جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'راکتور'.
8 نتیجه پیدا شد
-
جزوه انتقال جرم فصل اول و دوم
- 139 پاسخ
-
- evaporation humidification
- heat transfer calculation
-
(و 112 مورد دیگر)
برچسب زده شده با :
- evaporation humidification
- heat transfer calculation
- high temperature heat exchanger project
- introduction to hysys simulation
- packed bed columns
- pfd واحد اسید نیتریک
- thermo
- فرآيند
- فرایندهای پتروشیمی جزوه
- كنترل
- مقدمه ای برای آنالیز cfd
- مهندسی شیمی
- مهندسی شیمی مهندس رزمی
- مکانیک
- مکانیک سیالات
- مکانیک سیالات وحل تمرین
- مجموعه جزوات مهندسی شیمی
- محاسبات پالایش
- وسایل متحرک عملیات مهندسی شیمی
- وسایل ثابت عملیات
- کنترلرهای منطقی قابل برنامه ریزی
- کاربرد ریاضیات در مهندسی شیمی
- کاربرد ریاضیات در مهندسی شیمی مهندس رزمی
- کتاب وجزوه مهندسی شیمی
- کتابهای مهندسی شیمی
- گاز و گاز مایع
- گذری بر سیالات دوفازی
- گزارش کاملی از کارکرد برج تقطیر اتمسفریک
- پلیمر
- پالایش فرایند
- آموزش های گمبیت
- آموزش دینامیک مش
- آشنایی با واحد lpg
- آشنایی با عملیات نمک زدایی نفت
- آشنایی با عملیات چاههای گازی
- آشنایی با عملیات بهره برداری نفت
- اموزش مکانیک سیالات
- اموزش ریاضی 1 به کمک حل مسئله
- انتقال
- انتقال حرارت
- انرژي آزاد گيبس
- ازمایشگاه یونیت
- اصول تقطیر
- تقطیر
- توابع ترموديناميکي براي سيستمهاي متداول
- توربین های گازی
- ترمودینامیک
- جرم
- جزوه
- جزوه فرآیندهای پالایش
- جزوه فرایند
- جزوه فرایند های پتروشیمی
- جزوه فرایند پتروشیمی
- جزوه مکانیک سیالات
- جزوه مکانیک سیالات 2
- جزوه مکانیک سیالات 2 ویژه رشته مهندسی شیمی
- جزوه ی آموزشی نرم افزار htri
- جزوه ی انتقال حرارت
- جزوه کاربرد ریاضیات در مهندسی شیمی
- جزوه کاربرد ریاضیات در مهندسی شیمی مهندس رزمی
- جزوه پلیمر
- جزوه آزمایشگاه یونیت
- جزوه آزمایشگاه یونیت مهندسی شیمی
- جزوه اصول تقطیر
- جزوه دکتر عظیمی
- جزوه درسی مکانیک سیالات
- جزوه درسی ریاضی مهندسی
- جزوه شیمی فیزیک
- جزوه شیمی فیزیک دانشگاهmit
- جزوه شیمی تجزیه
- جزوه عملیات واحد
- جزوه عملیات واحد به زبان اصلی
- جزوه عملیات واحد جزوه دکتر عظیمی
- جزوات مهندسی شیمی
- خوردگی داخلی وخوردگی خارجی
- دانلود
- دانلود هندبوک جزوه کتاب مهندسی شیمی پتروشیمی
- دانلود هندبوکهای مهندسی شیمی
- دانلود کتاب فرایندهای پتروشیمیایی
- دانلود کتابهای مهندسی شیمی
- دانلود جزوه فرایندهای پتروشیمی
- دانلود جزوه مهندسی شیمی
- دانلود جزوه مکانیک سیالات
- دانلود جزوه محاسبات پالایش
- دانلود جزوه ومقاله
- دانلود جزوه اموزشی انتقال جرم
- دانلود جزوه انتقال حرارت
- دانلود جزوه انتقال حرارت برای مهندسین شیمی
- دانلود جزوه اصول تقطیر
- دانلود جزوه درسی
- دانلود جزوه درسی واموزشی ریاضی
- دانلود جزوه ریاضی
- دانلود جزوه شیمی فیزیک دانشگاهmit
- دانلود جزوه شیمی تجزیه
- دانلود جزوات مهندسی شیمی
- دانلود جزوات ومقالات مهندسی شیمی
- دانلودجزوه کاربرد ریاضیات در مهندسی شیمی
- دانلودجزوه آزمایشگاه یونیت
- دانلودجزوه حل تمرین ریاضی1
- دانشگاه صنعتی شریف
- درخواست نرم افزارهای مهندسی شیمی
- درخواست کتاب وجزوه مهندسی شیمی
- ریاضی1
- ریاضی2
- ریاضیات مهندسی
- ریاضیات در مهندسی شیمی
- راکتور
- سیلات درمهندسی شیمی
- سینتیک
- سیالات
- سیالات 2 ویژه رشته مهندسی شیمی
- شیمی
- طراحی
- عملیات واحد
-
راكتور نيمه پيوسته (Semi Batch Reactor)
spow پاسخی ارسال کرد برای یک موضوع در اطلاعات تخصصي آشنايي با پالايشگاه ها
راكتور نيمه پيوسته (Semi Batch Reactor) راكتورهاي نيمه پيوسته نيز همان محدوديت هاي راكتور ناپيوسته را دارد. از امتيازات راكتور هاي نيمه پيوسته كنترل خوب حرارت و كنترل واكنش هاي نامطلوب و محدود كردن توليد محصولات ناخواسته مي باشد . اين عمل از طريق وارد كردن تدريجي يكي از اجزاء تركيب شونده با غلظت كم ميسر مي گردد . راكتور هاي نيمه پيوسته اغلب براي واكنش هاي دوفازي كه يكي از اجزاء تركيب شونده گاز باشد مورد استفاده قرار مي گيرد و جزء گازي به صورت حباب به داخل فاز مايع درون راكتور تغذيه مي گردد .(شكل 4 ) شكل 4 - مراحل كاركرد يك راكتور ناپيوسته شكل 5 - راكتور نيمه پيوسته شكل 6 - راكتور نيمه پيوسته -
دانلود جزوه اموزشی اصلاح ضریب توان راهنمای اصلاح ضریب توان همه چیز در خصوص جبران سازی توان راکتیو برای استفاده مهندسان مشاور و کاربران Everything on the subject of power factor correction for consulting engineers and users جزوه اموزشی راهنمای اصلاح ضریب توان یا راهنمای جبرانسازی توان راکتیو نوشته مهندس حسین شهابی وتهیه شده توسط شرکت فراکوه میباشد و یکی از بهترین منابع اموزشی در زمینه توان راکتیو واصول اصلاح ضریب توان میباشد. درادامه فهرست مطالب این جزوه اموزشی 53 صفحه ای را مشاهده میفرمایید: اصول توان اکتیو توان اکتیو و راکتیو توان راکتیو توان ظاهری ضریب توان چرا جبران سازی؟ انواع جبران سازی جبران سازی انفرادی جبران سازی گروهی جبران سازی مرکزی جبران سازی ترکیبی تعیین خازن موردنیاز براساس تعرفه های توان به وسیله اندازه گیری از طریق خواندن کنتور به وسیله قبض برق کاربردها جبران سازی گروهی جبران سازی انفرادی ترانس جبران سازی انفرادی موتور رگولاسیون توان راکتیو مشخصات توان خازن های قدرت رگولاتور توان اکتیو نصب ترانس جریان فیوزها و کابل سیم حفاظت فرمول های محاسبات برای خازن هارمونیک ها هارمونیک چیست؟ چگونگی ایجاد هارمونیک؟ دامنه هارمونیک ها پیش از نصب خازن چقدر هستند؟ تاثیر هارمونیک ها بر تجهیزات جبران سازی بدون راکتور رزونانس چه زمانی به وجود می اید؟ تاثیر ارایش شبکه اضافه ولتاژ وجریان هارمونیکی تجهیزات جبران سازی چگونگی جبران سازی در حضور هارمونیک اندازه گیری برای اجتناب از وقوع رزونانس برای دانلود جزوه اموزشی اصلاح ضریب توان به لینک زیر مراجعه فرمایید: دانلود کنید. پسورد : [Hidden Content]
-
- 4
-
- power factor correction
- مهندسی برق
- (و 12 مورد دیگر)
-
[TABLE] [TR] [TD=width: 5%]نام تجهیز :[/TD] [TD=class: data]راكتور پلیمریزاسیون (Polymerization reactor)[/TD] [/TR] [TR] [TD=class: data, colspan: 2] واكنشهای پلیمریزاسیون با توجه به تنوع تولیدشان از استفاده كننده های عمده راكتورها به شمار می روند. البته ساختار كلی راكتورها تفاوت چندانی با راكتورهای سایر مواد ندارد: اما با توجه به اهمیت این واكنشها، مطالبی در این مورد بیان می شود. انواع راكتورهای پلیمریزاسیون [/TD] [/TR] [/TABLE] [TABLE] [TR] [TD=width: 5%]نام تجهیز :[/TD] [TD=class: data]راكتور پلیمریزاسیون (Polymerization reactor)[/TD] [/TR] [TR] [TD=class: data, colspan: 2] واكنشهای پلیمریزاسیون با توجه به تنوع تولیدشان از استفاده كننده های عمده راكتورها به شمار می روند. البته ساختار كلی راكتورها تفاوت چندانی با راكتورهای سایر مواد ندارد: اما با توجه به اهمیت این واكنشها، مطالبی در این مورد بیان می شود. انواع راكتورهای پلیمریزاسیون راكتورهای متنوعی برای انجام واكنشهای پلیمریزاسیون بكار میروند. این راكتورها و كاریرد آن در جدول زیر آورده شده است. تعاریف و بیان تفاوتها در راكتورهای ناپیوسته (Batch Reactors) تمامی اجزاء مخلوط واكنش به راكتور وارد می شوند و تا پایان واكنش در راكتور باقی می مانند. معمولاً در ابتدای پلیمریزاسیون در راكتورهای ناپیوسته یك گرم كن وجود دارد كه طی آن دمای مخلوط به دمای لازم برای شروع واكنش افزایش داده می شود. سپس واكنش پلیمریزاسیون شروع شده و به علت گرمازایی قابل توجه آن دمای مخلوط واكنش می تواند افزایش یابد به همین دلیل در راكتورهای ناپیوسته باید قابلیت گرم و سرد كردن سریع و كافی و همچنین سیستم كنترل درجه حرارت موثر پیش بینی گردد. فرایندهای ناپیوسته برای پلیمریزاسیون با درجه تبدیل بالا مناسب است. از طرف دیگر این سیستمها برای بروز انفجار حرارتی مستعد هستند. فرایندهای ناپیوسته عمدتاً در زمینه پلیمریزاسیون رادیكالی به كار می روند. راكتور نیمه ناپیوسته (Semi Continuous Reactors) یا (Semi Batch): در راكتورهای نیمه پیوسته مواد برخی از مواد واكنش كننده ممكن است به تدریج به راكتور اضافه شوند . یا آنكه محصولات جانبی تولید شده در طی واكنش از راكتور خارج گردند. در بسیاری از پلیمریزاسیونهای رادیكالی معمول است كه منومر، حلال و یا شروع كننده را به منظور حفظ درجه حرارت و افزایش سرعت تولید به تدریج به راكتور اضافه می كنند . اضافه كردن تدریجی كومنومر در كوپلیمریزاسیون نیز وقتی كه اختلاف فعالیت منومرها زیاد است از جمله كاربردهای این فرایند است. در پلیمریزاسیونهای نیمه پیوسته ممكن است كه تمامی مواد واكنش كننده در ابتدای واكنش به راكتور اضافه گردند ولی قبل از تشكیل محصولات جانبی ، باید از راكتور خارج شو ند. پلیمریزاسیونهای مرحله ای از این نوع سیستمها هستند. تبخیر محصولات جانبی یك عامل موثر در جذب حرارت واكنش است كه در برخی از موارد می تواند به قدری شدید باشند كه باعث افت دمای واكنش گردد . در این حالت برای جبران حرارت از دست رفته حتی ممكن است نیاز به حرارت دهی نیز باشد . راكتورهایی كه برای فرایند نیمه پیوسته مورد استفاده قرار می گیرند مشابه با راكتورهای ناپیوسته است با این تفاوت كه امكان افزایش مداوم مواد اولیه به آن و یا خروج محصولات جانبی از آن پیش بینی شده است. در راكتورهای پیوسته(Continuous Reactors) مواد واكنش دهنده با شدت جریان ثابت به درون راكتور رانده شده و محصولات نیز به طور مداوم از راكتور خارج می گردند. پس از راه اندازی یك راكتور پیوسته، راكتور پس از عبور از یك حالت انتقالی به یك شرایط پایدار می رسد. در این شرایط شدت حرارت زائی سیستم نیز به مقدار ثابتی می رسد. فرایندهای مداوم عملیات آسان تر و هزینه كمتری دارد و هنگامی كه ظرفیت تولید بالا باشد مورد استفاده قرار می گیرند. در موارد خاص پلیمریزاسیون در راكتورهای ناپیوسته كه دارای انعطاف پذیری بیشتری برای تولید پلیمرهایی با درجا ت تبدیل مختلف هستند، انجام می گیرد. فرایندهای پیوسته در راكتورهای همزن دار (Continuous Stirred Tank Reactors ,CSTR) و راكتورهای لوله ای (Tubular Reactor) قابل انجام است. راكتورهای همزن دار پیوسته مشابه با راكتورهای ناپیوسته هستند با این تفاوت كه امكان ورود مداوم مواد اولیه به آنها و خروج محصول نهایی از آنها پیش بینی شده است.در شكل نمونه ای از راكتور همزن دار را مشاهده می كنید. شكل 18 - شمایی از راكتور لوله ای از راكتورهای همزن دار پیوسته به صورت سری (Cascade) در صنعت برای پلیمریزاسیون امولسیونی مثل وینیل كلراید و وینیل استات استفاده می گردد. در راكتورهای لوله ای به منظور جذب حرارت آزاد شده، قطر راكتور همواره كوچك اختیار می شود.در شكل زیر نمونه ای از این نوع را می بینید. انجام فرایندهای مختلف پلیمریزاسیون در راكتورهای پلیمریزاسیون شكل 19 – راكتور CSTR تكنولوژی پلیمریزاسیون جرمی برای پلیمریزاسیونهای با رشد مرحله ای، مرسوم است، زیرا به واسطه كمی انرژی آزاد شده، جذب حرارت به سهولت انجام می پذیرد. به علت پایین بودن ویسكوزیته تا درجات تبدیل بالا، اختلاط نیز به نحو موثری قابل انجام است . حرارت آزاد شده قابل توجه و افزایش سریع ویسكوزیته در پلیمریزاسیون با رشد زنجیری، كارایی تكنولوژی جرمی را برای این نوع مكانیسم پلیمریزاسیون كاهش می دهد .زیرا بر خلاف حالت قبل، افزایش سریع ویسكوزیته و در نتیجه عدم امكان كنترل درجه حرارت، دستیابی به درجات تبدیل بالا را مقدور نمی سازد. محلول پلیمریزاسیون جرمی از درجه خلوص بالایی برخوردار بوده و عملیات تخلیص كمتری را می طلبد. انجام پلیمریزاسیون در حضور یك حلال از مشكلات انتقال حرارت و اختلاط می كاهد. پلیمر و منومر در داخل حلال محلول هستند . علاوه بر این ویسكوزیته كمتر سبب بهبود اختلاط و كارایی شروع كننده می گردد. مهمترین نقطه ضعف این روش هزینه جداسازی حلال و بازیابی آن است . ویسكوزیته سیستم پلیمریزاسیون تعلیقی در طول واكنش نسبتاً ثابت باقی مانده و عمدتاً به وسیله ویسكوزیته فاز مداوم(آب) تعیین می گردد. اغلب پلیمرها دارای دانسیته بیشتری نسبت به منومرهای خود هستند. به این جهت در پلیمریزاسیون تعلیقی سیستم اختلاط باید به گونه ای انتخاب گردد كه در ابتدا منومرهای از سطح به زیر كشیده شده و در داخل فاز آبی پراكنده شوند و در انتها از ته نشینی ذرات جامد پلیمری جلوگیری به عمل آورده و آنها را به طور یكنواخت در داخل فاز پیوسته پراكنده سازد. فاز پیوسته به عنوان عامل انتقال حرارت عمل نموده و در نتیجه كنترل درجه حرارت در این فرایند ساده تر از نوع جرمی است. چسبندگی و رسوب پلیمر نیز به مراتب كمتر از فرایند جرمی مشاهده می شود. پلیمریزاسیون تعلیقی به عنوان مرحله دوم فرایند جرمی نیز قابلیت كاربرد دارد(مانند فرایند تولید پلی استیرن مقاوم). زیرا معمولاً ادامه پلیمریزاسیون تا رسیدن به درجه تبدیل نهایی توسط فرایند تعلیقی انجام می گیرد. پس از پایان پلیمریزاسیون، دانه های پلیمری از طریق سانتریفوژ جدا و خشك می گردند. اختلاط در پلیمریزاسیون امولسیونی نسبت به پلیمر یزاسیون تعلیقی از اهمیت كمتری برخوردار است و عمدتاً جهت تسهیل انتقال حرارت طراحی می شود . كاربرد زیاذ امولسیفایر در پلیمریزاسیون امولسیونی، جداسازی آن را در پایان واكنش دشوار می سازد . به همین سبب معمولاً از فرایندهای امولسیونی در جایی استفاده می شود كه در شكل نهایی مصرف به صورت لاتكس یا امولسیون باشد(مانند امولسیون نهایی اكریلیك). در صورت لزوم استفاده از پلیمر خالص، محلول پلیمریزاسیون ابتدا منعقد و سپس دانه های پلیمر به كمك ***** جدا و خشك می گردد. مقایسه انواع تكنولوژی های پلیمریزاسیون و معایب (Fail) بررسی مشكلات فرایند پلیمریزاسیون مشكلات تولید صنعتی پلیمرها با تولید تركیبات آلی با وزن ملكولی كم بسیار متفاوت است. در اینجا برخی از مهمترین ویژگی های واكنش های پلیمریزاسیون مورد بحث قرار می گیرند. افزایش ویسكوزیته یكی از مهمترین مشكلات واكنش های پلیمریزاسیون، افزایش شدید ویسكوزیته با پیشرفت واكنش است .در حقیقت بخش عمده مشكلات در مهندسی فرایند های پلیمریزاسیون بازتابی از افزایش ویسكوزیته است و علم نوبنیاد ” مهندسی واكنش های پلیمریزاسیون” نیز چیزی جز چگونگی خنثی نمودن اثر افزایش ویسكوزیته در چارچوب مهندسی شیمی نیست. در پلیمریزاسیون زنجیری به محض شروع واكنش، پلیمرهای با وزن ملكولی بالا تولید می شود . تغییرات وزن ملكولی با درجه تبدیل نسبتاً كم است. از این رو افزایش ویسكوزیته به واسطه افزایش میزان پلیمر در مخلوط واكنش صورت می گیرد. در پلیمریزاسیون مرحله ای تنها الیگومرها تا درجات تبدیل بالا وجود دارند و تنها بعد از آن وزن مولكولی پلیمر به طور ناگهانی و به شدت افزایش می یابد . ویسكوزیته محلول در حال واكنش نیز تا مراحل پایانی واكنش نسبتاً كم است و سپس به طور ناگهانی افزایش می یابد. بنابراین عامل افزایش ویسكوزیته تا مراحل پایانی واكنش، میزان پلیمر در مخلوط واكنش است. در حالیكه در مراحل پایانی افزایش درجه پلیمریزاسیون یا به عبارت دیگر وزن ملكولی پلیمر سبب اف زایش ویسكوزیته می شود كه اثرات آن به مراتب شدیدتر است. افزایش ویسكوزیته در سیستم های همگن به مراتب شدیدتر از ناهمگن است . افزایش ویسكوزیته در پلیمریزاسیونهای جرمی و محلول تا106برابر نیز تخمین زده می شود. در حالیكه در پلیمریزاسیون امولسیونی كه به واسطه امولسیفایرهایی با وزن ملكولی كم تثبیت م یشود، ویسكوزیته به طور متوسط تا 103 برابر افزایش نشان می دهد. افزایش ویسكوزیته در پلیمریزاسیون تعلیقی مشهود نیست و ویسكوزیته آن به وسیله فاز آب دیكته می شود. از مهمترین اثرات افزایش ویسكوزیته كاهش ضریب نفوذ ملكولی و ضریب انتقال جرم است . كاهش ضریب نفوذ ملكولی باعث كاهش تحرك ماكرورادیكال های در حال واكنش شده و در نتیجه از وقوع واكنش پایان جلوگیری به عمل می آورد كه این امر پدیده اثر ژل را به دنبال دارد . بروز اثر ژل باعث افزایش ناگهانی و شدید سرعت واكنش می گردد. به موازات افزایش سرعت واكنش،از یك طرف شدت آزادسازی حرارت آهنگ صعودی پیدا می كند و از طرف دیگر توان مكانیكی همزن افزایش می یابد .در نتیجه كاهش توان سرمایشی راكتور كاهش می یابد .این موضوع منجر به بروز مشكلاتی در كنترل و پایداری راكتور پلیمریزاسیون می گردد. در ناحیه ای كه تولید ژل زیاد می شود، انرژی آزاد شده به اندازه ای است كه حالت انفجاری به سیستم می دهد. در بسیاری از واحدهای صنعتی وقایع مصیبت باری به واسطه خارج شدن كنترل واكنش پلیمریزاسیون به دلیل عدم موفقیت در جذب حرارت آزاد شده گزارش شده است . به همین دلیل طراحی دقیق راكتور و سیستم كنترل آن در فرایندهای پلیمریزاسیون از اهمیت خاص برخوردار است. حرارت زایی بسیاری از واكنش های پلیمریزاسیون با پیشرفت واكنش مقدار قابل توجهی انرژی از خود آزاد می كنند . علاوه بر این، انرژی مكانیكی لازم برای اختلاط نیز در ویسكوزیته بالا تبدیل به انرژی گرمایی می شود . جذب انرژی آزاد شده در پلیمریزاسیونهای با درجه خلوص بالا به واسطه افزایش ویسكوزیته ، چسبندگی پلیمر به سطوح انتقال حرارت و تغییرات فاز در طی واكنش، از مهمترین دشواری های مهندسی واكنش های پلیمریزاسیون است. طراحی راكتور واكنشهای پلیمریزاسیون به میزان قابل توجهی انرژی آزاد می كنند. در واكنشهای مواد با وزن مولكولی كم بالاترین شدت حرارت در ابتدای واكنش كه در آن غلظت مواد واكنش كننده حداكثر است رخ می دهد . در حالیكه در واكنشهای پلیمریزاسیون به ویژه نوع جرمی آن به علت وقو ع اثر ژل و افرایش ناگهانی سرعت واكنش نقطه اوج آزادسازی حرارت در اواسط واكنش رخ می دهد . متوسط مقدار حرارت آزاد شده و همچنین حداكثر مقدار آن همسو با درجه حرارت و مقدار شروع كننده تغییر میكند . مقادیرحرارت و به ویژه حرارت ماكزیمم در پلیمریزاسیون متیل متاكریلات به مراتب بیشتر از پلیمریزاسیون استیرن است . این اختلاف ریشه در وجوذ اثرژل قوی در پلیمریزاسیون متیل متاكریلات نسبت به استیرن دارد. در مورد متیل متاكریلات اثر ژل در اوایل واكنش رخ میدهد. از این رو حرارت آزاد شده دارای یك نقطه اوج كاملاً متمایز است. در حالیكه اثر ژل در مورداستیرن در اواسط واكنش به وقوع میپیوندد یعنی در جایی كه سرعت واكنش پلیمریزاسیون به واسطه مصرف مونومر و شروع كننده بسیار كم شده است. بنابراین ممكن است كه حتی اثر ژل نیز قادر به افزایش سرعت واكنش تا مرز مقادیر اولیه آن نباشد. [/TD] [/TR] [/TABLE]
-
- 2
-
- پلیمریزاسیون
- پلیمرشدن
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
راكتور مخلوط شونده (Mixed Reactor)
spow پاسخی ارسال کرد برای یک موضوع در اطلاعات تخصصي آشنايي با پالايشگاه ها
راكتور مخلوط شونده (Mixed Reactor) در اين راكتور همان طور در شكل 7 مشخص شده است مواد اوليه وارد راكتور مي شوند و پس از اختلاط در راكتور و اقامت براي مدت زمان مشخصي در راكتور، از راكتور خارج مي شوند. شكل 7 - راكتور مخلوط شونده شكل 8 - راكتور مخلوط شونده الف. تصويري از راكتور در عمليات ب. نمايي از داخل راكتور مخلوط شونده مشتمل بر انواع پره ها و بافل و سيستم سرمايش و گرمايش اين راكتور زماني كه يك واكنش شيميايي احتياج به همزدن شديد داشته باشد مورد استفاده قرار مي گيرد . كنترل حرارت در اين راكتورها به آساني انجام مي گيرد. يكي از محدوديت هاي اين نوع راكتورها درصد تبديل پايينتر آنها در واحد حجم محصول توليد در مقايسه با ساير راكتورهاي پيوسته باز مي باشد. به همين دليل حجم راكتور مذكور را بايد خيلي بزرگ انتخاب كرد تا به درصد تبديل بالا دست يافت . در صنعت معمولاً از يك سري راكتور مخلوط شونده پشت سر هم استفاده مي شود.(شكل 9 ) شكل 9 - سري راكتور مخلوط شونده شكل 10 - سري راكتور مخلوط شونده راكتورهاي Mixed براي اغلب واكنش هاي متجانس در فاز مايع استفاده مي شود. در اين راكتورها، جريان خوراك ومحصول پيوسته است و فرض مي شود كه محتويات راكتور كاملاً بهم مي خورد . اين عمل منجر به يكنواختي درجه حرارت و تركيب در راكتور مي شود. به علت اين اختلاط يك جزء سيال ممكن است در همان لحظه اي كه وارد راكتور مي شود آنرا ترك كند يا براي مدت زمان زيادي در داخل راكتور باقي بماند . زمان اقامت هركدام از اجزاء سيال در راكتور متفاوت است.-
- 2
-
- راكتور مخلوط شونده
- راكتور مخلوط شونده (mixed reactor)
-
(و 1 مورد دیگر)
برچسب زده شده با :
-
راكتور پليمريزاسيون (Polymerization reactor)
spow پاسخی ارسال کرد برای یک موضوع در اطلاعات تخصصي آشنايي با پالايشگاه ها
واكنشهاي پليمريزاسيون با توجه به تنوع توليدشان از استفاده كننده هاي عمده راكتورها به شمار مي روند. البته ساختار كلي راكتورها تفاوت چنداني با راكتورهاي ساير مواد ندارد: اما با توجه به اهميت اين واكنشها، مطالبي در اين مورد بيان مي شود. انواع راكتورهاي پليمريزاسيون راكتورهاي متنوعي براي انجام واكنشهاي پليمريزاسيون بكار ميروند. اين راكتورها و كاريرد آن در جدول زير آورده شده است. تعاريف و بيان تفاوتها در راكتورهاي ناپيوسته (Batch Reactors) تمامي اجزاء مخلوط واكنش به راكتور وارد مي شوند و تا پايان واكنش در راكتور باقي مي مانند. معمولاً در ابتداي پليمريزاسيون در راكتورهاي ناپيوسته يك گرم كن وجود دارد كه طي آن دماي مخلوط به دماي لازم براي شروع واكنش افزايش داده مي شود. سپس واكنش پليمريزاسيون شروع شده و به علت گرمازايي قابل توجه آن دماي مخلوط واكنش مي تواند افزايش يابد به همين دليل در راكتورهاي ناپيوسته بايد قابليت گرم و سرد كردن سريع و كافي و همچنين سيستم كنترل درجه حرارت موثر پيش بيني گردد. فرايندهاي ناپيوسته براي پليمريزاسيون با درجه تبديل بالا مناسب است. از طرف ديگر اين سيستمها براي بروز انفجار حرارتي مستعد هستند. فرايندهاي ناپيوسته عمدتاً در زمينه پليمريزاسيون راديكالي به كار مي روند. راكتور نيمه ناپيوسته (Semi Continuous Reactors) يا (Semi Batch): در راكتورهاي نيمه پيوسته مواد برخي از مواد واكنش كننده ممكن است به تدريج به راكتور اضافه شوند . يا آنكه محصولات جانبي توليد شده در طي واكنش از راكتور خارج گردند. در بسياري از پليمريزاسيونهاي راديكالي معمول است كه منومر، حلال و يا شروع كننده را به منظور حفظ درجه حرارت و افزايش سرعت توليد به تدريج به راكتور اضافه مي كنند . اضافه كردن تدريجي كومنومر در كوپليمريزاسيون نيز وقتي كه اختلاف فعاليت منومرها زياد است از جمله كاربردهاي اين فرايند است. در پليمريزاسيونهاي نيمه پيوسته ممكن است كه تمامي مواد واكنش كننده در ابتداي واكنش به راكتور اضافه گردند ولي قبل از تشكيل محصولات جانبي ، بايد از راكتور خارج شو ند. پليمريزاسيونهاي مرحله اي از اين نوع سيستمها هستند. تبخير محصولات جانبي يك عامل موثر در جذب حرارت واكنش است كه در برخي از موارد مي تواند به قدري شديد باشند كه باعث افت دماي واكنش گردد . در اين حالت براي جبران حرارت از دست رفته حتي ممكن است نياز به حرارت دهي نيز باشد . راكتورهايي كه براي فرايند نيمه پيوسته مورد استفاده قرار مي گيرند مشابه با راكتورهاي ناپيوسته است با اين تفاوت كه امكان افزايش مداوم مواد اوليه به آن و يا خروج محصولات جانبي از آن پيش بيني شده است.- 2 پاسخ
-
- 3
-
- polymerization reactor
- پالایشگاه
-
(و 2 مورد دیگر)
برچسب زده شده با :
-
COCO (CAPE-OPEN to CAPE-OPEN) كوكو يك نرم افزار شبيه سازي مجهز مي باشد كه طراحي هاي فراواني در زمينه انواع راكتورها- مبدل هاي حرارتي - پمپ ها و غيره انجام مي دهد همچنين داراي بانک اطلاعاتی شامل بیش از 190 مواد شیمیایی در زمينه ي ترموديناميكي مي باشد كه براي كسب اطلاعات بيشتر در اين نرم مي توانيد به سايت منبع آن مراجعه كنيد لينك دانلود لينك سايت لينك دانلود از سايت تصاويري از محيط برنامه
-
- 4
-
- chemical engineering
- coco
- (و 19 مورد دیگر)
-
اتم كوچكترین بخش سازنده یك عنصر شیمیایی است كه هنوز هم خواص شیمیایی آن عنصر را دارد. خود اتم ها از سه جزء ساخته شده اند: الكترون، پروتون و نوترون. پروتون و نوترون در درون هسته اتم قرار دارد و الكترون به دور هسته اتم می گردد. الكترون بار منفی و جرم بسیار كمی دارد. پروتون بار مثبت و نوترون بدون بار است. جرم پروتون و نوترون برابر و حدود 1870 بار سنگین تر از الكترون است، بنابر این بخش عمده جرم یك اتم درون هسته آن قرار دارد. ایزوتوپ به صورت های گوناگون یك عنصر گفته می شود كه جرم آنها با هم تفاوت داشته باشد. تفاوت ایزوتوپ های مختلف یك عنصر از آنجا ناشی می شود كه تعداد نوترون های موجود در هسته آنها با هم تفاوت دارد. البته تعداد پروتون های تمام اتم های یك عنصر از جمله ایزوتوپ ها با هم برابر است. برای مثال عنصر هیدروژن دارای سه ایزوتوپ است: H هیدروژن كه در هسته خود فقط یك پروتون دارد، بدون نوترون. H 2یا D دوتریم كه در هسته خود یك پروتون و یك نوترون دارد و H 3 یا H تریتیم كه یك پروتون و دو نوترون دارد. از آنجایی كه خواص شیمیایی یك عنصر به تعداد پروتون های هسته مربوط است، ایزوتوپ های مختلف در خواص شیمیایی با هم تفاوت ندارند، بلكه خواص فیزیكی آنها با هم متفاوت است. عمده هیدروژن های طبیعت H یا هیدروژن معمولی است و فقط 0150 درصد آن را دوتریم تشكیل می دهد، یعنی از هر 6400 اتم هیدروژن، یكی دوتریم است. حال در نظر بگیرید كه به جای یك اتم هیدروژن معمولی در مولكول آب H2O اتم D بنشیند. آن وقت مولكول HDO به وجود می آید كه به آن آب نیمه سنگین می گویند. اگر جای هر دو اتم هیدروژن، دوتریم بنشیند، D2O به وجود می آید كه به آن آب سنگین می گویند. خواص فیزیكی آب سنگین تا حدودی با آب سبك یا آب معمولی تفاوت دارد.با توجه به جانشینی D به جای H در آب سنگین، انرژی پیوندی پیوند های اكسیژن هیدروژن در آب تغییر می كند و در نتیجه خواص فیزیكی و به ویژه خواص زیست شناختی آب عوض می شود. تاریخچه تولید آب سنگین والتر راسل در سال 1926 با استفاده از جدول تناوبی «مارپیچ» وجود دو تریم را پیش بینی كرد. هارولد یوری یكی از شیمیدانان دانشگاه كلمبیا در سال 1931 توانست آن را كشف كند. گیلبرت نیوتن لوئیس هم در سال 1933 توانست اولین نمونه از آب سنگین خالص را با استفاده از روش الكترولیز تهیه كند. هوسی و هافر نیز در سال 1934 از آب سنگین استفاده كردند و با انجام اولین آزمون های ردیابی زیست شناختی به بررسی سرعت گردش آب در بدن انسان پرداختند. تولید آب سنگین: در طبیعت از هر 3200 مولكول آب یكی آب نیمه سنگین HDO است. آب نیمه سنگین را می توان با استفاده از روش هایی مانند تقطیر یا الكترولیز یا دیگر فرآیندهای شیمیایی از آب معمولی تهیه كرد. هنگامی كه مقدار HDO در آب زیاد شد، میزان آب سنگین نیز بیشتر می شود زیرا مولكول های آب هیدروژن های خود را با یكدیگر عوض می كنند و احتمال دارد كه از دو مولكول HDO یك مولكول H2O آب معمولی و یك مولكول D2O آب سنگین به وجود آید. برای تولید آب سنگین خالص با استفاده از روش های تقطیر یا الكترولیز به دستگاه های پیچیده تقطیر و الكترولیز و همچنین مقدار زیادی انرژی نیاز است، به همین دلیل بیشتر از روش های شیمیایی برای تهیه آب سنگین استفاده می كنند. كاربرد های آب سنگین آب سنگین در پژوهش های علمی در حوزه های مختلف از جمله زیست شناسی، پزشكی، فیزیك و... كاربردهای فراوانی دارد كه در زیر به چند مورد آن اشاره می كنیم. طیف سنجی تشدید مغناطیسی هسته: در طیف سنجی تشدید مغناطیسی هسته NMR هنگامی كه هسته مورد نظر ما هیدروژن و حلال هم آب باشد از آب سنگین استفاده می كنند. در این حالت چون سیگنال های اتم هیدروژن مورد نظر با سیگنال های اتم هیدروژن آب معمولی تداخل می كند، می توان از آب سنگین استفاده كرد، زیرا خواص مغناطیسی دوتریم و هیدروژن با هم تفاوت دارد و سیگنال دوتریم با سیگنال های هیدروژن تداخل نمی كند. كند كننده نوترون : آب سنگین در بعضی از انواع رآكتورهای هسته ای نیز به عنوان كند كننده نوترون به كار می رود. نوترون های كند می توانند با اورانیوم واكنش بدهند.از آب سبك یا آب معمولی هم می توان به عنوان كند كننده استفاده كرد، اما از آنجایی كه آب سبك نوترون های حرارتی را هم جذب می كنند، رآكتورهای آب سبك باید اورانیوم غنی شده اورانیوم با خلوص زیاد استفاده كنند، اما رآكتور آب سنگین می تواند از اورانیوم معمولی یا غنی نشده هم استفاده كند، به همین دلیل تولید آب سنگین به بحث های مربوط به جلوگیری از توسعه سلاح های هسته ای مربوط است. رآكتورهای تولید آب سنگین را می توان به گونه ای ساخت كه بدون نیاز به تجهیزات غنی سازی، اورانیوم را به پلوتونیوم قابل استفاده در بمب اتمی تبدیل كند. البته برای استفاده از اورانیوم معمولی در بمب اتمی می توان از روش های دیگری هم استفاده كرد. شواهد نشان می دهد كشورهای هند، اسرائیل، پاكستان، كره شمالی، روسیه و آمریكا از رآكتورهای تولید آب سنگین برای تولید بمب اتمی استفاده كردند.با توجه به امكان استفاده از آب سنگین در ساخت سلاح هسته ای، در بسیاری از كشورها دولت تولید یا خرید و فروش مقدار زیاد این ماده را كنترل می كند. اما در كشورهایی مثل آمریكا و كانادا می توان مقدار غیر صنعتی یعنی در حد گرم و كیلوگرم را بدون هیچ گونه مجوز خاصی از تولید كنندگان یا عرضه كنندگان مواد شیمیایی تهیه كرد. هم اكنون قیمت هر كیلوگرم آب سنگین با خلوص 9899 درصد حدود 600 تا 700 دلار است. گفتنی است بدون استفاده از اورانیوم غنی شده و آب سنگین هم می توان رآكتور تولید پلوتونیوم ساخت. كافی است كه از كربن فوق العاده خالص به عنوان كند كننده استفاده شود از آنجایی كه نازی ها از كربن ناخالص استفاده می كردند، متوجه این نكته نشدند در حقیقت از اولین رآكتور اتمی آزمایشی آمریكا سال 1942 و پروژه منهتن كه پلوتونیوم آزمایش ترینیتی و بمب مشهور «FAT MAN» را ساخت، از اورانیوم غنی شده یا آب سنگین استفاده نمی شد. آشكار سازی نوترینو : رصد خانه نوترینوی سادبری در انتاریوی كانادا از هزار تن آب سنگین استفاده می كند. آشكار ساز نوترینو در اعماق زمین و در دل یك معدن قدیمی كار گذاشته شده تا مئون های پرتو های كیهانی به آن نرسد. هدف اصلی این رصدخانه یافتن پاسخ این پرسش است كه آیا نوترینوهای الكترون كه از همجوشی در خورشید تولید می شوند، در مسیر رسیدن به زمین به دیگر انواع نوترینوها تبدیل می شوند یا خیر. وجود آب سنگین در این آزمایش ها ضروری است، زیرا دوتریم مورد نیاز برای آشكارسازی انواع نوترینوها را فراهم می كند. آزمون های سوخت و ساز در بدن: از مخلوط آب سنگین با 18O H2 آبی كه اكسیژن آن ایزوتوپ 18O است نه 16O برای انجام آزمایش اندازه گیری سرعت سوخت و ساز بدن انسان و حیوانات استفاده می شود. این آزمون سوخت و ساز را معمولا آزمون آب دوبار نشان دار شده می نامند. تولید تریتیم : هنگامی كه دوتریم رآكتور آب سنگین یك نوترون به دست می آورد به تریتیم ایزوتوپ دیگر هیدروژن تبدیل می شود. تولید تریتیم به این روش به فناوری چندان پیچیده ای نیاز ندارد و آسان تر از تولید تریتیم به روش تبدیل نوترونی لیتیم است. تریتیم در ساخت نیروگاه های گرما هسته ای كاربرد دارد.
-
- انرژی هسته ای
- اب سنگین
-
(و 2 مورد دیگر)
برچسب زده شده با :