جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'محفظه'.
2 نتیجه پیدا شد
-
رآكتور (Reactor) چكيده: راكتور يك ظرف يا محفظه با شكل هاي مختلف مي باشد كه در آن واكنش شيميايي صورت مي گيرد و در آن مواد ورودي به محصولات تبديل مي شوند. راكتورها از لحاظ عملكردشان به گروههاي ريز تقسيم بندي مي شوند: راكتورهاي ناپيوسته ، راكتورهاي نيمه پيوسته ، راكتور هاي مخلوط شونده ، راكتورهاي لوله اي و راكتورهاي بستر سيال تقسيم بندي مي شوند. واكنش هاي شيميايي كه در داخل راكتور صورت مي گيرند به دو دسته كلي متجانس Homogenous و نامتجانس Heterogeneous تقسيم بندي مي شوند. سه پارامتر مهمي كه جهت توصيف عملكرد راكتور مورد استفاده قرار مي گيرد عبارتند از:درصد تبديل Conversion، انتخاب پذيري Selectivity، بازده راكتور Yield مقدمه: راكتور يك ظرف يا محفظه با شكل هاي مختلف مي باشد كه در آن واكنش شيميايي صورت مي گيرد و در آن مواد ورودي به محصولات تبديل مي شوند: كه به دو دسته پليمري و غيرپليمري تقسيم مي شوند. واكنش هاي شيميايي كه در داخل راكتور صورت مي گيرند به دو دسته كلي متجانس (Homogenous) و نامتجانس (Heterogeneous) تقسيم بندي مي شوند. واكنش هاي متجانس واكنش هايي هستند كه در آن تمام تركيب شوندگان در يك فاز كه ممكن است گاز، مايع و يا جامد باشد، موجود هستند . همچنين در صورتيكه واكنش كاتاليزوري باشد، كاتاليزور هم بايستي در همان فاز وجود داشته باشد . واكنش هاي نامتجانس ،واكنش هايي هستند كه براي انجام آنها حداقل دو فاز لازم باشد. متغيرهاي زيادي سرعت واكنش را تغيير مي دهند، در سيستم هاي متجانس ، دما ، فشار و غلظت متغيرهاي واضحي هستند. در سيستم هاي نامتجانس به دليل آنكه بيش از يك فاز وجود دارد و در طول واكنش مواد بايستي از يك فاز به فاز ديگر متصل شوند، علاوه بر دما، فشار و غلظت، سرعت انتقال جرم و سرعت انتقال حرارت نيز اهميت دارد. عملكرد راكتور براي راكتورها، سه پارامتر مهم جهت توصيف عملكرد راكتور مورد استفاده قرار مي گيرد: درصد تبديل Conversion: نسبت مقدار مواد واكنش دهنده مصرفي در راكتور به مقدار مواد واكنش دهنده اي به راكتور تغذيه مي باشد. اگر واكنش برگشت پذير باشد، حداكثر درصد تبديلي كه به آن مي توان رسيد درصد تبديل تعادلي ناميده مي شود. انتخاب پذيري Selectivity: نسبت مقدار محصول مطلوب توليد شده به مقدار مواد واكنش دهنده مصرفي در راكتور مي باشد. بازده راكتور Yield: مقدار محصول مطلوب توليد شده به مقدار مواد واكنش دهنده اي كه به راكتور تغذيه مي شود حال به بررسي متغيرهاي مهمي كه بر عملكرد راكتور تاثير دارند مي پردازيم. غلظت راكتور هنگامي كه بيش از يك ماده واكنش دهنده وجود داشته باشد، اغلب استفاده از مقدار بيش از نياز يكي از واكنش دهنده ها نتيجه مطلوبي بدست خواهد داد. مخصوصاً اگر بخواهيم يكي از مواد به طور كامل مصرف شود (به علت قيمت بالا يا خطرناك بودن(گاهي اوقات مناسب است كه يك ماده خنثي همراه با خوراك به راكتور تغذيه شود و يا قبل از پيشرفت كامل واكنش، محصول توليدي خارج شود. بعضي اوقات نيز استفاده از يك مسير برگشتي از فراورده هاي جانبي ناخواسته به راكتور مطلوب است. در مورد واكنش هاي برگشت ناپذير اگر يكي از تركيبات ورودي بيش تر از مقدار مورد نياز به واكنش وارد شود، مي تواند ماده ديگر را به سمت كامل كردن سوق دهد. به عنوان مثال، واكنش بين اتيلن و كلر براي توليد دي كلرواتان را در نظر بگيريد: C2H4 + Cl2 → C2H4Cl2 اگر از يك مقدار اتيلن اضافي جهت حصول اطمينان از تبديل كامل ماده كلر استفاده شود مشكل حضور كلر در سيستم جداسازي بعدي از بين مي رود. معمولاً در يك واكنش اگر يكي از اجزاء خطرناك تر باشد (مانند كلر در اين مثال) بايد از كامل شدن آن مطمئن شويم. اگر واكنش برگشت پذير باشد هدف افزايش درصد تبديل تعادلي مي باشد. اگر يكي از خوراك ها را به مقدار اضافي وارد كنيم مي توانيم درصد تبديل تعادلي را افزايش دهيم. گاهي اوقات با حذف مداوم محصول يا يكي از محصولات از راكتوري كه واكنش در آن در حال پيشرفت است، مي توان درصد تبديل تعادلي را افزايش داد. مثلا به وسيله تبخير كردن ماده اي از راكتور فاز مايع. يك راه ديگر اين است كه واكنش در مراحل پشت سر هم همراه با جداسازي محصولات در مراحل مياني صورت گيرد. دماي راكتور انتخاب دماي راكتور به عوامل زيادي بستگي دارد. عموماً اين انتخاب بايد به گونه اي باشد كه سرعت هاي زياد واكنش و حجم كمتر راكتور را ايجاد نمايد. به طور عملي محدوديت هايي در انتخاب دماي راكتور وجود دارد، از جمله ملاحظات ايمني، محدوديت هاي جنس ساختمان راكتور و يا حداكثر دماي عملكرد كاتاليست. برحسب نوع واكنش انتخاب دما متفاوت خواهد بود. واكنشهاي گرماگير اگر يك واكنش گرماگير باشد، عملكرد در دماي بالا باعث افزايش درصد تبديل مي شود . همچنين دماي بالا، سرعت واكنش را زياد و حجم راكتور را كم مي كند. بنابراين براي واكنش هاي گرماگير تاآنجا كه ممكن است، درجه حرارت بالا در نظر گرفته مي شود به گونه اي كه با ملاحظات ايمني، محدوديت هاي جنس ساختمان راكتور و عمر كاتاليست مطابقت داشته باشد. واكنش هاي گرمازا براي واكنش هاي برگشت ناپذير گرمازا، تا آنجا كه ممكن است، با توجه به ساختمان مواد، عمر كاتاليست و مسائل ايمني، بايد درجه حرارت را پايين در نظر گرفت. در اين صورت حجم راكتور حداقل خواهد شد. چنانچه واكنشي گرمازا و برگشت پذير باشد، عملكرد در دماي پايين حداكثر مقدار درصد تبديل را افزايش مي دهد. ليكن عملكرد در دماي پايين سرعت واكنش را كاهش مي دهد و در نتيجه باعث افزايش حجم راكتور خواهد شد. بنابراين در ابتداي واكنش يعني هنگامي كه از حالت تعادل دور هستيم؛ استفاده از درجه حرارت بالا به منظور افزايش سرعت واكنش برتري دارد. اما همانطور كه با گذشت زمان به حالت تعادل نزديك مي شويم، براي افزايش مقدار حداكثر درصد تبديل بايد درجه حرارت را پايين آورد. لذا براي واكنش هاي برگشت پذير گرمازا، همانطور كه درصد تبديل زياد مي شود، درجه حرارت ايده آل به طور مداوم كاهش مي يابد. اگر در راكتور همراه واكنش اصلي واكنش هاي ديگري نيز صورت گيرد كه باعث توليد محصولات جانبي شوند، بايد در دمايي عمل كرد كه ميزان توليد محصول اصلي بيشتر باشد. اين كار اغلب به حداقل كردن حجم راكتور ترجيح دارد.
-
محفظه کربنی برای ذخیره هیدروژن با استفاده از نانو تکنولوژی
EN-EZEL پاسخی ارسال کرد برای یک موضوع در مباحث پیشرفته مکانیک
محفظه کربنی برای ذخیره هیدروژن با استفاده از نانو تکنولوژی پیل های سوختی و سوخت هیدروژنی جوابگوی نیازهای سوختی نیستند . محققان نشان داده اند مدل کامپیوتری جدید شبیه توپ فوتبال که یک محفظه کربنی برای ذخیره هیدروژن می باشد را می توان به عنوان مخزن های بسیار ریز هیدروزن به کار برد . هیدروژن با همه ی انرژی پتانسیل بالایی که داراست بدلیل سبک بودن فاصله زیاد بین مولکولهای آن ، نمی توان مقدار زیادی از آن را بصورت گازی در مخزن معمولی ذخیره کرد و احتیاج به مخزن بسیار عظیمی دارد. همچنین رسیدن به دمای بسیار سرد هیدروژن مایع در محیط عادی ممکن نیست ( 423 - درجه فارنهایت ) اما با این طرح بجای داشتن مخازن بزرگ هیدروژن از میلیون ها و میلیارد ها مخزن بسیار ریز کربنی در مقیاس نانو می توانید استفاده کنید. به این مخزن بسیار کوچک Buckyball می گویند . [تصویر: hydrojen.jpg] ما در این بحث قصد داریم بدانیم که چند مولکول هیدروژن در یک مخزن کربنی جا می شوند. و فشار وارد بر دیواره های آن ها چقدر است و اصلا چرا از کره استفاده شده است ؟ فشار یا تنشی که مخزن می توند تحمل کند تا آنجایی است که دیواره بشکند . عکس نمایش داده شده مربوط به مخزن کروی است که صدها هزار بار ریز تر از دانه نمک است ، به خاطر این است که این مخزن خیلی محکم به نظر می رسد . ( بازوی گشتاور همچنین سطح مقطع برای تنش آن بسیار کوچک است.) همچنین کره تنها شکل هندسی می باشد که بیشترین حجم را در کمترین سطح جانبی دارد . پس مصالح کمتری برای ساخت این مخزن نسبت به حجمش لازم داریم و با سطح کمتر تنش وارد شده هم کمتر خواهد بود . همچنین مقدار تنش در همه ی جهات و قسمتهای آن یکسان می باشد برای همین راحت تر می توان با ضخیم کردن دیواره ی آن ، آن را مقاوم سازی کرد برای خلاف اشکال هندسی دیگر مثل استوانه و مکعب که بیشترین تنش را در مرزهای وجه های خود دارند و دشوارتر مقاوم سازی می شوند . همچنین کربن بیشتری لازم خواهند داشت. این ایده که می توان اتم ها را در محفظه های این چنینی قرار داد ، زیاد جدید نمی باشد اما به تازگی محققان توانسته اند فشار وارد بر دیواره را از طریق مدل کامپیوتری آن بدست آورند. فضای داخل Buckyball ساخته شده از 60 اتم کربن ، بگونه ای است که می تواند تنها 1 اتم هیدروژن را به راحتی داخل آن جا دهد. اما با اضافه کردن اتمهای بیشتر پیش بینی می شود دیواره های کره بتوانند تا 58 اتم هیدروژن را قبل از شکست جا دهند . ( تقریبا به اندازه فشار هیدروژن در هسته سیاره مشتری و زحل) این نوع از Buckyball برای ذخیره سوخت مناسب نیست ، چون کوچک است . اما می توان از مخازن بزرگتر استفاده کرد پوسته آن تقریبا تا همان اندازه قبلی کشش را تحمل می کند . مدل کردن محفظه 60 اتمی کربن برای ساخت مخازن حجیم تر که از هزاران اتم کربن تشکیل شده است به محققان کمک زیادی کرده است اندازه این مخازن در حدود چند نانومتر است . با چشم غیر مسلح چندین میلیارد از این محفظه ها مثل پودر خاکستری رنگ کربن شبیه گرد گرافیت دیده می شود. Buckyball ها در طبیعت هم یافت می شود مثلا دوده شمع که از بخار پارافین جدا می شود توسط محققان از سال 1980 در آزمایشگاهها مورد بررسی قرار گرفته است . این تحقیق در حال حاضر کاملا تئوری بوده است. هنوز کسی نمی داند که چگونه می توان هیدروژن را داخل این محفظه ها کرد و چگونه آن را دوباره از آن جا بیرون برد . دکتر Yakobsan مدیر این پروژه بر روی ذرات ریز استوانه ای شکل که محفظه مناسبی برای ذخیره هیدروژن می باشد کار می کنند به گفته ی او می توان از این پیستون برای متراکم کرد اتمهای هیدروژن داخل سیلندر نانو مقیاس استفاده کرد. این شکل از مخزن همچنین می تواند محل ذخیره ایزوتوپ های رادیو اکتیو برای درمان سرطان باشد . یا یک راه مناسب برای رسیدن به فشار بینهایت زیاد در آزمایشگاه مورد استفاده قرار گیرد. پروفسور Dennis Walter از دانشگاه آلاسکا که سوخت های جایگزین و پیل های سوختی را ارزیابی می کند ، می گوید از دید علمی و تئوری هیدروزن ماده بسیار عالی می باشد اما از دید مهندسی این محفظه ها و ذخیره و متراکم کردن هیدروژن و انتقال آن نیاز به مصرف انرژی دارد که از معایب این طرح می توان در نظر گرفت . از لحاظ علمی این دستاورد بسیار عالی می باشد اما استفاده از آن به عنوان سوخت اتوموبیل دور از تحقق به نظر می رسد.