رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'هیدروژن'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. Mehdi.Aref

    مقالات برق قدرت

    از این پس تو این تاپیک برخی از مقالات برق قدرت که از سایت های مختلف جمع آوری شده رو قرار میدیم .تمام دوستانی هم که مقالاتی در این زمینه دارند میتونن مقالات خودشونو ارسال کنند تا به نام خودشون در سایت قرار بگیره. امیدوارم مورد توجه دوستان قرار بگیره.
  2. Mohammad-Ali

    ذخیره سازهای انرژی

    روش ذخیره انرژی تلمبه ای: در این روش در زمان کم مصرفی آب پشت سد را به بالا پمپ میکنند و در زمان پرمصرفی آبی که در ارتفاع قرار گرفته را به پایین رها میکنند و انرژی پتانسیل ذخیره شده در آن پره‏های توربین را می‏چرخاند: روش ذخیره انرژی بوسیله فشرده سازی هوا یا Compressed Air Energy Storage (CAES): این روش به این ترتیب هست که در زمان کم‏باری انرژی تولیدی اضافی یک موتور پمپ هوا را می‏چرخاند و این هوا در داخل زمین محبوس میشود و زمانیکه به انرژی نیاز است این هوای فشرده که در داخل زمین گرم هم شده است یک ژنراتور را می‏چرخاند. ۲ مدل از این روش در نیروگاه‏های دنیا وجود دارد:۱) در نیروگاه Huntorf در کشور آلمان ۲)در آلابامای آمریکا حال سوالی که پیش می‏آید این است که چرا بیشتر از این روش استفاده نمیکنند و پاسخ آن در یک کلمه: هزینه. نسبت انرژی ذخیره شده بوسیله سوخت‏های فسیلی به قیمت این سیستم ذخیره کننده به صرفه نیست اما به شدت برای تولیدات حاصل از انرژی‏های تجدیدپذیر مفید است. برای مثال وزش باد در شب بسیار بیشتر است اما از این انرژی در روز بیشتر استفاده می‏شود یا خورشید که در روز است و در شب از این انرژی باید استفاده نمود میتوان به این روش انرژی را ذخیره کرد: استفاده از باتری‏های مقیاس بزرگ یا Grid battry storage: یکی دیگر از راه‏های ذخیره انرژی بویژه برای انرژی های نو استفاده از باتری‏ها میباشد ولی این روش نسبتا پرهزینه است و توانایی ذخیره‏سازی انرژی کمتری دارند: روش ذخیره انرژی بوسیله چرخ طیار یا FlyWeel اخیرا صنعت شاهد پیدایش مجدد یکی از قدیمی ترین تکنولوژی های ذخیره سازی انرژی یعنی فلایویل بوده است. چرخ طیار های جدید دارای اشکال متنوعی هستند. از چرخ طیار های کامپوزیتی که برای سرعت های دورانی بسیار بالا مناسب هستند گرفته تا چرخ های فولادی قدیمی که به موتور های دورانی کوپل می گردند. واحدی که یکی از جالب ترین گونه های چرخ طیارهای نوین و قدیمی می باشد. این سیستم در حالیکه فضایی در حدود ۱۱ فوت مربع را اشغال می کند قادر است توانی برابر ۵۰۰ کیلو وات را منتقل نماید.اساس کار آن نیز از یک قانون قدیمی ناشی شده و آن این است یک جسم در حال دوار به حرکت خود ادامه می‏دهد تا زمانیکه یک نیروی خارجی آن را متوقف سازد. چرخ طیارها نسبت به تکنولوژی های قدیمی ذخیره انرژی دارای برتری های خاصی می باشند. یکی از این برتری ها به ساختار ساده ذخیره انرژی در آنها بر می گردد. یعنی ذخیره انرژی به صورت انرژی جنبشی در یک جرم در حال دوران. سالها از این ایده برای نرم و یکنواخت کردن حرکت موتورها استفاده می شد. در بیست سال اخیر به تدریج یک منبع جدید انرژی در اختیار طراحان و مخترعان قرار گرفت و طراحان از این منبع جدید در وسایل نقلیه الکتریکی و تجهیزات کنترل ماهواره استفاده کردند.ایمنی بالا، حجم کم، سازگاری با محیط زیست، پایین بودن هزینه تعمیر و نگه داری و داشتن عمر مفید بالا و قابل پیشبینی. اخیرا برای کنترل و ثابت نگه داشتن سرعت وقتی که منبع اصلی انرژی به طور متناوب قطع و وصل می شود از چرخ طیار استفاده می گردد. به دلیل نارضایتی مصرف کنندگان از باطری های الکتروشیمیایی و از طرف دیگر به علت پایین بودن هزینه تولید و عمر مفید بالای چرخ طیار اکنون در بسیاری از سیستم ها از این وسیله استفاده میشود. پس از پیشرفت های پی در پی در زمینه ی الکترونیک قدرت اولین بار از چرخ طیار به عنوان محافظ رادار استفاده شد و امروزه یک ابزار قدرت مند و کم هزینه، در حجم بالا به بازار تجهیزات انتقال قدرت ارائه می شود: سیستم ذخیره انرژی مغناطیس ابررسانا ایده اصلی این سیستم این است که در صورت تزریق جریان مستقیم به یک مدار ابررسانا، این جریان بدون تلفات تا بینهایت در حلقه بسته این مدار گردش خواهد کرد؛ و زمانی که نیاز به انرژی داشته باشیم، می توان انرژی ذخیره شده در این مدار را به شبکه تزریق کنیم. سیستم ذخیره انرژی مغناطیس ابررسانا انرژی را در میدان مغناطیسی حاصل از شارش جریان در یک سیم پیچ ابررسانا ذخیره می¬کند. بخش اصلی این سیستم، سیم پیچ ابررسانای آن است که برای حفظ حالت ابررسانایی آن، باید سیم پیچ را به وسیله یک سیستم خنک کننده در دماهای بسیار پایین نگه داشت تا خاصیت ابررسانایی خود را حفظ نماید؛ به عنوان مثال می توان آن را در یک محفظه خلاء یا هلیم مایع قرار داد، بنابراین مقاومت الکتریکی آن به صفر می رسد. از آنجایی که در سیستم ذخیره انرژی مغناطیس ابررسانا انرژی الکتریکی را به صورت دیگری از انرژی، همچون انرژی جنبشی یا شیمیایی تبدیل نمی کنیم، بازده آن بسیار بالا می‌باشد. هیچ جزء متحرکی در این سیستم وجود ندارد و بنابراین طول عمر آن بسیار زیاد است و به تعمیرات و نگهداری اندکی نیاز دارد. همچنین زمان پاسخ آن بسیار اندک است و در حدود چند میلی ثانیه می باشد. یک SMES نمونه از سه قسمت تشکیل شده است: سیم پیچ ابررسانا، سیستم مدیریت قدرت و یخچال سرد شده. وقتی سیم پیچ ابررسانا شارژ می‌شود، انرژی مغناطیسی تخلیه نمی‌شود و می‌توان از آن به عنوان ذخیره ساز انرژی استفاده کرد. سیستم ذخیره انرژی ابرخازن یکی دیگر از روش های ذخیره مستقیم انرژی الکتریکی استفاده از ابرخازن ها است. ابرخازن ها انرژی الکتریکی را در میدان الکتریکی خازن که بین هر الکترود و الکترولیت تشکیل می شود، ذخیره می کنند. با پیشرفت تکنولوژی و کاربرد الکترولیت های با ثابت دی الکتریک بالا امکان افزایش ذخیره انرژی در ابرخازن ها میسر می شود. ظرفیت و چگالی انرژی ابرخازن ها هزار برابر بزرگتر از خازن های الکترولیتی است. در مقایسه با باتری ها، ابرخازن ها چگالی انرژی پایین تری دارند؛ اما ابرخازن ها می توانند دهها هزار بار شارژ و دشارژ شوند و نسبت به باتری ها نرخ شارژ و دشارژ بسیار سریع تری دارند. مهم ترین ایراد ابرخازن ها هزینه بالا و لزوم استفاده از مبدل DC به AC در آنهاست که این امر نیز به خودی خود موجب کاهش بازده و افزایش هزینه می گردد. با پیشرفت بیشتر تکنولوژی ابرخازن ها، جایگزینی آنها به جای باتری ها یا کاربردهای کیفیت توان، تأمین بارهای پیک لحظه ای و گسترش کاربردهای ولتاژ بالا می باشد. امروزه استفاده همزمان از ابرخازن ها و باتری ها برای ذخیره انرژی الکتریکی مطرح گردیده است؛ در این صورت سیکل های شارژ و دشارژ باتری کاهش یافته و طول عمر آن افزایش می یابد. سیستم ذخیره انرژی بر پایه هیدروژن: اخیراً توجه بسیاری به سیستم های ذخیره انرژی بر پایه هیدروژن معطوف گردیده است. عناصر اصلی تشکیل دهنده این سیستم عبارتند از واحد تولید هیدروژن، مخزن ذخیره هیدروژن و سیستم تبدیل انرژی شیمیایی هیدروژن به انرژی الکتریکی (پیل سوختی ). از پیل سوختی به عنوان جانشین آینده واحدهای سوخت فسیلی نام برده می شود. هیدروژن یک منبع انرژی تجدیدپذیر نیست، بلکه یک حامل انرژی است که توسط یک انرژی ثانویه تولید و نهایتاً با سوختن در پیل سوختی، انرژی شیمیایی ذخیره شده در خود را آزاد می نماید. به عنوان مثال می توان انرژی مازاد الکتریکی در ساعات غیرپیک را صرف الکترولیز آب نموده و هیدروژن حاصل را در مخازن مخصوص ذخیره کنیم تا در زمان مطلوب در پیل سوختی تولید انرژی الکتریکی نمائیم. هیدروژن به وفور در طبیعت یافت می شود و چگالی انرژی بسیار بالایی دارد؛ اما در عین حال ذخیره آن مشکل است. به دلیل تبدیل چندباره انرژی در این سیستم، بازده آن در مقایسه با سایر سیستم های ذخیره انرژی کمتر می باشد. از سوی دیگر روند متراکم کردن و تبدیل هیدروژن گازی به مایع جهت ذخیره، به انرژی زیادی نیاز دارد. کاربرد اصلی این سیستم ها در اتومبیل های برقی و تولید انرژی الکتریکی به وسیله پیل سوختی است. بسته به فشار مخزن و بازده ترکیب الکترولیز پیل سوختی، بازده این سیستم بین 60% تا 80% می باشد. ذخیره انرژی حرارتی ذخیره انرژی حرارتی ، شامل تعدادی فناوری مختلف می‌شود که می‌توانند انرژی حرارتی (سرما و گرما) را در دماهایی مابین 40- تا 400 درجه سانتیگراد و در قالب مواردی چون گرمای نمایان، گرمای نهان و با استفاده از واکنش‌های شیمیایی ذخیره نماید. ذخیره انرژی حرارتی مبتنی بر گرمای نمایان مبتنی بر گرمای ویژه ماده ذخیره شده در تانکرهای ذخیره حرارتی با عایق بندی بسیار عالی است. مهمترین ماده ذخیره شده آب است که کاربری خانگی و صنعتی هم پیدا کرده است. ذخیره زیرزمینی گرمای نمایان در دو حالت مایع و جامد نیز برای کاربردهای بزرگ مقیاس استفاده می‌شود. در هر صورت سیستم‌های ذخیره حرارتی مبتنی بر گرمای نمایان، بوسیله گرمای مخصوص ماده ذخیره شده محدود می‌باشند و وابسته به ماده استفاده شده دارند. موارد تغییر دهنده فاز می‌توانند با ارائه گرمای نهان تغییر فاز، ظرفیت گرمایی بیشتری را معرفی نمایند. ذخیره ترموشیمیایی می‌تواند حتی ظرفیت ذخیره بیشتری را معرفی نماید. واکنش‌های ترموشیمیایی می‌توانند اندوخته و برگشت گرما و سرمای مورد نیاز در کاربردهای مختلف را بوسیله واکنش‌های مختلف شیمیایی فراهم نمایند. در حال حاضر، سیستم‌های ذخیره انرژی حرارتی مبتنی بر گرمای نهان تجاری شده‌اند و دو نوع دیگر سیستم ذخیره سازی انرژی حرارتی، همچنان در حال تحقیق و گسترش هستند. منابع: [Hidden Content] [Hidden Content] ویکی پدیا گوگل جان بابا
  3. ◄ متان يا گريزو ( CH4 ) چگالي نسبت به هوا: 5545/0 خواص فيزيکي: بي بو ، بي رنگ ، بي مزه منابع توليد: لايه هاي زغال ، آتشباري ، موتورهاي احتراقي ، تجزيه مواد آلي آثار مضر: قابل انفجار ، خفه کننده روش تشخيص: دستگاههاي گازسنج (گريزومتر) ، چراغ اطمينان شعله اي علائم مشخصه: سمي نيست اما اگر مقدار آن از حد مجاز بيشتر شود باعث کاهش درصد اکسيژن در هوا مي شود. حداکثر عيار مجاز: 1 درصد عيار کشنده: در عيار 5 تا 15 درصد قابل انفجار ◄ هيدروژن سولفوره ( SH2 ) چگالي نسبت به هوا: 1912/1 خواص فيزيکي: بوي تخم مرغ گنديده ، بي رنگ ، ترش مزه منابع توليد: آب لايه ها ، گاز لايه ها ، آتشباري آثار مضر: سمي ، قابل انفجار روش تشخيص: بوي تخم مرغ گنديده ، دستگاههاي مخصوص علائم مشخصه: در عيار کم سبب سوزش چشم و در عيار زياد باعث فلج شدن سيستم اعصاب و مرگ ، در عيار 01/0 درصد پس از چند ساعت سبب مسموميت خفيف و در عيار 05/0 درصد بعد از 30 تا 60 دقيقه سبب مسموميت خطرناک و در عيار 1/0 درصد سبب مرگ فوري مي شود. حداکثر عيار مجاز: 002/0 درصد عيار کشنده: 1/0 درصد ◄ انيدريد سولفورو ( SO2 ) چگالي نسبت به هوا: 2636/2 خواص فيزيکي: بوي مشخص ، بي رنگ ، ترش مزه منابع توليد: احتراق کانيهاي گوگرددار ، آتشباري ، موتورهاي احتراقي ، آتش سوزي آثار مضر: سمي روش تشخيص: بوي گوگرد ، دستگاههاي مخصوص علائم مشخصه: مقدار کم آن باعث مختل شدن سيستم اعصاب به خصوص اعصاب چشم مي شود و در عيار 05/0 درصد خطر مرگ را در بر دارد. حداکثر عيار مجاز: 0005/0 درصد عيار کشنده: 1/0 درصد ◄ اکسيدهاي ازت ( NO و NO2 ) چگالي نسبت به هوا: 5895/1 خواص فيزيکي: بوي مشخص ، رنگ خرمايي ، تلخ مزه منابع توليد: آتشباري ، موتورهاي احتراقي آثار مضر: سمي روش تشخيص: رنگ خرمايي ، بوي مشخص ، دستگاههاي مخصوص ، روش شيميايي علائم مشخصه: سمي هستند ولي آثار آنها فوري نيست و ممکن است 20 تا 30 ساعت بعد عارض شود، تا عيار 0025/0 درصد بي خطرند ولي با افزايش عيار ، خطرناک خواهند شد و آثار مضري بر چشم ، بيني ، دهان و ششها خواهند داشت و در عيار 025/0 درصد سبب مرگ مي گردند. حداکثر عيار مجاز: 002/0 درصد عيار کشنده: 005/0 درصد ◄ منواکسيدکربن ( CO ) چگالي نسبت به هوا: 9672/0 خواص فيزيکي: بي بو ، بي رنگ ، بي مزه منابع توليد: آتشباري ، موتورهاي احتراقي ، احتراق ناقص ، اکسيداسيون زغال آثار مضر: سمي ، قابل انفجار روش تشخيص: دستگاههاي مخصوص علائم مشخصه: در عيار 1/0 درصد باعث سردرد و مسموميتهاي جزئي ، در عيار 15/0 تا 20/0 درصد سبب مسموميتهاي خطرناک و 20 تا 30 دقيقه تنفس در عيار 5/0 درصد منجر به مرگ مي گردد و در عيار 1 درصد سبب مرگ فوري خواهد شد. حداکثر عيار مجاز: 01/0 درصد عيار کشنده: 03/0 درصد ◄ دي اکسيدکربن ( CO2 ) چگالي نسبت به هوا: 5291/1 خواص فيزيکي: بي بو ، بي رنگ ، بي مزه ، اسيدي ، اختناق آور آثار مضر: خفه کننده روش تشخيص: تنفس ، دستگاههاي مخصوص ، چراغ اطمينان شعله اي علائم مشخصه: در عيار 1 تا 3 درصد سبب تندي تنفس ، در عيار 5 درصد تنفس خيلي شديد و مشکل مي شود. در عيار 10 درصد سبب بيهوشي و در عيار 20 تا 25 درصد منجر به مرگ مي گردد. حداکثر عيار مجاز: 5/0 درصد عيار کشنده: 18 درصد ◄ اکسيژن ( O2 ) چگالي نسبت به هوا: 1056/1 خواص فيزيکي: بي بو ، بي رنگ ، بي مزه منابع توليد: به حالت طبيعي در هوا وجود دارد. آثار مضر: غير سمي روش تشخيص: تنفس [آسان] ، دستگاههاي اکسيژن سنج ، چراغ اطمينان شعله اي علائم مشخصه: در عيار کمتر از 18 درصد باعث تسريع تنفس، در عيار کمتراز 14 درصد سبب استفراغ و ضعف ، در عيار کمتر از 10 درصد سبب کبودي رنگ بدن و حالت اغماء که ادامه تنفس منجر به مرگ تدريجي مي گردد. در عيار کمتر از 5 درصد سبب مرگ آني خواهد شد. حداکثر عيار مجاز: (حداقل) 5/19 درصد عيار کشنده: پايينتر از 6 درصد ◄ هيدروژن ( H2 ) چگالي نسبت به هوا: 0694/0 خواص فيزيکي: بي بو ، بي رنگ ، بي مزه منابع توليد: آبهاي اسيدي ، آتشباري ، شارژ باتري ها آثار مضر: سمي ، قابل انفجار روش تشخيص: دستگاههاي مخصوص علائم مشخصه: در عيار 4 درصد مخلوط قابل انفجار با هوا را تشکيل مي دهد و غالباً با هيدروکربورهاي سنگين در گاز زغال ديده مي شود. حداکثر عيار مجاز: -- عيار کشنده: در عيار 4 تا 74 درصد قابل انفجار منبع
  4. محاسبه ميزان پيش گرم كردن در جوشكاري به کمک سایت زیر می توان بر حسب گرمای ورودی، کربن تعادلی، مقدار هیدروژن و ضخامت قطعه، دمای پیش گرم قطعه پیش از جوشکاری را محاسبه کرد. [Hidden Content] .
  5. Peyman

    جوشکاری پلاسما

    به تناسب کاربرد روش های دستی و اتوماتیک جوشکاری، روش پلاسما، شیوه موثری برای تولید در مقیاس کوچک و افزایش دقت جوشکاری است. جوشکاری پلاسما از سال 1964 میلادی، با توجه به مزایای اصلی آن مانند کنترل و دقت بیشتر و تولید جوش هایی با کیفیت بالاتر به همراه استفاده از الکترودهای بادوام در کارهایی با حجم زیاد، توسعه یافت. اکنون از پلاسما برای جوشکاری هر چیزی استفاده می شود : ازوسایل جراحی و آشپزخانه ازطریق صنایع غذایی گرفته تا تعمیر پره های موتور جت. درواقع پلاسما گازی است که در دمای خیلی زیاد، گرم و یونیزه شده بطوریکه هادی جریان الکتریکی می شود . فرایند جوشکاری قوسی پلاسما شبیه GTAW (جوشکاری با الکترود تنگستنی به همراه گاز محافظ ) است که از پلاسما برای انتقال جریان الکتریکی لازم برای ایجاد قوس به قطعه کار استفاده می شود . قطعه کار براثر گرمای شدید قوس ، گداخته و ذوب می شود. انواع فلزاتی که می توانند توسط پلاسما جوش داده شوند عبارتند از : فولاد ضدزنگ، فلزات دیرگداز و دیگر فولاها: تیتانیم، تانتالیم، مس، برنج، طلا، نقره، الیاژی از آهن و نیکل و کبالت (kovar )و Inconel و zircalloy .
  6. mim-shimi

    هیدروژن

    هیدروژن صحنه آزمایش اولین بمب هیدروژنی در سال 1952 که توسط ایالات متحده در اقیانوس آرام انجام گرفت. در گوشه بالا سمت چپ جدول تناوبی اولین عنصر یعنی هیدروژن با عدد 1 قرار دارد. سالها قبل از آنکه دانشمندان این ماده را به عنوان یک عنصر خالص کشف کنند به روشهای مختلف آنرا تولید کرده و از آن استفاده می کردند. لاوازیه (Antoine Lavoisier, 1743 - 1794) شیمیدان فرانسوی هنگام تحقیقاتی که روی آب انجام می داد متوجه شد که آب از دو گاز تشکیل شده است، نام یکی را اکسِژن و نام دیگری را هیدروژن نهاد. همچنین هنری کاوندیش (Henry Cavendish, 1731-1810) دانشمند خجالتی انگلیسی در سال 1766 طی تحقیقات و آزمایشهایی که انجام میداد متوجه شد که هیدروژن یک عنصر مجزا می باشد. شاید بزرگترین خصیصه هیدروژن آن باشد که فراوان ترین عنصر در تمام عالم هستی می باشد. هیدروژن قابل اشتعال بوده حتما" تعجب خواهید کرد اگر بدانید که بنا بر برآوردهایی که انجام شده است حدود 90 درصد از اتمها و نیز حدود 75 درصد از جرم کل هستی از هیدروژن تشکیل شده است. این ماده در تمام ستاره ها وجود دارد و منبع اصلی تهیه انرژی ستاره ها بواسطه واکنش های هسته ای می باشد. از میان روشهای صنعتی تهیه هیدروژن می توانه به ترکیب بخار آب با کربن گداخته، تجزیه هیدروکربنها بوسیله حرارت، واکنش میان هیدروکسید سدیم یا پتاسیم با آلمینیوم، الکترولیز آب، ترکیب فلزات با اسیدها و ... نام برد. هیدروژن مایع برای مصارف برودتی کاربرد فراروان دارد و در مطالعات مربوط به ابر رسانا ها (Superconductors) بکار می رود. هیدروژن همچنین ماده اولیه سازنده سیاره غول پیکر مشتری (Jupiter) و سایر سیاره هایی است که حالت گازی دارند. جالب است بدانید که میزان فشار در مرکز چنین سیاراتی آنقدر زیاد می باشد که در آنجا نه تنها هیدروژن جامد وجود دارد بلکه فشار به حدی زیاد است که وجود هیدروژن بصورت فلز در این قسمت از اینگونه سیارات به اثبات رسیده است. تحقیقات دانشمندان آمریکایی در سال 1972 نشان داد که در فشارهای بالای 2Mbar هیدروژن می تواند به حالت فلز نمایان شود و قابلیت هدایت بسیار زیادی از خود نشان دهد. به دنبال آن در سال 1973 دانشمدان روسی موفق شدند که با فشاری معادل 2.8Mbar هیدروژن را بشکل و سختی فلز تهیه کنند و آزمایشهایی را بر روی قابلیت رسانایی این فلز انجام دهند. با وجود همه این مسائل در جو زمین میزان هیدروژن آنقدر زیاد نیست. دلیل عمده آن سبکی بیش از حد این ماده می باشد که توان ماندگاری این گاز در جو کره زمین را کم می کند. در روی زمین نیز هیدروژن علاوه بر آب در انواع سوخت های فسیلی (نفت، ذغال) و نیز ساختمان ارگانیک گیاهان و موجودات زنده وجود دارد. لازم به ذکر است که امروزه تحقیقات و آزمایشات دانشمندان برای جایگزینی سوختهای فسیلی با هیدروژن به نتایج قابل قبولی رسیده است و امید آن می رود که بزودی بتوان بصورت صنعتی از این ماده بعنوان یکی از منابع اصلی تولید انرژی استفاده کرد.
  7. امروزه گاز هيدروژن براي استفاده در موتورهاي احتراقي و وسايل نقليه الكتريكي باتري دار مورد بررسي قرار گرفته است . هيدروژن در دما و فشار طبيعي، يك گاز است و به اين علت، انتقال و ذخيره آن از سوخت هاي مايع ديگر، دشوارتر است. سامانه ‌هايي كه براي ذخيره هيدروژن توسعه يافته‌اند، عبارتند از: هيدروژن فشرده، هيدروژن مايع و پيوند شيميايي ميان هيدروژن و يك ماده ذخيره (براي مثال، هيدريد فلزات). با اين كه تاكنون هيچ سامانه حمل و نقل و توزيع مناسبي براي هيدروژن وجود نداشته، اما توانايي توليد اين سوخت از مجموعه متنوعي از منابع و خصوصيت پاك سوز بودن آن، هيدروژن را به سوخت جانشين مناسبي تبديل كرده است. هيدروژن يکي از ساده‌ترين و سبك‌ترين سوخت هاي گازي است که در فشار اتمسفري و دماي جوي حالت گاز دارد. سوخت هيدروژن همان گاز خالص هيدروژن نيست، بلكه مقدار كمي اكسيژن و ديگر مواد را نيز با خود دارد. منابع توليد سوخت هيدروژن شامل گاز طبيعي ، زغال سنگ ، بنزين و الكل متيليك هستند. فرآيند فتوسنتز در باكتري ها يا جلبك ها و يا شكافتن آب به دو عنصر هيدروژن و اكسيژن به كمك جريان الكتريسيته يا نور مستقيم خورشيد از آب، روش هاي ديگري براي توليد هيدروژن هستند. در صنعت و آزمايشگاه هاي شيمي، توليد هيدروژن به طور معمول با استفاده از دو روش شدني است: 1- الكتروليز 2- توليد گاز مصنوعي از بازسازي بخار يا اكسيداسيون ناقص. در روش الكتروليز با استفاده از انرژي الكتريكي، مولكول‌هاي آب به هيدروژن و اكسيژن تجزيه مي‌شوند. انرژي الكتريكي را مي‌توان از هر منبع توليد الكتريسيته كه شامل سوخت هاي تجديد پذير نيز مي‌شوند، به دست آورد. وزارت نيروي آمريكا به اين نتيجه رسيده است كه استفاده از روش الكتروليز براي توليد مقادير زياد هيدروژن در آينده مناسب نخواهد بود. روش ديگر براي توليد گاز مصنوعي، بازسازي بخار گاز طبيعي است. در اين روش، مي‌توان از هيدروكربن‌هاي ديگر نيز به عنوان ذخاير تامين مواد استفاده كرد. براي نمونه، مي‌توان زغال سنگ و ديگر مواد آلي (بيوماس) را به حالت گازي درآورد و آن را در فرآيند بازسازي بخار براي توليد هيدروژن به كار برد. از طرفي چون هيدروکربن هاي فسيلي محدود و رو به اتمام هستند، پس بهتر است ديد خود را به سمت استفاده از منابع تجديد شونده معطوف کنيم. گاز هيدروژن مي تواند هم از منابع اوليه تجديد پذير و هم از منابع تجديد ناپذير توليد شود. امروزه توليد گاز هيدروژن از منابع تجديد پذير به سرعت مراحل توسعه و رشد خود را مي پيمايد. اين در حالي است که توليد گاز هيدروژن از منابع تجديد ناپذير به ويژه منابع فسيلي به علت محدود بودن اين منابع روز به روز کاهش مي يابد. گاز هيدروژن در اثر واکنش هاي تخميري ميکروارگانيسم هاي زنده، به ويژه باکتري ها و مخمر ها روي بيوماس، توليد مي شود. بيوماس از منابع اوليه تجديد پذير است که از موادي مانند علوفه، ضايعات گياهان و فضولات حيوانات به دست مي آيد. در روند توليد گاز هيدروژن، باکتري هاي بي هوازي با استفاده از پديده تخمير، مواد آلي و آب را به گاز هيدروژن تبديل مي کنند. براي توليد هيدروژن به وسيله باکتري ها دو نوع تخمير وجود دارد: يک نوع تخمير نوري است که در آن به منبع نور نياز است و نوع ديگر، تخمير در تاريکي است که نيازي به نور ندارد. در اين واکنش ها منابع کربني زيادي استفاده مي شود که همگي از بيوماس تامين مي شوند. در طبيعت ميکروارگانيسم هاي بي هوازي در غياب اکسيژن و با استفاده از پديده تخمير، گاز هيدروژن توليد مي کنند، ولي مقدار اين گاز از نظر کمي پايين است و از نظر اقتصادي براي مصارف صنعتي و خانگي و ... قابل توجيه نيست؛ از اين رو بايد با استفاده از روش هايي، بازده توليد گاز هيدروژن را افزايش داد. يکي از روش هايي که مي توان بازده توليد گاز هيدروژن را بالا برد، تغييرات ژنتيک در ژنوم اين باکتري ها با استفاده از روش هاي مهندسي ژنتيک و بيوتکنولوژي است. روش ديگر، استفاده از ترکيبي از باکتري هاي هوازي و بي هوازي در کنار هم است. در اين روش چون باکتري هاي بي هوازي در فرآيند تخمير توليد اسيد هاي آلي مي کنند، رفته رفته محيط واکنش اسيدي مي شود و ph پايين مي آيد؛ از اين رو توليد هيدروژن کاهش مي يابد. ولي هنگامي که باکتري هاي هوازي در محيط باشند، از اسيد هاي آلي استفاده و آنها از محيط خارج مي کنند؛ در نتيجه راندمان توليد گاز هيدروژن بالا مي رود. تحقيق و توسعه وزارت نيروي آمريكا براي توسعه استفاده از هيدروژن دو برنامه اصلي را دنبال مي‌كند که يکي برنامه هيدروژن وزارت نيرو و ديگري شبكه اطلاعاتي تكنولوژي‌هاي هيدروژن است. هيدروژن، سومين انرژي فراوان بر روي سطح زمين است. همان طور كه به صورت ابتدايي در آب و تركيبات آلي يافت مي شود. هيدروژن از هيدروكربن ها يا آب به دست مي آيد و هنگامي كه به عنوان سوخت مصرف مي شود، يا براي توليد الكتريسيته از آن استفاده مي شود و يا با تركيب مجدد با اكسيژن توليد آب مي كند. از اين رو و با توجه به قابليت بالاي توليد انرژي در اين سوخت اخيراً تلاش هاي زيادي براي جانشين کردن اين سوخت صورت مي گيرد. مسائل ايمني هيدروژن از ديدگاه ايمني نيز مطمئن و مطلوب است و براي حمل ونقل ، نگهداري و استفاده، خطرناك تر از سوخت هاي رايج ديگر نيست. به هر صورت مسائل ايمني همچنان به عنوان يكي از اساسي‌ترين مقوله ها در استفاده از انرژي هيدروژن باقي مي ماند.استانداردهاي متداول دنيا امنيت استفاده از آن را با سختگيري در طراحي‌ و انجام آزمايش هاي متعدد فراهم مي آورد. همچنين در حوزة نگهداري و حمل آن، استانداردهاي بسياري براي تمام تجهيزات مرتبط تدوين شده است. اقتصاد هيدروژن براي هيدروژن به عنوان يك سوخت، سيستم توزيعي مناسبي وجود ندارد. با اين كه معمولاً انتقال از طريق خط لوله با صرفه‌ترين راه انتقال سوخت‌هاي گازي است، اما در حال حاضر سيستم خط لوله مناسبي موجود نيست. انتقال هيدروژن به طور خاص از طريق مخزن و تانكرهاي گاز صورت مي‌گيرد. استفاده از هيدروژن به عنوان سوخت به يك زير ساختار براي حمل ونقل و نگهداري و با توجه به مسائل ايمني و اقتصادي نياز دارد. ديدگاه ايجاد يك زير ساختار كه هيدروژن را به عنوان منبع انرژي مورد استفاده قرار مي‌دهد، مفهوم اقتصادي بودن اين طرح را پديد آورده كه بهترين راه جهت ايجاد تقاضاي بيشتر براي توليد و مصرف اين انرژي است، زيرا منابع توليد هيدروژن بسيار ارزان و دردسترس هستند. هيدروژن قابليت بالايي براي توليد انرژي دارد و ميزان آلودگي ناشي از مصرف اين سوخت در محيط زيست بسيار کم است. اين سوخت به عنوان منبعي تجديدپذير، پاک و فراوان تر از سوخت فسيلي مي تواند کاربرد زيادي براي نيروگاه ها و بخش حمل و نقل داشته باشد.
  8. محفظه کربنی برای ذخیره هیدروژن با استفاده از نانو تکنولوژی پیل های سوختی و سوخت هیدروژنی جوابگوی نیازهای سوختی نیستند . محققان نشان داده اند مدل کامپیوتری جدید شبیه توپ فوتبال که یک محفظه کربنی برای ذخیره هیدروژن می باشد را می توان به عنوان مخزن های بسیار ریز هیدروزن به کار برد . هیدروژن با همه ی انرژی پتانسیل بالایی که داراست بدلیل سبک بودن فاصله زیاد بین مولکولهای آن ، نمی توان مقدار زیادی از آن را بصورت گازی در مخزن معمولی ذخیره کرد و احتیاج به مخزن بسیار عظیمی دارد. همچنین رسیدن به دمای بسیار سرد هیدروژن مایع در محیط عادی ممکن نیست ( 423 - درجه فارنهایت ) اما با این طرح بجای داشتن مخازن بزرگ هیدروژن از میلیون ها و میلیارد ها مخزن بسیار ریز کربنی در مقیاس نانو می توانید استفاده کنید. به این مخزن بسیار کوچک Buckyball می گویند . [تصویر: hydrojen.jpg] ما در این بحث قصد داریم بدانیم که چند مولکول هیدروژن در یک مخزن کربنی جا می شوند. و فشار وارد بر دیواره های آن ها چقدر است و اصلا چرا از کره استفاده شده است ؟ فشار یا تنشی که مخزن می توند تحمل کند تا آنجایی است که دیواره بشکند . عکس نمایش داده شده مربوط به مخزن کروی است که صدها هزار بار ریز تر از دانه نمک است ، به خاطر این است که این مخزن خیلی محکم به نظر می رسد . ( بازوی گشتاور همچنین سطح مقطع برای تنش آن بسیار کوچک است.) همچنین کره تنها شکل هندسی می باشد که بیشترین حجم را در کمترین سطح جانبی دارد . پس مصالح کمتری برای ساخت این مخزن نسبت به حجمش لازم داریم و با سطح کمتر تنش وارد شده هم کمتر خواهد بود . همچنین مقدار تنش در همه ی جهات و قسمتهای آن یکسان می باشد برای همین راحت تر می توان با ضخیم کردن دیواره ی آن ، آن را مقاوم سازی کرد برای خلاف اشکال هندسی دیگر مثل استوانه و مکعب که بیشترین تنش را در مرزهای وجه های خود دارند و دشوارتر مقاوم سازی می شوند . همچنین کربن بیشتری لازم خواهند داشت. این ایده که می توان اتم ها را در محفظه های این چنینی قرار داد ، زیاد جدید نمی باشد اما به تازگی محققان توانسته اند فشار وارد بر دیواره را از طریق مدل کامپیوتری آن بدست آورند. فضای داخل Buckyball ساخته شده از 60 اتم کربن ، بگونه ای است که می تواند تنها 1 اتم هیدروژن را به راحتی داخل آن جا دهد. اما با اضافه کردن اتمهای بیشتر پیش بینی می شود دیواره های کره بتوانند تا 58 اتم هیدروژن را قبل از شکست جا دهند . ( تقریبا به اندازه فشار هیدروژن در هسته سیاره مشتری و زحل) این نوع از Buckyball برای ذخیره سوخت مناسب نیست ، چون کوچک است . اما می توان از مخازن بزرگتر استفاده کرد پوسته آن تقریبا تا همان اندازه قبلی کشش را تحمل می کند . مدل کردن محفظه 60 اتمی کربن برای ساخت مخازن حجیم تر که از هزاران اتم کربن تشکیل شده است به محققان کمک زیادی کرده است اندازه این مخازن در حدود چند نانومتر است . با چشم غیر مسلح چندین میلیارد از این محفظه ها مثل پودر خاکستری رنگ کربن شبیه گرد گرافیت دیده می شود. Buckyball ها در طبیعت هم یافت می شود مثلا دوده شمع که از بخار پارافین جدا می شود توسط محققان از سال 1980 در آزمایشگاهها مورد بررسی قرار گرفته است . این تحقیق در حال حاضر کاملا تئوری بوده است. هنوز کسی نمی داند که چگونه می توان هیدروژن را داخل این محفظه ها کرد و چگونه آن را دوباره از آن جا بیرون برد . دکتر Yakobsan مدیر این پروژه بر روی ذرات ریز استوانه ای شکل که محفظه مناسبی برای ذخیره هیدروژن می باشد کار می کنند به گفته ی او می توان از این پیستون برای متراکم کرد اتمهای هیدروژن داخل سیلندر نانو مقیاس استفاده کرد. این شکل از مخزن همچنین می تواند محل ذخیره ایزوتوپ های رادیو اکتیو برای درمان سرطان باشد . یا یک راه مناسب برای رسیدن به فشار بینهایت زیاد در آزمایشگاه مورد استفاده قرار گیرد. پروفسور Dennis Walter از دانشگاه آلاسکا که سوخت های جایگزین و پیل های سوختی را ارزیابی می کند ، می گوید از دید علمی و تئوری هیدروزن ماده بسیار عالی می باشد اما از دید مهندسی این محفظه ها و ذخیره و متراکم کردن هیدروژن و انتقال آن نیاز به مصرف انرژی دارد که از معایب این طرح می توان در نظر گرفت . از لحاظ علمی این دستاورد بسیار عالی می باشد اما استفاده از آن به عنوان سوخت اتوموبیل دور از تحقق به نظر می رسد.
×
×
  • اضافه کردن...