشه بازتاب دهند. اين فيلمها از بيش از 200 نانومترضخامت و از پليمرهايي ساخته شدهاند كه ميتوانند به عنوان ***** فرابنفش (UV) و فروسرخ(IR) عمل كنند. مزيتهاي اصلي اين فيلمها عبارتند از: توانايي آنها براي ***** كردن نور UV و IR در حالي كه نور مرئي ميتواند عبور كند؛ عدم حضور فلزات كه ميتوانند منجر به خوردگي شوند؛ و اينكه آنها ميتوانند در ساختمانهاي موجود نصب شوند. به علاوه، انرژي صرف شده در فيلمهاي پنجرهاي اساساً كمتر از پنجرههاي جديد با انتشار كم است، كه به اين معني است كه تعادل CO2 از اضافه كردن فيلمهاي پنجرهاي به پنجرههاي موجود اساساً بهتر از اين است كه با پنجرههاي موجود با انتشار كم جايگزين شوند. اثرات اقتصادي / صنعتي در حال حاضر فناوري نانو ارزش تجاري بسيار كمي در عايقبندي ساختمانها دارد. محصولات نانويي كه تجاري شدهاند ارزش بالا و هزينهي بالا دارند، اين محصولات مثل هواژلها ميتوانند در تعداد كمي از ساختمانها نصب شوند. با اين وجود، اين بخش در حال رشد است؛ بازار جهاني براي هواژلها در سال 2008، 82.9 ميليون دلار بوده است و انتظار ميرود كه تا سال 2013 با نرخ رشد ساليانه 54.8% به 646.3 ميليون دلار برسد. انتظار ميرود كه بازار به سمت كاربرد عايقهاي صوتي و گرمايي پيش رود. امروزه، بزرگترين بازار براي اين مواد عايق نانويي خارج از صنعت ساختمانسازي است: در عايقبندي لولههاي نفت و گاز مدفون در اعماق دريا؛ در تجهيزات پزشكي و در صنايع فضايي. توليدكنندگان اصلي هواژلها شركت Aspen Aerogel (USA) و Cabot (USA) ميباشند. اين موضوع براي پوششهاي پنجرهي نانويي صادق نميباشد، اين پوششها در حال نفوذ به بازار هستند، به خصوص بازار شيشههاي تخت و بازار فيلمهاي پنجرهاي. بيشتر توليدكنندگان (Asahi, Pilkington, St Gobain) شيشههاي تخت بزرگ در جهان شيشههاي موظف متنوعي توليد ميكنند، اين شيشهها شامل (اغلب ضخامت در حد نانو دارند) پوششهاي فلزي و يا اكسيدهاي فلزي هستند؛ اما برخي از اين شركتها (به تنهايي يا با همكاري با كارشناسان پوشش شركتهايي مثل Beneq (FI)، Ferro (USA) يا Arkema (FR)) در حال ايجاد پوششهاي با فناوري نانو پيچيدهتر هستند كه عملكرد مناسبتري دارند و دامنهي وسيعتري از پوشرنگها را شامل ميشوند. امروزه پوششهاي با انتشار كم براي شيشههاي تخت براي همهي جهان بازاري 1 بيليون دلاري دارد، با توجه به تقاضاها تخمين زده ميشود كه تا سال 2015 به 360 ميليون متر مربع هم برسد. علاوه بر اين، بايد توجه شود كه بازار فيلم پنجرهاي در دست شركتهايي مثل Global Window Films (USA)، 3M (USA)، Bekaert (BE) يا Hanita Coatings (ISR) ميباشد. امروزه ارزش كل حدود 500 ميليون يورو تخمين زده ميشود، كه بخشي از آن شيشههاي ساختماني است (بازار مهم ديگر شيشههاي خودرويي ميباشد) كه بخش كوچكي از آن مربوط به توليدات نانويي ميباشد. عملكرد اصلي كه توسط فناوري نانو ارائه ميشود اين است كه بدون مانع ايجاد كردن در برابر نور، گرما بازتاب داده ميشود، و يا قابليت داشتن هر رنگ براي پنجرهها با لايههاي پوششي نانويي ايجاد ميشود. بايد اشاره كرد كه انتظار ميرود تقاضاي جهاني براي مواد عايق با گسترش 3.8% به 29 بيليون يورو در سال 2012 برسد. پتقاضاي ساليانهي جهاني شيشههاي تخت با رشد 4% تا سال 2012 به 73 بيليون دلار برسد. به خصوص، انتظار ميرود كه شيشههاي ساختماني با نرخ ساليانه 8% رشد يابند. هدف اين است كه شيشههاي تخت براي ساختمان به 65% تقاضاي ساليانه برسد، در حالي كه بخش مربوط به خودرو 25% بازار را شامل ميشود، و 10% باقيمانده متعلق به كاربردهاي ويژه مثل وسايل خانه و آينهها است. تقاضا و توليد جهاني در چند كشور و چند شركت تمركز دارد، كه در شكل زير نشان داده شده است؛ شركتهاي Saint-Gobain، Pilkington و Asahi نزديك به نيمي از بازار جهاني را به خود اختصاص دادهاند. تقاضاي جهاني براي شيشههاي تخت (بر حسب تن) ظرفيت توليد جهاني شيشههاي تخت براي پذيرفتن فناوري نانو، توليدكنندگان مواد عايق مثل فومها و پنلها ناگزيرند به طور كامل از ماشينآلات و مهارتهاي جديد استفاده كنند. براي توليدكنندگان پنجره نياز است كه ماشينآلات جديدي براي خطوط توليد فعليشان اضافه كنند. هر دو گروه توليدكنندگان اذعان دارند كه كارگران هم بايد در اين زمينهي جديد مهارت كسب كنند، و مقرارت كنترلي و ايمني نيز بايد تكميل شوند. ميزان آمادگي فناوري مواد مختلفي كه ميتوان فناوري نانو را در آنها به كاربرد در سطوح مختلف توسعه در شكل زير نشان داده شدهاند. تأثير اجتماعي بر شهروندان اروپايي به واسطهي توليد محصولات عايق نانويي، شهروندان اروپايي ميتوانند كاهش در مصرف انرژي خانههايشان را تجربه كنند، به خصوص در خانههايي كه به دلايل زيبايي يا از دست دادن فضا نميتوانند خانههايشان را عايقبندي كنند. كارشناسان ادعا ميكنند كه براي خانههاي موجود، مصرف انرژي از مقدار كنوني (300kWh/m2) به مقدار 50 kWh/m2 در سال كاهش مييابد. اين كاهش زماني اهميت بيشتر مييابد كه انتظار ميرود قيمت سوخت به طور چشمگيري در سالهاي آتي افزايش يابد. زماني كه از اين مواد استفاده ميشود، ساكنان خانهها از يك محيط داخلي بهتر لذت ميبرند، اگرچه تهويه لازم است ولي اختلاف دما تقريباً حذف ميشود. به علاوه، سرمايهگذاري نسبتاً بالايي كه براي عايق كردن ساختمان مطابق با استانداردها هزينه ميشود با هزينهي مصرف انرژي جبران ميشود. در سطح اجتماعي، تأثير اصلي راهحلها براي عايقبندي نانويي كاهش انتشار گازها گلخانهاي از طريق كاهش مصرف انرژي مربوط به دستگاههاي تهويهي هوا توسط ساختمانهاي موجود است. چالشها هواژلهايي كه امروزه در بازار در دسترس هستند بيشتر هواژلهاي معدني ميباشند؛ رايجترين آنها از سيليكا ساخته ميشوند. محدوديتهاي اين هواژلها شكنندگي آنها، مقاومت به رطوبت كم و فرايند توليد گران است. به دليل اين محدوديتها، پيشرفتهايي در زمينهي هواژلها صورت گرفته و توليدكنندگان به سوي فرايندهاي جديد براي توليد پيش ميروند. هواژلهاي آلي شكنندگي كمتري دارند، خواص مكانيكي بهتري دارند، حتي در مقايسه با مشابههاي معدنيشان سبكتر بوده و به عنوان عايق گرمايي بهتري عمل ميكنند؛ اما توسعهي اين مواد در مراحل اوليه است. هواژلهاي هيبريدي مواد هيبريدي آلي ـ معدني هستند كه مشخصههاي بهتري در مقايسه با هواژلهاي معدني ايجاد ميكنند. وابسته به تركيب مواد، هواژلهاي هيبريدي ميتوانند تا 100 برابر در مقابل تنشهاي مكانيكي مقاوم باشند، ميتوانند در برابر رطوبت بياثر و در برابر تابشهاي گرمايي به عنوان يك مانع موثر عمل كنند. چالش پيش رو در اين زمينه يافتن راههايي است كه بتوان با هزينهي كم و حجم بالاي توليد، هواژلهاي هيبريدي و آلي توليد كرد. فرايند توليد هواژلها شامل دو مرحلهي اصلي است: ساخت يك ژل كه حلال در آن نفوذ كرده و حذف حلال با يك فرايند خشك كردن خاص. امروزه رايجترين فرايند براي خشك كردن، خشك كردن فوق بحراني است كه يك روش گران (و با انرژي زياد) براي ساخت ميباشد. در اين رابطه، چالش پيش رو فرايند خشك كردن زير نقطهي بحراني براي توليد انبوه است؛ اين يك فرايند اقتصادي خشك كردن است كه در فشار اتمسفري و دماهاي نسبتاً كم ميتوان به آن دست يافت. چالش اصلي براي پوششها ايجاد پوششهاي شيشه مقاومتر با روش رسوبدهي خلأ كاتدپراني مغناطيسي (MSVD) است. پيشرفتهايي در اين زمينه بدست آمده است، اما پوششهاي APCVD هنوز هم مقاومترين پوششها ميباشند. يك چالش هم براي پوششهاي سرد و هم پوششهاي نرم، بهبود مقاومت به خوردگي است، به دليل اين كه در تركيبشان فلزات هم حضور دارند. موضوع مهم بررسي تأمين مالي سرمايهگذاري مورد نياز براي بهبود بهرهوري انرژي است، زيرا كه در بسياري از موارد سازنده يا مالك (و در نتيجه سرمايهگذار) از صرفهجويي در مصرف انرژي بهرهاي نميبرد. جايگاه رقابتي اتحاديهي اروپا براي پوششهاي پنجره، اروپا با شركتيهاي كوچك با تكنولوژي بالا (مثل Beneq يا Peer+) كه با شركتهاي بزرگ جهاني شريك هستند، جايگاه بالايي دارد. به علاوه برخي شركتهاي بزرگ مثل Arkema و BASF نيز در بين آنها ديده ميشوند. براي شيشههاي تخت نانويي، شركتهاي Pilkington، St Gobian و Asahi Glass Europe، فعاليتهاي تحقيقاتي را فراهم كرده و اين قابليت وجود دارد كه نتايج برخي تحقيقات به بازار راه پيدا كند. در اروپا، تحقيقات بر روي نانوفومها و هواژلها تا امروز پايينتر از شاخص جرم بحراني بوده است، با وجود اينكه همكاريها در چارچوب برنامههايي آغاز شده، هرگز به بازارهاي قابل توجه يا قابليت توليد انبوه نميرسند. با اين وجود، اخيراً برخي صنايع شيميايي بزرگ تمايل بيشتري به اين مواد پيدا كردهاند و روي نانوفومهاي پليمري با كارايي بيشتر و قيمت كمتر تمركز كرده و به دنبال روشهاي توليد با هزينهي كمتر هستند. براي فيلمهاي پنجرهاي، شركتهاي Solutia، Bekaert و 3M در جهان پيشرو هستند؛ از بين اين شركتها، شركت Bekaert از اركان اصلي توليد اين مواد در بلژيك است. اتحاديهي اروپا اخيراً شروع به رسيدگي به فرصتهايي كه در اين زمينه وجود دارد كرده است، و به پروژههايي در چهارچوب برنامهي هفتم كمك مالي ميكند. با دادن بخشي از فرصتهاي بازار و ايجاد ارتباط براي تحقيقات موفق، اتحاديهي اروپا ميتواند بر چالشهاي اصلي فائق آيد. از ديدگاه صنعتي، شركتهاي اصلي شامل Cabot (USA)، TAASI (USA)، Nanopore (USA)، Branch Tech International (USA)، Aspen Aerogel (USA)، Aerogel Composites (USA)، MarkeTech (USA)، 3M (USA)، DuPont (USA)، Arkema (France)، BASF (Germany)، Beneq (Finland)، Bekeart (Belgium)، Hanita Coating (Israel)، Solutia (USA) و Research Frontier, Inc (USA) ميباشند. خلاصه • درمورد مواد عايق نانويي، جايگاه كنوني اتحاديه در مقايسه با صنايع قوي ايالات متحده ضعيف است، اگرچه برخي از آنها ظرفيت توليد در آلمان را دارند (Cabot Aerogels). با اين وجود، صنايع شيميايي اتحاديهي اروپا توانايي و استراتژي لازم براي گسترش و اقتصادي كردن نانوفومهاي آلي را دارند و انتظار ميرود كه از اكنون تا 5 تا 10 سال ديگر به بازار راه پيدا كنند. • در مورد پوششهاي پنجره، چند شركت به علاوهي تأمينكنندگان فناوري پوشش در اروپا مستقر بوده و بعنوان پيشتاز در تجارت عمل ميكنند. در مورد فيلم هاي پنجرهاي نانويي هم وضعيت مشابه است؛ حداقل يك شركت كه در جهان پيشتاز است، در اروپا مستقر است و استراتژيهاي لازم را پايهگذاري ميكند. از ديدگاه علمي، تعداد كمي دانشگاه يا موسسهي تحقيقاتي هستند كه تحقيقات قوي در اين زمينهي خاص دارند. • تأثير اجتماعي پنجرههاي با انتشار كم نانويي (و فيلمهاي پنجرهاي) كه با فومهاي پليمري حاوي نانومواد (يا هيبريدها) كه براي عايقبندي ساختمانها ايجاد ميشوند، به طور بالقوه بسيار بالاست، كه راهحلي واقعي براي ساختمانهاي موجود بوده و نياز به نو شدن براي بازده انرژي بالاتر (براي پاس كردن استانداردها در آينده) را دارند، ميباشد. قابليت صنعت اتحاديهي اروپا براي رسيدن به ميزاني از ارزش قيمتي براي توليدات نانويي، مشخص ميكند كه آيا اين پتانسيل ميتواند به واقعيت تبديل شود يا خير. منبع ObservatoryNANO Briefing, August 2010
- 1 پاسخ
-
- 5
-
- فناوری نانو
- نانو
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
ثبت پتنتی درباره نانوپوششهای ضدآب و ضد روغن
unstoppable پاسخی ارسال کرد برای یک موضوع در اخبار و نوآوری
یک شرکت بلژیکی نانوپوششی تحت برند Nanofics 110 تولید کرده است که دارای خواص ضد آب و ضد روغن است. این محصول عاری از مواد مضری نظیر پرفلورو اکتان سولفونات و پرفلورو اکتان است. شرکت یورو پلاسما (Europlasma) محصول جدیدی به نام Nanofics 110 به بازار عرضه کرده است. این محصول یک نانوپوشش با قدرت آبگریزی بالا است. بر اساس استاندارد ASTM D5964 زاویه تماس این محصول 110 درجه است. این محصول دارای خواص ضد روغن نیز است به طوری که بر اساس استاندارد ایزو 14416 این محصول در سطح 6 قرار میگیرد. Nanofics 110 یک نوع نانوپوشش فلوئورپلیمر بوده که با استفاده از فناوری پلاسما در فشار کم بدست میآید. ویژگی منحصر به فرد این پوشش آن است که کاملا عاری از PFOA و PFOS است. (PFOA و PFOS در واقع پرفلورو اکتان سولفونات و پرفلورو اکتان هستند که مواد سنتزی و غیرطبیعی بوده که در محصولات مختلف مورد استفاده قرار می گیرند. اخیرا نگرانیهای زیادی درباره اثرات این مواد روی سلامت انسان ایجاد شده است. مترجم). اخیرا مدیران شرکت Europlasma یافتههای خود را درباره این نانوپوشش به صورت پتنتی در آورده و وارد مراحل ثبت آن شدهاند. پوششهای رایجی که دارای خواص ضد آب و ضد روغن هستند معمولا حاوی مولکولهایی با زنجیره بلند بوده که در ساختار آنها از PFOA و PFOS نیز استفاده میشود. اخیرا دانشمندان تلاش دارند به سوی تولید محصولاتی بروند که عاری از این ترکیبات باشد زیرا این مواد میتوانند موجب بروز مشکلات در سلامتی انسان شوند. Europlasma یک شرکت بلژیکی پیشرو در فناوری پلاسما با فشار پایین است که اخیرا تولید این محصول جدید خود را اعلام کرده است. Nanofics مخفف nanoscaled functionalization into the core of complex shaped است. اولین پتنت این شرکت در سال 1998 ثبت شد. پیتر مارتنز مدیر این شرکت میگوید در حال حاضر فناوری تولید پوششهای ضد آب به بلوغ خود رسیده است. اخیرا در این محصولات به جای مولکولهایی با رشتههای بلند از مولکولهای کوتاه استفاده میشود. اکنون دیگر زمان آن رسیده تا بازار را برای استفاده از این محصولات جدید که حاوی رشتههای کوتاه هستند ترغیب کرد. برای این منظور در اولین گام شرکت یوروپلاسما نانوپوششهایی تولید کرده که عاری از PFOA و PFOS هستند که از آن میتوان در صنعت نساجی استفاده کرد. البته از این نانوپوششها میتوان در مقیاس صنعتی استفاده کرد به طوری که امکان اعمال روی سطوح با ابعاد 1.6 متر و قطر 0.8 متر وجود دارد. برای کسب اطلاعات بیشتر درباره Nanofics 110 میتوانید با آدرس ایمیلpeter.martens@europlasma.be تماس بگیرید. منبع : مجله بسپار-
- 3
-
- نانو
- نانو فناوری
-
(و 7 مورد دیگر)
برچسب زده شده با :
-
ساخت ماده زیست فعال برای بهبود سریعتر آسیبهای استخوانی
unstoppable پاسخی ارسال کرد برای یک موضوع در اخبار و نوآوری
مادهای زیست فعال و زیست سازگار به کمک نانوذرات و با توانایی بهبود سریعتر آسیبهای استخوانی به دست مهندسان پلیمر پژوهشگاه پلیمر و پتروشیمی ایران طراحی و ساخته شد. این ماده علاوهبر داشتن قابلیتهای سایر مواد زیست فعال، میتواند تکثیر و تمایز سلولهای استخوانی را تسریع نماید. اگرچه اثبات شده است که ذرات هیدروکسی آپاتیت باعث افزایش تکثیر و تمایز سلولی در شرایط برون تنی میشوند، اما تاکنون مطالعه چندانی در رابطه با اثر نانوذرات هیدروکسی آپاتیت قرار گرفته در بستر پلیمری پلی هیدروکسی آلکانوآت روی پاسخهای سلولی انجام نگرفته است. واضح است که تعیین اثر نانوذرات هیدروکسی آپاتیت بر رفتار سلولی بستر پلی هیدروکسی آلکانوآت اولین و مهمترین مرحله برای توسعه کاربردهای این نانوکامپوزیتها است. در این کار تحقیقاتی اثر نانوذرات هیدروکسی آپاتیت کامپوزیت شده با پلیاسترهای تجاری ساخته شده بهوسیلهی باکتری بر روی تکثیر و تمایز سلولهای استخوانی مورد بررسی قرار گرفت. بر اساس نتایج آنالیزهای بافتشناسی و محتوای DNA، نانوکامپوزیتهای ساخته شده قادر بودند که به طور معنی داری تمایز و تکثیر سلولهای استخوانی را القا نمایند و از این جهت نانوکامپوزیتهای ساخته شده به عنوان یک گزینه مناسب برای مهندسی بافت استخوان معرفی شدند. مهدی سادات شجاعی هدف این تحقیقات را توضیح داد: «در تحقیقات حاضر، هدف ساخت یک ماده زیست فعال و زیست سازگار بود که علاوهبر داشتن قابلیتهای سایر مواد زیست فعال، بتواند تکثیر و تمایز سلولهای استخوانی را تسریع نماید و در نتیجه امکان بهبود سریعترآسیبهای استخوانی را فراهم کند.» دانش آموخته دکتری تخصصی مهندسی پلیمر ادامه داد: «در این تحقیق نانوذرات هیدروکسی آپاتیت با روش هیدروترمال ساخته شدند و پس از کامپوزیت کردن با پلی استرهای تجاری ساخته شده بهوسیلهی باکتری (پلی هیدروکسی آلکانوآتها)، خواص ساختاری (شامل خواص حرارتی و رئولوژیکی) و زیستی (شامل زیست فعالیت، چسبندگی سلولی، پخش شدگی سلولی، تکثیر سلولی و تمایز سلولی) آنها مورد بررسی قرار گرفت. در نهایت نیز سازوکارهای بهبود در پاسخهای سلولهای استخوانی تجزیه و تحلیل گردید.» یکی از مهمترین نتایج تحقیق حاضر را شاید بتوان بهبود چشمگیر در خواص زیستی نانوکامپوزیتهای پلی هیدروکسی آلکانوآت/هیدروکسی آپاتیت در مقایسه با پلیمر خالص دانست. سادات شجاعی در تکمیل نتایج بهدست آمده گفت: «بر اساس بررسیهای فعالیت متابولیکی و همچنین بررسی غلظت DNA سلولها، یک افزایش معنیدار و شدید در فعالیت متابولیکی و تکثیر سلولی برای سلولهای استخوانی روی سطح نانوکامپوزیتهای ساخته شده در مقایسه با پلیمر خالص مشاهد شد. همچنین بر اساس بررسیهای بافتشناسی، در حالیکه هیچ تمایز سلولی معنی داری روی سطح پلیمر خالص قابل مشاهده نبود، روی سطح نانوکامپوزیتهای با غلظت پرکننده زیاد، سلولهای پیش استئوبلاست به طور موثری به سلولهای استئوبلاست بالغ تمایز یافتند که دلالتکننده نقش موثر نانوذرات هیدروکسی آپاتیت در القای تمایز سلولهای استخوانی است.» با توجه به اینکه نانوکامپوزیتهای فوق دارای زیست فعالیت افزایش یافته بوده و به طور همزمان تکثیر سلولهای استخوانی و تمایز سلولهای پیش استخوانی به سلولهای استخوانی بالغ را تحریک میکنند، لذا به کارگیری نانوکامپوزیتهای فوق برای ترمیم آسیبهای استخوانی میتواند سرعت ترمیم استخوان را چندین برابر نسبت به نمونههای سنتی افزایش دهد. نتایج این کار تحقیقاتی که به دست دکتر مهدی سادات شجاعی دانش آموخته دکتری تخصصی مهندسی پلیمر و دکتر محمدتقی خراسانی و دکتر احمد جمشیدی اعضای هیئت علمی پژوهشگاه پلیمر و پتروشیمی ایران صورت گرفته است، در مجله Materials Science and Engineering C (جلد 33، شماره 5، 1 جولای سال 2013) منتشر شده است. منبع : مجله بسپار -
نتایج حاصل از یافتههای محققان آلمانی در بررسی رفتار پلیمرهای نانومقیاس با استفاده از AFM، منجر به کشف نوع جدیدی از اصطکاک شده است که پیش از این مشاهده نشده بود. اصطکاک یک پدیده فیزیکی رایج و موضوعی مهم در حوزههای مختلف علمی محسوب میشود، اصطکاک در بسیاری از فرآیندها موجب دردسر و مصرف انرژی بیشتر است. این پدیده هم باعث افزایش خستگی و هم از دست رفتن انرژی بین دو سطح در حال سایش میشود. از حسگرها تا ساخت ابزارهای قابل کاشت در بدن، کاهش اصطکاک در نهایت موجب کاهش مصرف انرژی شده و از خستگی مواد میکاهد. تیم تحقیقاتی دانشگاه صنعتی مونیخ به رهبری ترستون هوگل و الکساندر هولیتنر روی ساخت قطعات کوچک با اصطکاک پایین تحقیق میکنند. این گروه اخیرا موفق به شناسایی نوعی اصطکاک جدید شدند، آنها این اصطکاک را چسبندگی دفعی“desorption stick” نامگذاری کردند. این کشف میتواند برخی پدیدههایی را که پیش از این غیرقابل توضیح بود، توضیح دهد. این گروه به بررسی این موضوع پرداختند که چرا و چگونه مولکولهای پلیمری منفرد در حلالهای مختلف روی یک سطح چسبیده یا لیز میخورند. هدف محققان این بود که به قوانین بنیادین موجود در مقیاس مولکولی پی ببرند. در صورت اطلاع از این قوانین میتوان سطوح ضد اصطکاک و روانسازیهای کارا تولید کرد. در این پژوهش، محققان مولکول پلیمری را به نوک میکروسکوپ نیروی اتمی (AFM) متصل کردند. آنها نوک میکروسکوپ را روی سطح کشیدند و در عین حال نیروی بوجود آمده را اندازهگیری کردند. با این کار میتوان رفتار پلیمر را مورد بررسی قرار داد. نتایج کار محققان نشان داد که علاوه بر دو نوع مکانیسم اصطکاک قبلی، چسبندگی و لیز خوردن، نوع سومی از اصطکاک وجود دارد که در اثر وجود پلیمر، حلال و سطح ایجاد میشود. هوگل میگوید: هر چند پلیمر به سطح میچسبد، اما رشته پلیمری از سوی پیکربندی خود بدون نیاز به نیروی خارجی به سمت حلال هُل داده میشود. با این کار احتمالا اصطکاک درونی اندکی در ساختار پلیمر ایجاد میشود. در این پدیده نوع حلال نقش اساسی در تعیین رفتار اصطکاک پلیمر دارد. نتایج این پژوهش در قالب مقالهای تحت عنوان «Nanoscale Friction Mechanisms at Solid–Liquid Interfaces» در نشریه«Angewandte Chemie» به چاپ رسیده است. منبع : پینا
-
- 2
-
- نانو
- نانو فناوری
-
(و 6 مورد دیگر)
برچسب زده شده با :
-
ترمیم ضایعات پوستی و اسکلتی با نانو ذرات
unstoppable پاسخی ارسال کرد برای یک موضوع در اخبار و نوآوری
رئیس مرکز تحقیقات سلولی و مولکولی دانشگاه علوم پزشکی ایران گفت: در حال حاضر قادر هستیم با استفاده از ذرات نانو در حوزه پوست، غضروفسازی، عضلانی و اسکلتی، قلب، عروق و علوم اعصاب ترمیم و درمان را انجام دهیم. محمدتقی جغتایی افزود: مهندسی بافت یک حوزه بینرشتهای، بین علوم پزشکی و علوم دیگر به خصوص مهندسی و پلیمر است. این روش زیرمجموعه طب بازسازی به معنی ترمیم ضایعات ارگانهای بدن است. وی ادامه داد: سلول، بافت بینسلولی و فاکتور رشد در مهندسی بافت تأثیرگذار هستند و با این روش میتوانیم جدار ضعیف شده در اعمال جراحی را با استفاده از سلولهای مصنوعی یا مِش طبیعی تقویت کنیم. رئیس مرکز تحقیقات سلولی و مولکولی دانشگاه علوم پزشکی ایران با اشاره به اینکه پژوهش در حیطه مهندسی بافت در ایران در حال رشد و پیشرفت است تصریح کرد: از طریق مهندسی بافت مشکلات استخوانی برطرف میشود چرا که میتوان درون استخوانها را پر کرد، غضروف تحلیل رفته زانو را ترمیم کرد همچنین اعضایی مانند بینی، لاله گوش و پرده صماخ نیز ترمیم و بازسازی میشود. جغتایی گفت: در نخستین کنگره پیشرفتهای مهندسی بافت و پزشکی بازساختی ایران متخصصان علوم بالینی، علوم پایه پزشکی و مهندسی حضور دارند و حتی از متخصصان علم نساجی برای تولید الیاف نانو بهره گرفتهایم. وی ادامه داد: در نخستین کنگره سلولی و مولکولی 150 مقاله ارسال شد که از میان آنها 130 عنوان به صورت شفاهی و پوستر در کنگره ارائه میشود. رئیس مرکز تحقیقات سلولی و مولکولی دانشگاه علوم پزشکی ایران در مورد حوزههای درمانی مهندسی بافت در این کنگره تصریح کرد: مبانی و اصول مهندسی بافت، تحریک سلولها، ترمیم استخوان، دستگاه اسکلتی و عضلانی، دستگاه عصبی، قلبی - عروقی، دستگاه ادراری، گوارش و ترمیم پوست ارائه مقاله داشتهایم. جغتایی گفت: گزارشی که از مقالات چاپ شده در خاورمیانه به دست آمده نشان میدهد ایران در رشته مهندسی بافت جزو برترین کشورهاست و در حال حاضر در حوزه ترمیم پوست، غضروف، عضلانی و اسکلتی، قلب - عروق و علوم اعصاب مطالعات بالینی دارد و درمان در این حوزهها انجام میشود. وی هزینه درمان ضایعات به وسیله مهندسی بافت را بستگی به نوع ترمیم انجام شده دانست و گفت: به عنوان مثال در درمان بیماریهای آرتروز و دردهای شدید زانو، هزینه ترمیم زانو بستگی به نوع غضروفی دارد که استفاده میشود. منبع : پینا-
- 3
-
- مهندسی بافت
- مِش طبیعی
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
نانو فناوري به عنوان جديدترين حوزه فناوري در دنيا، مورد توجه اکثر کشورها قرار گرفته است. براي آشنايي بيشتر هنرمندان عزيز با اين فناوري به معرفي و تبيين آن مي پردازيم. 1-1) تعريف نانوفناوري و آشنايي با آن نانوفناوري در تعريف بسيار ساده، يعني تکنولوژي هايي که در ابعاد نانومتر عمل مي کنند. نانومتر واحد اندازه گيري است و برابر با10-9 يک ميلياردم متر يا متر است. اندازه اتم ها و مولکول ها در اين محدوده قرار دارد. بنابراين با ورود به اين فضاي کوچک، بشر مي تواند در نحوه آرايش و چينش اتم ها و مولکول ها دخالت کند و به ساخت مواد جديد و ساختارهايي متفاوت با آن چه تاکنون وجود داشته است، بپردازد. نانوفناوري که از دو کلمه «نانو» و «فناوري» تشکيل شده است به معناي توسعه، ساخت، طراحي و استفاده از محصولاتي است که اندازه آنها يك تا صد نانومتر قرار دارند. در حقيقت نانوفناوري يک فناوري جديد نيست. بلکه يک مقياس جديد در فناوري ها و رويکردي تازه در تمام رشتهها است ؛ که اين توانايي را به بشر مي دهد، که بتواند دخالت خود را در ساختار مواد گسترش دهد و در ابعاد بسيار ريز ، به ساخت و طراحي اقدام كند. اين توانايي مي تواند در تمام فناوري هايي که بشر تاکنون به آن دست يافته است، اثر گذار باشد. 1-2) کاربردها و اهميت نانوفناوري اگر چه هنوز نانوفناري در آغاز حيات خود قرار دارد، ولي در همين چند سال اخير اميدهاي زيادي را در بين دانشمندان براي دستيابي به مواد با قابليت هاي بالا و ساخت محصولات با عمر و کيفيت بالا ايجاد کرده است. توليد نانوتيوب هاي کربني (ساختارهاي لوله اي کربني) ماده اي در اختيار بشر قرار داد که رساناتر از مس، مقاوم تر از فولاد و سبک تر از آلومينيوم است. همچنين با ساتفاده از نانو ذرات، مي توان سطوح خود تميز شونده يا هميشه تميز ساخت و ريايش مغناطيسي را چندين برابر نمود. لاستيک هاي با عمر بالاي ده سال و دارورساني به تک سلول هاي آسيب ديده در بدن، از توانايي هايي ست که بشر به مدد نانوفناوري به آن دست يافته است. دانشمندان اميدوارند با گسترش فعاليت ها در نانوفناوري، علاوه بر صرفه جويي هايي که در اثر ارتقاي کيفيت در محصولات سنتي ايجاد مي کنند، به مواد و محصولات با خواص جديد و چند منظوره دست يابند. اگر بپذيريم که نانوفناوري، توانمندي توليد مواد، ابزارها و سيستم هاي جديد با در دست گرفتن کنترل در سطوح ملکولي، اتمي و استفاده از خواص آن سطوح است. آن گاه درمي يابيم كاربردهاي اين فناوري، در حوزه هاي مختلف اعم از غذا، دارو، تشخيص پزشکي، فناوري زيستي، الکترونيک، کامپيوتر، ارتباطات، حمل و نقل، انرژي ، محيط زيست ، مواد، هوافضا، امنيت ملي و غيره خواهد بود؛ به گونه اي که به زحمت مي توان عرصه اي را که از آن تأثير نپذيرد معرفي نمود. کاربردهاي وسيع اين عرصه به همراه پيامدهاي اجتماعي، سياسي و حقوقي آن، اين فناوري را به عنوان يک زمينه فرا رشته اي و فرابخشي مطرح نموده است. هر چند آزمايش ها و تحقيقات پيرامون نانوتکنولوژي از ابتداي دهه هشتاد قرن بيستم به طور جدي پي گيري شد، اما اثرات تحول آفرين، معجزه آسا و باورنکردني نانوفناوري در روند تحقيق و توسعه باعث گرديد، نظر تمامي کشورهاي بزرگ به اين موضوع جلب گردد و فناوري نانو را به عنوان يکي از مهم ترين اولويت هاي تحقيقاتي خويش، طي دهه اول قرن بيست و يکم محسوب نمايند. استفاده از اين فناوري در کليه علوم پزشکي ، پتروشيمي، علوم مواد، صنايع دفاعي، الکترونيک ، کامپيوترهاي کوانتومي و ... باعث شده است، تحقيقات در زمينه نانو به عنوان يک چالش اصلي علمي و صنعتي پيش روي جهانيان باشد. لذا محققين ، اساتيد و صنعت گران ايراني بايد در يک بسيج همگاني، جايگاه، موقعيت و وضعيت خويش را در خصوص اين موضوع مشخص نمايند و با يک برنامه ريزي علمي دقيق و کارشناس شده به حضوري فعال و حتي رقابتي سالم در اين جايگاه، عرض اندام و ابراز وجود نمايند. براي چنين هدفي ، طراحي يک برنامه منسجم، فراگير و همه جانبه اجتناب ناپذير است. 1-3) تاريخچه اي از ظهور نانوفناوري چهل سال پيش ريچارد فايمن، متخصص کوانتوم نظري و دارنده جايزه نوبل، در سخنراني معروف خود در سال هزار و نهصد و پنجاه و نه ميلادي با عنوان «آن پايين، فضاي بسياري هست» ، به بررسي بعد رشد نيافته علم مواد پرداخت. وي در آن زمان اظهاركرد: «اصول فيزيک، تا آن جايي که من توانايي فهميدن آن را دارم، بر خلاف امکان ساختن اتم به اتم چيزها حرفي نمي زنند.» او فرض را بر اين قرار داد که اگر دانشمندان فرا گرفته اند چگونه ترانزيستورها و ديگر سازه ها را با مقياس هاي کوچک بسازند، پس ما خواهيم توانست که آن ها را کوچک و کوچک تر کنيم. در واقع آن ها به مرزهاي حقيقي خود در لبه هاي نامعلوم کوانتوام نزديک خواهند بود. به نحوي که اتم را در مقابل ديگري به گونه اي قرار دهيم که بتوانيم کوچک ترين محصول مصنوعي و ساختگي ممکن را ايجاد کنيم. با استفاده از اين فرم هاي بسيار کوچک چه وسايلي را که نمي توانيم، ايجاد کنيم. فايمن در ذهن خود يک «دکتر مولکولي» تصور کرد که صدها بار از يک سلول منحصر به فرد کوچک تر است و مي تواند به بدن انسان تزريق شود و درون بدن براي انجام کاري يا مطالعه و تأييد سلامتي سلول ها و يا انجام اعمال ترميمي و به طور کلي براي نگه داري بدن در سلامت کامل به سير بپردازد. مي توان گفت در آن سال ها کلمه «بزرگ» از اهميت ويژه اي برخوردار بود (مثل علوم بزرگ، پروژه هاي مهندسي بزرگ و غيره ؛ حتي کامپيوترها در دهه هزار و نهصد و پنجاه (م) تمام طبقات ساختمان را اشغال مي کردند) . ولي از وقتي فايمن نظرو منطقه خود را بازگو کرد، جهان روندي به سوي کوچک شدن در پيش گرفت. پس از آن، ماروين مينسکي تفکرات بسيار باروري داشت ، که مي توانست به انديشه هاي فايمن قوت ببخشد. ميسنکي پدر علم هوش مصنوعي است و در دهه هزار و نهصد و شصت تا هفتاد (م) جهان را در تفکراتي که مربوط به آينده مي شد، رهبري کرد. در اواسط دهه هفتاد ميلادي، اريک در کسلر که يک دانشجوي فارغ التحصيل بود، ميسنکي را به عنوان استاد راهنما جهت تکميل پايان نامه خود انتخاب کرد. او نيز اين مسؤوليت را بر عهده گرفت. در کسلر سخت به وسايل بسيار کوچک فايمن علاقه مند شده بود و قصد داشت تا در مورد توانايي هاي آنان به کاوش بپردازد. مينسکي نيز با وي موافقت کرد. در کسلر در اوايل دهه هشتاد(م) ، درجه استادي خود را در رشته علوم کامپيوتر دريافت کرد و گروهي از دانشجويان را به صورت انجمني به دور خودجمع نمود. او افکار جوان ترها را با يک سري ايده ها که خود «نانوفناوري» نام گذاري کرد، مشغول است. در کسلر اولين مقاله علمي خود را در مورد نانوفناوري مولکولي (MNT) در سال هزار و نهصد و هشتاد و يك ارايه داد. او کتاب Engin of Creation: The Coming Era of Nanotechnology را در سال هزار و نهصد و هشتاد و شش به چاپ رساند. در کسلر اولين درجه دکتري در نانوفناوري را در سال هزارونهصد و نود و يك از دانشگاه MIT دريافت كرد. 1-4) اهميت نانوفناوري براي کشور ما بسياري از صاحب نظران و محققان، نانوفناوري را مساوي آينده مي دانند. به عنوان نمونه کميته مشاوران رئيس جمهوري آمريکا در علوم و فناوري، در تأييد برنامه ملي نانوتکنولوژي براي سال دو هزار و يك ميلادي، از نانوفناوري به عنوان محور آينده جهان ياد مي کند. به دليل تأثير اين فناوري بر اکثر صنايع و فناوري هاي موجود، عقيده صاحب نظران اين است که متخصصان رشته هاي مختلف بدون گرايش به مباحث نانو در دهه هاي آينده، فرصتي براي رشد نخواهند داشت و شکوفايي بسياري از فناوري هاي مهم از جمله فناوري اطلاعات و بيوتکنولوژي به عنوان دو دستاورد بسيار عظيم قرن بيستم بدون بهره گيري از نانوفناوري دچار اختلاف خواهند شد. از اين جهت اين مسئله براي دانشگاهيان، محققان و مسؤولان هر کشور امري حياتي است. به عبارت ديگر مي توان گفت، اولويت کشور هر صنعت و فناوري که باشد، بدون تسلط بر ابعاد نانو، در دنياي جديد نمي توان در آن صنعت و فناوري حرفي در دنيا زد. بنابراين مي توان دلايل زير را براي اجتناب ناپذيري ورود کشورهايي چون ايران اقامه نمود. تآثير اساسي نانوفناوري در رشد و پيشرفت بسياري از صنايع و فناوري ها ماهيت فرا رشته اي علوم و فناوري نانو به عنوان توانمندي توليد مواد، ابزارها و سيستم هاي جديد با دقت اتم و مولکول، موجب تعريف کاربردهاي بسيار زيادي در عرصه هاي مختلف علمي و صنعتي شده است. براي نانوفناوري کاربردهاي بسياري را در حوزه هاي دارو، غذا، بهداشت ، درمان بيماريها، محيط زيست ،انرژي ، الکترونيک ، کامپيوتر، اطلاعات ، مواد ، ساخت ، توليد ، هوا فضا ، بيوتکنولوژي و کشاورزي، امنيت ملي و دفاع برشمرده اند. لذا مشاهده مي شود که نانوفناوري در صنايع و تمام فناوري ها تأثير گذاشته است . اين تأثير اغلبً ريشه اي و بنيادين است. به عنوان نمونه در بخش پزشکي و بهداشت، يک زمينه کاري بسيار مهم، نانوفناوري، سيستم توزيع دارو در داخل بدن است. مصرف دارو در حال حاضر به صورت حجمي است؛ در حالي که سلول هاي خاصي از بدن نيازمند آن است. در روش جديد، دارو با وسايل تزريق متفاوت با امروزه به صورت مستقيم به سمت سلول هاي مشخص جهت گيري شده و دارو به محل نياز تحويل داده مي شود. اين تحول در صنعت داروسازي بنيادين است. تأثيرات امنيتي نانوفناوري (فرصت و تهديد) از نظر دفاعي، نانوفناوري براي کشورها، هم فرصت و هم تهديد است، به لحاظ کاربردهاي بسيار زيادي که اين فناوري مي تواند در امور نظامي داشته باشد، گرايش زيادي در بخش دفاعي کشورها به تحقيق و توسعه نانوفناوري صورت گرفته است. اين کاربردها از لباس هاي مانع خطر تا پرنده هاي بسيار کوچک، تجهيزات اطلاعاتي و بسياري موارد ديگر است که هم اکنون با حمايت وزارتخانه هاي دفاع کشورهايي چون: آمريکا، ژاپن و برخي کشورهاي اروپايي به صورت پروژه هاي تحقيقاتي در حال انجام هستند. از اين جهت اين فناوري براي کشورها يک تهديد محسوب مي شود. اما براي کشورهايي که بتوانند با استفاده از روند موجود، جايگاهي را در آينده امنيت جهاني براي خود در نظر بگيرند، يک فرصت خواهد بود. اين کاربردها بسيار متنوع هستند، هر کشوري مي تواند زمينه اي را براي پيشگامي در جهان سهم خود نمايد و در آينده ي رقابت هاي بين المللي نقشي داشته باشد. شکل گيري بازارهاي بسيار بزرگ جديد شواهد موجود نشان مي دهد که درصد بالايي از بازارهاي جديد محصولات مختلف متکي برنانوفناوري خواهد بود. به همين دليل دولت ها و شرکت هاي بزرگ و کوچک به دنبال کسب جايگاهي براي خود در اين بازارها هستند. ميهيل روکوه، رئيس کميته علوم و فناوري نانو در رياست جمهوري آمريکا طي مقاله اي در ماه «مي» سال دو هزار و يك (م)، پتانسيل نانوفناوري براي تغيير چشمگير در اقتصادي جهاني را يادآوري نموده است. بر مبناي پيش بيني وي و اعتقاد بخش ديگري از صاحب نظران در ده الي پانزده سال آينده، نانوفناوري بازار نيمه هادي را به طور کامل تحت تأثير قرار خواهد داد . خبرهايي نيز که به تازگي از شرکت هاي اصلي سازنده پردازنده هاي کامپيوتر در آمريکا و ژاپن منتشر شده است، از ورود پردازنده هاي حاوي يک ميليارد نانوترانزيستور تا قبل از ده سال آينده حکايت دارد. به عنوان مثال شرکت اينتل اعلام نموده است که در سال دو هزار و هفت پردازنده هاي متکي بر نانوترانزيستور را با قدرت و سرعت بسيار بيشتر و مصرف کمترنسبت به آخرين دستاوردهاي امروزي نيمه هادي ها، وارد بازار خواهد کرد. در بخش دارو نيز پيش بيني شده است تا ده الي پانزده سال آينده نيمي از اين صنعت متکي بر نانوفناوري خواهد بود که خود نياز به وسايل تزريق جديد و آموزش هاي پزشکي روزآمد خواهد داشت. همچنين در صنايع شيميايي، فقط ذکر بازار صد ميليارد دلاري کاتاليست ها که تا 10 سال آينده به طور کامل متکي بر کاتاليست هاي نانوساختاري خواهد بود؛ براي نشان دادن اهميت بحث کافي است. همچنين از هم اکنون بازار بزرگي براي بکارگيري مواد جديد در محصولات فعلي در حال شکل گيري است. موادي که مي تواننند خواص جديد و فوق العاده اي به محصولات موجود بخشيده و موجب کاهش قيمت آن ها شوند. به عنوان نمونه نانولوله هاي کربني (Carbon Nanotubes) با وزن بسيار کمتر و استحکام بسيار بيشتر نسبت به موادي چون فولاد، بخش زيادي از صنايع را در آينده تحت تأثير قرار خواهد داد. 4-5) تقسيم بندي هاي فني و صنعتي نانوفناوري نانوفناوري را هم از نظر شاخه هاي علمي و فني آن و هم از نظر کاربردهاي صنعتي مي توان دسته بندي نمود. برخي از شاخه هاي علمي و فني آن عبارتند از : الف – نانوپودر ب – نانوسراميک ج – نانوالکتريک د– نانوپزشکي ه- نانوزيست فناوري نمونه اي از تقسيم بندي کاربردهاي آن نيز در زير آمده است. الف) کاربرد در ساخت مواد نانوفناوري تغيير بنيادي مسيري است که در آينده، موجب ساخت مواد جديد خواهد شد و انقلابي در مواد و فرآيندهاي توليد آن ها ايجاد خواهد کرد. محققين قادر به ايجاد ساختارهايي از مواد خواهند شد، که در طبيعت نبوده و شيمي مرسوم نيز قادر به ايجاد آن نيست. برخي از مزاياي مواد نانوساختار عبارتست از : مواد سبک تر، قوي تر و قابل برنامه ريزي، کاهش هزينه عمر کاري از طريق کاهش دفعه هاي نقص فني؛ ابزارهايي نوين بر پايه اصول و معماري جديد؛ بکارگيري کارخانه هاي مولکولي يا خوشه اي که مزيت مونتاژ مواد در سطح نانو را دارند. اين مواد مي توانند، کاربرهاي مختلفي را در صنايعي همچون: صنعت هواپيمايي، صنعت خودرو، لوازم خانگي و غيره ايجاد نمايد. ب) کاربرد در پزشکي و بدن انسان: سيستم هاي زنده را رفتارهاي مولکولي در مقياس نانومتر اداره مي کنند. مقياسي که شيمي، فيزيک، زيست شناسي و شبيه سازي کامپيوتري، همگي به آن سمت در حال گرايش هستند. اكنون نگرش هايي به سمت استفاده از ابزارها و سيستم هاي نانوساختاري، بوجود آمده است که فرآيند آزمايشگاهي کنوني توالي ژني (genome sequencing) را به نحو شگرفي با استفاده از سطوح و ابزارهاي نانو ساخته (nanofabricated) دگرگون کرده است. افزايش قدرت انسان براي ترسيم سرشت ژنتيکي يک فرد، روش هاي شناسايي و درمان را دگرگون مي کند. فراتر از سهل شدن استفاده بهينه از دارو، نانوتکنولوژي مي تواند فرمولاسيون و مسيرهايي براي رهايش دارو (Drug Delivery) تهيه کند، که به نحو حيرت انگيزي توان درماني داروها را افزايش مي دهد. همچنين افزايش قابليت هاي نانوتکنولوژيکي، به طور خاص مطالعات بنيادي زيست شناسي و پاتولوژي سلولي را تقويت خواهد کرد. در نتيجه پيشرفت ابزراهاي تحليل گر جديد که قادر به شناسايي جهان نانومتر باشند، اين امر بسيار محتمل خواهد بود؛ که بتوان خواص شيميايي و مکانيکي سلول ها (از جمله: فرآيندهايي هم چون تقسيم سلولي و غيره) را اندازه گيري و تغيير داد. اين قابليت ها تکميل کننده ( و به شدت پشتيباني کننده) تکنيک هاي مرسوم در علوم حيات هستند. مواد زيست سازگار با کارآيي بالا، از توانايي بشر در کنترل نانوساختارها حاصل خواهد شد. نانو مواد سنتزي معدني و آلي را مثل، اجزاي فعال، مي توان براي اعمال نقش تشخيصي (مثل ذرات کوانتومي که براي مرئي سازي به کار مي رود) درون سلول ها وارد نمود. افزايش توان محاسباتي بوسيله نانوفناوري، ترسيم وضعيت شبکه هاي ماکرومولکولي را در محيط هاي واقعي ممکن مي سازد. اين گونه شبيه سازي ها براي بهبود قطعات کاشته شده زيست سازگار در بدن و جهت فرآيند کشف دارو، الزامي خواهد بود. شناسايي و ترميم زخم ها و آسيب هاي بافتي همانند، ساختارهاي طبيعي ( مانند گلبول هاي سفيد و مولکول هاي ترميم کننده زخم) در اندازه هاي نانو است. نيز با استفاده از اين فناوري امکان تشخيص سريع بيماري هاي صعب العلاج و سرطاني امکان پذير است. با استفاده از اين فناوري جديد در دراز مدت مي توان تومورهاي مغزي را به درستي تشخيص داد و بدون آسيب زدن به بافت هاي سالم و با استفاده از پرتودرماني اين بيماري را بهبود بخشيد ، که براي بيماران سرطاني بسيار مايه اميد است. نانو کپسول هاي توليدي با استفاده از فناوري نانو، داراي موادي مانند: ويتامين A، رتينول و بياکاروتن خواهند بود، که بايد به لايه هاي عمقي پوست منتقل شوند تا بيشترين خواص ضد پيري و ساير خواص دارويي خود را بروز دهند. با کارگذاري نانو ذرات فعال نوري در داخل گلبول هاي سفيد خون، موفق به شناسايي سلول هاي آسيب ديده خواهيم شد. ج) کاربردهاي نانو در کشاورزي، آب، انرژي و ميحط زيست نانوفناوري ، منجر به تغييراتي شگرف در استفاده از منابع طبيعي، انرژي و آب خواهد شد و پساب و آلودگي را کاهش خواهد داد. همچنين فناوري هاي جديد، امکان بازيافت و استفاده مجدد از مواد، انرژي و آب را فراهم خواهند کرد. در زمينه محيط زيست ، علوم و مهندسي، نانو مي تواند تأثير قابل ملاحظه اي در درک مولکولي فرآيندهاي مقياس نانو که در طبيعت رخ مي دهد، در ايجاد و درمان مسائل زيست محيطي از طريق کنترل انتشار آلاينده ها، در توسعه فناوري هاي «سبز» جديد که محصولات جانبي ناخواسته کمتري دارند و يا د رجريانات و مناطق حاوي فاضلاب، داشته باشند. لازم به ذکر است ، نانوفناوري توان حذف آلودگي هاي کوچک از منابع آبي ( کمتر از دويست نانومتر) و هوا (زير بيست نانومتر) و اندازه گيري و تخفيف مداوم آلودگي در مناطق وسيع تر را دارد. در زمينه انرژي، نانوفناوري مي تواند به طور قابل ملاحظه اي کارآيي، ذخيره سازي و توليد انرژي را تحت تأثير قرار داده، مصرف انرژي را پايين بياورد. به عنوان مثال، شرکت هاي مواد شيميايي، مواد پليمري تقويت شده يا نانوذرات را ساخته اند، که مي تواند جايگزين اجزاي فلزي بدنه اتومبيل ها شود. استفاده گسترده از اين نانو کامپوزيت ها مي تواند ساليانه يك و نيم ميليارد ليتر صرفه جويي مصرف بنزين به همراه داشته باشد. نيز انتظار مي رود تغييرات عمده اي در فناوري روشنايي در ده سال آينده رخ دهد. مي توان نيمه هادي هاي مورد استفاده در ديودهاي نوراني (LEDها) را به مقدار زياد در ابعاد نانو توليد کرد. در آمريکا، حدود بيست درصد کل برق توليدي، صرف روشنايي (چه لامپ هاي التهابي معمولي و چه فلوئورسنت) مي شود. مطابق پيش بيني ها در ده تا پانزده سال آينده، پيشرفت هايي از اين دست مي تواند مصرف جهاني را بيش از ده درصد کاهش دهد که يك صد ميليارد دلار در سال صرفه جويي و دويست ميليون تن کاهش انتشار کربن به همراه خواهد داشت. در زمينه آب، بايد گفت جمعيت جهان د رحال افزايش و منابع آب آشاميدني در حال کاهش است. سازمان ملل پيش بيني مي کند که در سال دو هزار و بيست و پنج ، حدود چهل و هشت کشور (معادل سي و دو درصد جمعيت جهان) دچار کمبود آب آشاميدني باشند. تخليص و نمک زدايي آب از زمينه هاي مورد توجه در دفاع پيش گيرانه و امنيت زيست محيطي است. چرا که در سطح جهان ممکن است در آينده با مشکل کمبود آب مواجه شويم. استفاده از آب شرب با دو برابر سرعت افزايش جمعيت و کمبود حاصل از آن که بر اثر آلودگي نيز تشديد مي شود، افزايش مي يابد. دستگاه هايي به کمک نانوفناوري ساخته شده اند، که آب دريا را با انرژي ده برابر کمتر از دستگاه اسمز معکوس و لااقل صد برابر کمتر از تقطير، نمک زدايي مي کنند. اين فرآيند کاراز نظر مصرف انرژي کاملاً عملي است، چون الکترودهاي با مساحت سطحي بسيار بالا ساخته شده اند، که از طريق کنار هم قراردادن نانولوله هاي کربني و ديگر ابتکارات طراحي، رساناي الکتريسته شده اند. همچنين نانوفناوري به طور مستقيم در پيشرفت کشاورزي سهيم خواهد بود. از جمله : مواد شيميايي سازگار با زيست که براي تغذيه گياه يا حفظ آن در برابر حشرات به شکل مولکولي طراحي شده اند، ارتقاي ژنتيکي گياهان و حيوانات، انتقال ژنها و داروها به حيوانات؛ انتقال ژن ها و دارو به حيوانات، امکان سازگاري گياهان با خشکسالي و شوري و ... د) کاربردهاي نانوفناوري در هوافضا و امنيت ملي محدوديت هاي شديد سوخت براي حمل بار به مدار زمين و ماوراي آن و علاقه به فرستادن فضاپيما براي مأموريت هاي طولاني به مناطق دور از خورشيد، کاهش مداوم اندازه، وزن و توان مصرفي را اجتناب ناپذير مي سازد. مواد و ابزار آلات نانوساختاري ، اميد حل اين مشکل را بوجود آورده است. «نانو ساختن» (Nanofabrication) همچنين در طراحي و ساخت مواد سبک وزن، پرقدرت و مقاوم در برابر حرارت، مورد نياز براي هواپيماها ، راکت ها، ايستگاه هاي فضايي و سکوهاي اکتشافي سياره اي يا خورشيدي، تعيين کننده است. همچنين استفاده روزافزون از سيستم هاي کوچک شده تمام خودکار، منجر به پيشرفت هاي شگرفي در فناوري ساخت و توليد خواهد شد. اين مسأله باتوجه به اين که محيط فضا، نيروي جاذبه کم و خلاء بالا دارد، موجب توسعه نانوساختارها و سيستم هاي نانو که ساخت آن ها در زمين ممکن نيست ؛ در فضا خواهد شد. برخي کاربردهاي دفاعي نانوفناوري نيز عبارتند از : تسلط اطلاعاتي از طريق نانوالکتريک پيشرفته به عنوان يک قابليت مهم نظامي، امکان آموزش مؤثرتر نيرو به کمک سيستم هاي واقعيت مجازي پيچيده تر حاصله از الکترونيک نانوساختاري، استفاده از اتوماسيون و رباتيک پيشرفته براي جبران کاهش نيروي انساني نظامي، کاهش خطر براي سربازان و بهبود کارآيي خودروهاي نظامي، دستيابي به کارايي بالاتر (وزن کمتر و قدرت بيشتر) مورد نياز در صحنه هاي نظامي و در عين حال تعداد دفعات نقص فني کمتر، هزينه کمتر در عمر کاري تجهيزات نظامي، پيشرفت در امر شناسايي و در نتيجه مراقبت عوامل شيميايي، زيستي و هسته اي، بهبود طراحي در سيستم هاي مورد استفاده در کنترل و مديريت تکثير نشدن هسته اي، و تلفيق ابزارهاي نانو و ميکرومکانيکي جهت کنترل سيستم هاي دفاع هسته اي ، در بسياري موارد، فرصت هاي اقتصادي و نظامي مکمل هم هستند. کاربردهاي درازمدت نانوفناوري در زمينه هاي ديگر، پشتيباني کننده امنيتملي است و بالعکس. ذ – کاربرد نانوفناوري در صنايع بهداشتي و آرايشي استفاده از مواد غيرآلي به عنوان جاذب اشعه خورشيد جهت کاربرد در ضد آفتاب ها، انقلاب بزرگي در صنايع بهداشتي و دارويي به وجود آورده است. استفاده از نانو ذرات اکسيد روي براي کرم هاي ضد آفتاب و نيز به عنوان ضد التهاب و نانو ذرات اکسيد تيتانيوم براي کاهش صدمات ناشي از آسيب روز افزون اشعه ماوراي بنفش بر روي پوست، گسترش پيدا کرده است. استفاده از نانو ذرات اکسيد تيتانيوم و سيليکون بر روي صورت سبب مي شود پوست صورت، ظاهري صاف و بدون چروک به خود بگيرد و نيز از اين نانو ذرات به عنوان درمان خشکي پوست هم استفاده مي شود. همچنين از نانو ذرات اکسيد تيتانيوم در شامپوهاي محافظ پوست، کرم صورت و پمادهاي بهداشتي ديگراستفاده مي شود. ساخت نانو ماشين هايي که قادرهستند، فرم موي افراد را به نحو دلخواه آنان تغير دهند، چين و چروک پوست را صاف کرده و چربي اضافي را جمع آوري کنند. جوراب هاي حاوي نانو ذرات نقره ، باعث مهار رشد باکتري و قارچ ها مي شود و از بروز بوي بد پاها، مسائل مربوط به پاي ورزشکاران ، عفونت ناخن پا و عفونت کف پا که بيشتر در افراد ديابتي بروز مي کند، جلوگيري مي کند. و) کاربرد فناوري در صنعت الکترونيک با استفاده از اين فناوري مي توان ظرفيت ذخيره سازي اطلاعات را در حد هزار برابر يا بيشتر افزايش داد و در نهايت به ساخت ابزارهاي ابر محاسباتي به کوچکي يک ساعت مچي منتهي شد. اگر ظرفيت نهايي ذخيره اطلاعات، به حدود يک ترابيت در هر اينچ مربع برسد، ذخيره سازي پنجاه عدد DVD بيشتر در يک هاردديسک با ابعاد يک کارت اعتباري ميسر خواهد شد. ساخت تراشه ها در اندازه هاي فوق العاده کوچک به عنوان مثال در اندازه هاي سي و دو تا نود نانومتر و توليد ديسک هاي نوري 100 گيگا بايتي در اندازه بايتي در انازه هاي کوچک نيز از ديگر کاربردهاست. ز) کاربرد نانوفناوري در صنعت خودرو يکي از اصلي ترين موضوعات مطرح در نانو فناوري، ساخت مواد با خواص جديد است. اين مواد ارزش افزوده بسيار بالا و کارايي بيشتري در تمام صنايع خواهند داشت؛ که صنعت خودرو نيز از آن مستثني نيست. ساخت بدنه سبک تر و مقاوم تر براي خودرو، ساخت لاستيک هايي با مقاومت سايشي بهتر، ساخت قطعات موتور با عمر چند برابر، کاهش مصرف سوخت خودرو، ساخت باتري هايي با انرژي بالا و دوام بيشتر، ساخت حس گرهاي چند منظوره براي كنترل فرآيندهاي مختلف در خودرو، ساخت کاتاليزورهاي اگزوز خودرو جهت کاهش آلودگي هوا، لايه هاي خيلي محکم با خصوصيات ويژه اي مثل الکتروکروميک (رنگ پذيري الکتريکي) يا خود پاک کنندگي براي استفاده در شيشه ها و آينه هاي خودرو و سازگار کردن خودرو با محيط زيست و بسياري از موارد ديگر از جمله کاربردهايي هستند که نانوفناوري در صنعت خودرو خواهد داشت. همچنين جايگزيني کربن سياه تايرها با ذرات رس و پليمرهاي نانومتري، فناوري جديدي است که تايرهاي سازگار با محيط زيست و مقاوم در برابر ساييدگي را به ارمغان مي آورد. صنعت خودرو از طرفي در معرض فشارهاي ناشي از قيمت سوخت و مسايل ايمني است و از طرف ديگر به شدت تحت تأثير سلايق و تنوع در خواسته هاي مشتريان براي مدل هاي جديد خودرو است که با رجوع به فناوري نانو مي توان بر مشکلات فوق فايق آمد. ح) کاربردهاي ديگر پژوهشگران سراسر دنيا جهت يافتن کاربردهايي براي نانو لوله ها در زمينه هاي مختلفي مانند: رنگ، باتري و وسايل الکترونيکي کوچک، در حال رقابت هستند. يکي از اين موارد، دستگاه اشعه ايکس ست که در آينده مي تواند کوچک تر، ارزان تر و دقيق تر باشد و عملکرد بهتري در مراکز راديولوژي و مراکز بازرسي فرودگاه ها داشته باشد، از نانولوله جهت ذخيره انرژي بهتر در باتري ها نيز استفاده مي شود. کاتاليزورها به سطح ويژه وابسته هستند و با استفاده از فناوري نانو مي توان اين سطح ويژه را به مقدار فوق العاده اي افزايش داد که سبب افزايش سرعت و کارايي در واکنش هاي شيميايي مي شود. با بهره گيري از فناوري نانو مي توان گيريسي توليد نمود که در درجه حرارت هاي بسيار بالا مورد استفاده قرار گيرد. 1-6) ده محصول جاري شده با استفاده از فناوري نانو در زير، ده محصول برتر نانو فناوري در سال دو هزار و سه ميلادي طبقه بندي شده است. اين خبر، نشان مي دهد کساني که هنوز معتقدند نانوفناوري فقط در آزمايشگاه است، اشتباه فکر مي کنند. 1 – پارچه هاي ضدچروک و ضد لکه شرکت آمريکايي نانوتکس با اضافه نمودن ساختارهاي مولکولي به الياف کتان، اليافي ساخته است که مايعات و لکه ها بر روي آن ها حرکت نموده و جذب نمي شوند. بنابراين چنانچه قهوه بر روي شلوار سفيد رنگي ريخته شود به طرز شگفت انگيزي بر روي آن حرکت کرده و جذب نمي شود ( مثل حرکت قطرات آب بر روي پرهاي غاز). شرکت سوئيسي نانواسفربه تازگي در رقابت با شرکت فوق محصولاتي توليد کرده است که نه تنها در صنايع پوشاک سازي بلکه در بخش هاي پزشکي و لوازم خانگي مثل مبلمان کاربرد دارند. محصولات اين شرکت ضد چربي است. 2 – واکس اسکي با کيفيت برتر تيم ملي اسکي کانادا از اين واکس استفاده نموده است و به زودي هر اسکي بازي مي تواند از آن استفاده کند. نانوواکس سراکس يکي از اولين محصولات جهاني است که با استفاده از نانوفناوري شيميايي، پوشش هوشمندي با خواص چند عملکردي ايجاد مي نمايد. اين واکس به وسيله شرکت آلماني نانوگيت توليد شده و سطحي بسيار ليز و سخت ايجاد مي نمايد. اين پوشش بسيار نازک، نسبت به پوشش هاي قبلي که به سرعت خاصيت خود را از دست مي دادند، بسيار بادوام تر است. اين پوشش هوشمند با کاهش دما بسيار سفت مي شود و با کريستال هاي برف و پوست سازگاري بسيار خوبي دارد. محصولات نانوواکس با فرمول هاي مختلفي براي انواع ورزش هاي زمستاني که در شرايط مختلف انجام مي شوند توليد شده اند. 3 – محافظ پوست با قابليت نفوذ عميق صنايع آرايشي و بهداشتي نقش مهمي در پيشبرد صنعت ذرات دارند. يکي از اهداف اين صنايع، پيدا نمودن سيستم رسانش مواد فعال متنوع با قابليت نفوذ عميق است. ال اورال يکي از بزرگ ترين شرکت هاي توليد کننده مواد آرايشي در جهان، اولين محصول نانوفناوري خود را در سال هزار و نهصد و نود و هشت (م) معرفي نمود. اين محصول کرم ضدچروک با نام Plenitude Revitalift است. در توليد اين کرم از يک فرآيند انحصاري نانوفناوري ( تا دويست نانومتر) به منظور داخل نمودن ويتامين A به درون يک کپسول پليمري استفاده شده است. کپسول مانند اسفنج، کرم را درون خود جذب و نگه داري مي نمايد تا اين که پوسته بيروني آن در زير پوست حل شود. بر طبق بررسي هاي شرکت L’Oreal هشتاد درصد خانم هايي که اين کرم را مصرف کرده اند خاصيت ضد چروک بودن آن را تأييد نموده اند. همچنين هفتاد و پنج درصد آنان مي گويند اين کرم در سفت شدن پوست مؤثر است. بنابراين نانوفناوري مي تواند مسيري به سمت جواني طولاني باشد. 4 – دوربين ديجيتال OLED اغلب دوربين هاي ديجيتال با استفاده از ديود گسيل نور آلي (OLED) ساخته مي شوند. OLED ها نه تنها روشن تر از LCD ها است .بلکه انرژي کمتري نسبت به آن ها مصرف مي نمايد. همچنين آن ها داراي زاويه ديد وسيع تري هستند. اولين دوربين ديجيتالي که در آن از نمايش دهنده هاي OLED استفاده شده است دوربين سه ويك دهم مگاپيکسل است که توسط شرکت کداک توليد شده است. 5- عينک هاي آفتابي با کيفيت بالا شرکت نانو فيلم با استفاده از نانوفناوري، پوشش هاي پليمري بسيار نازک ضد انعکاس و حفاظتي براي عينک ها ساخته است به گونه اي كه شيشه آن ها در مقابل خراشيدگي مقاومت داشته و ضد انعکاس مي باشد. اين شرکت ابتدا لايه هايي به ترتيب با ضخامت صدو پنجاه نانومتر و بيست ميکرون را بر روي سطح لنزها نشاند و سپس از فرايند خودساماني شيميايي براي نشاندن پوشش پليمري بر روي سطح خارجي عدسي ها استفاده نمود. ضخامت پوشش فوق، سه تا ده نانومتر بود که عدسي ها را ضد انعکاس مي کرد. پوشش فوق علاوه بر ايجاد خاصيت ضدانعکاسي براي عدسي ها، چربي و لکه ها را از روي آن برطرف و عدسي ها را حساس تر نيز مي نمايد. 6 – کلاه ايمني هوشمند يکي از بزرگ ترين مشکلات موتورسواران، تغيير شرايط نور است. به عنوان مثال، ورود به تونل مي تواند يک کار خيلي خطرناک باشد. هر ساله هزاران موتور سوار در تصادف هاي ناشي از اين موضوع کشته مي شوند. شرکت سوئدي کروموژينکس مشکل فوق را با توليد نوع جديد از کلاه ايمني با نام «آفتابگردان» حل کرده است. شفافيت اين کلاه به سرعت تحت تأثير شرايط نوري موجود با استفاده از يک فيلم نازک يا ورقه الکتروکروميک (EC) تغيير مي کند. اين فيلم شامل لايه هاي نازک اکسيد است که بين دو ورقه پليمري انعطاف پذير روي هم قرار گرفته اند. 7- نانو جوراب نه تنها ورزشکارها بلکه اکثر مردم از عرق پا رنج مي برند و نمي توانند آن را تحمل نمايند. بطور طبيعي هر پا داراي دويست و پنجاه هزار غده عرقي است ، که قادرند حدود پانصد ميلي ليتر عرق در روز توليد نمايند. عرق پاي ورزشکاران ناشي از قارچ هايي است که بين پنجه پا و چين و چروک پوست جمع مي شوند. به تازگي جوراب هايي از جنس کتان که به وسيله نانو ذرات نقره بهبود يافته اند، توسط شرکت سول فرش وارد بازار شده است. نانو ذرات نقره از رشد باکتري ها و قارچ ها جلوگيري نموده و بدين وسيله از چرب شدن و بد بو شدن پا جلوگيري مي کند. 8 – کرم هاي ضد آفتاب مصرف کرم هاي ضد آفتاب معمولي پوست را به قدري سفيد مي کند که حالت نامناسبي پيدا مي کرد. اين سفيدي ناشي از اکسيد روي است. دليل استفاده از اکسيد روي آن است که فاکتورهاي قبلي حفاظت در برابر آفتاب SPF معمولي فقط در برابر اشعه ماوراي بنفش نوع B(UVB) از پوست حفاظت مي نمودند اما اکسيد روي از پوست در برابر هر دو نوع اشعه ماوراي بنفش A و B (UVA و UVA) محافظت مي کند. جهت حل اين مشکل، شرکت BASF ماده اي به نام Z- COTE با کمک نانوفناوري ساخته است. اين ماده جزء اصلي کرم جديد ضدآفتاب با نام تجاري NuCell SunSense SPF30 است. بر طبق گفته هاي مسئولان شرکت BASF، نانو ذرات پراکنده شده اکسيد روي، جزء اصلي Z-COTE است . کاربرد نانوفناوري در Z-COTE سبب توليد نانو کريستال هاي اکسيد روي با خلوص بالا شده، که اين امر منجر به افزايش مرغوبيت کرم هاي ضدآفتاب مي شود. از ديگر مزاياي کرم هاي ضدآفتاب جديد، اين است که Z-COTE به وسيله پوست جذب نشده و ايجاد حساسيت (آلرژي) نمي کند. 9 و 10 – توپ ها و راکت هاي تنيس با کيفيت بالا توسعه پايدار مواد، به تازگي کارخانجات ساخت راکت تنيس را بر آن داشته است که از نانو فناوري استفاده نمايند. در سال دو هزار و دو (م) کارخانه فرانسوي بابولات راکت هاي مدل VS را که با استفاده نانو لوله هاي کربني ساخته شده بودند به بازار عرضه نمود. نانولوله هاي کربني صد برابر محکم تر از فولاد و شش برابر سبک تر از آن است. اين مواد سبب افزايش سفتي و استحکام پايدار کننده هاي موجود در دو طرف راکت تنيس مي شوند. به گفته مسئولين کارخانه Babolat، راکت هاي نوع VS Nanotube پنج برابر مستحکم تر از راکت هاي کربني موجود است و نيروي بيشتري را به توپ وارد مي کنند. شرکت InMart نيز توپ هاي تنيسي با نام Wilson double core ساخته است که درون آن ها نانو کامپوزيت وارد شده است. InMart براي آئروديناميک تر شدن اين توپ ها، هسته داخلي آن ها را با ورقه هايي از نانو کامپوزيت هاي پليمر خاک رس به ضخامت بيست ميکرومتر لايه نشاني مي کند(ضخامت هر کدام از اين ورقه ها يك نانومتر است) در اثر اين فرآيند هيچ تغييري در وزن و الاستيسيته آن ها بوجود نمي آيد. قيمت اين توپ ها يك و نيم دلار از قيمت توپ هاي معمولي بيشتر و طول عمر آن ها دو برابر توپ هاي معمولي است. اين توپ ها هم اکنون در جام Davis مورد استفاده قرار مي گيرند. منبع:وبلاگ کهکشانی از علم شیمی
- 2 پاسخ
-
- 1
-
- فناوری نانو
- مواد
-
(و 11 مورد دیگر)
برچسب زده شده با :
-
کاربردهای مکانیکی نانولولههای کربنی با توجه به گسترش روز افزون فناوری نانو و ایجاد تحولات بزرگ در صنایع مختلف توسط این فناوری لازم است که هر کسی بسته به تخصص خود اطلاعی هر چند کلی از کاربردها و قابلیتهای فناوری نانو داشته باشد. در این مقاله ابتدا توضیحی کلی راجع به فناوری نانو داده شده است و با توجه به اهمیت و نقش گسترده نانولولهکربنی در فناوری نانو این ماده معرفی و خواص آن ذکر شدهاست، در ادامه به توضیح برخی از کاربردهای نانولولهها در صنایع مرتبط با مهندسی مکانیک چون کامپوزیتها، محرکها و فیلترها پرداخته شده است. مقدمه یک نانومتر يک ميليونيوم يک متر است بنابراین علم نانو آن بخش از است که ماده را در مقياسی بسيار کوچک بررسی میکند؛ و فناوری نانو به تولید و ساخت در مقیاس مولکولی و اتمی میپردازد، یا به عیارت دیگر با اجسام و ساختارها و سیستمهایی سر و کار دارد که حداقل در یک بعد اندازهای کمتر از100 نانومتر دارند. با پیشرفت و گسترشی که علم و فناوری نانو طی چند سال اخیر داشته است انتظار میرود که به زودی تمامی زمینههای علم و فناوری را تحت تاثیر خود قرار دهد. نانوفناوری صنایع مرتبط به مهندسی مکانیک را نیز بی بهره نگذاشته است و تحولات زیادی را از تولید کامپوزیتها با استفاده از نانومواد تا تولید شتابسنج هایی در اندازه نانو، ایجاد نموده است. در صنایع خودروسازی در قسمتهای مختلف ماشین کاربردهای نانوفناوری را میبینیم، از شیشههای خود تمیز شو و بدنههای ضدخش گرفته تا باتریهایی با طول عمر بیشتر و وزن کمتر. در این میان نانولولههاي کربني[1] یکی از مواد اولیهای هستند که به علت ویژگی ساختمانی، دارای کاربردهای مکانیکی مختلف و ویژهای هستند. نانولولههای کربنی نانولولههاي کربني يکي ازمهم ترين ساختارها در مقياس نانو هستند.این مواد اولین بار در سال 1991 توسط دانشمندي ژاپني به نام ايجما[2] در درون دودههاي حاصل از تخليه الکتريکي کربن در يک محيط حاوي گاز نئون کشف شد.[] اين ترکيبات شيميايي ، با ساختار اتمي شبيه صفحات گرافیت، از استوانههايي با قطر چند نانومتر و طولي تا صدها ميکرومتر تشکيل شدهاند. نانولولهها داراي مدول يانگي تقريباً 6 برابر فولاد ( 1TPa) و چگالي برابر 1.4 g/cm3 هستند. [[ii]] اين مواد در جهت محوري مقاومت کششي بسيار زيادي دارند و اين مزيت بسيار خوبي براي ساخت سازههايي با مقاومت بالا در جهت خاص است. دليل اين مقاومت بالا از يک طرف استحکام پيوند كربن-كربن در ساختار نانولولهکربنی و از طرف ديگر شکل شش ضلعی اين ساختار است که به خوبي بار را در میان پیوندها توزيع ميکند. از طرف دیگر پایداری حرارتی نانولولهها نیز بسیار بالا است. این خواص منحصربه فرد مکانیکی در نانولولهها امکان استفاده از آنها را در کاربردهای مختلف فراهم میکند. از جمله این کاربردها می توان از الکترونیک در مقیاس نانو، استفاده در کامپوزیتها و نیز به عنوان وسایل ذخیره کننده گازها نام برد. مقاومت نانولولهها رفتار مکانیکی نانولولههای کربنی به عنوان یکی از بهترین فیبرهای کربنیای که تا کنون ساخته شده اند، بسیار شگفت انگیز است. فیبرهای کربنی معمول دارای مقاومتی تا 50 برابر مقاومت مخصوص (نسبت مقاومت به چگالی) فولاد هستند و از طرف دیگر تقویت کنندههای خوبی در برابر بار در کامپوزیتها هستند. بنابراین نانولولهها یکی از گزینههای ایدهآل در کاربرد ساختمانی[3] هستند. در نانولولههای کربنی چندلایه مقاومت حقیقی در حالات واقعی بیشتر تحت تاثیر لغزیدن استوانههای گرافیتی نسبت به هم قرار دارد. در واقع آزمایشاتی که به تازگی با استفاده از میکروسکوپ الکترونی[4] جهت اندازه گیری تنشهای نانویی صورت گرفته است مقاومت کششی نانولولههای کربنی چندلایه مجزا را اندازه گیری کرده اند.[[iii]] نانولولهها بر اثر شکست sword-in-sheath میشکنند. این نوع شکست مربوط به لغزش لایهها در استوانههای هم محور نانولوله چندلایه ونیز شکست استوانهها به طور مجزا است. مقاومت کششی دیده شده در نانولولههای چندلایه حدود اندازهگیری مقاومت یک نانولوله تکلایه مجزا مشکلات زیادی دارد. به تازگی روشی جهت این اندازهگیری پیشنهاد شده است: در این روش از یک میکروسکوپ نیروی اتمی استفاده می کنند تا خمشی را در نانولوله ایجاد کنند سپس با اندازهگیری مقدار جابجایی می توان ویژگیهای مکانیکی آن را با مقادیر عددی بیان کرد.[[iv]] اکثریت آزمایشاتی که تاکنون صورت گرفته مقدار تئوری پیشبینی شده برای مدول یانگ نانولوله(1TPa) را تایید میکنند؛ ولی در حالی که پیشبینی مقاومت کششی در تئوری حدود 300GPa بوده است، بهترین مقادیر تجربی نزدیک به 50GPa می باشد. که اگرچه با تئوری فاصله دارد اما هنوز هم تا ده برابر بیشتر از فیبرهای کربنی است. شبیه سازیها در نانولوله های تک لایه نشان میدهد که رفتار شکست و تغییر شکلی بسیار جالبی در آنها وجود دارد. نانولولهها در تغییر شکلهای بسیار بالا با آزاد کردن ناگهانی انرژی به ساختار دیگری تبدیل می شوند. نانولولهها تحت بار دچار کمانش و پیچش می شوند و به شکل مسطح تبدیل میگردند. آنها بدون نشانی از کوچکترین شکست و خرابی دچار کرنشهای خیلی بزرگی (تا 40%) می شوند. بازگشت پذیریِ تغییر شکلها، مثلا کمانش، مستقیما در نانولوله های چندلایه با استفاده از میکروسکوپ عبور الکترون[5] ثبت شده است.[[v]] به تازگی نظریه جالبی برای رفتار پلاستیکی نانوتیوبها ارائه شده است.[[vi]] طبق این نظر بستههای 5و7 تایی کربن( پنتاگون-هپتاگون) تحت کرنش زیاد دچار عیب در شبکه مولکولی می شوند و این ساختار ناقص در طول جسم حرکت میکند و این حرکت باعث کاهش قطر مقطعی خواهد شد. جدایش این نقصانها گلویی شدن در نانولوله را به همراه خواهد داشت. علاوه بر گلویی شدن مقطعی، در آن مقطع آرایش شبکه کربنی نیز تغییر خواهد کرد. این تغییرات در آرایش باعث می شود که میزان رسانش نانولوله کربنی تغییر یابد، این ویژگی میتواند منجر به کاربردی منحصر به فرد از نانولوله شود: نوع جدیدی از پروب، که با تغییرات در ویژگیهای الکتریکی اش به تنشهای مکانیکی پاسخ میدهد.[[vii]] نانولولههای کربنی و کامپوزیتهای پلیمری مهمترین کاربرد نانولولههای کربنی، که بر اساس ویژگیهای مکانیکی آنها باشد، استفاده از آنها به عنوان تقویت کننده در مواد کامپوزیتی است. اگرچه استفاده از کامپوزیتهای پلیمری پرشده با نانولوله یک محدوده کاربردی مشخص از این مواد است، اما آزمایشات موفقیت آمیز زیادی در تایید مفیدتر بودن نانولولههای کربنی نسبت به فیبرهای معمول کربنی، وجود ندارد؛ مشکل اصلی برقرار نمودن یک ارتباط خوب بین نانولوله و شبکه پلیمری و رسیدن به انتقال بار مناسب از شبکه به نانولولهها در حین بارگذاری است. دلایل آن دو جنبه اساسی دارد: اول نانولولهها صاف بوده و نسبت طولیای[6] (طول به قطر) برابر با رشتههای پلیمری دارند. دوما نانولولهها تقریبا همیشه به صورت تودههای به هم پیوسته تشکیل میشوند که رفتار آنها در مقابل بار، نسبت به نانولولههای مجزا، کاملا متفاوت است. گزارشات متناقضی از مقاومت اتصال در کامپوزیتهای پلیمر-نانولوله وجود دارد.[[viii],[ix]] نسبت به پلیمر استفاده شده و شرایط عملکرد، مقاومت اندازهگیری شده متفاوت است. گاه گسست در لولهها دیده شده است که نشانهای از پیوند قوی در اتصال نانولوله-پلیمر است، و گاه لغزش لایههای نانولولههای چند لایه و جدایش آسان آنها دیده شده که دلیلی بر پیوند اتصال ضعیف است. در نانولولههای تک لایه سر خوردن لولهها بر روی یکدیگر را عامل کاهش مقاومت ماده میدانند. برای ماکزیمم کردن اثر تقویت کنندگی نانولولهها در کامپوزیتهای با مقاومت بالا، بایستی که توده های نانولوله در هم شکسته شده و پخش شوند و یا اینکه به صورت شبکه مربعی[7] درآیند تا از سرخوردن جلوگیری کنیم. علاوه برآن بایستی سطح نانولولهها تغییر داده شود، ضابطهمند[8] گردند، تا اتصال محکمی بین آنها و رشتههای پلیمری اطرافشان ایجاد شود. استفاده از نانولولههای کربنی در کامپوزیتهایی با ساختار پلیمری فواید مشخص و روشنی دارد. تقویت کنندگی با نانولوله به خاطر جذب بالای انرژی طی رفتار انعطافپذیر الاستیک آنها میزان سفتی[9] کامپوزیت را افزایش می دهد؛ این ویژگی مخصوصا در شبکههای سرامیکی کامپوزیتی برپایه نانو اهمیت مییابد. چگالی کم نانولولهها ، در مقایسه با استفاده از فیبرهای کوچک کربنی، یک ویژگی بسیار خوب دیگری در این کامپوزیتها میباشد.نانولولهها در مقایسه با فیبرهای کربنی معمول، تحت نیروهای فشاری کارایی بهتری ازخود نشان میدهند، که به خاطر انعطافپذیری و عدم تمایل به شکست آنها تحت نیروی فشاری است.تحقیقات تازه نشان داده اند که استفاده از کامپوزیت نانولولهکربنی چندلایه و پلیمر کاهنده زیستی[10] (مانند PLA[11]) در رشد سلولهای استخوانی[12]، بخصوص در تحریک الکتریکی کامپوزیت، بسیار کارآمدتر ازفیبرهای کربنی هستند.
- 7 پاسخ
-
- 1
-
- nanotube modeler
- فلورن
- (و 20 مورد دیگر)
-
معرفی كامپوزیتها و نانو کامپوزیتها و کاربردها
mim-shimi پاسخی ارسال کرد برای یک موضوع در کتب و مقالات و جزوات درسی
در این پست مقالات مختلف مربوط به کامپوزیتها قرار داده شده است: تا پست اخر مطالب و مقالات ارائه شده به ترتیب عبارتند از: (در صورت اضافه شدن مطلب بعد از آخرین پست عناوین به لیست اضافه میشود) - كامپوزیت ها در صنایع نظامی -ساخت كامپوزیت های ایمن در برابر آتش از روش rtm -كاربرد كامپوزیت در صنعت برق -تنش های باقی مانده در کامپوزیت پلیمری روش لایه گذاری دستی در تولید کامپوزیت -کاربرد کامپوزیت در آسفالت -چشم انداز كامپوزیت های چوب پلاستیك -كامپوزیتهای گرمانرم -چوب ها هم كامپوزیتی میشوند -دريلهاي كامپوزيتي -کامپوزیت -کاربرد نانو کامپوزیت پلیمری -کاربرد کامپوزیت در صنعت برق و الكترونيك -كاربرد كامپوزیت ها در صنعت خودرو سازی -نانوکامپوزيت هاي پليمري -كامپوزیت های چوپ پلاستیك -الیاف کربن و کامپوزیت آنها -اثر تنش هاي پس ماند گرمايي ناشي از پخت بر تغيير شکل چند لايه اي هاي کامپوزيتي تخت و استوانه اي -نانو کامپوزيت ها، تحولی بزرگ در مقياس کوچک -سنتز و تعیین مشخصات لاتکس نانوکامپوزیت پلی(استیرن- کو- بوتیلآکریلات)- خاک رس به روش پلیمرشدن رادیک -بررسی اثر کیتوسان و نانوهیدروکسی آپاتیت بر خواص فیزیکی و شیمیایی ریزگوی های نانوکامپوزیتی بر پایه ژل -بررسی اثر کیسه خلاء تنها و سامانه پخت اتوکلاو بر خواص فیزیکی و مکانیکی کامپوزیت های فنولی شبیهسازی فرایند ساخت پولتروژن کامپوزیت شیشه- پلیاستر -اثر شرایط اختلاط بر خواص فیزیکی و مکانیکی آمیزههای نانوکامپوزیتی بر پایه NBR/PVC/Nanoclay -مطالعه خواص و عملکرد عایق کامپوزیتی بر پایه رزین اپوکسی- الیاف پنبه بررسی اثر وجود افزودنی پلیمری بر شکل شناسی و کارایی لایه های غشای نانو***** کامپوزیتی بر پایه پلی ات -بررسی اثر نوع سازگارکننده بر خواص نانوکامپوزیت پایه الاستومر sbr - نانورس اصلاح شده -آیا کامپوزیت گزینه مناسبی برای صنعت خودروسازی کشور است؟ -سازگار كردن ذرات رس و ماتريس پليپروپيلن براي توليد نانوکامپوزيت پلي پروپيلن كامپوزیت ها در صنایع نظامی رویدادهای 11 سپتامبر 2001، توجه جهانیان را به شكل كاملاً جدیدی به مسئلۀ امنیت معطوف كرده و مایۀ نگرانی های شدیدی در سطح بین المللی شده است. مسائل امنیتی در گذشته و حال متفاوت هستند. هنگام جنگ سرد (دهه های 50 و 60 میلادی) نگرانی اصلی جهان، بمب ها و موشك های هسته ای بود. در جنگ جهانی دوم، خرابكاری موضوعی نگران كننده در آمریكا بود و این بسیار شبیه نگرانی های امروزی است. آنچه به نظر متفاوت می آید این است كه امروزه مسئلۀ امنیت بسیار شخصی ترشده است و جالب است كه بسیاری از كاربردهای كامپوزیت ها در اسلحه ها و محافظ ها نیز شخصی و فوری است. برخی از این كاربردها عبارتند از: اسلحه های شخصی به كارگیری كامپوزیت ها در تسلیحات نظامی روند رو به رشدی داشته است و در این بین تفنگ های تمام كامپوزیتی به تعداد محدودی ساخته می شوند ولی كامپوزیتی كردن بخشی از اسلحه معمول تر است. برای مثال ضخامت لوله فولادی تفنگ را كاهش می دهند و روی آن یك پوشش كامپوزیتی می پیچند. برتری های پوشش كامپوزیتی روی لوله تفنگ حیرت آور است. جنس لوله تفنگ، فولاد زنگ نزن 416 است كه به دقت ماشینكاری و نازك شده است. لوله تفنگ و خان های آن معمولاً با نوعی فولاد كه كمترین تغییر را در مسیر فشنگ ایجاد می كند ساخته میشود. با تركیب فولاد و پوشش میتوان تفنگ هایی مناسب شكار و كاربردهای نظامی ساخت. استحكام بالاتر تفنگ كامپوزیتی به علت طبیعت جهت دار الیاف كربن است. بیشتر الیاف را میتوان به صورت های گوناگونی به دور یك محور پیچاند. بنابراین درمورد تفنگ این امكان وجود دارد كه الیاف را به گونه ای دور لوله جهت داد كه استحكام بالاتری حاصل شود. بهبود استحكام، افزایش امنیت را به دنبال خواهد داشت؛ زیرا احتمال شكافتن لوله كاهش می یابد. سفتی بالای تفنگ های كامپوزیتی و درنتیجه افزایش دقت آنها نیز از جهت انتخابی برای الیاف ناشی می شود. تركیب سفتی و استحكام، منجر به كاهش وزن تفنگ میشود. برای مثال وزن تفنگ های كامپوزیتی معمولی حدود 40 درصد كمتر از M-1 است. هنگامی كه لوله فولادی ساخته میشود ایجاد سوراخ و خان در لوله، تنش هایی را در لوله به وجود می آورند. برخی از این تنش ها در محصول نهایی باقی می مانند. بنابراین وقتی تفنگ به هنگام شلیك های پیاپی گرم می شود تنش های باقی مانده باعث میشود كه در بعضی نقاط، لوله تفنگ از حالت طبیعی خارج شود و در نتیجه انحرافی در مسیر گلوله به وجود آید و در پی آن دقت شلیك كاهش یابد. استحكام و سفتی بالای پوشش كامپوزیتی از انحراف لوله جلوگیری می كند و بنابراین حتی هنگامی كه اسلحه خیلی سریع و به طور پیاپی شلیك می كند، دقت بالایی خواهد داشت. فرایند ایجاد پوشش كامپوزیتی هیچ تنشی را در تفنگ ایجاد نمی كند، پس مسیر حركت گلوله همواره صاف و مستقیم خواهد بود. یك ویژگی بی نظیر كامپوزیت های الیاف كربنی، ضریب انبساط حرارتی نزدیك به صفر آنهاست. بنابراین تغییرات دمایی، اثر مشخصی روی ابعاد لوله نمی گذارد. افزون بر آن به خاطر اتصال محكم بین پوشش كامپوزیتی و لایه فلزی، فلز و كامپوزیت یكپارچه می شوند و هیچ لغزشی در امتداد سطح آنها وجود ندارد. پوشش كامپوزیتی به علت طبیعت غالبش، از تغییر ابعاد لوله در اثر گرم شدن لایه فلزی به علت تكرار شلیك جلوگیری می كند؛ زیرا جرم و استحكام پوشش كامپوزیتی از جرم و استحكام لایه نازك فلزی بسیار بیشتر است. هنگامی كه تغییر ابعادی رخ دهد، مشهودترین عیب، كاهش دقت است كه با افزایش فاصله تا هدف بروز می كند؛ زیرا كوچكترین تغییر در مسیر گلوله انحراف قابل توجهی را در برد زیاد از خود نشان می دهد. هدایت حرارتی كامپوزیت الیاف كربنی، كاملا غیرعادی است و نوید برتری های دیگری را می دهد. انتقال حرارت در درون كامپوزیت درجهت عمود بر الیاف بسیار ضعیف است. بنابراین بخش خارجی پوشش كامپوزیتی پس از حدود 20 بار شلیك، فقط كمی گرم میشود. حال آنكه گرمای ایجاد شده در چنین حالتی در یك نمونه فولادی قابل توجه خواهد بود. مدت زمان طولانی پس از تیراندازی، كامپوزیت گرم می شود. توانایی بالای انتقال حرارت الیاف كربن در امتداد طولی آنها باعث میشود كه گرما بسیار سریع به انتهای لوله منتقل شده و در آنجا پخش شود. نتیجه نهایی این كه دمای سطح خارجی لوله كامپوزیتی كم تر شده و طول عمر لوله افزایش می یابد. در نهایت سبكی لوله كامپوزیتی ، به طور مطلوبی مركز توازن تفنگ را به سمت ماشه منتقل می كند و این موضوع باعث می شود كه بتوان چندین بار به طور مشابه به یك هدف كوچك شلیك كرد. بهای تفنگ های شكاری از جنس كامپوزیت تقریباً بالا و بین 1000 تا 3000 دلار است. تفنگ های جنگی بهایی در حدود 10،000 دلار دارند. جنگ افزارهای بزرگ با توجه به برتری های مواد كامپوزیتی استفاده از آنها در جنگ افزارهایی چون توپ ها، موشك اندازها و جز آن در دست پژوهش است. استفاده از فنآوری تقویت لوله توپ با پوشش كامپوزیتی هنوز مورد پذیرش سیستم استاندارد جنگ افزاری قرار نگرفته است. مشكلی كه در اینجا وجود دارد، اختلاف ضریب انبساط حرارتی كامپوزیت و لوله فولادی است. درمورد تفنگ، لوله فولادی نسبتاً نازك بود و انبساطش تحت تأثیر كامپوزیت قرار می گرفت. حل این مشكل، موضوع پژوهش در این زمینه است. موشك ها كاربرد كامپوزیت ها در صنایع موشكی در عرض 40 سال تجربه شده است و به طور چشمگیری گسترش یافته است. به علت هزینه های بالای حركت یك جسم در فضا، شرایط ایجاب می كند كه وزن آن كم باشد. به همین علت، كامپوزیت ها نامزد مناسبی برای این كاربرد هستند. كاربرد كامپوزیت در لانچر موشك انداز نیز به همان اندازه مهم است. این لوله ها باید سبك باشند تا به راحتی حمل شده و بر روی خودرو یا هواپیما نصب شوند. همچنین باید خیلی سفت باشند تا پرواز موشك دقیق باشد. كامپوزیت ها این بازار را تحت كنترل خود درآورده اند. هواپیماها نوشتارهای زیادی در مورد كاربرد كامپوزیت ها در هواپیماها- چه نظامی و چه غیر نظامی- نوشته شده است. به نظر می رسد هرساله كاربرد نوینی برای كامپوزیت ها د رمدل های جدید ایجاد می شود. این كاربردها به منظور كاهش وزن و بهبود استحكام صورت می گیرد. هواپیماهای بدون سرنشین میتوانند برای شناسایی منطقه و همچنین برای پرتاب موشك ها به كار روند. بیشتر این هواپیماها از كامپوزیت ساخته میشوند. منبع : انجمن کامپوزیت ایران- 38 پاسخ
-
- 2
-
- frp
- geotextile
-
(و 95 مورد دیگر)
برچسب زده شده با :
- frp
- geotextile
- hand lay up
- rtm
- فیبر
- فرايند ساخت
- فشار
- فعال کننده توليد شده با انتقال الکترون
- لوله کامپوزیتی
- لایه گذاری دستی
- لاتکس آبي
- لاستيک آکريلونيتريل بوتادي ان
- لاستيک استيرن
- مقدار حباب
- مواد کند سوز کننده
- چوب،کامپوزیت
- نانو
- نانو فناوری
- نانو هیدروکسی آپاتیت
- نانو کامپوزیت
- نانو کامپوزیت pp
- نانو کامپوزیت پلی پروپیلن
- نانو کامپوزیت ،پلیمر
- نانو پلیمر
- نانوكامپوزيت
- نانوکامپوزيت
- نانورس اصلاح شده
- ژئوتكستایل
- کيسه خلاء
- کیتوزان
- کیتوسان
- کامپوزيت فنولي -پنبه نسوز
- کامپوزيت اپوکسي-پنبه
- کامپوزيت شيشه- پلي استر
- کامپوزیت
- کامپوزیت چوب
- کامپوزیت نسوز
- کامپوزیت پلیمری
- کامپوزیت استوانه ای
- کامپوزیت تخت
- کامپوزیت،چوب،پلاستیک
- کامپوزیت،پلیمر،کامپوند،مذاب
- کاربرد نانو
- کاربرد کامپوزیت
- کاربرد پلیمر
- کربن
- گرمانرم پلیمر
- پلي (استيرن- بوتيل آکريلات)
- پلي وينيل کلريد
- پلي وينيل پيروليدون
- پلي اتيلن گليکول
- پلي اتر سولفون
- پليمرشدن راديکالي انتقال اتم
- پلی پروپیلن
- پلیمر
- پلیمر نسوز
- پلاستیک
- پولتروژن
- پایگاه تخصصی شیمی رادون
- پرکننده
- پسماند
- آسفالت
- آسفالت پلیمری
- آسفالت جدید
- الیاف
- الیاف کربن
- الیاف شیشه
- انتقال رزین
- اهمیت کامپوزیت،کامپوزیت،خودروسازی
- اتوکلاو
- بوتادي ان (sbr)
- برق
- بسپار
- تقویت آسفالت
- تنش های باقی مانده
- تنش پسماند گرمایی
- تجزيه گرما وزن سنجي
- جدايش فاز
- خواص
- خواص مکانيکي
- خواص ريولوژيکي
- خودروسازی
- دریل،کامپوزیت
- ذرات نانو
- ريز امولسيون
- رزين
- رزین
- رزین اپوکسی
- زغال باقي مانده
- سازگار کننده
- شبكه های كامپوزیتی
- شبكه های كامپوزیتی تقویت آسفالت
- شبيه سازي
- صنایع نظامی
- صنعت کامپوزیت
- عايق پيش رانه
- غشاهاي کامپوزيتي
-
به منظور اتصال قطعات پلاستیکی به قطعات دیگر که یا بسیار بزرگند یا بسیار پیچیده، از چسب و چسباندن حلالی، بست مکانیکی و انواع روشهای جوشکاری استفاده میشود. در تمام این موارد هدف، تشکیل یک قطعه مونتاژ شدهی یکپارچه است. سامانههای چسب کاری، چند کاره هستند و در مواقعی که نیازمند اتصالات محکم و بادوام هستیم، نتایجی پایدار و قابل پیش بینی به بار میآورند. جوشکاری، تنها برای گرمانرمها (و نه گرماسختها) مناسب است. در این روش سطوح مورد اتصال در محل تماس ذوب میشوند تا پیوندهای مولکولی قوی تشکیل گردند. جوشکاری پلاستیک در صنعت پلاستیک و به منظور درزگیری بستهبندیها بسیار مورد استفاده قرار میگیرد. هر دو روش استفاده از چسب و جوشکاری پلاستیک در صنعت خودرو به صورت گستردهای مورد استفاده قرار میگیرند. پشتیبانی فنی توسط متخصصان سازندگان بسپار پیشنهادات و پشتیبانیهای فنی لازم برای اتصال و مونتاژ قطعات ساخته شده از موادشان را ارائه میکنند. شرکت Lanxess در راهنمای محصولاتش به این موضوع میپردازد که مهندسان طراح در ابتدا باید توجه کنند که چگونه میخواهند با اتصال اجزای مجزا، آن ها را به واحدهای عملیاتی تبدیل کنند. در این نوشته بستهای مکانیکی شامل پیچها و میخپرچها یکی از ارزانترین و معمولترین روش ها برای مونتاژهایی که میبایست قابل جداشدن باشند معرفی شده است. هم چنین جهت اتصال دائمی، چسبهای حلالی در زمرهی ارزانترین روشهای اتصال ذکر شده است. در روش اتصال توسط چسب، چسبهای دو جزیی اپوکسی و پلییورتان میتوانند استحکام پیوندی عالی ایجاد کنند. در این راهنما آمده است: چسبهای بر پایهی سیانو اکریلاتها میتوانند پیوندهای سریعی ایجاد کنند ولی از طرفی به بسپارهای پلیکربنات میتوانند صدمه وارد کنند مخصوصاً اگر قطعات تنش درونی زیادی داشته باشند یا در فشار کاری زیادی قرارگیرند. چسبهای اکریلیک دوجزیی استحکام پیوندی بالایی را نشان میدهند اما اغلب شتاب هندهشان به آمیزههای پلی کربناتی صدمه وارد میکنند. Lanxess توصیه میکند تمام قطعات برای تعیین یک چسب مناسب قبلاً آزموده و مدل شوند. پلاستیکها را میتوان هم به روش حرکت مکانیکی مانند ارتعاش جوش داد و هم با به کارگیری حرارت به منظور ذوب کردن محل اتصال. مونتاژ فراصوتی یکی از روشهای پرکاربرد در گرمانرمها است که به اتصالات دائمی، زیبا و دل پذیری میانجامد. ارتعاش مکانیکی با بسامد زیاد برای ذوب سطوح محل اتصال در اغلب روشهای فراصوتی (جوشکاری، ردی (staking) ، جوشکاری نقطهای و درونه ی فراصوتی (ultrasonic inserts)) استفاده میشود. هم چنین در این راهنما آمده است مقادیر کم از پرکنندهها، مانند الیاف شیشه مانع جوشکاری نخواهند شد. اگر مقدار الیاف شیشهای از 30% فراتر برود منجر به یک پیوند ضعیف میشود و میتواند در وسایل جوشکاری فرسایش ایجاد کند. عوامل رها کنندهی قالب، روان کننده ها و عوامل تأخیر اندازندهی آتش اثر منفی بر کیفیت جوش دارند. شرکت Sabic Innovative Plastics در کتاب مرجع خود در مورد جوشكاري پلاستيكها نوشته است که جوشكاري ارتعاشی، که به نامهای جوشكاري خطی و جوشكاري مالشی خطی نیز نامیده میشود، برای جوش قطعات گرمانرم در طول شکاف صاف مناسب است. در این فرآیند، قطعاتی که میبایست به هم متصل شوند بر روی يكديگر تحت فشار مالیده میشوند. در ماشینهای جوشکاری ارتعاشی تجاری، نیمی از قطعه توسط القاء یک سامانه جرم دار و فنری سفت که به خوبی تنظیم شده، و به وسیلهی یک نیروی نوسانی تحمیلی خارجی مرتعش میشود. انواع دیگر جوشکاری مالشی شامل جوشکاری چرخشی، ارتعاشی زاویهای و جوشکاری دورانی میباشد. شرکت Sabic نشان میدهد که پلاستیکها و چندسازههای پلاستیکی به طور فزایندهای در ساختارهای پیچیده که در آن ملاحظات اتصال و قیمت مهم هستند استفاده میشوند. بسپار های گرمانرم پرشده و پرنشده ی قابل جوشکاری در بسیاری از کاربردهای ساختاری پرتقاضا که نیازمند اتصالاتی با توان تحمل فشارهای خستگی و ساکن هستند استفاده میشوند. شرکت Sabic مثالی از یک سپر خودرو را ذکر میکند که از بسپارSabic's Xenoy@ 1102 که یک ترکیب نه کاملاً گرمانرم است ساخته شده است. این سپر توسط جوشکاری ارتعاشی دو قطعهی قالبگیری شده به روش تزریق تولید شده است. به گفتهی این شرکت، فناوری جوش پلاستیک به دلیل ورود چندسازههای گرمانرم بسیار کارا، مهمتر شده است که این موضوع انقلاب روشهای مونتاژ در کاربردهای فضایی را نوید میدهد. در کتاب راهنمای مذکور آمده است: به تازگی توجه به برگشتپذیری مواد، موضوع جوشکاری را پراهمیتتر کرده است زیرا بر خلاف چسبها در جوشکاری، مواد اضافی وارد مونتاژ قطعات نمیشود. انواع دیگر جوشکاری استفاده شده در گرمانرم ها شامل جوشکاری توسط لیزر و جوش مقاومتی و القایی میباشد. در جوشکاری لیزری امواج رادیویی لیزر یا نور از میان قطعهی پلاستیکی اول عبور داده می شود تا جایی که قطعهی دوم آن را جذب کند و منجر به ایجاد حرارت و ذوب در محل تماس شود. در جوشکاری مقاومتی با به کارگیری یک مقاومت الکتریکی کاشته شده بین سطوح مورد اتصال، حرارت مورد نیاز برای اتصال جوش تامین میگردد. در جوشکاری القایی از یک پیچه (کویل) برای تولید میدان مغناطیسی متناوب استفاده میشود که منجر به القاء جریان در سطوح اتصال میشود. مقاومت ماده در برابر این جریان باعث تولید حرارت میشود. اجزای جوشکاری فراصوتی مونتاژ فراصوتی از ارتعاشی که توسط یک مبدل تولید شده است استفاده میکند. این مبدل انرژی الکتریکی را با استفاده از یک شیپور صوتی به انرژی مکانیکی تبدیل میکند. انرزی از میان قطعه به محل اتصال انتقال داده میشود، در آن جا از طریق مالش گرما تولید میشود و پس از آن با ذوب پلاستیک پیوند تشکیل میگردد. شرکت Branson Ultrasonics که در زمینه اتصال مواد و تمیزکاری دقیق، یک رهبر جهانی است؛ سامانه های فرا صوتی کاملاً دیجیتال را توسعه داده است. سامانه های Branson's 2000X در بسامدهای 20، 30 و 40 کیلو هرتز همراه با توان خروجی افزایش یافته برای تمام بسامدها قابل استفاده میباشد. این شرکت معتقد است انعطاف پذیری و محدودهی این سامانههای جوشکاری، دست مصرفکنندگان را در انتخاب قطعات تشکیل دهنده باز میگذارند تا بتوانند قطعهی مونتاژ شدهای با مصارف خاص تولید کنند. دستگاههای "خود کنترل شوندهی رومیزی" جهت تولید دستی و تک ایستگاهی و ابزار کمک- دستی جهت مونتاژ قطعات بزرگ و به منظور استفاده در سطوح اتصالی که به سختی قابل دستیابی هستند از جملهی آنهاست. مجزا بودن قطعات تشکیل دهندهی این دستگاه شامل سامانه محرک و منبع انرژی ضمیمه شدهی جداگانه از شاخصههای این سامانه است. تمام محصولات Branson را میتوان جهت اتوماسیون خطوط و ایجاد سامانههای تولید کاملاً جامع جهت مونتاژ به کار برد. همچنین قطعات OEM (تولید کنندهی تجهیزات اصلی(قطعات اصلی)) جهت استفاده در اتوماسیون را میتوان از کارخانهای که فناوریهای اتصال آن به جوشکاری خطی، دورانی و ارتعاشی- حرکتی قابل برنامهریزی، صفحه داغ (hot plate) و جوشکاری چرخشی گسترش داده باشد به دست آورد. محصولات سری 40 شرکت Branson، سامانههای فرا صوت خود کنترل شوندهی به نسبت خودکار با تکیه بر قابلیت شکل پذیری و سرعت تولید بالا جهت مونتاژ پلاستیکها هستند. این دستگاهها دارای قابلیت جوشکاری، ردی، درونه گذاری، سنبه کاری یا جوش نقطهای گرمانرمها هستند. محصولات سری 40 میتوانند شامل ایستگاههای فراصوتی چندگانه باشند یا میتوانند با سامانههای فراصوتی دیگر مثل جوش دهندههای چرخشی یا عملیات ثانویهی دیگر مثل آزمون نشتیابی ترکیب شوند. شرکت Herrmann Ultrasonics، یک تولیدکنندهی آلمانی دارای شرکتهای تابعه در آمریکا و چین، فناوری های پیشرفته ای در زمینهی اتصال فراصوتی به دست آورده است. این سازنده اخیراً ماشین جوشکاری فراصوتی تکامل یافتهی HiQ را تولید کرده است که دارای مشخصهی تغییر سریع ابزار (quick-tool-change) و ابداعات دیگری است تا بتواند تولید را افزایش دهد و زمان بیکاری و مصرف انرژی را نیز کاهش دهد. این سامانه همراه با ژنراتورهای دیجیتالی 20، 30 و 35 کیلوهرتزی در مدلهای محدودهی 1200 تا 6000 وات قابل استفاده است. شرکت مذکورMedialog را در فضاهای عاری از آلودگی پیشنهاد میدهد که برای سازندگان تجهیزات پزشکی و هم چنین کاربریهای دیگری که نیازمند فرآیند تولید بدون حضور آلودگی هستند مناسب میباشد. هوای ورودی به یک استاندارد بالاتری تصفیه شده و هوای خروجی جمع آوری میشود که میتوان آن را از میان یک سامانه ی تهویه موجود هدایت کرد. واحدهای Medialog در دو اندازه موجودند: HS در 20 و 30 کیلوهرتز و PS در 35 کیلوهرتز. ژنراتورهای دیجیتال تا 5000 وات بالا میروند. پردازش اطلاعات سریع شرکت Dukane Corp. سامانههای پرس فراصوتی سری iQ برای جوش گرمانرمها تولید کرده است. این شرکت یک تامین کنندهی جهانی جوشدهندههای فراصوتی، چرخشی، لیزری، ارتعاشی و صفحه داغ و همچنین دستگاههای پرس حرارتی، ابزارآلات و نرم افزارها برای بازارهای مونتاژ محصولات پلاستیکی تجاری و OEM میباشد. گفته میشود دستگاه پرس فراصوتی سری iQ به دلیل معماری فرآیندی چند هستهای دارای سرعت پردازش اطلاعات بالاتری در صنعت است (سرعت به روز شدهی 0.5 میلی ثانیه). به گفتهی Dukane این سامانه اطلاعات جوش شامل توان، انرژی، فاصله، نیرو، بسامد و زمان را در سرعتی معادل دو برابر تجهیزات سری قدیمیتر و با دقت و استحکام جوش بالاتر پردازش میکند. دستگاه پرس فراصوتی سری iQ برای جوشکاری گرمانرمها، پردازش اطلاعات بسیار سریع و استحکام و دقت جوش بالاتری را نسبت به تجهیزات سری قدیمیتر شرکت Dukane فراهم میکند. سری iQ دارای سامانه پرس 30/40 کیلوهرتزی با مکانیزم لغزشی سبک و دقیق میباشد و جهت کاربردهای کوچک، حساس و دارای رواداری کم طراحی شده است. به علاوه دستگاههای پرس 20 کیلوهرتزی توسط Dukane Ultra ridged H-frame support جهت کاربریهای دقیق و با نیروی زیاد قابل دسترس است.پیکربندی این محصول با توجه به نیازهای استفاده کننده به صورت پودمانی طراحی شده و قابل اضافه و کم کردن است. کنترل گرهای این محصول از ابتدایی (فقط زمان) تا پیشرفته (زمان، انرژی، فاصله، نیرو و حداکثر قدرت فرستنده) متنوع هستند و دارای اعتبار و واسنجی شده (کالیبراسیون) جهت کاربردهای پزشکی میباشند. فشار دوگانه در واحد اصلی استاندارد میشود. واحدهای پیشرفته دارای مبدل نیرو و شیر فشار شکن الکترونیکی حلقه بسته میباشند که هنگامی که با کنترل گر سرعت هیدرولیک Dukane جفت میشوند قادر به کنترل دقیق سرعت ذوب خواهند بود. شرکت Sonics & Materials, Inc. یک تولید کنندهی تجهیزات جوش از دستگاههای قابل حمل و دستگاههای پرس مدل رومیزی تا سامانههای کاملاً خودکار میباشد. این شرکت خودش را در زمینهی فناوری جوش فراصوتی متمایز کرده است. ابداعات اخیر شامل دستگاههای قابل حمل جوش فراصوتی 40-20 کیلوهرتز همراه با کنترل گرهای بر پایه زمان دیجیتال یا انرژی ثابت میشود. ابزارها مشخصاً جهت کاربریهای جوشکاری، ردی(staking)، درونه گذاری (inserting) و جوش نقطهای طراحی شدهاند. یک بست تپانچهای اختیاری جهت حمل و نقل آسانتر تعبیه شده است. لوازم یدکی دیگر شامل یک پرس دستی و یک پدال پایی میشود. جوشکاری قطعات مدور جوشکاری چرخشی روشی برای جوش قطعات گرمانرم با استفاده از یک حرکت چرخشی دایرهای و فشار کاربردی است. یک قطعه توسط یک فک ثابت نگه داشته میشود تا قطعهی دیگر حول آن بچرخد. حرارت تولید شده توسط مالش مابین دو قطعه منجر به ذوب محل تماس دو قطعه شده و در نتیجه یک آب بندی محکم و سحرآمیز ایجاد شود. شرکت Brandson Ultrasonics سامانه جوش چرخشی خود تنظیم SW300 را جهت جوشکاری قطعاتی با محل تماس دایرهای را پیشنهاد میکند. گفته میشود جوش دهندههای چرخشی رومیزی همراه با یک صفحهی نمایش لمسی 6 اینچی دارای دقت موتور خود تنظیم برابر با 1/0± درجه میباشند. SW300 را میتوان در حالت های عملکردی دستی، نیمه خودکار و کاملاً خودکار به کار برد. حداکثر بار کاربردی 142 کیلوگرم است. سامانه جوشکاری چرخشی خود تنظیم SW300 از شرکت Brandson Ultrasonics برای جوش قطعاتی با محل تماس دوار طراحی شده است. شرکت ToolTex جوش دهنده های چرخشی رومیزی ای ساخته است که دارای گشتاور بالایی برای قطعات تا قطر 5/63 سانتی متر میباشد. این شرکت در زمینهی سازگاری محصولاتش با خطوط ماشین کاری مشتری متبحر شده است و می تواند دستگاههای جوش خود را در خطوط موجود مشتری جای دهد. هم چنین آنها میتوانند دستگاههای خود را به صورت مستقل راهاندازی کنند. جوشدهندههای چرخشی خود تنظیم SW750 این شرکت دارای گردش با دقت 1/0 درجه و تحمل بار 5/90 کیلوگرم هستند. این دستگاه مجهز به یک کنترل گر صفحهی نمایش لمسی است. شرکت PAS (Plastic Assembly Systems)، تجهیزات جوشکاری استفاده شده و جدید شامل محصولات جوش چرخشی خودتنظیم، جوش دهندههای فراصوتی و سامانههای مونتاژ حرارتی را ارائه میکند. مدل STS2000 یک سامانه حرارتی خودتنظیم است که مجهز به فناوری جدید خود تنظیم جهت کنترل دقیق کاربردهای حرارتی در تماس مستقیم با ابزارهای گرم شده میباشد. STS2000 میتواند به عنوان یک دستگاه مستقل یا همراه با خطوط اتوماسیون به کار برده شود. خط تولید PAS برای قطعات کوچک، متوسط و بزرگ و جهت کاربری با دقت بالا و قابلیت تکرارپذیری قابل استفاده است. فنون جوشکاری لیزری فناوری جوش لیزری یک روش اتصال انعطاف پذیر و غیر تماسی است که جوشهای قوی و تمیز با کمترین تکانه (شوک) حرارتی در نقاط اتصال ایجاد میکند. در این روش هیچ ذرهای در محل اتصال رها نمیشود. این روش دارای دقت زیاد بدون سایش ابزارآلات است و در آن هیچ مادهی مصرفی جوشکاری استفاده نمیشود. شرکت Stanmech Technologies که با شرکتLeister Process Technologies ادغام شده طرز ساخت پلاستیکها و تجهیزات جوشکاری را شامل سامانههای اتصال لیزری بر اساس خواست مشتری ابداع کرده است. چهار سامانه جوش لیزریNovolas™ جهت برآوردن نیازهای خاص قابل دستیابی است. سامانه اصلی اجازه مییابد در سامانههای ساخت همراه با کنترل گرهای فرآیندی خودشان ادغام شود. مدلهای دیگر، OEMها جهت ادغام پیشرفته، WS (ایستگاه کاری( جهت ایستگاه کاری دستی کمی خودکار و maskwelding Micro برای اتصال قطعات باریک و ریز میباشند. این شرکت یک آزمایشگاه کاملاً کاربردی جهت ارزیابی نیاز مشتریان ارائه کرده است. پیشرفت جدید در این زمینه، تولید دستگاه Leister Weldplast $2 hand-extruder است که یک وسیلهی کامل طراحی شده جهت تولید محصولات اکسترود شدهی تا 5/2 کیلوگرم (5/5 پوند) در ساعت جهت اتصال قطعات گرمانرم است. این دستگاه مجهز به یک کفشک جوش چرخشی 360 درجه جهت تسهیل کار کردن در بالای سر است. هم چنین از این شرکت ابزار دستی هوای داغ از سبک وزن Hot Jet S و قلم جوش تا مدلهای بزرگتر مانند Diode و Triac S در دسترس است. این ابزارها برای دمیدن هوای داغ مستقیم به شکاف اتصال و الکترود جوشکاری استفاده میشوند. شرکت Laser and electronics specialist LPKF در آلمان سامانههایی جهت جوش لیزری پلاستیکها همراه با سامانههای تولید پودمانی (modular) ساخته است. جوش لیزری انتقالی، قطعات گرمانرمی را که دارای مشخصات جذب متفاوت هستند را متصل میکند. لیزر در لایهی بالایی که نسبت به آن طول موج شفاف است نفوذ میکند اما به وسیلهی لایهی پایینی جذب میشود، این عمل منجر به تولید حرارت و پیوند سطوح به یکدیگر میشود. خطوط تولید جوش لیزری LPKF شامل LQ-Power جهت عملیات دستی و LQ-Integration با فناوری یکپارچهسازی بدون درز در خطوط تولید میشود. فناوری جوش لیزری ثبت اختراع شده با نام Clearweld®، توسط شرکتهای Gentex Corp. و TWI, Ltd. که گروههای تحقیق و توسعهی صنعتی انگلیسی هستند ابداع شده است. فرآیند Clearweld که توسط Gentex تجاری شده است، از پوششهای ویژه و افزودنیهای بسپار با قابلیت جوش لیزری استفاده میکند تا بتواند رنگ یکنواخت و انعطاف پذیری طراحی در جوش پلاستیکهای با ارزش و پشت پوش ایجاد کند. این فناوری، اختصاصاً برای وسایل و لولههای پزشکی ساخته شده است زیرا این ابزارها با به کارگیری چسبها و ذرات ناشی از استفاده از جوشکاری فراصوتی آلوده میشوند. LPKF یک شریک در شبکهی جهانی Gentex شامل سازندگان تجهیزات، integrators، تامین کنندگان مواد و مونتاژکاران پلاستیک میباشد. شریک دیگر Branson Ultrasonics است که یک سامانه لیزری انحصاری جهت فرآیندهای Clearweld ابداع کرده است. این سامانه به گونهای طراحی شده است که لولههای پزشکی را بدون چرخش آنها جوش دهد. کمک از لیزر برای قطعات ترکیبی فرآیند ابتکاری کمک از لیزر برای اتصال پلاستیکها و فلزات توسط موسسه Fraunhofer Institute for Laser Technology (ILT) در آلمان ابداع شده است. در این فرآیند طبق ثبت اختراع انجام شده Liftec®، امواج لیزر از میان یک قطعهی پلاستیکی عبور میکنند تا جزء فلزی که در مقابل آن پرس شده است داغ شود. پس از آن که پلاستیک ذوب شد، فشار مکانیکی روی قطعهی فلزی اعمال میشود و آن را به درون پلاستیک هل میدهد. شکل هندسی مناسبی برای قطعهی فلزی طراحی شده است و یک پیوند مثبت و جامد پس از سرد شدن تشکیل میدهد. سرامیکها و پلاستیکهای مقاوم در برابر حرارت نیز میتوانند در این فرآیند به کار گرفته شوند. شرکت Kamweld Technologies یک متخصص در زمینهی محصولات جوش پلاستیک، تفنگ هوای داغ صنعتی و وسایل خمش صفحهی پلاستیکی و متعلقاتش است که اخیراً جوش-دهندههای سری Fusion با وزن کم و قابل حمل توسط دست را همراه با کنترل گرهای دیجیتال دقیق جهت کنترل دمای جریان هوا ابداع کرده است. چهار مدل از دستگاه FW-5 قابل دسترس اند، که همگی دارای گرم کن های خطی هستند. مدلهای FW-5C و FW-5D دستگاههای کامل با کمپرسورهای داخلی هستند. چسبهای ساختاری محکم چسبهای پیشرفته جهت پیوند پلاستیکها از طیف گستردهای از سازندگان قابل دسترس هستند. شرکت ITW Plexus، سردمدار فناوریهای چفت و بست زدن، اتصال، درزبندی و پوشش، چسبهای ساختاری ثبت شده Plexus® را برای پیوند گرمانرمها، مواد چندسازه و فلزات ساخته است. چسبهای ساختاری یا اجرایی معمولاً در کاربردهای تحمل بار استفاده میشوند زیرا آنها به استحکام محصولات پیوندخورده میافزایند. ITW Plexus راهنمایی برای اتصال پلاستیکها، چندسازهها و فلزات ارائه کرده است که در پایان این متن آورده شده است.سه چسب ساختمانی جدید Plexus® انعطاف پذیری در موقع عملکرد از خود نشان میدهند و برای کاربردهای ساخت قایق و دیگر مونتاژهای بزرگ بسیار مناسب اند.ابداعات اخیر Plexus شامل سه نوع چسب متاکریلات ساختاری دو جزیی است که در دمای اتاق پخت میشوند و پیوندهای استثنایی و البته انعطافپذیری را بر روی چندسازهها، بدون آماده سازی سطح یا با آماده سازی سطح کم ایجاد میکنند. MA530 با زمان عملکردی 40-30 دقیقه، برای پر کردن شکافهایی تا 78/17 میلیمتر طراحی شده است. MA560-1 دارای زمان عملکردی بالاتری است (تا 70 دقیقه) و برای پر کردن شکافهایی تا 14/25 میلی متر مناسب است. MA590 با زمان عملکردی تا 105 دقیقه بسیار مناسب برای قایقهای الیاف شیشه ای بزرگ است. به گفتهی شرکت مذکور، این چسبها هم چنین پیوندهایی عالی روی فلزات و دیگر کارپایه ها ایجاد میکنند. بر خلاف دیگر چسبها و بتونهها، این چسبها به طور شیمیایی FRPها، چندسازهها و تقریباً تمام بسپارهای پلی استر و ژلپوشه ها را درهم میآمیزد. این شرکت یادآور میشود به دلیل این که چسبهایش نیازی به آمادهسازی سطح ندارند، بنابراین میتوانند زمان مونتاژ را تا 60% کاهش دهند. این شرکت اضافه میکند چسبهای مذکور پیوندهای بسیار قویای ایجاد میکنند به طوری که کارپایه ها (substarates) قبل از اینکه پیوند ایجاد شده خراب شود لایه لایه میشوند. گفته میشود این چسبها انعطاف پذیری استثنایی، استحکام ضربه و مقاومت در برابر سوخت، مواد شیمیایی و آب از خود نشان میدهند. شرکت مذکور، دستگاه های پخش کنندهی چسب با نام Fusionmate™ بهینه شده برای چسبهای متاکریلات Plexus را نیز ارائه کرده است. این سامانه با هوای کارگاهی در فشار psi 100 کار میکند و پمپاژ حجمی مثبت مداومی با نسبتهای حجمی با دقت از 6:1 تا 15:1 را فراهم میکند. خروجی از سرعت جریان 38/0 تا 92/4 لیتر بر دقیقه قابل تنظیم است. گیربکسهای زنجیری مستقل برای پمپهای چسب و فعال کننده به صورت جداگانه طراحی شده است که پاکسازی آنها را به طور مجزا امکانپذیر میسازد. چسباندن قطعات خودرو سالیان متمادی است که چسبها در کاربردهای خودرو مورد استفاده قرار میگیرند و با پیشرفت فناوری چسب، اهمیت آنها نیز افزون شده است. شرکت Dow Automotive که تولید کنندهی چسب برای خودرو است گزارش میدهد که فناوری چسب در کاربردهایگستردهتری همراه با پشتیبانی قطعات اصلی خودرو (OEM) جهت حصول اطمینان و کاهش وزن کلی استفاده میشود. چسب با دوام در برابر ضربه با عنوان Betamate™ از این شرکت توسط شرکت خودروسازی Audi جهت استفاده در پروژهی A8 که یک خودرو جدید با بدنهی آلومینیومی است انتخاب شده است. فناوری Betamate در کاربردهایی که نیازمند کارایی زیاد هستند میتواند استفاده شود و جهت پیوند قطعات گرمانرمی، چندسازهها، شیشه، آهنآلات، تزئینات خودرو، و آلیاژهای فولاد، آلومینیوم و منیزیم قابل استفاده است. چسبهای ساختمانی میتوانند جای گزین جوشکاری و چفت و بستهای مکانیکی در اتصال انواع زمینههای مشابه و غیر مشابه شوند و اثرات شکست و فرسودگی پیدا شده در اطراف جوش های نقطهای و بستها را حذف کنند. به گفتهی شرکت Dow این چسب عملیات درزگیری را در برابر شرایط آب و هوایی که منجر به خوردگی میشود نیز میتواند انجام دهد. این شرکت هم چنین سامانههای پیوند شیشه Betaseal™ را ساخته است که برای نصب شیشههای خودکار در خودروها استفاده میشود. شرکت IPS سازندهی چسبهای ساختمانی بسیار قوی متاکریلات WeldOn® اخیراً چسبWeld-On SS 1100 را جهت چسباندن قطعات گرمانرم، چندسازه و فلزی و هم چنین کارپایه هایی که به سختی چسبانده میشوند مانند نایلون و فلزات گالوانیزه شده ساخته است. این چسب ها دو جزیی بوده و جهت اتصال فلزات به پلاستیکها بسیار مناسب هستند و دارای زمان عملکردی 4 تا 17 دقیقه میباشند. به گفتهی شرکت مذکور، این محصول دارای کاربردهای گستردهای شامل حمل و نقل، دریایی، ساختمانی و مونتاژ محصول است و نیازی به آمادهسازی سطح ندارد (یا نیازمند آماده سازی سطح کمی است). پروژههای چسباندن بزرگ شرکت Gruit توسعه دهنده و سازندهی مواد چندسازه، چسبهای اپوکسی Spabond را ارائه کرده است که جهت ایجاد اتصالات بسیار محکم و با دوام طراحی شده است که اغلب قویتر از خود مواد مورد اتصال است. این چسب در اندازهها و درجهبندیهای گوناگون به منظور پاسخگویی به نیازهای مختلف عرضه شده است. چسب بسیار کارای Spabond340LV برای چسباندن سازههای بزرگ مانند تنهی قایقها و پرههای توربینهای بادی طراحی شده است. گفته میشود این چسب دارای قیمت مناسب به نسبت کاراییش و هم چنین خواص مکانیکی و حرارتی خوبی است. به منظور چسباندن سازههای بزرگی که هندسهی سطح ناصافی دارند، شرکت Gruit چسب Spabond 345 را پیشنهاد میدهد که دارای غلظت بالا و خمیر مانند است و میتواند بدون شره کردن به کار رود. چسب اپوکسیSpebond 5-Minute در موارد سریع خشک، کاربردهای عمومی و کارهای تعمیری در طیف گستردهای از کارپایه ها با جنس های مختلف استفاده میشود. در مواردی که امکان به کارگیری گیرههای مرسوم نیست این چسب در ترکیب با محصولات دیگر Spabond به عنوان سامانه "جوش نقطهای" میتواند استفاده شود. چسبهای Spabond در کارتریجها، ظروف و درامهای دستگاههای اختلاط و پراکنش گر قابل استفاده است. چسبهای ویژه شرکت Dymax سازندهی طیف گستردهای از چسبهای صنعتی و محصولات قابل پخت توسط امواج فرابنفش از جمله چسبUltra-Red™ Fluorescing 1162-M-UR، جهت چسباندن پلاستیک به فلز در کاربردهای پزشکی است. ترکیب ثبت شدهی Ultra-Redاز آن سبب است که این چسبها تحت نور کم شدت "black"، قرمز قهوهای به نظر میرسند که به شدت با اغلب پلاستیکها که به طور طبیعی نور آبی پس میدهند تمایز دارند. این تضاد رنگی به بازرسی خط چسب کمک میکند. کارپایه های قابل چسباندن شامل پلی-کربنات، فولاد ضدزنگ، شیشه، PVC و ABS میباشد. شرکت Master Bond تولیدکنندهی چسبها، درزگیرها، پوششها، بتونهها، ترکیبات دربرگیری (encapsulation) و بسپارهای سیرشده، به تازگی تولید یک نوع چسب دوجزیی اپوکسی را اعلام کرده است که گفته میشود این چسب رسانائی گرمائی بسیار استثنایی ایجاد میکند. چسب EP21AN، گفته میشود یک عایق الکتریکی عالی است که چسبندگی بسیار خوبی روی کارپایه های گوناگون از جمله بسیاری از پلاستیکها، فلزات، سرامیکها و شیشه ایجاد میکند. هم چنین به گفتهی شرکت مذکور، پیوندها ثبات ابعادی مناسبی از خود نشان میدهند و پدیدهی جمع شدگی بعد از پخت به طور استثنایی پایین است. چسب جدید اپوکسی EP21AN از شرکت Master Bond که یک عایق الکتریکی عالی است، هدایت گرمایی زیاد و چسبندگی بسیار خوبی در بسیاری از کارپایهها ایجاد میکند. شرکت Flexcon، چسب اکریلیک حساس به فشار V-778 را ارائه میدهد که گفته میشود مناسب پلاستیکهایی با انرژی سطحی کم مانند TPO است. این محصول نیاز به آمادهسازی سطح TPO (به روش آستری زدن یا استفاده از شعله) را حذف میکند و در نتیجه در زمان و هزینه صرفهجویی میشود. به گفتهی این شرکت، آزمایش ها نشان میدهد که این چسب، چسبندگی و دوامی عالی روی TPOها و آلیاژهای پلی اولفینی و سطوح پوشش داده شده با رنگ پودری از خود نشان میدهد. شرکت مذکور نوارچسبهای انتقالی از جنس اکریلیک و بسیار کارا را نیز ارائه میکند. شرکت Evonik Cyro LLC تولید کنندهی محصولات اکریلیک ویژه، به تازگی Acrifix™ از انواع عوامل چسبانندهی ویژه (SBAs) را تولید کرد که محصولات چسبانندهی جدیدی جهت استفاده با گرمانرمها هستند. به گفتهی شرکت مذکور این چسبها به طور خاص جهت چسباندن محصولات اکریلیکی Acrylite™ طراحی شدهاند و شامل انواع زیر است: Acrifix 2R 0190 فعالترین SBA چند کاره، Acrifix 2R 0195 عامل چسبانندهی فعال با جلای نهایی و Acrifix 1S 0117 تنها عامل چسباننده در بازار آمریکای شمالی که در متیلن کلرید حل نمیشود. SBAها نوعاً جهت چسباندن قطعات در معرض دید از جمله در نمایشگاهها، موزهها، قابهای عکس، روشناییها و آکواریومها استفاده میشوند. آمادهسازی جهت اتصال بهتر جهت پیوند مناسب چسب، به سطوح تمیز و عاری از چربی، گریس و آلودگیهای دیگر نیاز است. در صنایع خودرو و پزشکی به منظور بهبود اتصال قطعات به هم به آمادهسازی سطح جهت زدودن گرد و غبار، روغن و چربی نیاز است. طبق توضیحات سامانههای آمادهسازی سطح Enercon، حلالهای تمیز کننده مثل تولوئن، استن، متیل اتیل کتون و تری کلرواتیلن میتوانند استفاده شوند ولی آنها پس از تبخیر یک باقی ماندهی فیلم از خود به جای میگذارند که چسباندن را به تأخیر میاندازد. این شرکت محصولاتی را جهت آمادهسازی سطح پلاستیکها و مواد دیگر ارائه میکند تا به وسیلهی آنها چسبانندگی چسبها، برچسبها، چاپ و پوشرنگزنی بهبود یابد و در موارد اکستروژن و روکش قطعات قالبی نیز کاربرد دارد. شرکت Enercon محصول جدیدی را تولید کرده است که به منظور حکاکی، تمیز کردن، فعال سازی، سترون کردن و عامل دار کردن انواع سطوح رسانا و نارسانایی که به سختی آماده میشوند، طراحی شده است. محصول Dyne-A-Mite™ IT Elite دارای فناوری آماده-سازی سطح پلاسمای پیشرفتهی blown-ion و سامانه real-time Plasma Integrity Monitoring جهت انواع فرآیندها است. این سامانه ی پودمانی قابل توسعه با چهار نوع آماده سازی سطح است که منجر به قابلیت اتصال/قطع سریع میشود. این محصول یک تخلیهی الکتریکی blown-ion متمرکز شده تولید میکند به طوری که سطح ماده با سرعت بالای تخلیهی الکتریکی یونها بمباران میشود. گفته میشود این روش در آماده سازی و تمیزکاری سطح بسیاری از بسپارهای گرمانرم و گرماسخت، لاستیک ها، شیشه و حتی سطوح رسانا بسیار مؤثر است. محصول Dyne-A-Mite™ IT Elite دارای فناوری آماده سازی سطح پلاسمای پیشرفتهی blown-ion جهت بالا بردن چسبندگی چسبها است. یک سامانه real-time Plasma Integrity Monitoring تمام انواع فرآیندها را به دنبال دارد. فهرست راهنمای چسباندن چسبهای شرکت Plexus کتابچهی منتشر شده توسط شرکت ITW Plexus، راهنمایی جهت چسباندن پلاستیکها، چندسازهها و فلزات است که ده خانوادهی چسب معمول که به عنوان چسبهای ساختاری نامیده میشوند را فهرست کرده است: اکریلیک، بی هوازی، سیانواکریلیک، اپوکسی، ذوبی (hot-melt)، متاکریلاتها، فنولیک، پلی یورتان، چسب حلالی و نوارچسبها. به گفتهی این راهنما هفت مورد زیر معمولترین آنهاست؛ راهنمای مذکور، مشخصات اولیهی این چسبها را به شرح زیر مورد تاکید قرار داده است: • چسبهای اپوکسی، که نسبت به دیگر چسبهای مهندسی بیشتر در دسترس هستند، پرکاربردترین چسب ساختاری هستند. پیوندهای اپوکسی استحکام برشی خیلی زیادی دارند و معمولاً صلب هستند. سامانههای دوجزیی بسپار/عامل پخت شکافهای ریز را به خوبی و بدون جمع شدگی پر میکنند. • چسبهای اکریلیک سطوح کثیفتر و کمتر آماده ای که اغلب متصل به فلزات هستند را تحمل میکنند. آنها با اپوکسیها در استحکام برشی رقیب هستند و پیوندهایی انعطافپذیر همراه با مقاومت ضربه و مقاومت در برابر ورکنی(peeling) خوبی ارائه میدهند. این چسبهای دوجزیی خیلی سریع پیوند تشکیل میدهند. • چسبهای سیانواکریلات سرعت پخت بسیار زیادی دارند و جهت موارد دقیق بهترین هستند. آنها جزء سیالاتی با گرانروی به نسبت کم بر پایهی تکپارهای اکریلیک و مناسب چسباندن سطوح کوچک هستند. مقاومت ضربهی ضعیفی دارند و در برابر حلالها و رطوبت آسیبپذیرند. • چسبهای بیهوازی با فقدان اکسیژن پخت میشوند. بر پایهی بسپارهای پلی-استر اکریلیک هستند و با گرانرویهایی از مایعات رقیق تا خمیرهای تیکسوتروپ و گرانرو قابل دسترس اند. • چسبهای ذوبی (hot-melt) در حدود 80% استحکام پیوندی را در همان ثانیههای اول به دست میآورند و مواد نفوذپذیر و نفوذناپذیر را میتوانند بچسبانند. آنها معمولاً نیازی به آمادهسازی سطحی دقیقی ندارند. این چسبها به رطوبت و بسیاری از حلالها غیرحساسند اما در دماهای زیاد نرم میشوند. • چسبهای متاکریلات تعادلی بین کشش پذیری زیاد، استحکام برشی و استحکام در برابر پوسته شدن به علاوهی مقاومت در برابر ضربه، فشار و تصادف ناگهانی در طیف دمایی گسترده ایجاد میکنند. این مواد فعال دوجزیی بدون آماده سازی سطح در پلاستیکها، فلزات و چندسازهها میتوانند استفاده شوند. آنها در برابر آب و حلالها مقاومت میکنند تا یک پیوند نفوذناپذیر ایجاد شود. • چسبهای پلی یورتان نوعاً دوجزیی هستند و به ویژگیهای انعطاف پذیری و چقرمگی حتی در دماهای کم معروفند. آنها مقاوت برشی خوب و همچنین مقاومت عالی در برابر آب و رطوبت هوا دارند، اگرچه یورتانهای پخت نشده در برابر رطوبت و دما حساسند. واژههای اختصاصی چسب Adhesive چسباندن Bonding اتصال دادن – پیوند دادن Jointing جوش دادن – جوشکاری Welding چسب بر پایهی سیانو اکریلات Cyanoacrylate-based adhesive مونتاژ فراصوتی Ultrasonic assembly جوشکاری ارتعاشی Vibration welding جوشکاری خطی Linear welding جوشکاری مالشی خطی Linear friction welding جوشکاری چرخشی Spin welding ارتعاش زاویهای Angular vibration جوشکاری دورانی Orbital welding جوشکاری لیزری Laser welding جوشکاری مقاومتی و القایی Resistance and induction welding تولیدکنندهی تجهیزات اصلی Orginal Equipment Manufacturer (OEM) عوامل چسبانندهی ویژه Specialty Bonding Agents (SBAs) سامانههای توزیعِ سنجش-اختلاط Meter-mix dispensing system چسبهای ساختاری Structural adhesives برگردان: مهندس احسان قنادیان
- 28 پاسخ
-
- 3
-
- astm
- فوتوکرومیک
-
(و 80 مورد دیگر)
برچسب زده شده با :
- astm
- فوتوکرومیک
- فتوکرومیک
- فرآیند بازیافت
- قالبگیری
- قالبگیری پلاستیک
- قطعات پلاستیکی
- قطعات خودرو
- لاستیک
- لاستیک،پلاستیک
- مقدمه ای بر پردازش پلاستیک
- مونومر زیستی
- نفوذ پیذیری
- نفوذ پذیری پلاستیک ها
- نانو
- نانو فناوری
- نانو کامپوزیت
- نانو پلیمر
- چسب
- ویژگی های لاستیک
- کامپوزیت
- کامپوزیت پلیمری
- کاربرد پلیمر
- کاربرد پلاستیک
- گرمانرم
- گرماسخت
- پلیمر
- پلیمر دوست دار محیط زیست
- پلیمر زیستی
- پلیمرهای تخریب پذیر
- پلیمرهای دوستدار محیط زیست
- پلیمرهای زیست تخریب پذیر
- پلیمر، پوست پرتقال، دی اکسید کربن
- پلاستیک
- پلاستیک زیست تخریب پذیر
- پلاستیک زیستی
- پلاستیک، زیستی
- پروسه تزریق پلاستیک
- آینده
- آزمون پلیمرها
- آزمون پلاستیک
- آزمون، پلاستیک، خواص
- آزمایش پلاستیک
- الاستومر
- انواع لاستیک
- اندازه گیری نفوذ پذیری
- اکسازیست
- اتصال
- اسپیروپیران
- اصطکاک
- اصطکاک لاستیک
- بیو پلیمر
- بیوپلیمر
- بازیافت
- بازیافت لاستیک
- بازیافت پلیمر
- بازیافت پلاستیک
- بزرگان پلیمر
- بسپار
- تاریخچه پلیمر
- ترمو پلاست
- ترموپلاستیک
- ترموپلاستیک الاستومر
- تزریق پلاستیک
- تغییر رنگ لاستیک
- تغییر رنگ پلیمر
- تغییر رنگ پلاستیک
- تغییر شکل
- تغییر شکل پلیمر
- تغییر شکل پلاستیک
- تغییر شکل الاستیک
- جوش
- جوش پلیمری
- خواص لاستیک
- خواص پلیمرها
- خواص پلاستیک ها
- خواص الاستیکی
- خودرو
- ذرات نانو
- زیست تخریب پذیر
- ضريب اصطکاک لاستيک
- غشا
-
فناورينانو واژهاي است كلي كه به تمام فناوريهاي پيشرفته در عرصه كار با مقياس نانو اطلاق ميشود. معمولاً منظور از مقياس نانو، ابعادي در حدود 1nm تا 100nm ميباشد. (یک نانومتر يک ميليارديم متر است). اولين جرقه فناوري نانو (البته در آن زمان هنوز به اين نام شناخته نشده بود) در سال 1959 زده شد. در اين سال ريچارد فاينمن طي يك سخنراني با عنوان"فضاي زيادي در سطوح پايين وجود دارد" ايده فناوري نانو را مطرح ساخت. وي اين نظريه را ارایه داد كه در آيندهاي نزديك ميتوانيم مولكولها و اتمها را به صورت مسقيم دستكاري كنيم. واژه فناوري نانو اولين بار توسط نوريوتاينگوچي استاد دانشگاه علوم توكيو در سال 1974 بر زبانها جاري شد. او اين واژه را براي توصيف ساخت مواد دقيقي كه تلورانس ابعادي آنها در حد نانومتر ميباشد، به كار برد. در سال 1986 اين واژه توسط كي اريك دركسلر در کتابي تحت عنوان: "موتور آفرينش: آغاز دوران فناورينانو" بازآفريني و تعريف مجدد شد. کاربرد فناوري نانو از کاربرد عناصر پايه نشأت ميگيرد. هر کدام از اين عناصر پايه، ويژگيهاي خاصي دارند که استفاده از آنها در زمينههاي مختلف، موجب ايجاد خواص جالبي ميگردد. فن آوری نانو امروزه در صنایع مختلف از جمله پلیمر خصوصا در حوزه ی کامپوزیت ها باعث ارتقای خواصی همچون سبک تر، محکم تر، یا خواصی نظیر هدایت الکتریکی، مقاومت بالا در برابر مواد شیمیایی و حرارت و همچنین امکان بهبود بازیافت یا افزایش مقاومت در برابر عبور گازها شده است. در نتیجه بیشتر صنایع مانند خودرو سازی و هوانوردی را تحت تاثیر قرار داده است. اما گزارش ها و اخبار در ارتباط با سرمایه گذاری و حجم مبادلات پولی در حوزه فن آوری نانو از چه چیزی حکایت می کنند. به گفته تيم هارپر، مدير عامل شرکت مشاورهاي ساينتيفيکا، طي 11 سال گذشته، دولتهاي مختلف جهان، بيش از 5/67 ميليارد دلار در زمينه فناورينانو سرمايهگذاري کردهاند. با احتساب سرمايهگذاريهاي شرکتي و ساير انواع تامين مالي خصوصي، تا سال 2015 ميلادي، حدود 250 ميليارد دلار در حوزه فناورينانو سرمايهگذاري خواهد شد. شاخص شرکت ساينتيفيکا نشان ميدهد که کشورهاي ايالات متحده آمريکا، آلمان، تايوان و ژاپن با داشتن ترکيبي از دانشگاههاي برتر، شرکتهاي فناوري، نيروي کار ماهر و وجود سرمايه براي تضمين انتقال اثربخش فناوري، در زمينه بهرهبرداري از فناوريهاي نوظهور، پيشتاز هستند. شرکت Research and Markets نیز گزارش جديدي با عنوان "بازار نانومواد در ايالات متحده آمريکا" منتشر کرده است. بر اساس گزارش فوق، فناورينانو بسياري از صنايع را تغيير داده و نانو مواد نيز به عنوان برگ برنده شرکتهاي فعال در زمينه مواد خاص و ساير محصولاتي که به نانومواد نيازمند هستند، مطرح است. ايالات متحده آمريکا در بخش بازار نانومواد پيشگام بوده و انتظار ميرود که تا سال 2018 ميلادي، نانوموادي نظير پليمرها، بخش اعظم حجم تقاضاي اين کشور را در اين حوزه به خود اختصاص دهد. همچنين برآورد ميشود که رشد سريع بخشهايي نظير داروسازي، ادوات ذخيره انرژي، نساجي، پلاستيک و افزودنيهاي لاستيک، رشد بازار بخش مواد پليمري و شيميايي نانومقياس را ارتقا دهد. با ترکيب سطوح سرمايهگذاري در زمينه فناورينانو، ايالات متحده آمريکا پيشگام است. اين در حالي است که کشورهاي چين و روسيه نيز به طور فزاينده مورد توجه سرمايهگذاران هستند. با این مقدمه، در گزارش این شماره بر آن شدیم تا در نشستی با حضور اساتید دانشگاهی، پژوهشگران این حوزه و شرکت های فعال در این زمینه به بحث وبررسی جایگاه فن آوری نانو در ایران در حوزه ی پلیمرها بپردازیم. دکتر گرمابی از دانشگاه امیر کبیر، دکتر باقری از شرکت پارسا پلیمر شریف (و دانشگاه صنعتی شریف)، دکتر رشیدی از پژوهشگاه صنعت نفت و مهندس کوچکی و مهندس کاظمی از ستاد فن آوری نانو، دعوت ما را برای حضور در نشست پذیرفتند. موردی که بیشتر از هر چیز دیگر در نشست به آن پرداخته شد، عدم ارتباط درست بین دانشگاه های کشور و صنعت بود، تحقیقاتی که هدف دار نیستند و صنعتی که تمایلی برای حمایت از طرحهای تحقیقاتی از خود نشان نمی دهد. به گفته آقای دکتر باقری صنعت کشور ما برای رشد و درآمد زایی نیازی برای به روز کردن خود نمی بیند چراکه راههای بسیار زیادی دیگری به غیر از علم برای ثروتمند شدن از راه صنعت در ایران وجود دارد. در ابتدای جلسه لازم بود که به جایگاه فن آوری نانو در حوزه ی پلیمرها در ایران پرداخته شود. باقری: حوزه ی فن آوری نانو بسیار وسیع و گسترده است و محدود به صنعت پلاستیک نیست اما از آنجا که حوزه ی عملکردی مواد پلیمری بسیار بزرگ است، عملا تکنولوژی های زیادی را درگیر خود کرده است. به همین دلیل کسانی که در حوزه ی پلیمر فعال هستند از خود علاقه نشان می دهند که به مباحث آن ورود پیدا کنند. البته همین گستردگی مباحث مانع از این می شود که بتوان تعریف مشخصی از جایگاه نانو در صنعت پلیمر ارایه کرد، لذا تنها در این اندک زمان می توان جایگاه فن آوری نانو در پلیمرها را فقط در ایران بررسی کرد. رشیدی: در پژوهشگاه صنعت نفت روی دو مبحث در حوزه ی فن آوری نانو در حوزه ی پلیمرها کار شده است. اول: نانو در صنایع پتروشیمی و دوم: نانو کامپوزیت ها. در پنج سال گذشته موفق شده ایم، درخت فن آوری نانو را در صنعت کامپوزیت به وجود بیاوریم. در حقیقت درخت فن آوری کمک می کند کامپوزیت را بر اساس فرآیند و کاربرد تقسیم بندی کنیم. در پنج سال گذشته تمرکز ما نیز در نانو کامپوزیت ها از جمله پلی پروپیلن و رزین اپوکسی برای بهبود خواص بوده است و البته به نتایج خوبی هم رسیده ایم. همچنین پروژه های دیگری از جمله رنگ پذیری سپر خودرو و بسته های مواد غذایی نانو سیلور را کار کرده ایم. بسپار- آیا این پروژه ها در بخش صنعت کاربردی شده و قابل استفاده بوده است؟ رشیدی: بله بحث پلی پروپیلن و رزین های اپوکسی و نانو کلی و ... در حد پایلوت بوده است و بحث دیگری که داشته ایم پلیمرهای نانو ساختار است که عمدتا در صنعت نفت کاربرد دارد. در مبحث پوشش های پایه آب و حلال هم در حد پایلوت کار کرده ایم. بسپار- در بخش پوشش های صنعتی یا ساختمانی؟ رشیدی: بیشتر در بخش صنعتی. در بخش ساختمان در زمینه ی عایق های رطوبتی و حرارتی تازه ورود پیدا کرده ایم. باقری: روند جهانی نشان داده است کسانی که تحقیقات علمی در این زمینه انجام داده اند در کوتاه مدت در نانو کامپوزیتها زودتر به نتیجه رسیده اند. در بخش کامپوزیت اصلی ترین موضوع کاهش وزن است لذا در صنعت ساختمان و حمل نقل استفاده از آن دارای اهمیت است. بد نیست این جمله را هم اضافه کنم که ارزیابی ها در سطح جهانی در بخش نانو کامپوزیت ها نشان داده است، به طور خاص پلی پروپیلن به عنوان اصلی ترین پلیمری که می تواند بستر پلیمرهای نانو متری باشد مطرح است و بعد هم مواد دیگری مثل پلی اتیلن، اپوکسی، پلی آمید در رده های بعدی هستند. اما کاربرد نانو کامپوزیت ها همانطور که گفتم در صنعت ساختمان، حمل ونقل (و سپس خودرو سازی) اهمیت پیدا می کند. از دیدگاه خودرو ساز اگر بخواهیم جایگاه نانو را در نظر بگیریم، مسایل کیفی و کارایی مطرح است و به موازات آن بحث قیمت. لذا در دنیا خودرو سازان در تلاش هستند طراحی های جدید به کار بگیرند تا از تغییر خواصی که در مواد به وجود آمده است بهترین استفاده را ببرند؛ در حالی که در ایران به طراحی کمترین اهمیت داده می شود و علی رغم اینکه با تغییر خواص در مواد خصوصیات بهتری گرفته می شود ولی به دلیل گران در آمدن قطعه، خودرو سازان ایرانی تمایل چندانی برای حضور در نانو کامپوزیتها از خود نشان نداده اند. گرمابی: باید بر این باور بود که جهان اول چند سالی است وارد بحث نانو کامپوزیتهای به اصطلاح هوشمند شده است که در موارد مختلف از جمله علم الکترونیک، پزشکی حتی در صنعت ساختمان که ممکن است کمتر به نظر آید پیشرفتهای قابل توجهی بدست آورده است. محققین ایرانی هم با کمی تاخیر در این مسیر قرار گرفته اند و کارهای تحقیقاتی پایه ای خوبی هم انجام داده اند و با این روند می توان انتظار داشت با یک فاصله زمانی با جهان اول کاربردهای جدیدی در زمینه های نوین پیش روی محققین کشور بخصوص در علم پزشکی باز شود. تجارتی که 5 تا 10 میلیارد دلار گردش مالی دارد و تا کنون هیچ سهمی از این تجارت در اختیار ایران قرار نگرفته است. در کل باید معتقد بود به دلیل محدودیتی که در صنعت ما وجود دارد خیلی از تحقیقات علمی کاربردی نمی شوند. به طور مثال یکی از اولین مشتری های نانو کامپوزیتها باید خودرو سازان باشند ولی تا کنون بستر استفاده از آن در ایران فراهم نشده است. بسپار- به نظر می رسد در ایران خیلی از فعالیتهایی که در زمینه نانو انجام شده است، خروجی چندانی نداشته اند. فکر می کنید دلیل این موضوع صرفا نوپا بودن این تکنولوژی است یا دلیل دیگری دارد؟ کوچکی: بله همانطور که فرمودید شرکتهایی که محصول تولید کرده باشند در ایران کم هستند و دلیل آن را می توان در 1- عدم شناخت کافی شرکت های دانش بنیان برای ورود به بازار برای تولید انبوه دانست. 2- عدم سیاستی مدون در به ثمر رساندن یک فن آوری. به طور مثال برای اینکه یک قطعه در صنعت خودرو سازی به کار گرفته شود نیاز به پاس کردن استانداردهای گوناگون دارد که خود این مساله مدت زمان زیادی طول می کشد. مواردی از این قبیل پژوهشگر را از صنعتی کردن پروژه ی تحقیقاتی که دارد باز می دارد. بسپار- به نظر می رسد اشکال این سیستم این است که در حقیقت مراکز تحقیقاتی پروژه های خود را به بخش صنعت دیکته می کنند، شاید اگر مسیر برعکس شود و مصرف کننده نیاز خود را در آن تکنولوژی ببیند، مسیر کوتاه تر و موثرتر شود. کوچکی: حدود 8 تا 9 شرکت هستند که روی آمیزه های خودرویی می توانند مدعی شوند دارای یک محصول هستند. 4 الی 5 شرکت هستند که می توانند مدعی شوند بسته بندی نفوذ ناپذیر مثلا فلان محصول غذایی را دارند و چند شرکت هم در زمینه تولید آمیزه های مختلف کار کرده اند که سرجمع می شوند 20 شرکت. بسپار- قاعدتا این شرکتها کمک های مالی از ستاد دریافت کرده اند. آیا توانایی این را دارند که از لحاظ مالی مستقل شوند؟ کوچکی: اجازه بدهید قبل از پاسخ به این سووال در این باره توضیح بدهم که ستاد نانو از سال 84،85 سعی کرده است در بخش کامپوزیت طوری آن را حمایت کند تا بتواند آن را به صنعت برساند. راهکار این مساله به عنوان ساده ترین راه این است که شرکت هایی که در قالب دانش بنیان می باشند از آنها حمایت شود به طور مثال شرکتهایی که در مراکز رشد مستقر می شوند یک حمایت اولیه برای رسیدن به یک فرمولاسیون مناسب در حالت آزمایشگاهی دریافت می کنند. در مراحل بعد حمایت از استانداردها و تستها است و نهایتا چنانچه این طرح بخواهد توسعه پیدا کند، حمایت از آن شرکت در قالب وام یا تسهیلاتی که ممکن است قرض الحسنه باشد انجام می شود. منتهای مراتب نکته ای را که باید مد نظر داشت ادغام این مراحل و بر طرف کردن مشکلات است، نظیر گرفتن تاییدیه ها یا راضی کردن شرکتی که تقاضای محصول مورد نظر را دارد، باعث می شود کارها به کندی پیش برود، در کل سبد حمایتی ستاد طوری برنامه ریزی شده است که بتوانیم دانش فنی را که ایجاد شده است توسعه دهیم. رشیدی: مشکلی که از طرف صنعت وجود دارد مثلا در صنعت خودروسازی این است که اصلا در خواستی برای طرحهای جدید وجود ندارد و حقیقتا هم خیلی از آنها با این علم آشنایی ندارند و مساله ی بعدی هم قیمت است که اگر مقداری گران تر باشد به هیچ وجه حاضر نیستند آن را در صنعت اجرا کنند. گرمابی: به اعتقاد من دو مشکل عمده در صنعت ما وجود دارد: 1- علی رغم اینکه مراکز دانشگاهی ما در تولید علم موفق بوده اند اما در تبدیل این علم به صنعت ناموفق بوده اند. به طور مثال مقاله ای در ارتباط با مقایسه ی ایران و کره جنوبی منتشر شده بود که در 30 سال گذشته از لحاظ تولید علم کمی عقب تر بودیم شاید 30 تا 40 درصد ولی از لحاظ سطح تکنولوژی تقریبا برابر بودیم ولی بعد از گذشت 30 سال از لحاظ علمی باز می توان مقایسه ای بین خودمان و کره جنوبی داشته باشیم در حالی که از لحاظ سطح تکنولوژی اختلاف آنقدر فاحش است که بهتر است چیزی نگوییم! در واقع این مشکل به ما می گوید که بین مراکز دانشگاهی و صنعت یک حلقه ی مفقوده وجود دارد که لازم است هرکس به نوبه ی خود در جایگاهی که هست در رفع آن بکوشد. دوستان صنعت گر ما هم باید بدانند برای اینکه یک دانش فنی به نتیجه برسد باید صبر و حوصله داشته باشند و با پروژه های کوتاه مدت نمی توان به نتیجه رسید. بسپار- به نظر شما راهکار این مشکل چیست؟ آیا صرفا به سیاست گزاری های دانشگاه و صنعت مربوط می شود؟ گرمابی: مواردی را که گفتید هر کدام می توانند نقش داشته باشند. البته در این بین حمایتهایی از دانشگاه و صنعت مثلا در قالب ستاد فن آوری نانو انجام شده است ولی کافی نبوده است. نکته ایی را که باید به آن اشاره کنم به روز نبودن صنایع و نداشتن واحد تحقیق و توسعه است که باعث عقب ماندگی صنعت ما شده است. در حقیقت عدم احساس نیاز برای به روز شدن از معضلات عمده در صنعت ما است. به طور مثال واردات خودرو با تعرفه 100 درصد هنوز می تواند با خودروساز داخلی رقابت کند! چرا که هنوز خیلی از استانداردهای جهانی خودرو سازی در کشور اجباری نشده است و از طرف دیگر هم خودرو ساز تا وقتی که الزامی وجود نداشته باشد آن را اجرا نمی کند. رشیدی: متاسفانه تولید علم در کشور هدفمند نیست و بسیاری از اساتید ما فقط تولید مقاله دارند که اصلا کاربردی در صنعت ندارد. از طرف دیگر شرکت های توسعه دهنده که بتوانند علم را به ثروت تبدیل کنند وجود ندارند. باقری: اگر در حوزه ی پلیمر خودمان را با بعضی از کشورها همانند ترکیه مقایسه کنیم، خواهیم دید که هم از نظر تولید علم و هم از نظر تولید مواد اولیه از ترکیه جلوتر هستیم ولی از آن طرف محصولات پلیمری به مقدار زیاد از ترکیه به ایران صادر می شوند. ما باید به مشکلات ریشه ایی نگاه کنیم. به اعتقاد من هم دانشگاههای ما مشکل دارند و هم صنعت ما. همانطور که اشاره شد تحقیقات در دانشگاهها جهت دار نیست و این معضل بر می گردد به عدم حمایت مشخص و منسجم از محققین کشور. در نتیجه پژوهشگران به شکل بسیار زیادی پراکنده کار می کنند. همچنین پویایی و زنده بودن صنعت وابسته به روز شدن علم است منتها در کشور ما صنعت گر رشد خود را در راهی جز به روز شدن علم می داند! چرا که هزاران راه به غیر از به کار گیری علم برای او وجود دارد تا کسب ثروت کند. در نتیجه اگر فرد دانشگاهی بخواهد تحقیقاتش خاک نخورد مستلزم آن است که خودش آن را به ثمر برساند. بسپار- با توجه به اینکه شما در قالب شرکت هم کار می کنید آیا از نتیجه ی دستاوردهای خود در شرکت تجاری راضی هستید؟ لطفا چند نمونه از کارهای که انجام داده اید هم ذکر کنید. باقری: در مجموع راضی هستم و فکر می کنم اگر صنعت ما در جای خودش باشد و فعالیتهای دانشگاهی هم جهت دار باشند فعالیتهای بسیار بزرگی به انجام برسد. ما دو محصول نانویی داریم که با گرید تجاری پارسا نانو تولید می شوند. شروع کار ما هم ابتدا در قالب یک پروژه ی دانشگاهی بود که آن را به شکل نیمه صنعتی در آوردیم و البته شرکتی، متقاضی آن بود و ستاد هم در ابتدای کار از ما حمایت کرد. کاظمی: همانطور که از قبل هم گفته شد، بین دانشگاه و صنعت اختلاف زیادی وجود دارد و این مساله بر می گردد به عدم طراحی مکانیزم درست در پیوند دانشگاه و صنعت. به طور مثال زمانی که محققی طرح تحقیقاتی خود را ارایه می کند، مکانیزمی که به او معرفی می شود، حمایت مرکز رشد است، در مرحله بعد تشکیل شرکت، تولید نیمه صنعتی و نهایت محصولی که بتوان در بازار فروخت. به علت اینکه اکثر افرادی که وارد این حوزه وارد می شوند به دلیل عدم آشنایی با سازگار بازار و مشکلاتی نظیر گرفتن استاندارد و غیره باعث می شود که از ادامه ی کار باز بمانند. این در حالی است که اگر مکانیزم عکس این قضیه بود و دولت تلاش داشت که شرکتهای بزرگ و صاحب نام را متقاضی فن آوریهای نوین کند مطمئنا وضعیت صنعت هم بهتر می شد. در حال حاضر در ستاد 30 تا 40 شرکت ادعای داشتن محصول نانویی را دارند که از این بین وقتی به پایان سال می رسیم به کمتر از 10 شرکت می رسند چرا که نمی توانند مستندات کاری خود را ارایه دهند. بسپار-حمایتهایی که از جانب ستاد صورت می گیرد تا به چه اندازه در کارهای منتج به نتیجه موثر بوده است؟ کوچکی: ستاد نانو با شروع کارش در حوزه ی نانو کامپوزیت ها آن را به سه دسته تقسیم کرد 1- شرکت های تولید کننده مواد اولیه 2- شرکت های واسطه ای 3- شرکت های قطعه ساز. در همان ابتدا پروژه هایی که در سطح دانشگاههای کشور به انجام رسیده بود را مورد مطالعه قرار دادیم و به قولی شناسنامه ای را تنظیم کردیم که بتوانیم با دست باز به سراغ صنعت برویم، از طرف دیگر با 800 شرکت ارتباط بر قرار کردیم که خیلی از آنها در استفاده از فن آوری نانو از خود تمایل نشان دادند. در این بین یکسری پروژه هم انجام شد، به طور مثال شرکت نفت متقاضی کامپاندی بود که تغییر رنگ کمتری داشته باشد و ستاد نیز تک تک این پروژه ها را مورد حمایت قرار داد و اتفاقا به نتایج خیلی خوبی هم رسید و زمان آن رسیده بود که حالت فعال تری به خود بگیرد و وارد حوزه هایی همچون خودروسازی به عنوان اولویت اول در استفاده از نانو کامپوزیت و در دیگر صنایع همچون بسته بندی، لوازم خانگی، نساجی و ... شود. در حال حاضر صنعت خودروسازی مدعی است که صنعت نانو را باید در قطعات خود به کارگیرد ما هم برای اینکه بتوانیم این روند را تسریع کنیم برنامه ای داریم که تیمی را مامور این کار کنیم تا هم صنعت خودرو را بشناسد و هم فن آوری نانو را. در صنعت بسته بندی هم بحث نفوذ ناپذیری و آنتی باکتریال بودن مطرح است و اجبار زیادی وارد کرده ایم که حتما این مهم به سرانجام مطلوب برسد. بسپار- در دو هفته ی گذشته تلاش زیادی را انجام دادیم تا شرکت هایی را که در زمینه فن آوری نانو کار می کنند، برای شرکت در نشست دعوت کنیم اما موفق به پیدا کردن آنها نشدیم یا از آنها چیزی جز یک نام بر روی سایت ستاد وجود نداشت. کارشناسان ستاد هم در این ارتباط اصلا همکاری نکردند. کوچکی: شاید شما را به درستی راهنمایی نکرده باشند. فرمایش آقای دکتر گرمابی در ارتباط با اینکه ستاد به تنهایی نمی تواند حمایتهای کافی از صنعت به جا آورد را تایید می کنم؛ چرا که توانایی هر سازمانی بنا به بودجه ای که برای آن در نظر می گیرند پی ریزی می شود و ستاد به تنهایی نمی تواند جوابگوی تمام نیازها باشد. بسپار- در طول سالهای فعالیت ستاد تا به حال چند شرکت را موفق شده اید به حدی برسانید که روی پای خود بایستند؟ کوچکی: در کل ما در کریدور 20 شرکت داریم که در بخش های تولیدی، خدماتی و بازرگانی فعالیت می کنند. بسپار- این تعداد در بخش کامپوزیت های پلیمری فعال هستند؟ کوچکی: بله از این تعداد، حدود 6 تا 7 شرکت در حوزه ی خودرو فعالیت دارند. در بحث بسته بندی مواد غذای هم شرکت هایی هستند که بر روی نفوذ ناپذیری اکسیژن کار می کنند و همچنین چند شرکت که در زمینه ی پزشکی فعال هستند. گرمابی: فکر می کنم برداشت آقای کوچکی اینطور بود که من با دید مثبت به قضیه در ارتباط با حمایتهای ستاد نگاه نکرده ام. در صورتی که ستاد نشان داده است که حمایت های موثری در پروژه های مختلف داشته است و به این موضوع معتقدم تا وقتی که حمایت و هزینه ی لازم و صبر در انجام پروژه ها وجود داشته باشد بطور حتم به نتیجه می رسد. به طور مثال حمایتهایی که ستاد در زمینه مقالات و پایان نامه ها نشان داده است تاثیر بسزایی در افزایش آنها داشته است؛ حال این حمایتها باید به مقدار بیشتر به سمت صنعت برود. بسپار- پس تاکید می کنید که حمایتهای ستاد باید به سمت صنعتی شدن برود. گرمابی: بله به طور حتم شرکتها نیاز بیشتر و مستمرتری به حمایت های ستاد دارند. به اعتقاد من با این حمایتها اگر از هر 10 محصول حتی یکی از آنها هم به نتیجه برسد باز هم کافی است. کوچکی: اجازه بدهید چند مورد را خلاصه به شما بگویم. ما برای اینکه علم به دانش فنی و نهایتا محصول تجاری برسد متمرکز روی سازمان هایی شده ایم که متولی انجام آن هستند. مثلا صنایع نوین. بطور مثال در مورد پایان نامه ها با حمایت های خوبی که انجام دادیم باعث ارتقای آن شدیم البته همان کار را هم در صنایع انجام داده ایم هر چند شاید سقف حمایتها آنقدر نباشد که در زمان مناسب به هدف مورد نظر برسند ولی وقتی که یک شرکت در کریدور ستاد فن آوری نانو قرار بگیرد و روی یک نمونه کارکند مبلغ کمک به آن 3 برابر پایان نامه ی معمولی است، بعد از آن شرکت 5 میلیون تومان در مرحله ی تست دریافت می کند و در مرحله ی استاندارد سازی نیز هزینه های آن به شرکت پرداخت می شود. در کل این شروع کار است و طبق برآوردی که دارم طی 1 تا 2 سال آینده چند مورد را در صنعت خودرو به تولید انبوه خواهیم رساند. بسپار- از سال گذشته چقدر ستاد در بخش مقالات و صنعت کمک کرده است؟ کوچکی: برای رقم های بالا، شرکتها را در قالب وام حمایت می کنیم و در صورت عدم توانایی ستاد از حامیان خود کمک می گیرد، مثل صندوق ها که بازوی اجرایی ستاد هستند، ولی مبلغ دقیق را نمی توانم بگویم. گرمابی: لازم می دانم این مساله را هم متذکر شوم که در ارتباط با مالکیت معنوی قوانین و ساز و کار درستی در کشور وجود ندارد و لازم است برای حمایت از دانش فنی نهاد یا ارگانی باشد که متولی این امر بشود. در این صورت تحقیقات هم هدف دار تر خواهند شد. کاظمی: ما در کریدور 16 تا ایستگاه داریم و خدماتی که فرمودید از ایده تا بازار را ارایه می دهد. گرمابی: البته من مشکل را خیلی کلی عرض کردم. رشیدی: در صنعت نفت هم سازوکاری برای ثبت اختراع وجود دارد و اگر اختراعی به فروش برسد 10 در صد آن برای محقق در نظر گرفته می شود. گرمابی: امیدوارم این موارد برای کل کشور به کار گرفته شود. [Hidden Content]
-
- نانو
- نانو فناوری
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
مقاله استخراج نانولیفچه و میکرولیفچه از فیلمهای آمیخته نایلون۶- پلیپروپیلن پیوندی با مالئیک انیدرید- پلی
The Idealist پاسخی ارسال کرد برای یک موضوع در کتب و مقالات و جزوات درسی
استخراج نانولیفچه و میکرولیفچه از فیلمهای آمیخته نایلون۶- پلیپروپیلن پیوندی با مالئیک انیدرید- پلیپروپیلن مؤلف/مؤلفان: محمد حقیقت کیش, ; احسان باغبان کوچک, ; الهام فلاحی, ;-
- 2
-
- میکرولیفچه
- نانو
-
(و 9 مورد دیگر)
برچسب زده شده با :
-
مقاله آيا بيونانوتكنولوژي با نانوبيوتكنولوژي متفاوت است؟
*mishi* پاسخی ارسال کرد برای یک موضوع در کتب و مقالات و جزوات درسی
مقدمه با پيشرفت علم و تکنولوژي در جهان، مرتباّ بر تعداد واژههاي تخصصي افزوده ميشود. در اين ميان، گسترش علوم و تکنولوژي نانو و تعامل آن با بيوتکنولوژي، منجر به توليد و کاربرد واژههايي چون بيونانوتکنولوژي و نانوبيوتکنولوژي در گفتهها و نوشتههاي محققان مختلف در سطح جهان شده است. آشنايي محققان و سياستگذاران علمي کشور با اين واژهها، ميتواند آنها را در مطالعات و تصميمگيريها ياري کند. در اين مطلب، سعي شده است با استفاده از منابع اينترنتي، مقالات و کتب موجود و همچنين استفاده از نظرات برخي متخصصين امر، تعاريف سادهاي از دو واژة بيونانوتکنولوژي و نانوبيوتکنولوژي ارايه شود. مفهوم و زمينة کاربرد بيونانوتکنولوژي تلفيق بيوتکنولوژي با فناوري نوظهور نانوتکنولوژي، مباحث جديدي را بين محققان، هم در سطح دانشگاهي و هم در حوزه صنعت به وجود آورده است. نتيجة اين تلفيق، ظهور " بيونانوتکنولوژي " بهعنوان يک زمينة تحقيقاتي بينرشتهاي است که به سرعت در حال رشد و توسعه است و با مقوله علم و مهندسي در سطح مولکول ارتباط دارد. برخي از صاحب نظران، بيونانوتکنولوژي را بهعنوان زيرمجموعهاي از نانوتکنولوژي، به اين صورت تعريف کردهاند: " مطالعه و ايجاد ارتباط بين بيولوژي مولکولي ساختاري و نانوتکنولوژي مولکولي ". برخي ديگر، آن را بهعنوان زير مجموعهاي از بيوتکنولوژي بدين شکل تعريف کردهاند: " بهکارگيري پتانسيل بالقوة بيولوژي در ساخت و سازماندهي ساختارهاي پيچيده با استفاده از مواد ساده و با دقت در حد اتم ". در اين زمينه، تنها تفاوتي که بين بيونانوتکنولوژي و بيوتکنولوژي وجود دارد اين است که طراحي و ساخت در مقياس نانو جزء لاينفک پروژههاي بيونانوتکنولوژي است در حاليکه در پروژههاي بيوتکنولوژي، نيازي به فهم و طراحي در حد نانو نيست. چنانکه ملاحظه ميگردد، برخلاف تعريف " بيوتکنولوژي" که به معني فناوري استفاده از موجودات زنده و اجزاي موجودات زنده در راستاي نيازهاي صنايع مختلف است و همچنين برخلاف تعاريف واژههايي چون "بيومتريال" و "بيومکانيک" که معمولا بهمعني استفاده از قابليتهاي فناوريهاي "مواد" و يا "مکانيک" در کاربردهاي زيستي است، در تعريف بيونانوتکنولوژي، هم کاربرد ابزارهاي بيولوژيکي بهعنوان سازماندهنده و ماده اوليه جهت ساخت محصولات و مواد نانويي، مورد توجه است و هم کاربرد محصولات توليدي تکنولوژي نانو، جهت مطالعة وقايع درون سلولهاي زنده و تشخيص و معالجة بيماريها. آنچه مسلم است ظهور اين زمينة تحقيقاتي، حاصل تغيير عقيدة بسياري از محققان در استفاده از راهکارهاي پايين به بالا ( Bottom-Up approach ) به جاي استفاده از راهکار بالا به پايين ( Top-Down approach ) جهت ساخت وسايل و مواد بسيار ريز است. در راهکارهاي بالا به پايين نانوتکنولوژي، سعي بر اين است که وسايل موجود مرتبا کوچکتر شوند؛ به اين راهکار، نانوتکنولوژي مکانيکي نيز گفته ميشود. اما در راهکار پايين به بالا، هدف ايجاد ساختارهاي ريز از طريق اتصال اتمها و مولکولها بهيکديگر است؛ در اين راهکار از الگوهاي بيولوژيکي بهره گيري ميشود. محصولات و زمينههاي فعاليت بيونانوتکنولوژي برخي از محصولات و زمينههاي فعاليت بيونانوتکنولوژي عبارتند از: 1- بيونانوماشينها مهمترين زمينة کاربرد بيونانوتکنولوژي، ساخت بيونانوماشينها (ماشينهاي مولکولي با ابعادي در حد نانومتر) است. در يک باکتري هزاران بيونانوماشين مختلف وجود دارد. نمونه آنها، ريبوزوم (دستگاه بسته بندي پروتئين) است که محصولات نانومتري (پروتئينها) را توليد ميکند. از خصوصيات خوب بيونانوماشينها (بهعنوان مثال حسگرهاي نوري يا آنتيباديها)، امکان هيبريدکردن آنها با وسايل سيليکوني با استفاده از فرآيند ميکروليتوگرافي است. به اين ترتيب با ايجاد پيوند بين دنياي نانويي بيونانوماشين و دنياي ماکروي کامپيوتر، امکان حسگري مستقيم و بررسي وقايع نانويي را ميتوان بهوجود آورد. نمونه کاربردي اين سيستم، ساخت شبکية مصنوعي با استفاده از پروتئين باکتريورودوپسين است. 2- مواد زيستي ( Biomaterial ) کاربرد ديگر بيونانوتکنولوژي، ساخت مواد زيستي مستحکم و زيست تخريبپذير است. از جملة اين مواد ميتوان به DNA و پروتئينها اشاره نمود. موارد کاربرد اين مواد، بهخصوص در زمينة پزشکي متعدد است. از جمله موارد کاربرد اين مواد، استفاده از آنها بهعنوان بلوکهاي سازنده نانومدارها و در نهايت ساخت وسايل نانويي ( Nano-Device ) است. همچنين به دليل خصوصيات مناسب اين مواد از آنها در ترميم ضايعات پوستي استفاده ميشود. 3- موتورهاي بيومولکولي موتورهاي بيومولکولي، موتورهاي محرکه سلول هستند که معمولا از دو يا چند پروتئين تشکيل شدهاند و انرژي شيميايي (عموماً به شکل ATP ) را به حرکت (مکانيکي) تبديل ميکنند. از جمله اين موتورها، ميتوان به پروتئين ميوزين (باعث حرکت فيلامنتها ميشود)، پروتئينهاي درگير در تعمير DNA يا ويرايش RNA (بهعنوان مثال، آنزيمهاي برشي) و ATPase اشاره کرد. از اين موتورها در ساخت نانوروباتها و شبکة هاديها و ترانزيستورهاي مولکولي (قابل استفاده در مدارهاي الکترونيکي) استفاده ميشود. از جمله زمينههاي ديگري که از بيونانوتکنولوژي استفاده ميشود، ميتوان به تکنولوژي دستکاري تک مولکول ( Single Molecule )، تکنولوژي Biochip و Drug Delivery ( ساخت نانوکپسول و نانوحفره)، تکنولوژي Microfluidics (بهعنوان مثال، ساخت lab on a chip )، BioNEMS (ساخت پمپها، حسگرها و اهرمهاي نانويي)، Nucleic Acid Bioengineering (ساخت نانوسيم DNA و يا کاربرد در همسانه سازي و ترانسفرميشن)، Nanobioprocessing (خودساماندهي، دستکاري سلولي و توليد فرآوردههاي زيستي)، حسگرهاي زيستي (ارزيابي ايمني غذا و محيط زيست) و Bioselective surface (مورد استفاده در تکنولوژيهاي جداسازي زيستي)، اشاره نمود. نانوبيوتکنولوژي و رابطة آن با بيونانوتکنولوژي اما نانوبيوتکنولوژي نيز واژه ديگري است که در سالهاي اخير، محققان و صاحبنظران در کتب، مقالات و کنفرانسها به کار ميبرند. طبق تعريف برخي از اين محققان، نانوبيوتکنولوژي، زيرمجموعهاي از نانوتکنولوژي است که در آن از ابزارها و فرآيندهاي نانويي و ميکروني براي ساخت و تهيه محصولاتي استفاده ميشود که در مطالعه سيستمهاي زنده استفاده ميشوند . برخي ديگر از محققان، نانوبيوتکنولوژي را زمينهاي از نانوتکنولوژي ميدانند که در آن از سيستمهاي بيولوژيکي موجود، همچون سلول، اجزاي سلولي، اسيدهاي نوکلئيک و پروتئينها براي ايجاد ساختارهاي نانويي تلفيقي (مرکب از مواد آلي و معدني) استفاده ميشود. اگر به مفهوم و هدف دو زيرشاخة نانوتکنولوژي يعني بيونانوتکنولوژي و نانوبيوتکنولوژي نگاه شود، ميتوان فهميد که اهداف هر دو شاخه (يعني توليد محصولاتي که جهت مطالعة سيستمهاي زنده به کار ميروند) و همچنين فرآيندها و مقياس فعاليت هر دو شاخه (يعني مقياسهاي در سطح نانو)، تقريبا يکسان است. بنابراين ميتوان اين دو شاخه را به صورت کلي با نام نانوبيوتکنولوژي ناميد. منتهي زماني که بهطور صرف، از الگوها و مواد زيستي جهت ساخت وسايل در ابعاد نانو استفاده ميشود، بهتر است پيشوند "بيو" مقدم بر پيشوند "نانو" بيايد. در اين حالت، کاربرد واژه بيونانوتکنولوژي تخصصيتر از واژه نانوبيوتکنولوژي خواهد بود. ميتوان بيونانوتکنولوژي را شکلي خاص از نانوبيوتکنولوژي دانست که مبناي آن، استفاده از موادزيستي (براي مثال پروتئينها يا DNA ) جهت ساخت وسايل نانويي است؛ اما در هنگام استعمال واژة نانوبيوتکنولوژي، استفاده از ابزارهاي نانويي در کاربردهاي بيولوژيک نيز مورد نظر خواهد بود. بار ديگر تأکيد ميشود که کاربرد هر کدام از اين دو واژه، تا حد زيادي سليقهاي است و به زمينة تخصصي محققان مختلف، بستگي دارد نتيجهگيري و چشمانداز از مجموع مباحث فوق نتيجه گرفته شد که " بيونانوتکنولوژي " يک حوزة نوين ناشي از تلفيق علوم زيستي و مهندسي در حوزة نانو است که افقهاي جديدي را در زمينة ساخت و توسعة سيستمهاي تلفيقي بهوجود آورده و محققان را اميدوار کردهاست که بتوانند از اين تلفيق، در ساخت نانوساختارهايي استفاده کنند که در آنها از مولکولهاي بيولوژيکي بهعنوان اجزاي سيستم مورد نظر استفاده شود؛ بهعنوان مثال، از استراتژي طراحي بيولوژيک (مثلاٌ، حالت زيپ مانند مولکول دورشتهاي DNA ) بتوانند در ساخت چارچوبهاي جداشدني و الگويي براي چينش ( Assembly ) پايين به بالاي (فرآيندي که طي آن، سازماندهي مولکولي، بدون دخالت نيروي خارجي صورت ميگيرد) مواد معمولتر، استفاده کنند. اين توانمندي نه تنها در حل مسائل مهمي در علوم زيستي چون کاوش و شناسايي دقيق ساختار موجودات زنده کاربرد خواهد داشت، بلکه ميتواند محققان را در رفع چالشهاي عمده مهندسي همچون نياز به تکنيکهاي نوين جهت سنتز مواد و دستکاري آنها ياري دهد و به اين ترتيب دنياي نانو را به دنياي ماکرو وصل کند. بهعبارت ديگر اين شاخة مهم علمي (يعني بيونانوتکنولوژي)، به زودي قابليت کاربرد در حوزههاي مختلف غيرزيستي و حوزههاي کاربردي ماکرو را خواهد داشت؛ کاربردهايي که هرچند در حوزه زيستي نيستند ولي الهام گرفته از فرآيندهاي زيستي ( Bio-inspired ) هستند. » منبع: شبكه تحليگران تكنولوژي ايران- 1 پاسخ
-
- 1
-
- نانو
- نانو فناوری
-
(و 5 مورد دیگر)
برچسب زده شده با :
-
فن آوری نانو یکی از بزرگترین و اصلی ترین فن آوریهای قرن 21 است. پیشوند نانو از کلمه یونانی Nanos به معنی کوتوله گرفته شده است. این فن آوری با مقیاسی سرو کار دارد که ده ها هزار بار کوچکتر از یک میلیمتر است. فناوری نانو به دنبال بررسی کردن، تولید کردن و به کارگیری ساختارهایی است که اندازه آنها کوچکتر از 100 نانومتر است. تاریخچه ی فن آوری نانو برمی گردد به ریچارد فاینمن، فیزیک دانی که به عنوان پدر فناوری نانو شناخته می شود. نظریات مهم وی در فیزیک کوانتم، وی را به دانشمند تاثیر گذار در قرن 20 تبدیل کرد تا جاییکه در سال 1965 جایزه نوبل علم فیزیک به این دانشمند داده شد. البته فاینمن هیچگاه از کلمه فناوری نانو استفاده نکرد و نوریو تانیگوچی ژاپنی دانشمندی بود که برای اولین بار در سال 1974 این کلمه را به کار برد. امروزه فن آوری نانو در تمامی حوزه های علم و فن آوری نفوذ کرده است و بسیاری معتقدند که در مقیاس نانو مرز بین رشته های مختلف از بین خواهد رفت. سومین جشواره بین المللی نانو در روز سوم آبان ماه در تهران افتتاح گردید. جشنواره ایی که تا هفتم آبان ادامه داشت. 207 مشارکت کننده در قالب 176 غرفه نمایشگاهی در فضایی به وسعت 15 هزار متر مربع که توسط ستاد فناوری نانو برگزار شده بود، حضور یافتند. دکتر سعید سرکار، دبیر ستاد فنآوری نانو در مراسم گشایش جشنواره، بخش "هنر و فناوری نانو" را، بخش جدید جشنواره امسال عنوان کرد و افزود: تلفیق این فناوری با هنر حائز اهمیت و جالب توجه است زیرا این فناوری میتواند برای حفظ آثارهنری وابنیه تاریخی مورداستفاده قرارگیرد. وی تصریح کرد: فراخوان جشنواره، از اردیبهشت ماه سال جاری آغاز شد و 300 اثر به ستاد ویژهی توسعهی فناوری نانو ارسال گردید که از این تعداد 93 اثر از قبیل داستان، نقاشی، انیمیشن، آثار حجمی و تصویرسازی هستند. دبیر ستاد ویژه توسعه فناوری نانو با اشاره به بخش کریدور خدمات فناوری تا بازار، اظهار کرد: بدون ارایه خدمات نمیتوان شاهد رسیدن یک فناوری تا بازار بود که در جشنواره امسال این بخش متشکل از 12 پایگاه خدماتی سعی دارد تا درصد به موفقیت رسیدن یک محصول تا بازار را افزایش دهد. سرکار افزود: در سومین جشنواره فناوری نانو بیش از 80 شرکت تولیدی حضور دارند که محصولات خود را ارایه میکنند که بسیاری از این محصولات در راهیابی به بازارهای جهانی نیز موفق بوده اند. وی افزود: همچنین درخواست 30 کارگاه تخصصی در سومین جشنواره فناوری نانو دریافت شد که از این تعداد، 13 نمونه مورد تایید قرار گرفته و برگزار میشود. در این جشنواره شرکت هایی که در زمینه پوشش و پلیمر فعالیت کرده بودند نیز دستاوردهای خود را به نمایش گذاشتند. از جمله در بخش خودرو، شرکت ساپکو وابسته به ایران خودرو و بهمن دیزل، کاربرد نانوکامپوزیت و پوشش های نانویی را در خودروی SOREN و مینی بوس نانویی به نمایش گذاشتند. دستاوردهای دیگر همانند لوله های عایق صدا، رنگهای عایقی، آنتی میکروبیال و غیره به نمایش گذاشته شد که با تنی چند از غرفه گذاران در زمینه پلیمر و پوشش مصاحبه هایی به عمل آمده که در ادامه خواهید خواند. (1) سعید محمدی یزدی، کارشناس ستاد فن آوری نانو و مسوول روابط عمومی نمایشگاه نانو در گفت گو با خبرنگار بسپار از فعالیت های ستاد فن آوری نانو در ارتقا و پیشبرد این تکنولوژی در کشور و نقش ستاد در این ارتباط می گوید: وظایف ستاد فن آوری نانو را می توان در ارایه راه کارهایی برای توسعه نانو در حوزه ی علوم و فن آوری و صنعت دانست. در بخش علوم و ارایه مقالات ISI ما توانسته ایم در رتبه ی 14 جهانی و در بخش صنعت در جایگاه دهم قرار بگیریم. بسپار- رتبه های اعلام شده از طرف چه ارگانهایی بوده است؟ محمدی یزدی: رتبه ی چهاردهم از طرف سازمانهای بین المللی ذی ربط، اما رتبه ی دهم را براساس مشاهدات خود از وضعیت بازار محصولات تجاری ارایه کرده ایم. بسپار-معیار شما برای این ارزیابی چه بوده است؟ محمدی یزدی: با توجه به رشدی که در حوزه ی پلیمر ها، نانو کامپوزیت و پوشش های نانویی و کاربرد آنها در صنعت خودرو صورت گرفته، همچنین در بخش کشاورزی و نساجی پیش رفت های قابل توجهی که انجام شده و طرح هایی که به مرحله ی صنعتی شدن رسیده اند، می توان این ادعا را داشت. بسپار- ستاد فن آوری نانو تا به حال چه خدماتی را در بخش حمایتی ارایه کرده است؟ محمدی یزدی: ستاد تا به حال تلاش های زیادی را برای جمع آوری گزارش های علمی و تحقیق انجام داده است. از جمله ارایه وام یک میلیون و دویست هزار تومانی برای دانشجویانی که پایان نامه کارشناسی ارشد خود را در ارتباط با فناوری نانو بنویسند و برای مقطع دکترا نیز این رقم افزایش پیدا می کند. برگزاری نمایشگاه نانو که ستاد متولی برگزاری آن است، از دیگر فعالیت های ماست. ارایه تسهیلات و حمایتها که به چند بخش تقسیم می شود. یکی حمایتها در بخش پایان نامه ها و مقالات که قبلا توضیح داده شد. دوم، حمایت از فن آوری که تا 80 در صد از مبلغ حق اختراع را ستاد پرداخت می کند. سوم، حمایتهای ترویجی مثل برگزاری سمینارها یا ارایه تسهیلات به مجلاتی که به این حوزه وارد شوند (بسپار- جالب است که علیرغم مکاتبات انجام شده و بخش عمده ای که به عینه این مجله تا کنون به مبحث نانو اختصاص داده است، تاکنون هیچ کمکی در این زمینه از سوی این ستاد در اختیار بسپار، قرار داده نشده است.) چهارم، حمایت از اشتغال، به طور مثال شرکتهایی که می خواهند روی تکنولوژی نانو کار کنند به آنها در ارایه گزارشات مشاوره و هزینه های ایجاد R&D کمک می شود. البته این را نیز باید گفت برای اینکه اشخاص حقیقی و حقوقی بتوانند از خدمات ستاد به طور کامل بهرمند شوند، در اولین قدم باید صحت ادعای آنها مبنی بر داشتن محصول نهایی مورد تایید قرار بگیرد. بعد از آن مرکزی داریم که گواهینامه هایی صادر می کند که می توانند از این خدمات بهرمند شوند. مثل خدمات بازاریابی، مشارکت حقوقی و سرمایه گذاری مشترک که در این ارتباط صندوق هایی وجود دارد مثل صندوق توسعه تکنولوژی یا صندوق توسعه ی فن آوری نوین که با ستاد کار می کنند و ستاد در این صندوق ها چند صد میلیون تومان سرمایه گزاری انجام داده و شرکت هایی که تاییدیه لازم را به دست بیاورند می توانند تا سقف 200 میلیون تومان وام بگیرند. حمایتهای تضمینی ستاد نیز می توانند تضمین خرید باشند. مثل ساخت دستگاه STM که ما به شرکت سازنده قول خرید داده ایم و آنها را به دانشگاه های کشور عرضه کردیم. بسپار- تا به حال چه پروژه های موفق و ملی در ارتباط با فناوری نانو انجام شده است؟ محمدی یزدی: از پروژه های موفق می توان به تولید لوله های نانو کربنی اشاره داشت که در پژوهشگاه نفت انجام شد. همچنین تولید لوله های پلیمری عایق صدا که توسط شرکت پارس پلیمر شریف ساخته شده و توسط شرکت لوله و اتصالات وحید به تولید انبوه رسیده است. دیگری تولید شیشه های Low E از شرکت کاوه فلوید است که به اروپا هم صارات داشته است. پیگیریهای ستاد در بخش صنعت خودرو، به صورت نمونه هایی که می توانید در غرفه های ایران خودرو و بهمن دیزل ببینید، قابل ارایه است. بسپار - دور نمای فن آوری نانو را در کشور چگونه می بینید؟ محمدی یزدی: دورنمای ما تا سال 1394 رتبه اول جهان اسلام بوده است که حتی 5 سال زودتر هم به آن رسیدیم ولی نباید تنها به این دستیابی البته مهم اکتفا کرد. زمانی که شرکت صادر کننده داشته باشیم در آن زمان می توان حرفی برای گفتن داشت چرا که رمز موفقیت و بقای یک شرکت در صادرات است. (2) صادقیان، کارشناس پلیمر از شرکت صنایع ریف ایران از کاربرد تکنولوژی نانو در رنگهای تولیدی این شرکت می گوید. شرکت ریف ایران تولید کننده انواع رنگهای ساختمانی پایه آب، رنگهای صنعتی و انواع رزینهای آکریلیک می باشد. ولی مهمترین تولید شرکت یاد شده چنانکه نماینده این مجموعه می گوید، رنگ و رزین های ترافیکی هستند: این رنگها که به نام ترموپلاست یا رنگهای سرد معروف شده اند، به دلیل کاربرد آسان و قیمت ارزان معمولا در سطح جهان استفاده می شوند ولی عمده مشکل آنها عمر 6 تا 9 ماه آنها می باشد که ما بدون اینکه ساختار شیمیایی آن را تغییر دهیم با استفاده از نانو ذرات موفق به ساخت رزین نانوکیلری شدیم که می تواند 2 تا 3 برابر طول عمر رنگهای ترافیکی را افزایش دهد. در حال حاضر این رزین به مرحله تولید صنعتی رسیده است و با قرادادی که یکسال ونیم پیش با شرکت عرف ایران بزرگترین پیمانکار شهرداری تهران بستیم، این نوع رنگ را به آنها عرضه می کنیم. صادقیان در ارتباط با واحد تحقیق و توسعه شرکت عنوان کرد: فرمولاسیون رنگهای ترافیکی به طور کامل در قسمت R&D شرکت به دست آمده است. البته از زمانی که "کفا" محصول ما را به عنوان محصول نانویی شناخت تسهیلات خاصی را اعطا کرد. هرچند که برای تولید این نوع رنگ 5 درصد به هزینه های ما افزوده شده ولی با توجه به افزایش طول عمر هزینه ی مازاد به طور کامل پوشش داده می شود. در ادامه صادقیان افزود: رتبه 14جهان در زمینه فناوری نانو در بخش صنعت، شاید حداقل در زمینه پوشش صدق نکند و به اعتقاد من در این راه گامهای اولیه را بر می داریم ولی به دلیل اینکه طرحهای رنگ و رزین به سرعت می توانند در فاز صنعتی شدن قرار بگیرند به راحتی می توان در آن پیشرفت کرد. ما نیز در نظر داریم با استفاده از نانو ذرات در بخش رنگهای خودرویی، رنگ ضد خش تولید کنیم و در بخش کامپوزیت ها مثل وینیل استر یا پلی استر غیر اشباع شانس این را داریم که نتیجه بهتری بگیریم. (3) علی بیگدلی، مدیر عامل شرکت پوشش صنعت در ارتباط با کاربرد نانو سیلیکا در رنگهای عایقی اظهار داشت: شرکت پوشش صنعت به عنوان یک شرکت بازرگانی، با عرضه رنگهای ضد عایق فعالیت خود را آغاز کرد ولی به دلیل هزینه سنگین واردات آن که متری 9 تا 10 هزار تومان هزینه در بر داشت، برای ما توجیه اقتصادی را از دست داد و در نتیجه تصمیم به تولید این رنگها در کشور گرفتیم. فرآید ساخت رنگهای عایقی که به عنوان یک فن آوری برای این شرکت محسوب می شود کاربرد نانو سیلیکا داخل رنگ است که 70 درصد از ضخامت را تشکیل می دهد. در واقع بعد از اینکه رنگ روی سطح اعمال می شود، پرزها و حفره های تونلی به وجود می آید که ساختار نانویی با ضخامت چند میکرون دارند که مانع از انتقال حرارت می شود. مواد به کاررفته در رنگهای عایقی به غیر از نانوسیلیکا که از شرکت سیلیکا کم آمریکا از طریق دبی تهیه می شود، همه ایرانی هستند. بیگدلی تاکید کرد: با تغییراتی که در فرمول رنگ و رزین ایجاد شده این رنگها با شرایط آب و هوایی ایران کاملا منطبق شده اند و می تو انند در ایران بازار خوبی پیدا کنند. در حال حاضر برای تولید رنگهای عایقی به صورت صنعتی وارد عمل نشده ایم و تنها با گرفتن سفارش تولید می کنیم. سفارش دهندگان ما نیز بیشتر مراکز دولتی هستند. در پایان بیگدلی در مورد طرح های توسعه شرکت عنوان کرد: در نظر داریم پوشش های ضد عایق، عایق های صنعتی با پوشش بالاتر رطوبتی، صدا و عایق های هوشمند را در برنامه ی کاری شرکت قرار دهیم. (4) کاوه ممی زاده، مدیر فروش شرکت پارسا پلیمر شریف در ارتباط با محصولات نانومتریک شرکت می گوید: شرکت به لحاظ داشتن واحد R&D قوی با سرپرستی دکتر باقری، دستاوردهای خوبی در خلق ایده های نو داشته است. از جمله کاربرد نانو در کامپوزیت که تحت عنوان پلی پروپیلن ضد خراش ثبت اختراع شده است، کاربرد بسیار زیادی در خودرو سازی مخصوصا در داشبورد دارد. این محصول تا به حال به شرکت مهرکام پارس ارایه شده است. در زمینه لوله واتصالات، نانو کامپوزیتهایی به نام Pipe Silent (لوله های بدون صدا) تولید شده اند که در لوله های ساختمانی به کار می روند. در حال حاضر پروژه ایی که در دست داریم مواد سدگر در برابر اکسیژن است که مراحل پایانی صنعتی شدن را طی می کند. سدگرهای در برابر اکسیژن، نوعی کامپوزیت برای افزایش ماندگاری محصول در داخل بسته بندی ها هستند و در واقع مانع نفوذ پذیری اکسیژن به داخل بسته بندی می شوند و تا 30 درصد ماندگاری محصول را افزایش می دهند. ممی زاده در بخشی دیگر از سخنان خود افزود: متاسفانه کاربرد نانو در بخش صنعت پیشرفت آنچنانی نداشته و بیشتر طرحها در حد نیمه صنعتی باقی مانده و فقط در زمینه ارایه مقالات علمی خیلی پیشرفت داشته ایم. این در حالی است که بهترین راه برای تغییر خواص ویژه در مواد و کابرد بهینه آن در صنعت، استفاده از تکنولوژی نانو می باشد و لازم است در این حوزه کار و سرمایه گذاری بیشتری شود. (5) آزاده زارع کلیشادی، مدیر عامل شرکت صنایع سلولزی پلیمری تاوایرانیان در مورد استفاده از فناوری نانو در محصولات این شرکت اظهار داشت: این شرکت تولید کننده ورق های پلی اتیلن، پلی پروپیلن آنتی باکتریال با تکنولوژی نانو سیلور نقره می باشد. ورق های آنتی باکتریال تولیدی در تولید بدنه داخل یخچال، ظروف نگهداری غذا های آماده، جعبه های تجهیزات پزشکی و خون با ضخامت حداکثر µ800 کابرد دارند. همچنین لوله های آنتی باکتریال در سایزهای mm40، 32، 25، 20 در سیستم لوله کشی مکان های عمومی همانند مدارس به کار می رود. کلیشادی هدف شرکت را در استفاده از فناوری نانو، کاهش مصرف منابع، سازگاری بیشتر با محیط زیست با ویژگی هایی همچون غیر سمی و غیر حساسیت زا برای بدن دانست. (6) دکتر سید علی هاشمی، مدیر عامل شرکت نانو آب ایرانیان و عضو هیات علمی پژوهشگاه پلیمر و پتروشیمی ایران، در ارتباط با دستاوردهای پژوهشی شرکت یاد شده، اظهار داشت: ما از 20 سال گذشته روی پلیمرهای سوپرجاذب، فعالیت های تحقیقاتی انجام دادیم که در سال گذشته موفق شدیم با سرمایه گذاری مشترک با کانادا آن را به تولید انبوه برسانیم. استفاده از هیدروژل های سوپر جاذب، جدیدترین شیوه آبیاری می باشد. این مواد پلیمری آب انبارهای مینیاتوری هستند که قابلیت جذب مقادیر زیادی آب و محلول های آبی را دارا هستند، به طوریکه حتی تحت فشار، آب را چندین مرتبه جذب نموده و هنگام نیاز ریشه، به راحتی آب را در اختیار آن قرار می دهند. هاشمی در ادامه توضیح داد: چهار پروژه تولید سم در دستور کار داریم. دو نوع سم طبیعی، زیره و دوردانه که آن را تبدیل به نانو کپسول کرده ایم. امتیاز کپسول نانویی سم این است که سم نسبت به PH محیط قرار گیری و یا دما شروع به آزاد شدن می کند و در نتیجه میزان سم در آن کاهش پیدا می یابد. در واقع سموم معمولی در 3 روز سم را آزاد می کنند ولی سموم کپسوله شده نانویی به طور مثال در ظرف 6 ماه می توانند را آزاد کنند. طرح پوشش بذر که در آن از پلیمر های هوشمند استفاده شده، سیستمی است که وقتی هوا سرد می شود، آب را جذب نمی کند و در زمانی که دما مناسب باشد، آب جذب می شود. هاشمی، در مورد پیشرفت تکنولوژی نانو در کشور معتقد است: ایران از لحاظ آکادمیک در زمینه ارایه مقالات علمی نانو پیشرفت خوبی را داشته ولی از لحاظ رتبه و جایگاه بین دانشگاه و صنعت فاصله ی زیادی وجود دارد و تا زمانی که از پروژه های نانویی حمایت مالی نشود، این فاصله همچنان باقی خواهد ماند. هاشمی، طرحهای آتی شرکت را تولید کودهای غنی شده و بذر پوشش داده شده دانست که در مرحله تحقیقات است. وی همچنین اعلام کرد تثبیت خاک یک تکنولوژی است که ما توانسته ایم هم اکنون آن را به مرحله تجاری برسانیم. (7) رضا فراهانی، مدیر بازرگانی شرکت دانش بنیان نانو رنگدانه شریف از فعالیت های تولیدی و بازرگانی شرکت نانو رنگدانه شریف سخن به میان آورد. وی گفت: ما از زمان شروع به کار شرکت، که سه سال می گذرد، محصولات تخصصی نانو را تولید کرده ایم که می توان به مواد ذیل اشاره کرد. - محصولات نانو نقره با نام گروه محصولات آنتی باکتریال دارای خاصیت فتوکاتالیستی شبیه نانو اکسید سیلیس که می تواند امکان نابودی انواع زیادی از میکروب ها را به وسیله مکانیزم ساده جفت شدن ذرات نانو نقره فراهم کند. این محصول پنج زیر مجموعه دارد، از جمله: الف- نانو کامپوزیت پلیمری، نانو کپسول های پلیمری در اندازه های کمتر از 8 نانومیکرون که در تولید انواع محصولات میکروبیال پلیمری کاربرد دارد. ب- انواع رزین های پلیمری به صورت گرانول حاوی ذرات نقره در اندازه های سه تا 10 نانومیکرون با قابلیت استفاده در انواع پلیمرها به صورت مستربچ، امکان اختلاط با انواع پلیمرها و قابلیت تهیه لایه های نازک پلیمری در حد میکرون با خاصیت آنتی باکتریال. ج- ماده معدنی محتوی نانو ذرات نقره با غلظت ppm 250 رنگ زرد و سفید که در رنگ های محصولات کشاورزی و بسته بندی انواع محصولات باغی و کشاورزی به کار می رود. - نانو سیلیس رسوبی که با نام کربن سفید شناخته می شود دارای خواص مقاوم حرارتی بالا، عدم آلایندگی، افزایش عامل چسبندگی، مقاومت ایزولاسیون الکتریکی و پر کننده ی تقویتی می باشد. کاربرد آن در صنایع لاستیک سازی، محصولات آرایشی، صنایع غذایی، رنگ و رزین، شیشه و سرامیک، شیمی و کاغذ سازی است. - پودر نانو اکسید روی یک ترکیب غیر آلی با فرمول شیمیایی ZnO می باشد. این ماده اغلب به صورت یک ترکیب پودر سفید رنگ که غیر قابل حل در آب است مورد استفاده قرار می گیرد. کاربرد های آن در الف: لاستیک سازی است که باعث استحکام و طول عمر لاستیک می شود. ب: در پوشش ها برای افزایش مقاومت خوردگی در سطوح فلزی است. از دیگر کاربرد های این ماده در پزشکی، شناسایی اثر انگشت، صنایع الکتریکی، آرایشی، کرم ضد آفتاب و حذف آلاینده و تصفیه آب می باشد. - نانو کلی، خاک رسوبی که عموما شامل 20-80 درصد کاولینیت (یک نوع سیلیکات معدنی)، 25-10 درصد میکا و 60 و 65 درصد کوارتز می باشد. کاربردهای آن در صنایع پلیمر است که باعث افزایش مقاومت و تهیه کامپوزیت در صنایع لاستیک سازی جهت افزایش راندمان عمل آوری لاستیک ها و در صنایع سرامیک و ریخته گری است. - نانومگنتایت، به صورت محلول بوده و به روش های حرارتی مکانیکی و سل ژل تولید می گردد. کاربردهای آن در صنایع چاپ، بیوتکنولوژی و مهندسی ژنتیک می باشد. در زمینه رنگ های عایق با استفاده از نانو سیلیس ساختار با استفاده از سه ویژگی تخلص بالا، مقاومت حرارتی و افزایش عامل چسبنده، موجبات تولید پوششی عایق با خواص و ویژگی هایی موثر و کاربردی را فراهم می آورد. از این عایق ها می توان در صنایع مختلف مانند صنایع نظامی، هوایی، دریایی، دفاعی، خودرو سازی و لوازم خانگی استفاده کرد. فراهانی در ارتباط با حمایتها و تبادل همکاری، افزود: در حال حاضر شرکت هفت تاییدیه "کفا" را در زمینه ی تکنولوژی نانو به دست آورده ولی از تسهیلات مالی و غیره مالی ستاد فن آوری نانو تا به حال استفاده نکرده ایم چرا که معتقدیم می توانیم به طور کامل روی پای خود بایستیم. همچنین اعلام می کنیم حاضریم با شرکت های داخلی فعالیت علمی و تجاری داشته باشیم. چرا که با توجه به تحریم ها بعضی از مواد هستند که واردات آنها به کشور دچار مشکل می شود و ما این توانایی را داریم که بتوانیم آنها را در داخل تولید کنیم. (8) با توجه به رشد چشم گیر تولید خودرو در ایران و به تبع آن مشکلاتی همچون افزایش آلودگی های زیستی، افزایش سوخت، امنیت خودرو و ... به طور حتم استفاده خودرو سازان از تکنولوژی های نوین برای ارتقای کیفیت و حمایت از محیط زیست به امری گریزناپذیر تبدیل شده است. در سومین جشنواره فناوری نانو دو شرکت ساپکو و گروه بهمن از آخرین دستاوردهای کاربرد نانو در تولید خودرو های خود با مجله بسپار به گفت وگو نشستند. هادی زبردست، رییس استراتژدی تکنولوژی ایران خودرو اظهار داشت، فن آوری نانو و کاربرد آن در خودرو برای ما درراستای چند هدف مهم دنبال می شود: اول، ارتقای کیفیت در محصولات همچون بررسی و ویژگیها و کارکردهایی که ارزش افزوده برای مشتری به همراه خواهد داشت. دوم، کاهش مصرف سوخت و آلایندگی. سوم، خودکفایی در دسترسی به مواد اولیه. در حال حاضر مجموعه فعالیت های متمرکز در ساپکو در این زمینه سه بخش دارد. بخشی، فعالیت هایی است که جنبه تحقیقاتی و کاربردی دارد و می تواند به ارایه یک نمونه آزمایشگاهی منجر شود. بخش دوم بحث توسعه محصول است که نمونه صنعتی ساخته می شود و در مرحله بعد سعی در تجاری سازی و تولید انبوه آن می شود. در بخش نمونه سازی و ارزیابی فنی اقتصادی، فعالیت های ما خلاصه می شود در الف: قطعات کامپوزیتی که شامل دو بخش است 1- استفاده از نانو کامپوزیت های پلی پروپیلن در تولید قطعات خودرو که مصادیق و کاربردهای آن عبارت است از پروانه فن رادیاتور، جعبه ECU و درب آن، قاب محافظ هواکش، بخاری، قالپاق چرخ و غیره 2- استفاده از نانو کامپوزیت هایABS در تولید قطعات خودرو نظیر هاوزینگ، چراغ خطر خودروی پژو405، چراغ خطر خودروی روآ، قاب ستونهای خانواده خودرویی پژو 405 و قطعات مجموعه داشبورد خودرو ها ب: پوشش های نانویی. پروژ ه های ما در این گروه تقسیم می شود به 1- پوشش روی منسوجات خودرو نظیر روکش صندلی که خاصیت آب گریزی دارد. 2- پوشش روی فلزات نظیر رینگ خودرو که خاصیت ضد لک را دارد. 3- پوشش روی شیشه و آینه. آقای مهندس بیرامی، کارشناس مهندسی و تحقیقات مواد شرکت ساپکو در این مورد می گوید: این شیشه از نوع LOW E می باشد که در حال حاضر در ساخت آن در مقدمه کار قرار داریم چرا که برای رسیدن به فرمولاسیون و بهینه سازی احتیاج به زمان زیادی هست. خواصی که این شیشه ها دارند ممانعت از ورود گرما و سرما به داخل خودروست و نرخ تابش کمی هم دارند و شرکت سازنده آن کاوه فلوید یک شرکت داخلی است. ج: شیمیایی 1- ساخت نمونه ***** نانو ذرات Tio2 به روش سل ژل. این ***** آلاینده های غیر احتراقی داخل هوا را جذب کرده و مواد آلی آنرا تجزیه می کند. 2- ساخت نانو ذرات Sic (سیلیسیم کارباید) به روش شیمیایی. 3- ساخت نانو ذرات B4C تولید شده به روش شیمیایی. 4- کاتالیست کانورتور سرامیکی برای موتورهای با حجم 1600 , 1800سی سی و کاتالیست کانورتور (مبدل کاتالیزوری) فلزی که می تواند به عنوان یک راکتور کوچک شیمیایی آلاینده های Co HC و NoX را به Co2 , H2o, N2 تبدیل نمایند. زبردست در ادامه می گوید، به اعتقاد من با توجه به این که در حوزه ی فناوری نانو به موقع وارد شدیم و دولت سرمایه گذاری خوبی در آن انجام داد. جایگاه خوبی را در سطح جهان در زمینه کاربرد نانو در خودرو به دست آورده ایم. به طوریکه در مقایسه با دیگر خودروسازان معظم دنیا، همچون BMW دستاوردهای مشابهی داشته ایم. در حال حاضر نیز پروژه های تحقیقاتی زیر را در دست داریم: 1- بررسی امکانپذیری تولید باک خودروها با استفاده از نانو کامپوزیت های هیبریدی با هدف دستیابی به استاندارد Euro IV توضیح آنکه استاندارد EURO IV برای نشتی میزان بخار بنزین یک حدی را تعریف کرده است که برای به دست آوردن آن باید باک خودرو را سه لایه بسازیم که مسلما وزن و هزینه آن را بیشتر می کند ولی با کاربرد نانوکلیر می توانیم همان تک لایه را تولید و خواص سه لایه را از آن بگیریم. 2- جایگزینی لوله های سوخت چند لایه با لوله های تک لایه نانو کامپوزیتی پلی آمید 3- استفاده از نانو کامپوزیتهای داخلی SBR به جای لاستیک وارداتی EPDM در حداقل یک قطعه خودرو 4- بررسی کابرد نانو در لنت خودرو 5- تهیه کامپوزیتهای SIC در بستر آلومینیوم 6- بررسی کاربرد نانوSIC در تایر خودرو 7- کابرد نانو SIC در پوشش سرامیکی منیفولد دود خودرو 8- خالص سازی و نانو کردن SIC تولید داخل کشور 9- بررسی تاثیر استفاده از نانو روانکارها در میزان مصرف سوخت و آلاینده های خودرو کلیر نانویی رنگ بدنه از دیگر دستاوردهای ما بوده است. کلیر، آخرین لایه رنگ خودرو بوده و در بخش فرآیند رنگ بدنه پاشش می گردد. استفاده از کلیر نانویی باعث افزایش مقاومت به سایش ناشی از کارواش و دوام بیشتر براقیت رنگ در زیر نور آفتاب می گردد. بیرامی در این رابطه می گوید، با توجه به کارهای انجام شده انتظار ما از مجلات تخصصی این است که مورد حمایت بیشتری قرار بگیریم. زبردست ادامه می دهد، در واقع برای اینکه بتوان صنعت را در کشور توسعه داد زنجیره دانشگاه صنعت و دولت همه به هم متصل هستند و اگر یکی از این حلقه های زنجیر پاره شود مسلما کار با مشکل مواجه خواهد شد. در پایان زبردست هدف از شرکت در جشواره نانو را 1-آشنا سازی مشتریان با فن آوری نانو 2- تجاری سازی 3- ارایه توانمندیها 4-فعالیت های ترویجی و تکمیلی اعلام کرد و افزود: مجلات تخصصی در این بخش خیلی می توانند به ما کمک کنند. (9) مهدی پیله چی، کارشناس واحد مهندسی خودرو سازی بهمن دیزل در ارتباط با مینی بوس های نانویی اظهار کرد: مینی بوس نانویی از تولیدات جدید بهمن دیزل می باشد. اجزایی که در آنها از تکنولوژی نانو استفاده شده است عبارت اند از: الف - جداره داخلی شیشه های مینی بوس که باعث کاهش در ارتباط با حرارت ورودی خورشید تا 7 درصد، کاهش هزینه های سرمایش تا 40 درصد و کاهش هزینه های گرمایش تا 30 درصد و جذب اشعه ماورا بنفش تا 60 درصد می شود. ب- داخل مینی بوس از نانو ذرات کروی چند لایه روکش شده استفاده گردیده که باعث جلوگیری از انتقال حرارت، ایجاد خاصیت ضد آب و لک خوردگی در روی سطح فلز و ایجاد امکان حذف عایق های فومی کار شده در سقف و بدنه شده است. ج- نیمی از صندلی های این مینی بوس، دارای روکش های نانویی با لایه ضد آب و لک و نیمی دیگر دارای روکش ضد باکتری و بو می باشند. روکش های ضد آب و لک دارای خواص جاذب نور مقاوم در برابر لک و آب و جلوگیری از تثبیت آلودگی و کثیفی برروی الیاف می شوند. روکش تهویه هوا و ضد باکتری نیز در این مینی بوس به کار رفته که با استفاده از نانو ذرات اکسید فلزی و پیوند دهنده های سطحی، باعث حذف ترکیبات VOC منفی در محیط، کاهش خستگی، افزایش 5 تا 15 درصدی اکسیژن در محیط می شوند. د- سطح خارجی این مینی بوس ها با استفاده از چند کمپلکس شیمیایی و پیونددهنده های قوی مجهز به اکسید در محیط، مجهز به روکش ضد آب و لک شده که دارای خواص جلوگیری از چسبیدن مخلوط آب و گل روی بدنه و جلوگیری از پوسیدگی و خش گرفتگی بدنه تا 10درصد و همچنین تمیز ماندن شیشه و بدنه برای مدت طولانی می شود. در حال حاضر فاز تحقیقاتی مواردی که در بالا به آن اشاره شد، به پایان رسیده و اگر بخواهیم به فاز تولید انبوه برسیم، کل محصولات بهمن را می توانیم با این فن آوری تولید کنیم. البته باید بگوییم ستاد فن آوری نانو تسهیلات و همکاری هایی را با ما داشته که امیدوارم دستاورد این همکاری نتیجه مورد نظر ما را به همراه داشته باشد. و سخن آخر اینکه در آینده در نظر داریم به دلیل اینکه خودروهای دیزلی شدت آلودگی صوتی بالایی نسبت به ماشین های معمولی دارند، روی این موضوع متمرکز شویم و با استفاده از تکنولوژی نانو آن را به حداقل برسانیم. بسپار
-
- 3
-
- فناوری نانو
- نانو
-
(و 2 مورد دیگر)
برچسب زده شده با :
-
محققان دانشگاههاي صنعتي اصفهان و تربيت مدرس، موفق به ساخت نانوغشا هاي بهبود يافته شدند که ميتوانند نقش مهمي در صنايع نفت و گاز و پتروشيمي ايفا کنند. به گزارش سانا، دکتر مرتضي صادقي، استاديار دانشگاه صنعتي اصفهان و از مجريان اين طرح اظهار کرد: جداسازي هايي که به کمک فنآوري غشا صورت ميگيرند معمولاً در دماي محيط انجام ميشوند، بنابراين جداسازي محلولهاي حساس به دما بدون هيچ تغيير شيميايي انجام ميشود. اهميت اين موضوع در صنايع دارويي و زيستفنآوري که محصولاتي حساس به دما دارند، مشخص ميشود؛ لذا بهبود خواص غشا، توجه بسياري از پژوهشگران را به خود جلب کرده است. دکتر صادقي و دکتر محمدعلي سمسار زاده در تحقيقات خود براي بهبود عملکرد غشاها، نانوذرات سيليکا را به آنها افزوده اند. به گفته دکتر صادقي، آن ها ابتدا نانوذرات سيليکا را با روش سل-ژل با هيدروليز تترا اتوکسي سيلان، در محيط اتانول و با حضور کاتاليزور اسيدکلريدريک تهيه کرده و سپس براي ساخت غشاهاي مرکب پليمر- سيليکا محلول پليمري را به نسبت وزني مشخص با نانو ذرات سيليکا، به خوبي مخلوط کرده و يک محلول يکنواخت براي ريختهگري غشا تهيه کرده و پس از ريختهگري محلول پليمري روي شيشه (تشکيل فيلم)، عمليات حرارتي تکميلي را براي خروج حلال و همچنين بهبود خواص غشا انجام داده است. گفتني است، ضخامت غشاهاي مرکب پلي بنزيميدازول سيليکاي تهيه شده، در حدود 40 ميکرون است. استاديار دانشگاه صنعتي اصفهان گفت: با توجه به بازار رو به رشد غشاهاي جداسازي گاز در دنيا و بازار بسيار گسترده آن در ايران (صنايع نفت، گاز و پتروشيمي)، بهبود عملکرد غشاها با کمک فنآوري نانو از جمله موضوعات مهم تحقيقاتي است. گروه پژوهشي ما نيز با تأسيس شرکت پارسيان پويا پليمر، در صدد تجاريسازي نانوغشاهاي پليمري است. جزئيات اين پژوهش در مجله Journal of Membrane Science(جلد 331، صفحات30-21، سال 2009) منتشر شده است. منبع: ستاد ويژه توسعه فنآوري نانو
-
- 2
-
- نانو
- نانو فناوری
- (و 4 مورد دیگر)
-
نانو لوله های کربن در کاربردهای ضد گلوله جایگاهی می یابند
محمــد پاسخی ارسال کرد برای یک موضوع در نانو تکنولوژی
شركت نانو كامپ واقع در آمریكا گزارشی از محصولات، برنامه های تحقیق و توسعه و برنامه های كاربردی خود منتشر كرد كه نمایانگر پشرفت نانولوله های كربن در كاربردهای ضد گلوله، هوافضا و قطعات و سازه های الكترومغناطیسی می باشد. به گزارش سانا، پیتر آنتوانیت، نماینده و رئیس اجرایی شركت نانو كامپ اظهار می دارد: شركت نانو كامپ در حال حاضر ورق هایی از نانو لوله های كربن در ابعاد 2/1 متر در 4/2 متر می سازد كه به صورت رول هایی به طول 6/7 متر تا 5/30 متر در آیند و در محلی به مساحت 371 متر مربع به كار می روند كه تا سال 2013 این مساحت به 9،290 متر مربع افزایش می بابد. این شركت امیدوار است سالانه 4 تا 6 تن نانو لوله كربن تولید كند. آقای آنتواینت می گوید: "نانو لوله های كربن این شركت در صفحات الكترومغناطیسی و محصولات ضد گلوله به كار می روند." شركت نانو كامپ به منظور تكمیل بدنه زره پوش و استفاده از این نانو لوله ها به صورت لایه هایی در قسمت پشت آن با مركز نظامی ناتیك آمریكا همكاری می كند. ضخامت لایه های مذكور عمدتاً 2 میلیمتر است كه به صورت 200 لایه در هر سمت محور بدنه زره پوش قرار می گیرد. آزمایشات نشان داده اند كه بدنه زره پوشی كه توسط شركت نانو كامپ تكمیل شده، می تواند یك گلوله 9 میلیمتری را متوقف كند . در كاربردهای الكترومغناطیسی، نانو لوله های شركت نانو كامپ در مقابل سیگنال های الكتریكی نقش حفاظت كننده را ایفا می كنند. شركت نانو كامپ بر آن است تا كیفیت نانو لوله های كربن خود را در پیش آغشته ها هم بالا ببرد كه در ماتریس رزین شركت های سایتك، تنكیت و رنه گیت به این موفقیت نائل شده است. به گفته آقای آنتواینت، هدف شركت، رساندن رشد نانو لوله های خود به سطح الیاف كربن است تا قیمت آن به ازای هر كیلوگرم به 350 تا 400 دلار برسد. آقای آنتواینت در پایان گفتند: "هیچ چیز نمی تواند مانع رسیدن ما به محصولی با كیفیت الیاف كربن شود." منبع:[Hidden Content]-
- 1
-
- نانو
- نانو فناوری
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
بررسي اثر نانولايه خاک رس بر سينتيک پليمريزاسيون راديکالي انتقال اتم استايرن
محمــد پاسخی ارسال کرد برای یک موضوع در نانو تکنولوژی
بررسي اثر نانولايه خاک رس بر سينتيک پليمريزاسيون راديکالي انتقال اتم استايرن. روغني ممقاني حسين,حدادي اصل وحيد,نجفي محمد,سلامي كلجاهي مهدي پژوهش نفت تابستان 1389; 20(62):3-15. خاک رس اصلاح شده با اصلاح کننده داراي باند دوگانه، براي بررسي اثر محدودكنندگي صفحات خاك رس بر پليمريزاسيون راديكالي انتقال اتم (ATRP)استايرن به كار گرفته شد. زنجيرهاي پليمري آزاد و اتصال يافته به صفحات خاک رس به عنوان ابزاري براي بررسي اثر محدودكنندگي صفحات نانو بر پليمريزاسيون به كار گرفته شدند. با استفاده از روش كروماتوگرافي گازي (GC)، امكان بررسي تغييرات درجه تبديل و هم چنين رسم نمودار سينتيكي فراهم آمد. نمودار سينتيكي خطي حاصله، نشان دهنده طبيعت زنده پليمريزاسيون و ميزان غلظت ثابت راديكال آزاد بود. همچنين نمودار تغييرات متوسط عددي و وزني وزن مولکولي و شاخص پراكندگي با استفاده از روش كروماتوگرافي ژل تراوايي (GPC) مورد بررسي قرار گرفت. نمودار خطي وزن مولكولي عددي نسبت به درجه تبديل نيز بيان گر ماهيت زنده پليمريزاسيون بود. وزن مولکولي زنجيرهاي آزاد نزديکتر به مقدار تئوري و بالاتر از زنجيرهاي اتصال يافته و نيز شاخص پراکندگي زنجيرهاي آزاد پايين تر از زنجيرهاي اتصال يافته بود. در مورد زنجيرهاي آزاد، بازده شروع کننده کوچک تر از 1 بوده و با افزايش ميزان خاک رس وزن مولکولي بالاتري حاصل شد. زنجيرهاي اتصالي، وزن مولکولي پايين تر داشته و بازده شروع کننده بزرگتر از 1 بود و با افزايش ميزان خاک رس، کاهش محسوس در وزن مولکولي و افزايش در شاخص پراکندگي آن ها مشاهده شد. هم چنين در مورد همه نمونه ها، شاخص پراكندگي با پيشرفت واکنش باريک تر شده به نحوي که از مقادير بزرگتر از 2 شروع و در انتهاي واکنش به حدود 2.1 رسيد. نتايج FTIR، نشان دهنده برهم كنش بين ذرات نانو و مونومر بود كه اين برهم كنش سبب افزايش سرعت واكنش و شاخص پراكندگي نمونه ها با افزايش ميزان نانو ذره مي شود.-
- 2
-
- نانو
- نانو فناوری
- (و 4 مورد دیگر)
-
روش ميكروسكوپي نوري روبشي ميدان نزديک در مطالعه نانومواد
محمــد پاسخی ارسال کرد برای یک موضوع در نانو تکنولوژی
خلاصه : مشاهده و مطالعهي نمونهها با بزرگنمايي بالا، در بسياري از رشتهها از جمله شيمي، علوم زيستي و مواد، اهميت زيادي دارد. روشهاي نوري، مدت زيادي است که استفاده ميشوند و به دليل غيرمخرب و تخصصي بودن، سهولت استفاده و هزينهي پايين نسبت به روشهاي ديگر، بهطور وسيعي بهكار گرفته شدهاند. بسياري از پديدههاي نوري در ابعاد كوچكتر از طولموج نور، داراي رفتار غيرمعمول هستند. اصل عدم قطعيت، از تمركز و بررسي در نواحي بسيار كوچكتر از طول موج، ممانعت مينمايد. اين محدوديت ناشي از بر هم كنش امواج الكترومغناطيس و نمونه است كه امواج الكترومغناطيس را به دو صورت پراكنده ميكند: - امواج منتشر شده با بسامد فضايي كم - امواج ميرا با بسامد فضايي بالا روش نوري كلاسيك، به محدودهي ميدان دور مربوط است كه فقط امواج پيشرونده باقي ميمانند، در حالي كه امواج ميرا، مربوط به ناحيهي ميدان نزديک (در فاصله كمتر از طولموج نسبت به نمونه) هستند. اطلاعات مربوط به پرتوي بسامد فضايي بالا، از موج پراش يافته در محدوده ميدان دور، از دست ميروند و بنابراين آن دسته از مشخصههاي نمونه که مربوط به فواصل زير حد طول موج ميشوند، بازيابي نميگردند. اين در حالي است كه با استفاده از يك ميكروسكوپ در ناحيه ميدان نزديک، حد پراش به آساني پشت سر گذاشته ميشود و در آن ميتوان، با ايجاد تغيير در ابعاد ساختار و استفاده از روزنهها يا شكافهاي كوچك در نزديك نمونه مورد بررسي، وضوح بالاتري بهدست آورد. در حقيقت ميكروسكوپي نوري روبشي ميدان نزديک، يك روش ميكروسكوپي براي بررسي مواد نانوساختار است و با بهكارگيري خواص موجهاي ميرا، محدوديت تفكيك ميدان دور، در اين روش از ميان برداشته شدهاست. اين عمل با قرار دادن يك آشكارساز نزديك به سطح نمونه (با فاصلهاي كوچكتر از طولموج)، انجام ميشود. در بررسي سطح نمونه با اين روش، وضوح بالايي بهدست ميآيد و وضوح تصوير به طولموج نور تابشي وابسته نيست، بلكه به اندازهي دريچهي آشكارساز مربوط ميشود. متن اين مقاله به صورت pdf قابل دريافت مي باشد( ) منبع:[Hidden Content]-
- 1
-
- نانو
- نانو فناوری
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
بخش اول: انواع واکنشهاي شيميايي ترکيب يک يا چند مادهی مختلف و به وجود آمدن ماده يا مواد جديد، واکنش شيميايي نام دارد. بر اساس این تعريف، يک ماده نيز ممکن است با خودش واکنش داده، و محصول جديدي را توليد نماید. به اين واکنشها پليمری شدن (Polymerization) گويند که در ادامه توضيح داده ميشود. واکنشها انواع مختلف دارند و به صورتهاي مختلف طبقهبندي ميشوند. در يک دستهبندي واکنشهاي شيميايي به صورت زير تقسيم ميشوند: 1- تركيبي 2- سوختن 3- تجزيه 4- جابهجايي يگانه 5- جابهجايي دوگانه اين 5 دسته واکنش، دستههاي اصلي واکنشهاي شيميايي هستند، و بقيهی واکنشها به گونهاي زيرمجموعهی اين پنج دسته قرار ميگيرند. 1- واکنش ترکيبي: واکنش ترکيبي، واكنشي است كه در آن چند ماده باهم تركيب ميشوند و فرآورده يا فرآوردههاي تازهاي با ساختاري پيچيدهتر توليد ميكنند. واکنش ترکيبي به صورت زير تعريف ميشود: aA + bB + cC + ... → rR + sS + qQ در اين گروه، واکنشهاي زيادي قرار ميگيرند؛ مانند: الف) واکنش بين يک نافلز با اکسيژن در اثر واکنش، اکسيد نافلزي توليد ميشود که اگر اين اکسيد با آب واکنش دهد، توليد اسيد مينماید. در اثر حذف يک مولکول آب از اسيد توليد شده، مادهی توليدي اصطلاحاً «انيدريد» ناميده ميشود. اکسيد نافلزي → نافلز + اکسيژن اسيد → اکسيد نافلزي + آب S + O2 → SO2 SO2 + 2H2O → H2SO4 ب) واکنش بين يک فلز با اکسيژن در اثر این واکنش اکسيد فلزي توليد ميشود که چنانچه با آب واکنش دهد، توليد باز(قليا) مينماید. اکسيد فلزي → فلز+ اکسيژن باز → اکسيد فلزي+آب Na + O2 → Na2O Na2O + H2O → 2NaOH ج) واکنشهاي خنثي شدن اين واکنش به چند دسته تقسيم ميشود: 1- واکنش بين يک اکسيد فلزي و يک اکسيد نافلزي: در اثر اين واکنش آب توليد نميشود. بلکه تنها نمک، محصول توليدي خواهد بود: Na2O2 + SO2 → Na2SO3 2- واکنش بين آمونياک و يک هاليد هيدروژن: NH3 + HCl → NH4Cl 3- واکنش بين اسيد و آمونياک: NH3 + H2SO4 → (NH4)2SO4 د) واکنشهاي پليمري در واکنشهاي پليمري، همانطور که در بالا توضيح داده شد، در اثر ترکيب شدن يک مولکول ساده با خودش، مولكولهايي به نام پليمر (بسپار) که بسيار بزرگ هستند، تشکيل ميشوند. در واکنش نشان داده شده در شکل بالا، تعداد بسيار زيادي اتيلن با يکديگر ترکيب شده و پلياتيلن توليد ميشود. نکته: البته این واکنش در دماهای بسیار بالا، و در حضور کاتالیزور انجام میشود؛ که در مقاله بعدی توضیح داده خواهد شد. ه) واکنشهاي فوتوسنتز در اين واکنشها، از ترکيب گاز دياکسيدکربن و آب، با کمک نور خورشيد، قند و اکسيژن توليد ميشود: 6CO2 (g) + 6H2O (g) → C6H12O6 (aq) + 6O2 (g) 2- واكنش سوختن: واكنشي است كه طي آن يك ماده به سرعت با اكسيژن تركيب، و طي آن مقدار زيادي انرژي توليد ميشود که اين انرژي به صورت نور و گرما آزاد خواهد شد. امروزه، هنوز هم از واكنش سوختن براي تأمين انرژي استفاده ميشود؛ زيرا سوختهاي فسيلي اصليترين و ارزانترين منبع توليد انرژي هستند. به جز سوختن هيدروكربنها، واكنش فلزهاي قليايي و قليايي خاكي ( به جزء Be) و نيز بعضي تركيبهاي ديگر از نوع سوختن بوده و با آزاد كردن گرما و نور شديد همراه هستند. واکنشهاي سوختن به قرار زيرند: نکته: اگر یک ماده به آهستگی با اکسیژن ترکیب شود، و گرما یا نور قابلملاحظهای تولید نکند؛ این وانش اکسایش نام دارد نه سوختن. مانند ترکیب شدن آهستهی آهن با اکسیژن هوا وتولید زنگ آهن (Fe2O3) که نمونهای از واکنش اکسایش میباشد. 3- واكنش تجزيه واكنش تجزيه، واكنشي است كه طي آن يك مادهی پيچيده به مواد سادهتري تبديل ميشود. واکنش تجزيه به سه صورت انجام ميشود: 1- آبکافت (هيدروليز) به کمک آب يک ماده به چند مادهی سادهتر تبديل ميشود: Na2SO4 → 2Na+ + SO4-2 2- برقکافت (الکتروليز) برقكافت يك فرآيند تجزيهاي است كه طي آن، يك تركيب به کمک انرژي الکتريکي، به عناصر تشكيل دهندهاش تبديل (تجزيه) ميشود. فلز + نافلز → نمک مذاب 2NaCl → 2Na + Cl2 3- با کمک گرما در اثر حرارت دادن، ترکيبي به ترکيبات سادهتر تبديل ميشود: 2KNO3 → 2KNO2 + O2 4- واكنش جابهجايي يگانه : دراين واكنش يك عنصر يا يون جايگزين عنصر يا يون ديگري در يك تركيب ميشود. اين واكنش به صورت زير ميباشد: A + BC → AC + B 2Na + 2H2O → 2NaOH + H2 Zn + 2AgNO3 → 2Ag + Zn (NO3)2 نکته: هر هالوژن که در جدول تناوبی، بالاتر از هالوژن دیگر قرار داشته باشد (به غیر از فلوئور)، میتواند جانشین هالوژن پایینتر شده و آن را خارج نماید. اما عکس این قضیه صادق نمیباشد. یعنی، هالوژن پایینتر، در مقابل هالوژن بالاتر بیاثر خواهد بود: انجام ناپذیر → I2 + 2NaCl علت شرکت نکردن فلوئور در این واکنشها این است که،واکنش فلوئور با آب بسیار شدید است، و از آنجا که این واکنشهای در محیط آبی انجام میشود، فلوئور پیش از خارج کردن هالوژن پایینتر از خود، با آب وارد واکنش میشود. F2 + H2O → HF + 1/2 O2 5- واكنش جابهجايي دوگانه: واكنشي است كه در آن، جاي دو اتم يا يون در دو ماده باهم عوض ميشود. اين واكنش به صورت زير نشان داده ميشود: AB + CD → AD + CB HCl + NaOH → NaCl + H2O واکنش يک اسيد و يک باز. در اثر اين واکنش، نمک و آب توليد خواهد شد. که بر حسب قدرت اسيد و باز نمک توليدي يا اسيدي خواهد بود و يا بازي. نویسنده: حامد همتی ویراستار: مریم ملکدار منبع: باشگاه نانو
-
- 1
-
- نانو
- نانو فناوری
- (و 4 مورد دیگر)
-
كاربردها: كنترل ساختار سطح در مقیاس نانو این امكان را به كاربردهای جدید می دهد تا نسبت به پوشش های متداول امكانات بیشتری فراهم آورند. در مورد روش خود چینش پلیمر ها، انتخاب مواد اولیه و نیز پارامترهای پوشش دهی این اجازه را می دهند تا اندازه و كاربرد ساختار نانوی پلیمر نهایی را مشخص كرد. این مشخصات را می توان با دامنه ی وسیعی از ابعاد و دامنه ی متنوعی از گروه های شیمیایی انتهایی بر حسب تقاضا تنظیم كرد.این ساختار به صورت تصادفی است ولی می توان با انتخاب دقیق مواد اولیه و پارامترهای پوشش دهی، ویژگی های آنها را از پیش تعریف كرد. به عنوان مثال این كاربرد در انگشت نگاری می تواند در آینده برای تولید برچسب های شناسایی و امنیتی مورد استفاده قرار گیرد. اگر یكی از لایه های پلیمری توسط یك حلال انتخابی از سطح زدوده شود، این فیلم های پلیمری می توانند به صورت متخلخل درآیند. این عمل این اجازه را به كاربردهای پوششی كه برداشت سریع یك مایع یا جوهر مورد نظر است را می دهد. با اینكه همه ی ویژگی های ساختاری از این روش قابل كنترل هستند ولی ساختار جزیی به طور ذاتی تصادفی باقی می ماند.بنابراین، از این ساختارها می توان به عنوان ویژگی امنیتی برای محافظت از كارت های بانكی و تجارتی بهره جست. شبیه ویژگی های انگشت نگاری ، برخی ویژگی های كلیدی برای ساختارهای پلیمری تعریف می شود ، كه می توانند بعد به یك دسته ی خاص از ساختار نانو نسبت داده شوند. به عنوان كاربردی در بازار های دیگر می توان به شناسایی در بخش های هنری و تجملاتی ، علاوه بر كارتهای تجاری اشاره كرد كه اخیراً مورد مطالعه قرار گرفته اند. این سطوح از نظر قیمت ارزان و قابل تغییر هستند . روشهای استاندارد مختلف مثل غوطه وری، اسپری كردن و پوشانش دورانی (spin coating ) برای اعمال این پو ششها بكار می روند . به راحتی می توان برخی از این روش ها را برای پوشش دادن سطوح بزرگ به كار برد. یكی از مزایای اصلی این روش ها ، امكان اعمال بر روی زیرآیندهای 3 بعدی است. برای مثال از این روش ها می توان برای پوشش دادن حفره ها و یا سطوح داخلی قطعات تو خالی استفاده كرد . بسیاری از تقاضاها در این مورد مقاومت در برابر برخوردهای محیطی است. در مورد ساختارهای پلیمری رسیدن به ماده ای با مقاومت در برابر خراش مشكل است. یك راه حل برای رفع این مشكل جایگزین كردن ماده ای دیگر كه مقاومت بیشتری در برابر خراش دارد به جای ساختار پلیمری است. این كار را می توان با تیزاب كاری شیمیایی توسط یك لایه مناسب انجام داد ، به طوری كه ساختار پلیمری به عنوان یك لایه عمل كند. با این كار ساختار به صورت ماده ای سخت در می آید . عمق ساختار 4 میكرون است. سطح نهایی هم می تواند به همان صورت كه هست استفاده شود و هم می تواند به عنوان ابزار اصلی برای جور كردن ساختار سطح به كار رود، مثل پوشاندن آن بر روی یك پلاستیك . مورد دوم مسیر جالبی را برای تولید انبوه ساختارهای نانو باز می كند. برای مثال می توان به استفاده از این فن آوری برای كاربرد هایی مثل پلاستیك های جدید برای كشت سلول یا مهندسی بافت اشاره كرد.ایجاد الگوهای سطح در مقیاس نانو نسبت به مقیاس میكرون ترجیح داده می شود. دسته ی دیگری از پلیمرها برای چینش خود به خود به كار می روند. كوپلیمرهای بلاك (block ) از دو یا بیشتر از دو پلیمر كه به یكدیگر متصل شده اند ساخته می شوند، كه این كوپلیمرها به وسیله یك فرآیند به نام جداسازی میكروفاز ایجاد می شوند . در اینجا ابعاد نمونه همان ملكول های پلیمری منحصر به فرد هستند كه به پلیمرهایی كه در مقیاس میكرون هستند و در بالا شرح داده شده اند ترجیح داده می شوند . متعاقباً، جرم ملكولی پلیمر تشكیل شده یا طول زنجیرهای آن روی هندسه ی ساختار نانوی پلیمر تاثیر می گذارد و گروه های عاملی ویژگی های شیمیایی سطح را مشخص می كند. در اینجا ساختار یك سطح خود چیده از كو پلیمر پلی استایرن- پلی اكریلیك اسید به عنوان یك ماسك برای یون واكنش پذیر استفاده شده است. هسته های مایسلی ایجاد شده از پلی اكریلیك اسید با قطری حدود 30 نانومتر مقاومت در برابر حكاكی كردن (ایجاد خلل و فرج روی سطح) بالاتری نسبت به فاز پیوسته ی پلی استایرن دارد. در نتیجه پلی اكریلیك اسید از مواد زیرین در برابر (حكاكی ing) محافظت می كند و یك ساختار ستونی نانو ، مشابه با بعد عرضی ساختار پلی اكریلیك اسید تشكیل می شود. عمق ساختار (یا به طور معادل بلندای ستون ها) می تواند با تنظیم زمان( حكاكی ing) تغییر كند. در این روش ساختار بدست آمده نه تنها از نظر مكانیكی از فیلم پلیمری سخت تر است، بلكه می تواند ویژگی های سه بعدی مشخصی نیز داشته باشد این ساختارها اغلب ویژگی تر كنندگی متمایزی از خود نشان می دهند كه می تواند از آب گریز به ابرآبگریز تنظیم شود. علاوه بر این اگر به ساختار عامل پرفلوئوروسیلان اضافه شود این تاثیر تقویت می شود. كاربرد هایی برای سطوح خود تمیز شونده نیز وجود دارد.برای مثال تماس زاویه ای بزرگ آب، ویژگی ابر آب گریزی سطح ستون نانو را ثابت می كند كه باعث دفع كنندگی آب و خود تمییز شوندگی می شود. اما الگوی توپوگرافی توسط خود چینشی فقط یك جنبه است. تنوع گسترده ی پلیمرهای موجود امكان انتخاب این پلیمر ها را برای فرایند خود چینش فراهم می كند و وجود گروههای عاملی مختلف در این پلیمرها منجر به رسیدن به هدف مطلوب می شوند.ساختار سطح نهایی یك الگوی شیمیایی در مقیاس نانو است كه دریچه ای به كاربردهای بی شمار دیگر باز می كند. به علاوه، این امكان وجود دارد كه با استفاده از یك حلال كه به طور انتخابی نسبت به مایسل عمل می كند ساختار مایسل را وارونه كرده و منجر به ایجاد مایسل های متورم می شود . ساختار بدست آمده می تواند دوباره به عنوان یك ماسك حكاكی برای ساخت ویژگی های وارونه در مواد سخت به كار رود، یعنی حفره های نانویی به جای ستونهای نانویی. با پیروی از این رویكرد ، می توان غشاهای متخلخل بر پایه سیلیكون را كه قطری بین 35 تا 80 نانومتر دارند را تولید كرد.ضخامت غشاها بین 100 تا 300 نانومتر است و تركیب سیلیكون ساختار را برای ضمانت پایداری مكانیكی و امكان دستكاری و یكپارچه كردن برای ابزارهای میكروسكوپی، تقویت می كند. در خواست های بسیاری ارایه و مورد ارزیابی قرار می گیرند كه شامل خالص سازی زیست ملكول ها و اولترا*****اسیون تابشی جزیی است . یكی از چالش های فنی دستیابی به توزیع باریكی از اندازه روزنه های غشا، به منظور رسیدن به ***** كردن انتخابی و بهبود خواص مكانیكی غشا است . تعمیم این فرآیند برای غشاهای نانوی متخلخل فلزی و برای كاربرد های پلاسمونیك تحت بررسی است. در بعضضی از كاربردهای زیست شناسی غشاهای متخلخل، سازگاری زیستی و تجزیه پذیری زیستی مواد غشا یك موضوع مهم است . برخی غشاهای نانوی متخلخل برای ***** كردن و كاربردهای حسگری جالب هستند ، به طور خاص چون حفره ها به آسانی می توانند به طور شیمیایی عامل دار شوند ، این امكان وجود دارد كه ویژگی های ***** كردن آنها در نظر گرفته شود. كاربردهای دیگر سطوح با ساختارنانو را می توان در اصلاح سلولی زیرآیند ها یافت. رفتار سلول ها روی سطح فقط از روی شیمی سطح مشخص نمی شود ، بلكه به ساختار نانو و یا میكرو سطح نیز مرتبط است.درك بهتر از مكانیزم مطرح شده امكان اصلاح طراحی سطح كاشت را برای آماده كردن زیرآیند برای مهندسی بافت و طراحی بهتر مواد باند پیچی برای بهبود معالجه زخم فراهم می كند. منبع: بسپار
- 1 پاسخ
-
- نانو
- نانو فناوری
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
پرسش "نانو كامپوزیت چیست؟" در حال حاضر همانند پرسش كامپوزیت چیست؟ در دهه 1950 است. نانو كامپوزیت ها راهی نوین برای دستیابی به ویژگی های فوق العاده ارایه می كنند. این مواد توان بالقوه ای برای تغییر همه چیز دارند. نانو كامپوزیت ها دسته ای بزرگ از رزین های پر شده هستند. نخستین چیزی كه آن ها را از رزین های پر شده معمولی متمایز می كند اندازه ذرات پركننده است. اندازه این ذرات در مقیاس نانومتر است. برای درك ابعاد نانومتر باید گفت كه یك متر معادل یك میلیارد نانومتر است. یك نانومتر طولی تقریباً برابر با قطر 10 اتم است. طول موج نور مرئی حدود 700 نانومتر است. هنگام بحث راجع به كامپوزیت ها، گاهی درباره سازه های كامپوزیتی صحبت می شود كه در طبیعت یافت می شوند. سدهایی كه سگ های آبی می سازند مثالی از سازه ای كامپوزیتی از شاخه های درخت و گل و لای است. بد نیست اگر توصیفی هم از یك نانو كامپوزیت طبیعی داشته باشیم. پوسته نوعی صدف دریایی به نام آبالون (abalone) از كربنات كلسیم تشكیل شده است. هنگامی كه آبالون پوسته خود را می سازد لایه های متناوبی از یك پلیمر طبیعی بین لایه های كربنات كلسیم ایجاد می كند. به این ترتیب پوسته به دست آمده دو برابر سخت تر و هزاران بار چقرمه تر از اجزای سازنده اش است. نانو پركننده ها یكی از پر مصرف ترین نانو پركننده های امروزی رس ها هستند؛ اگر چه گاهی نانو لوله های كربنی، فلزهای بلورین و بعضی نانو پركننده های دیگر نیز به كار گرفته می شوند. این پر كننده ها با یكی از رزین های پلیمری گرماسخت یا گرمانرم تركیب می شوند. كامپوزیت های به دست آمده عموماً دارای استحكام كششی و مدول بالاتر، دمای اعوجاج حرارتی بیشتر و دیگر ویژگی های مطلوب هستند. در آغاز، بهبود ویژگی ها منجر به توسعه سریع این فن آوری شد. با این وجود نانو پركننده ها در حال حاضر بازار چندان گسترده ای ندارند ولی ممكن است در آینده ای نزدیك جهشی بزرگ داشته باشند. در بیشتر كاربردهای نانو كامپوزیتی، نانو رس ها به كار می روند و نانو لوله های كربنی و فلزات نانو بلورین تنها در كاربردهای بسیار ویژه به كار گرفته می شوند. رس ها فراوان و ارزان هستند. در بسیاری از محصولات به عنوان پر كننده به كار می روند و بهای تمام شده فراورده را كاهش می دهند. ولی نانو رس ها به روشی متفاوت عمل كرده و می توانند ویژگی های مطلوب رزین ها و محصولات كامپوزیتی را چند برابر كنند. این بهبود ویژگی ها در پوسته آبالون شگفت انگیز است. رزین ها تاكنون بیشتر كارهای انجام شده در حیطه نانوكامپوزیت ها، بر روی رزین های گرمانرم بوده است. ولی مشاهده می شود كه بسیاری از بهبود ویژگی ها، منجر به تغییر ویژگی های رزین های گرمانرم به سمت رزین های گرماسخت شده است. به علاوه این نانو كامپوزیت ها ویژگی های رزین های گرمانرم را به حدی بهبود داده اند كه بعضی از آنها در حوزه هایی وارد شده اند كه پیش از این فقط رزین های گرماسخت متداول بودند. نانو كامپوزیت ها به عنوان دیرسوز كننده FAA بودجه بسیاری صرف پژوهش در زمینه اثر دیرسوز كنندگی ذرات رس با اندازه نانومتری بر رفتار پلاستیك ها كرده است. در آغاز تنها دانشگاه كرنل (Cornell) در این زمینه با FAA همكاری می كرد. سپس دانشگاه ماركو (Marquette) و چندین دانشگاه دیگر نیز برنامه های پژوهشی خود را در زمینه نانو رس ها و اثرات دیر سوزكنندگی آنها فعال كردند. آزمایش گرماسنجی مخروطی، اثر دیر سوز كنندگی این ذرات را به طور كلی تایید كرده است. رزین های پر شده نیز پایداری بهتری در برابر حرارت از خود نشان دادند. این مقاومت حرارتی بالا و ویژگی دیرسوز كنندگی نانو رس ها آینده خوبی برای این فن آوری رقم خواهد زد. آلومیناتری هیدرات (ATH) یكی از پر كننده های دیرسوز كننده متداول در بسیاری از پلاستیك ها است. گاهی اوقات اثر دیرسوز كنندگی این ماده به حدی می رسد كه پلیمر خود اطفاء كننده (Self extinguishing) می شود. روند كار به این صورت است كه وقتی ATH در معرض حرارت قرار می گیرد، تری هیدرات بخار آب ازاد كرده و منجر به كاهش حرارت آتش و كند كردن عمل سوختن می شود. اما افزایش میزان ATH افزوده شده به رزین منجر به افت استحكام كششی و خمشی پلیمر می شود و وقتی مقدار پر كننده به یك حد بحرانی معین می رسد، افت ویژگی ها ناگهانی و قابل توجه خواهد بود. روش كار نانو رس ها سیلیكات های رسی نانومتری در پلیمر مذاب لایه لایه می شوند و ماده رس – پلاستیك را خلق می كنند. این ذرات رسی تقریباً به اندازه خود مولكول های پلیمر هستند بنابراین كاملاً با هم مخلوط شده و به طریق شیمیایی پیوند برقرار می كنند. این امر پایداری حرارتی و ویسكوزیته پلاستیك را افزایش و انتشار گازهای سوختنی را كاهش می دهد. نانو رس ها به مقدار خیلی كمی – گاهی اوقات 6 درصد وزنی یا كم تر – به رزین افزوده می شوند. این مواد تقریباً در سطح مولكولی با رزین ها پیوند برقرار می كنند. به نظر می رسد وجود تركیبات آهن در نانو رس ها، پایداری حرارتی پلیمر را افزایش می دهد . این مواد هم دمای تغییر شكل و هم دمای ذوب رزین را افزایش می دهد. نانو رس ها به مقدار خیلی كمی – گاهی اوقات 6 درصد وزنی یا كم تر – به رزین افزوده می شوند . این مواد تقریباً در سطح مولكولی با رزین ها پیوند برقرار می كنند. به نظر می رسد وجود تركیبات آهن در نانو رس ها، پایداری حرارتی پلیمر را افزایش می دهد . این مواد هم دمای تغییر شكل و هم دمای ذوب رزین را افزایش می دهند. این مواد همچنین به عنوان پلاكت هایی عمل می كنند كه تبلور پلیمر را شتاب می بخشند. نانو رس ها مانعی در پلیمر ایجاد می كنند كه از مهاجرت اجزای فرار پلیمر درون ماده جلوگیری می كند. علاوه بر این، یك مانع زغالی نیز در سطح ایجاد می كنند كه در برابر سوختن بیشتر ماده مقاومت می كند. این امر باعث می شود ذرات نانو رس در سطح افزایش یابند و این افزایش حركت مواد پلیمری اضافی را به سطح به تاخیر می اندازد. تشكیل یك سطح زغالی، از مشخصه های دیرسوز كنندگی رزین های فنلیك است. اگرچه نانو رس ها نیز یك مانع زغالی در سطح ایجاد می كنند ولی ساز و كار تشكیل آنها نسبت به فنلیك ها متفاوت است. تحقیقاتی در زمینه به كارگیری نانو رس ها به همراه هالوژن و بعضی دیگر از دیرسوز كننده های متداول انجام شد. نتایج نشان دادند كه در بعضی از كاربردها حتی با كاهش میزان افزودنی های دیرسوز كننده به مقداری قابل توجه، دیرسوزی رزین های پر شده با نانو ذرات برابر یه بهتر بود. در عین حال نانو رس ها منجر به افزایش استحكام فیزیكی ماده نیز می شوند.موادی كه به این طریق به دست می آید وزن مخصوصی كم تر و استحكام فیزیكی بیشتری دارند. كاهش میزان هالوژه ها در نانو كامپوزیت ها به معنی ارزان تر شدن رزین به دست آمده است. اورتان تاكنون كار زیادی در زمینه اثر دیر سوز كنندگی نانو رس ها در پلی استرهای گرماسخت انجام نشده است. اگر چه دلایل نشان می دهند كه این مواد در پلی استرها نیز باید همین طور عمل كنند. با این وجود كارهایی در زمینه پلی اورتان ها انجام شده است. نانو رس ها آینده روشنی برای بهبود دیرسوزی فوم های اورتانی ترسیم كرده اند. با پیشروی اورتان های سازه ای در بازار كامپوزیت های تقویت شده با الیاف متداول، دیر سوزی این مواد برای كاربردهای بیشتری جذاب خواهد بود. اگر سیستم های رزینی اورتانی دارای شرایط UL 94 Vo با بهای كم تری عرضه شوند . بازار بزرگ جدیدی به روی این مواد گشوده خواهد شد. یكی از فواید پرداختن به نانو رس ها برای دیرسوز كردن رزین ها، قابلیت تركیب این ویژگی با دیگر برتری های رزین هاست. یكی از كاستی های معمول رزین ها یا پوشش های ژلی دیرسوز، زرد یا بی رنگ شدن آنها هنگام قرار گرفتن در معرض نور فرابنفش است كه این مشكلات هنگام به كارگیری نانو رس ها رخ نمی دهند.
- 1 پاسخ
-
- نانو
- نانو فناوری
-
(و 7 مورد دیگر)
برچسب زده شده با :
-
1. مقدمه بخش اعظم انرژی تولید شده در جهان به هدر می رود. لامپهای معمولی علاوه بر نور، گرما نیز تولید میکنندکه جز اتلاف انرژی چیزی نیست. انجام و دوام برخی فرآیندها، بیش از اندازهی لازم انرژی میگیرند. مثلاً برای تولید گازوییل، باید به نفت گرما داد تا واکنشهای مربوطه اتفاق بیفتد. یافتن روشهایی برای صرفهجویی انرژی در این فرآیندها، نقش مهمی در کاهش مصرف انرژی دارد. استفاده از نانوفناوری در تولید مواد شیمیایی، یکی از این روشها میباشد. استفاده از کاتالیزورها، در گذشته نیز برای انجام واکنشهای شیمیایی رواج داشته است. با استفاده از نانو فناوری میتوانیم کاتالیزورهای کارآمدتری تولید، و بیش از پیش در مصرف انرژی صرفهجویی نماییم. کاتالیزوها موادی هستند که چنانچه به یک مخلوط واکنش افزوده شوند، سرعت واکنش را افزایش میدهند، بدون اینکه خود در واکنش شیمیایی شرکت نمایند. کاتالیزورها در پایان واکنش دستنخورده باقی میمانند. یک نمونه قدیمی از کاتالیزورها، پلاتین است که به طور مثال، از آن در سیستم اگزوز ماشین استفاده میشود. پلاتین به واکنشهایِ تبدیل گاز سمی مونوکسید کربن و اکسید نیتروژن به دو گاز سمی دیاکسید کربن و نیتروژن کمک میکند. هر چند کاتالیزورهای قدیمی هنوز هم کارایی دارند، ولی با پیشرفت علم نانو، کاتالیزورهای کارآمدتری در صنایع نفت و گاز ایجاد شده است. هر چه سطح کاتالیزورها بزرگتر باشد، کارایی آنها نیز بیشتر است؛ چون در یک زمان با مولکولهای بیشتری واکنش میدهند. تا همین چند سال اخیر، دانشمندان به ابزارهای لازم برای تولید و استفاده از نانوذرات مجهز نبودند؛ اما امروزه پژوهشگران، کاتالیزورهای متشکل از نانوذرات را با شناخت بهتری از چگونگی عملکرد آنها طراحی میکنند. 2. کاربردهای نانوکاتالیستها 2-1- کاهش CO2 هوا یکی از مشکلات جهان امروز، افزایش میزان دیاکسید کربن در هواست. اگر بتوانیم روشی مؤثر و کارآمد در کاهش و پالایش گازهای خروجی دودکشها بیابیم کمک بزرگی به رفع این مشکل کردهایم. در این زمینه، نانوفناوری میتواند روشهای موثر و ارزانتری در مقایسه با روشهای فعلی ارائه نماید. پوهشگران در پژوهشگاه ملی اوک ریج، نانوکریستالی طراحی کردهاند که میتواند مورد استفاده قرار بگیرد. وقتی دیاکسید کربن روی نانوکریستال تهیه شده از کادمیم، سلنیم و ایندیم مینشیند، نانوکریستال یک الکترون به دیاکسید کربن می دهد، و این الکترون اضاقی سبب میشود، دیاکسید کربن با دیگر مولکولهای موجود در دودکش واکنش دهد، و به گازی با خطر کمتر تبدیل شود. در واقع؛ این نانوکریستال یک کاتالیزور است. اگر هزینه تولید *****های حاوی این نانو کریستالها کمتر شود، میتوان آن ها را به صورت فراگیر به کار برد. 2-2- جلوگیری از انتشار بخارات سمی جیوه از دیگر چالشهایی که پژوهشگران امیدوارند بتوانند با نانوکریستالها از پس آن برآیند، بخار جیوه است. نیروگاههای برق زغال سنگی، بخار جیوه منتشر میکنند. یکی از روشهای جلوگیری از انتشار آن، استفاده از نانوکریستالهای اکسید تیتانیوم در زیر تابش پرتو فرابنفش است، که باعث تبدیل بخار جیوه به اکسید جیوه که مادهای جامد است خواهد شد. موتورهای دیزلی که در بیشتر اتوبوسها و خودروهای سنگین به کار میروند هم، اکسیدهای نیتروژن منتشر میکنند. شرکت بیوفرندلی، نانوکاتالیزوری طراحی کرده است که وقتی به سوخت موتور دیزلی افزوده شود، باعث احتراق کامل سوخت میشود. به این ترتیب اکسیدهای نیتروژن کمتری منتشر میشود. 2-3- کاربرد نانوکاتالیستها در تصفیه آب از نانومواد کاتالیستی در صنایع تصفیه آب هم استفاده زیادی میشود. دانشگاه رایس وجورجیاتک، در طرحی مشترک روش کارآمدی برای حذف تریکلرواتین از آب ارائه کردهاند. این ماده خطرناک سبب بیماریهای قلبی، تهوع و حساسیت چشمی میشود. این ماده میتواند بیشتر جهت چربیزدایی از تجهیزات مورد استفاده در فرآیند شیمیایی تبدیل این ماده به اتان که مادهای بی ضرر است کاربرد داشته باشد. برای کاهش هزینهها، نانوذرات طلا را با لایهای از پالادیم میآلایند و از آن به عنوان کاتالیزور در نابودی تریکلرو اتیلن استفاده مینمایند. یکی دیگر از روشهای تصفیه آب که از روش پالادیم ارزانتر است، تزریق نانوذرات آهن به درون آبهای آلوده است، پس از تزریق، نانوذرات آهن با اکسیژن موجود در آب تبدیل به زنگ آهن شده و آلاینده ها در تماس با این زنگ آهن خنثی میشوند. برای مثال، تتراکلرید کربن که مادهی سمی بسیاری از شویندههاست، در تماس با این زنگ آهن تبدیل به کلروفرم که مادهای بیضررتر است میشود. نویسنده: گروه پژوهشی شرکت پويا پژوهش نانوفناور ویراستار: مریم ملکدار باشگاه نانو
-
- نانو
- نانو فناوری
-
(و 3 مورد دیگر)
برچسب زده شده با :
-
1- مقدمه فناوری نانو به عنوان یک فناوری نوظهور، ظرفیت و توانایی زیادی را برای متحول کردن ابزار و وسایل مورد استفادهی بشر دارد. امروزه، کاربردهای فناوری نانو در علوم و فناوریهای مختلف از تمام شاخههای علوم پزشکی، تغذیه و بهداشت گرفته تا کشاورزی و محیط زیست تا صنایع نساجی، ساخت و ساز، خودرو، حمل و نقل، ارتباطات، الکترونیک، صنایع نظامی و هوافضا مطرح میباشد. یافتههای فناوری نانو به عنوان یک فناوری گسترده، ابتدا تنها در تعدادی کتاب و مقاله یافت میشد. اما به تدریج، و با افزایش رشد کتابها و مقالات علمی و رشد فزایندهی دانش، عدهای با خلاقیت و نوآوری، و نیز شناخت فرصتهای بازار، دست به ابداعاتی زدند؛ و نمونههای واقعی از مواد و وسایلی ساختند که قبلاً در بازار وجود نداشت. شناخت فرصت، کشف و بهرهبرداری از آن موجب رشد بیشتر این فناوری شد. این وسایل و مواد جدید با خصوصیات و ویژگیهای جدید و شگفتانگیزی که داشتند به سرعت مورد توجه و علاقهی مخاطبان و مصرفکنندگان قرار گرفتند. پژوهشگران فناوری نانو با مطالعهی بازار، شناسایی و کشف فرصتهای موجود و شناخت توانایی عظیم این فناوری، سالهای بعد از سال 2000 را دوران رشد فزایندهی محصولات مبتنی بر فناوری نانو برآورد کردهاند. میزان سرمایهگذاریهای دولتها و شرکتهای بزرگ خصوصی در سالهای اخیر نیز نشانی بر این مدعا است. صنایع نساجی از صنایعی است که از ابتدای طرح فناوری نانو مورد توجه بسیار و علاقهی زیاد سرمایهگذاران قرار گرفت. اگر چه در آغاز، ایدههای محصولات مبتنی بر فناوری نانو، فقط در خیال علاقهمندان و ذهنهای خلاق قابلتصور بود، اما اکنون بسیاری از این ایدهها به مرحلهی تجاریسازی رسیده است و در بازار به فروش میرسد. ما در این مقاله به تعدادی از این محصولات اشاره میکنیم. اگر چه، شناخت کامل توسعهی فناوری نانو در صنایع نساجی مستلزم تلاش و کنکاش بسیاری است. شما با نگاه کردن به پیرامونتان میتوانید فرصتهای بسیاری برای رشد این فناوری نوظهور در صنایع نساجی پیشبینی نمایید. 2- کاربرد نانوذرات نقره ذرات یون نقره در مقیاس نانو (نانوذرات نقره یا همان nano silver) خواص ضد عفونیکننده یا آنتیباکتریال دارند. البته، خواص ضد عفونیکنندگی نقره از گذشته نیز شناخته شده بود. مثلاً قرار دادن ظروف نقرهای بر روی جراحات زخمیان جنگها، یا نگهداری شیر و لبنیات در ظروف نقرهای از نمونههای خواص آنتیباکتریال نقره است که در زمانهای گذشته نیز شناخته شده بود. اما کوچک شدن ذرات یون نقره موجب افزایش سطح نقره، و بنابراین افزایش واکنشپذیری آن میشود. پوشش دادن الیاف پارچهها با نانوذرات نقره موجب ایجاد خواص ضد عفونیکنندگی در پارچهها میشود. بدین ترتیب، باکتریها و قارچها امکان رشد و تکثیر نمییابند. این ویژگی، در مورد لباسها و پوششهایی که بیشتر در معرض عرق کردن هستند، مانند جوراب و کفش، موجب میشود که این لباسها و پوششها، علیرغم عرق کردن، بو نگیرند. شکل 1. استفاده از نانوذرات نقره در تهیهی جورابهای بدون بو هم اکنون چند شرکت ایرانی پارچهها و لباسهایی تولید میکنند که با نانو ذرات نقره پوشش داده شدهاند و خواص آنتیباکتریال دارند. 3- کاربرد نانوذرات اکسید سیلیکون سیلیس یا اکسید سیلیکون دارای خواص آبگریزی است. خاصیت آبگریزی موجب میشود که قطرات آب و برخی مایعات دیگر، از روی سطوحی که توسط این ماده پوشش داده شده، رانده میشود. این خاصیت به طور طبیعی در طبیعت نیز یافت میشود. لوتوس یا نیلوفر آبی، گیاهی است که برگهای آن به طور طبیعی، به دلیل ساختار نانومتری دارای خاصیت آبگریزی است و بنابراین، همواره خشک و تمیز میماند (شکل 2). پوشش دادن الیاف پارچهها و سطح لباسها با نانو ذرات اکسید سیلیکون، موجب میشود که سطوح مورد نظر خواص آبگریزی بیایند. در این شرایط، قطرات آب یا مایعات دیگر از این سطوح رانده میشوند و توسط آنها جذب نمیشوند. بنابراین، این سطوح همواره خشک هستند و ضمن این که تر نمیشوند، لک هم نمیشوند. شکل 2. برگ لوتوس (نیلوفر آبی) که به سبب خاصیت آبگریزی، همواره خشک و تمیز میماند. هم اکنون شرکتهایی در کشورمان هستند که الیاف و پارچه با خواص آبگریزی تولید میکنند. اخیراً، یک شرکت ایرانی افشانههایی تولید کرده که حاوی نانوذرات اکسید سیلیکون است. با افشردن این افشانهها بر روی سطوح پارچهها، این سطوح خاصیت آبگریزی مییابند. استفاده از این افشانهها بر روی فرشهای دستبافت، تابلو فرشهای گران قیمت و مبلها نیز میتواند مورد استفاده قرار بگیرد. 4- کاربرد نانوذرات رس نانوذرات رس جزء موادی است که به دلیل خواص جالب و شگفتانگیزی که داشت، از اوایل طرح فناوری نانو مورد توجه پژهشگران قرار گرفت. این نانوذرات در صنایع نساجی کاربردهایی دارند. یکی از این کاربردها، پوشش دادن الیاف پارچهها و سطوح لباسها با نانوذرات رس است. پوشش دادن پارچهها با نانوذرات رس، موجب میشود که این پارچهها در مقابل آتش بسیار مقاوم شوند و شعلهور نشوند. استفاده از این نانوذرات برای پوشش دادن لباسهای آتشنشانان و افرادی که در معرض آتش قرار دارند به منظور کاهش خطر آتشسوزی میتواند بسیار مفید باشد. هم اکنون شرکتهای ایرانیای هستند که توانایی پوشش دادن الیاف پارچهها را با نانوذرات رس دارند. 5- جمعبندی کاربردهای فناوری نانو در صنایع نساجی محدود به موارد گفته شده در این مقاله نیست. ما در این مقاله فقط به بخشی از کاربردهای فناوری نانو در صنایع نساجی اشاره کردیم. فناوری نانو با توانایی عظیم و ظرفیت بزرگی که در شکلدهی مواد با خواص جدید دارد، میتواند بستر رشد و جهش عظیمی را در صنایع نساجی فراهم آورد. ویراستار: مریم ملکدار منبع باشگاه نانو
-
- 3
-
- نانو
- نانو فناوری
-
(و 6 مورد دیگر)
برچسب زده شده با :
-
1. مقدمه فناوری نانو جنبههای مختلف دنیای امروز را تحت تأثیر خود قرار داده است. انتقال کنترل شده دارو به اندام هدف، یکی از کاربردهای مهم نانوفناوری است. میتوان داروها را به کمک حاملهای مختلف به اندام هدف رساند. استفاده از حاملهای مختلف به عنوان ناقلهای دارو در حال گسترش است. با روشهای معمول مصرف دارو، نظیر مصرف خوراکی و تزریقی، دارو به سراسر بدن توزیع خواهد شد، و تمام بدن تحت اثرات دارو قرار خواهد گرفت و عوارض جانبی دارو بروز خواهد کرد. بنابراین، برای دستیابی به یک اثر خاص، نیاز به مصرف مقادیر زیادی از دارو میباشد. با نانوفناوری می توان به دارورسانی هدفمند دست یافت و زمان، مکان و سرعت آزادسازی دارو در بدن را کنترل نمود. سیستمهای دارورسانی جدید عوارض جانبی کمتر، کارایی بیشتر و راحتی بیمار را به دنبال خواهند داشت. 2. نانو حاملها حاملهای مختلفی را میتوان به عنوان ناقلهای دارو در دارورسانی مورد استفاده قرار داد. از آنجا که دارو نقش درمانی دارد، باید تا رسیدن به محل هدف در بدن محافظت شود و خواص شیمیایی و بیولوژیکی خود را حفظ کند. برخی از داروها به شدت سمی بوده و میتوانند سبب اثرات جانبی منفی شده، و اگر حین آزاد شدن تخریب شوند، اثر درمانی آنها کاهش مییابد. به عنوان مثال؛ در شیمیدرمانی داروهای مصرفی تا حدی سمیاند، و افزایش مقدار آنها میتواند اثر معکوس بگذارد و حتی به مرگ بیمار بیانجامد. به بیان دیگر، اگر دارو بتواند مستقیما به بافت هدف برسد، و بر روی سایر قسمتهای بدن تاثیر نگذارد، به مراتب مؤثرتر خواهد بود. در ادامه به برخی از حاملها دارو اشاره خواهد شد. 2-1- مایسل یکی از حاملهایی که به طور گسترده در دارورسانی هدفمند به کار می رود، مایسل است. مایسلها از تجمع خودبخودی کوپلیمرهای آمفیفیلی در محلولهای آبی به وجود میآیند. مولکول آمفیفیلی پلیمر مولکول بسیار بزرگی است که از به هم پیوستن مولکولهای کوچک که مونومر نامیده میشوند، به وجود میآید. کلمه پلیمر از کلمه یونانی (Poly) به معنی چند و (Meros) به معنای واحد یا قسمت به وجود آمده است. این مولکولهای بلند، از اتصال و به هم پیوستن هزاران واحد کوچک مولکولی (مونومر) تشکیل شدهاند. سادهترین انواع پلیمرها، هموپلیمرها هستند که از زنجیرههای پلیمری متشکل از واحدهای تکراری منفرد تشکیل شدهاند. به این معنی که اگر A یک واحد تکراری باشد (منومر باشد)، یک زنجیره هموپلیمری، ترتیبی به صورت… AAA در زنجیره مولکولی پلیمر خواهد داشت. به عبارت دیگر، میتوان برای هموپلیمرها فرمول عمومی An را در نظر گرفت. هموپلیمرها به صورت خطی، شاخهای و مشبک میباشند. انواع هموپلیمرها حال آنکه کوپلیمرها، پلیمرهایی هستند که از پلیمریزاسیون دو یا چند مونومر مختلف و مناسب با یکدیگر به وجود میآیند. با این روش، میتوان پلیمرها را با ساختمانهای متفاوت به وجود آورد. کوپلیمرهای آمفیفیلی، کوپلیمرهایی هستند که بطور همزمان، دارای دو بخش آبگریز و آبدوست میباشند، و به همین جهت، به آنها آمفی فیلی یا دوقطبی میگویند. در حقیقت؛ مایسلها دارای یک سر آبدوست (قطبی) و یک دُم آبگریز (غیرقطبی) میباشند که در محلولهای آبی به صورت خودبخودی تجمع مییابند. مایسلها در محیط آبی به نحوی جهتگیری میکنند که انتهای آبگریز مایسلها از محلول آبی رانده شده و ایجاد یک فاز آبگریز داخلی یا هسته آبگریز نمایند. در حالی که انتهای آبدوست مایسلها به طرف خارج، یعنی محلول آبی متمایل شده و یک تاج آبدوست را به وجود خواهند آورد. مایسل از این رو، میتوان داروهای آبگریز را با قرارگیری آنها در داخل مایسل به بافت هدف رساند و اثرات جانبی موجود را کاهش داد. میتوان از مایسلها به عنوان ناقلها، جهت رساندن دوز زیاد داروهای ضدسرطانی به تومورها و بافت هدف استفاده نمود، و در عین حال اثرات جانبی آنها را به حداقل رساند. قرار گیری دارو در مایسل در نهایت؛ محتویات مایسلها (داروی موجود در آنها) تحت شرایط محیطی ویژه، نظیر دما، نور UV، اعمال میدان مغناطیسی یا pH در بافت هدف آزاد خواهند شد. شکل و اندازه مایسل، به طول زنجیر پلیمری، نوع شاخه یا گروه متصل به زنجیر، نوع الکترولیت، غلظت یونی، استحکام یونی، دمای موثر و pH بستگی دارد. 2-2- لیپوزمها یکی دیگر از ناقلهایی که به طور گسترده در دارورسانی هدفمند به کار می رود، لیپوزوم است. لیپوزومها از نوعی وزیکول با دو لایه لیپیدی، مشابه آنچه که در غشاء سلولی دیده میشود، تشکیل شدهاند. شکل زیر یک لیپید را نشان میدهد. مولکول لیپید به طور کلی، دو لایه لیپید در فاز آبی به گونهای جهتگیری میکنند که بخشی از فاز آبی در داخل محفظه کروی محصور شود و لیپوزوم حاصل گردد. در این میان، لیپیدها گروهی از ترکیبات شیمیایی با زنجیره آلکیلی غیرقابلانحلال در آب و گروه قطبی محلول در آب هستند. بنابراین، بخشی از این مولکول آبگریز، و بخش دیگر آبدوست است؛ که به مولکولی با چنین خاصیت دوگانهای، مولکول آمفیفیلی میگویند (شکل زیر). لیپوزوم به طور کلی لیپوزومها توانایی رساندن داروهای آبگریز، آبدوست و آمفیفیلی (دوگانهدوست) را دارند. در حقیقت، داروهای آبگریز در بخش غیرقطبی لیپوزوم قرار میگیرند. حال آنکه داروهای آبدوست در فاز آب داخلی لیپوزوم قرار خواهند گرفت، و داروهای آمفی فیلی (دوگانهدوست) در حد فاصل بخش آب داخلی و بخش آبگریز قرار خواهند گرفت. 2-3- نانوذرات ناقل دیگری که در دارورسانی هدفمند کاربرد فراوان دارد، نانو ذرات شامل نانوکپسول و نانواسفر است. این ناقلها قادر هستند که دارو را جذب و کپسوله نموده، و به این ترتیب دارو را علیه تخریب آنزیمی و شیمیایی محافظت نمایند. نانوکپسولها سیستمهای وزیکولی هستند که دارو را در حفرهای محصور کرده و با یک غشاء پلیمری احاطه میکنند. در حالی که در نانواسفرها، دارو به صورت فیزیکی و یکنواخت در ماتریس پلیمری پراکنده شده است، در حقیقت دارو در درون نانواسفر به صورت پراکنده قرار گرفته است. در سالهای اخیر، توجه قابل ملاحظهای به نانوذرات پلیمری زیستتخریبپذیر، به عنوان سیستمهای مناسب برای دارورسانی اختصاص یافته است. در شکل زیر، دارو که به صورت ذرات کروی قرمز رنگ نشان داده شده است، در درون نانوکپسول و نانواسفر جای گرفته است. راست: نانوکپسول- چپ: نانواسفر 2-4- درختسانها یکی دیگر از ناقلهای مورد استفاده در دارورسانی درختسان (دندریمر) میباشد. دندریمرها، ماکرومولکول باریک، شاخه شاخه و متقارن هستند که از یک هسته مرکزی، واحدهای منشعب شده به صورت درخت، و تعدادی گروه عاملی تشکیل شدهاند. هسته مرکزی و واحدهای داخلی آن، محیط داخل حفره برای قرارگیری دارو را به وجود میآورند. با اتصال گروههای عاملی هدفمند به سطح این ماکرومولکولها، میتوان حلالیت و رفتار شیمیایی آنها را کنترل کرد. در شکل زیر، دارو که به صورت ذرات کروی قرمز رنگ نشان داده شده است، در منافذ موجود در درون دندریمر جای گرفته است. دندریمر 2-5- کریستال مایع ناقل دیگری که در دارورسانی هدفمند مورد استفاده قرار میگیرد، کریستالهای مایع است. کریستالهای مایع از لحاظ مولکولی بین حالت جامد و مایع قرار دارند، در نتیجه همزمان خصوصیات جامد و مایع را دارا هستند. دارو میتواند در بین مولکولهای کریستال مایع کپسوله شده ( قرار گیرد) و با تغییر فاز در نتیجه اعمال محرک، دارو از سیستم آزاد خواهد شد. 3. نتیجهگیری نانوفناوری در دارورسانی از جمله موارد رو به گسترش است. نانوذرات مختلف دارویی با تغییر ناقلها حاصل خواهند شد، و امکان ایجاد تغییر در خصوصیات دارویی را به وجود خواهند آورد. به طور کلی، بازار نانودارورسانی به طور شگفتانگیزی رو به جلو میرود. از این رو، با استفاده از نانوفناوری میتوان به دارورسانی هدفمند دست یافت و با مصرف کمتر دوز دارو و کاهش اثرات جانبی، راحتی بیمار را بدست آورد. نویسنده: گروه پژوهشی شرکت پويا پژوهش نانوفناور ویراستار: مریم ملکدار منبع: باشگاه نانو
-
- 2
-
- نانو
- نانو فناوری
- (و 4 مورد دیگر)