رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'پلیمریزاسیون'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی
  • مکانیک در صنعت مکانیک در صنعت Topics
  • شهرسازان انجمن نواندیشان شهرسازان انجمن نواندیشان Topics
  • هنرمندان انجمن هنرمندان انجمن Topics
  • گالری عکس مشترک گالری عکس مشترک Topics
  • گروه بزرگ مهندسي عمرآن گروه بزرگ مهندسي عمرآن Topics
  • گروه معماری گروه معماری Topics
  • عاشقان مولای متقیان علی (ع) عاشقان مولای متقیان علی (ع) Topics
  • طراحان فضای سبز طراحان فضای سبز Topics
  • بروبچ با صفای مشهدی بروبچ با صفای مشهدی Topics
  • سفيران زندگي سفيران زندگي Topics
  • گروه طرفدارن ا.ث.میلان وبارسلونا گروه طرفدارن ا.ث.میلان وبارسلونا Topics
  • طرفداران شياطين سرخ طرفداران شياطين سرخ Topics
  • مهندسی صنایع( برترین رشته ی مهندسی) مهندسی صنایع( برترین رشته ی مهندسی) Topics
  • گروه طراحی unigraphics گروه طراحی unigraphics Topics
  • دوستداران معلم شهید دکتر شریعتی دوستداران معلم شهید دکتر شریعتی Topics
  • قرمزته قرمزته Topics
  • مبارزه با اسپم مبارزه با اسپم Topics
  • حسین پناهی حسین پناهی Topics
  • سهراب سپهری سهراب سپهری Topics
  • 3D MAX 3D MAX Topics
  • سیب سرخ حیات سیب سرخ حیات Topics
  • marine trainers marine trainers Topics
  • دوستداران بنان دوستداران بنان Topics
  • ارادتمندان جليل شهناز و حسين عليزاده ارادتمندان جليل شهناز و حسين عليزاده Topics
  • مکانیک ایرانی مکانیک ایرانی Topics
  • خودرو خودرو Topics
  • MAHAK MAHAK Topics
  • اصفهان نصف جهان اصفهان نصف جهان Topics
  • ارومیه ارومیه Topics
  • گیلان شهر گیلان شهر Topics
  • گروه بچه های قمی با دلهای بیکران گروه بچه های قمی با دلهای بیکران Topics
  • اهل دلان اهل دلان Topics
  • persian gulf persian gulf Topics
  • گروه بچه های کرد زبان انجمن نواندیشان گروه بچه های کرد زبان انجمن نواندیشان Topics
  • شیرازی های نواندیش شیرازی های نواندیش Topics
  • Green Health Green Health Topics
  • تغییر رشته تغییر رشته Topics
  • *مشهد* *مشهد* Topics
  • دوستداران داريوش اقبالي دوستداران داريوش اقبالي Topics
  • بچه هاي با حال بچه هاي با حال Topics
  • گروه طرفداران پرسپولیس گروه طرفداران پرسپولیس Topics
  • دوستداران هامون سینمای ایران دوستداران هامون سینمای ایران Topics
  • طرفداران "آقایان خاص" طرفداران "آقایان خاص" Topics
  • طرفداران"مخربین خاص" طرفداران"مخربین خاص" Topics
  • آبی های با کلاس آبی های با کلاس Topics
  • الشتریا الشتریا Topics
  • نانوالکترونیک نانوالکترونیک Topics
  • برنامه نویسان ایرانی برنامه نویسان ایرانی Topics
  • SETAREH SETAREH Topics
  • نامت بلند ایـــران نامت بلند ایـــران Topics
  • جغرافیا جغرافیا Topics
  • دوباره می سازمت ...! دوباره می سازمت ...! Topics
  • مغزهای متفکر مغزهای متفکر Topics
  • دانشجو بیا دانشجو بیا Topics
  • مهندسین مواد و متالورژی مهندسین مواد و متالورژی Topics
  • معماران جوان معماران جوان Topics
  • دالتون ها دالتون ها Topics
  • دکتران جوان دکتران جوان Topics
  • ASSASSIN'S CREED HQ ASSASSIN'S CREED HQ Topics
  • همیار تاسیسات حرارتی برودتی همیار تاسیسات حرارتی برودتی Topics
  • مهندسهای کامپیوتر نو اندیش مهندسهای کامپیوتر نو اندیش Topics
  • شیرازیا شیرازیا Topics
  • روانشناسی روانشناسی Topics
  • مهندسی مکانیک خودرو مهندسی مکانیک خودرو Topics
  • حقوق حقوق Topics
  • diva diva Topics
  • diva(مهندسین برق) diva(مهندسین برق) Topics
  • تاسیسات مکانیکی تاسیسات مکانیکی Topics
  • سیمرغ دل سیمرغ دل Topics
  • قالبسازان قالبسازان Topics
  • GIS GIS Topics
  • گروه مهندسین شیمی گروه مهندسین شیمی Topics
  • فقط خودم فقط خودم Topics
  • همکار همکار Topics
  • بچهای باهوش بچهای باهوش Topics
  • گروه ادبی انجمن گروه ادبی انجمن Topics
  • گروه مهندسین کشاورزی گروه مهندسین کشاورزی Topics
  • آبروی ایران آبروی ایران Topics
  • مکانیک مکانیک Topics
  • پریهای انجمن پریهای انجمن Topics
  • پرسپولیسی ها پرسپولیسی ها Topics
  • هواداران رئال مادرید هواداران رئال مادرید Topics
  • مازندرانی ها مازندرانی ها Topics
  • اتاق جنگ نواندیشان اتاق جنگ نواندیشان Topics
  • معماری معماری Topics
  • ژنتیکی هااااا ژنتیکی هااااا Topics
  • دوستداران بندر لیورپول ( آنفیلد ) دوستداران بندر لیورپول ( آنفیلد ) Topics
  • group-power group-power Topics
  • خدمات کامپپوتری های نو اندیشان خدمات کامپپوتری های نو اندیشان Topics
  • دفاع دفاع Topics
  • عمران نیاز دنیا عمران نیاز دنیا Topics
  • هواداران استقلال هواداران استقلال Topics
  • مهندسین عمران - آب مهندسین عمران - آب Topics
  • حرف دل حرف دل Topics
  • نو انديش نو انديش Topics
  • بچه های فیزیک ایران بچه های فیزیک ایران Topics
  • تبریزیها وقزوینی ها تبریزیها وقزوینی ها Topics
  • تبریزیها تبریزیها Topics
  • اکو سیستم و طبیعت اکو سیستم و طبیعت Topics
  • >>سبزوار<< >>سبزوار<< Topics
  • دکوراسیون با وسایل قدیمی دکوراسیون با وسایل قدیمی Topics
  • یکم خنده یکم خنده Topics
  • راستی راستی Topics
  • مهندسین کامپیوتر مهندسین کامپیوتر Topics
  • کسب و کار های نو پا کسب و کار های نو پا Topics
  • جمله های قشنگ جمله های قشنگ Topics
  • مدیریت IT مدیریت IT Topics
  • گروه مهندسان صنایع گروه مهندسان صنایع Topics
  • سخنان پندآموز سخنان پندآموز Topics
  • مغان سبز مغان سبز Topics
  • گروه آموزش مهارت های فنی و ذهنی گروه آموزش مهارت های فنی و ذهنی Topics
  • گیاهان دارویی گیاهان دارویی صنایع غذایی شیمی پزشکی داروسازی
  • دانستنی های بیمه ای موضوع ها
  • Oxymoronic فلسفه و هنر

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. در میان روش‌های پلیمریزاسیون زنجیره‌ای، روش پلیمریزاسیون رادیکال آزاد یکی از پرکاربردترین روش‌های مرسوم می‌باشد که از نوع زنجیره‌ای-رشدکننده می‌باشد. در این روش به دلیل وجود واکنش‌های اختتام برگشت ناپذیر زنجیره، ماکرومولکول‌هایی با توزیع جرم مولکولی پهن تولید می‌شود که به سبب تاثیرپذیری شدید خواص پلیمر از درجه پلیمریزاسیون رفتار پلیمر تولید شده غیرقابل پیش‌بینی می‌باشد. این در حالی است که سنتز پلیمر‌ها از روش آنیونی امکان رسیدن به توزیع جرم مولکولی بسیار باریک (با شاخص پراکندگی در حدود 1) با رفتار ماکرو مولکولی قابل پیش بینی در هر لحظه از پلیمریزاسیون را فراهم می‌کند. شوراک روش سنتز آنیونی خود را با توجه به این ویژگی که زنجیره‌های پلیمری به صورت خطی با زمان رشد می‌کنند به عنوان پلیمریزاسیون زنده توصیف کرد. به سبب عدم حضور واکنش‌های مرگ زنجیره مانند اختتام و انتقال به زنجیره، زنجیره آنیونی می‌تواند زنده باقی بماند; به این معنا که اضافه کردن مونومر سبب ادامه واکنش پلیمریزاسیون می‌گردد. از این مکانیسم برای تولید کوپلیمر‌های قطعه‌ای نیز استفاده می‌شود. علاوه بر این، تغییر ترکیب درصد مونومر می‌تواند منجر به تولید پلیمر‌هایی با معماری‌های های مختلف از ساختار کاملاً خطی تا شدیداً شاخه‌ای شده گردد. بنابراین پلیمریزاسیون زنده امکان کنترل ساختاری و درصد ترکیبی و لذا ایجاد پلیمرهایی با خواص گوناگون را فراهم می‌سازد. امکان کنترل واکنش‌های پلیمریزاسیون رادیکال آزاد توسط یکی ار مهمترین روشهای تجاری پلیمریزاسیون(روش پلیمریزاسیون رادیکالی کنترل شده/زنده) در اواسط دهه 1990 کشف شد. این روش با استفاده همزمان از ویژگی‌های روش پلیمریزاسیون رادیکال آزاد در سنتز دامنه گسترده‌ای از پلیمرها در شرایط فرآیندی ساده و همچنین توانایی روش پلیمریزاسیون یونی در کنترل ساختار مولکولی پلیمرها در شرایط فرایندی ساده و همچنین توانایی روش پلیمریزاسیون یونی در کنترل ساختار مولکولی پلیمرها، امکان ساخت محصولات جدید و با ساختار مشخص را فراهم می‌کند. شبیه سازی‌های انجام شده در این راستا نشان می‌دهند که می‌توان پلیمرهایی با ساختار از پیش تعریف شده و مشخص را با کنترل فرآیندی و واکنشی به آسانی سنتز کرد. علیرغم مزایای بارز پلیمریزاسیون زنده بر روش‌های رادیکال‌های آزاد معمولی، دو نوع مانع اصلی در استفاده از این روش وجود دارد.
  2. در اين پژوهش، طراحي تجربي واكنش پليمر شدن راديكالي وينيل استات در محلول بر اساس مدل سازي آماري به صورت معادلات غير خطي چند جمله اي و كد گذاري اين معادلات از طريق طراحي عوامل واكنش انجام گرفته است. با استفاده از عوامل اصلي زمان و دما و با توجه به درصد تبديل پليمر شدن تشكيل سطوح پاسخ بررسي شده است. تاثير متقابل عوامل اصلي از طريق ضرايب معادله چند جمله اي آنها مشخص شده است. با استفاده از رگرسيون چند جمله اي غير خطي آبكافت پلي وينيل استات مدلسازي شده است. نوع رگرسيون و پراكندگي داده هاي آزمايش از طريق تحليل واريانس محاسبه و با استفاده از مجموع مربعات كل و محاسبات آماري سطح اطمينان حاصل از اين طراحي گزارش شده است. دانلود مقاله منبع : پایگاه اطلاعات علمی
  3. *mishi*

    راكتور پلیمریزاسیون

    [TABLE] [TR] [TD=width: 5%]نام تجهیز :[/TD] [TD=class: data]راكتور پلیمریزاسیون (Polymerization reactor)[/TD] [/TR] [TR] [TD=class: data, colspan: 2] واكنشهای پلیمریزاسیون با توجه به تنوع تولیدشان از استفاده كننده های عمده راكتورها به شمار می روند. البته ساختار كلی راكتورها تفاوت چندانی با راكتورهای سایر مواد ندارد: اما با توجه به اهمیت این واكنشها، مطالبی در این مورد بیان می شود. انواع راكتورهای پلیمریزاسیون [/TD] [/TR] [/TABLE] [TABLE] [TR] [TD=width: 5%]نام تجهیز :[/TD] [TD=class: data]راكتور پلیمریزاسیون (Polymerization reactor)[/TD] [/TR] [TR] [TD=class: data, colspan: 2] واكنشهای پلیمریزاسیون با توجه به تنوع تولیدشان از استفاده كننده های عمده راكتورها به شمار می روند. البته ساختار كلی راكتورها تفاوت چندانی با راكتورهای سایر مواد ندارد: اما با توجه به اهمیت این واكنشها، مطالبی در این مورد بیان می شود. انواع راكتورهای پلیمریزاسیون راكتورهای متنوعی برای انجام واكنشهای پلیمریزاسیون بكار میروند. این راكتورها و كاریرد آن در جدول زیر آورده شده است. تعاریف و بیان تفاوتها در راكتورهای ناپیوسته (Batch Reactors) تمامی اجزاء مخلوط واكنش به راكتور وارد می شوند و تا پایان واكنش در راكتور باقی می مانند. معمولاً در ابتدای پلیمریزاسیون در راكتورهای ناپیوسته یك گرم كن وجود دارد كه طی آن دمای مخلوط به دمای لازم برای شروع واكنش افزایش داده می شود. سپس واكنش پلیمریزاسیون شروع شده و به علت گرمازایی قابل توجه آن دمای مخلوط واكنش می تواند افزایش یابد به همین دلیل در راكتورهای ناپیوسته باید قابلیت گرم و سرد كردن سریع و كافی و همچنین سیستم كنترل درجه حرارت موثر پیش بینی گردد. فرایندهای ناپیوسته برای پلیمریزاسیون با درجه تبدیل بالا مناسب است. از طرف دیگر این سیستمها برای بروز انفجار حرارتی مستعد هستند. فرایندهای ناپیوسته عمدتاً در زمینه پلیمریزاسیون رادیكالی به كار می روند. راكتور نیمه ناپیوسته (Semi Continuous Reactors) یا (Semi Batch): در راكتورهای نیمه پیوسته مواد برخی از مواد واكنش كننده ممكن است به تدریج به راكتور اضافه شوند . یا آنكه محصولات جانبی تولید شده در طی واكنش از راكتور خارج گردند. در بسیاری از پلیمریزاسیونهای رادیكالی معمول است كه منومر، حلال و یا شروع كننده را به منظور حفظ درجه حرارت و افزایش سرعت تولید به تدریج به راكتور اضافه می كنند . اضافه كردن تدریجی كومنومر در كوپلیمریزاسیون نیز وقتی كه اختلاف فعالیت منومرها زیاد است از جمله كاربردهای این فرایند است. در پلیمریزاسیونهای نیمه پیوسته ممكن است كه تمامی مواد واكنش كننده در ابتدای واكنش به راكتور اضافه گردند ولی قبل از تشكیل محصولات جانبی ، باید از راكتور خارج شو ند. پلیمریزاسیونهای مرحله ای از این نوع سیستمها هستند. تبخیر محصولات جانبی یك عامل موثر در جذب حرارت واكنش است كه در برخی از موارد می تواند به قدری شدید باشند كه باعث افت دمای واكنش گردد . در این حالت برای جبران حرارت از دست رفته حتی ممكن است نیاز به حرارت دهی نیز باشد . راكتورهایی كه برای فرایند نیمه پیوسته مورد استفاده قرار می گیرند مشابه با راكتورهای ناپیوسته است با این تفاوت كه امكان افزایش مداوم مواد اولیه به آن و یا خروج محصولات جانبی از آن پیش بینی شده است. در راكتورهای پیوسته(Continuous Reactors) مواد واكنش دهنده با شدت جریان ثابت به درون راكتور رانده شده و محصولات نیز به طور مداوم از راكتور خارج می گردند. پس از راه اندازی یك راكتور پیوسته، راكتور پس از عبور از یك حالت انتقالی به یك شرایط پایدار می رسد. در این شرایط شدت حرارت زائی سیستم نیز به مقدار ثابتی می رسد. فرایندهای مداوم عملیات آسان تر و هزینه كمتری دارد و هنگامی كه ظرفیت تولید بالا باشد مورد استفاده قرار می گیرند. در موارد خاص پلیمریزاسیون در راكتورهای ناپیوسته كه دارای انعطاف پذیری بیشتری برای تولید پلیمرهایی با درجا ت تبدیل مختلف هستند، انجام می گیرد. فرایندهای پیوسته در راكتورهای همزن دار (Continuous Stirred Tank Reactors ,CSTR) و راكتورهای لوله ای (Tubular Reactor) قابل انجام است. راكتورهای همزن دار پیوسته مشابه با راكتورهای ناپیوسته هستند با این تفاوت كه امكان ورود مداوم مواد اولیه به آنها و خروج محصول نهایی از آنها پیش بینی شده است.در شكل نمونه ای از راكتور همزن دار را مشاهده می كنید. شكل 18 - شمایی از راكتور لوله ای از راكتورهای همزن دار پیوسته به صورت سری (Cascade) در صنعت برای پلیمریزاسیون امولسیونی مثل وینیل كلراید و وینیل استات استفاده می گردد. در راكتورهای لوله ای به منظور جذب حرارت آزاد شده، قطر راكتور همواره كوچك اختیار می شود.در شكل زیر نمونه ای از این نوع را می بینید. انجام فرایندهای مختلف پلیمریزاسیون در راكتورهای پلیمریزاسیون شكل 19 – راكتور CSTR تكنولوژی پلیمریزاسیون جرمی برای پلیمریزاسیونهای با رشد مرحله ای، مرسوم است، زیرا به واسطه كمی انرژی آزاد شده، جذب حرارت به سهولت انجام می پذیرد. به علت پایین بودن ویسكوزیته تا درجات تبدیل بالا، اختلاط نیز به نحو موثری قابل انجام است . حرارت آزاد شده قابل توجه و افزایش سریع ویسكوزیته در پلیمریزاسیون با رشد زنجیری، كارایی تكنولوژی جرمی را برای این نوع مكانیسم پلیمریزاسیون كاهش می دهد .زیرا بر خلاف حالت قبل، افزایش سریع ویسكوزیته و در نتیجه عدم امكان كنترل درجه حرارت، دستیابی به درجات تبدیل بالا را مقدور نمی سازد. محلول پلیمریزاسیون جرمی از درجه خلوص بالایی برخوردار بوده و عملیات تخلیص كمتری را می طلبد. انجام پلیمریزاسیون در حضور یك حلال از مشكلات انتقال حرارت و اختلاط می كاهد. پلیمر و منومر در داخل حلال محلول هستند . علاوه بر این ویسكوزیته كمتر سبب بهبود اختلاط و كارایی شروع كننده می گردد. مهمترین نقطه ضعف این روش هزینه جداسازی حلال و بازیابی آن است . ویسكوزیته سیستم پلیمریزاسیون تعلیقی در طول واكنش نسبتاً ثابت باقی مانده و عمدتاً به وسیله ویسكوزیته فاز مداوم(آب) تعیین می گردد. اغلب پلیمرها دارای دانسیته بیشتری نسبت به منومرهای خود هستند. به این جهت در پلیمریزاسیون تعلیقی سیستم اختلاط باید به گونه ای انتخاب گردد كه در ابتدا منومرهای از سطح به زیر كشیده شده و در داخل فاز آبی پراكنده شوند و در انتها از ته نشینی ذرات جامد پلیمری جلوگیری به عمل آورده و آنها را به طور یكنواخت در داخل فاز پیوسته پراكنده سازد. فاز پیوسته به عنوان عامل انتقال حرارت عمل نموده و در نتیجه كنترل درجه حرارت در این فرایند ساده تر از نوع جرمی است. چسبندگی و رسوب پلیمر نیز به مراتب كمتر از فرایند جرمی مشاهده می شود. پلیمریزاسیون تعلیقی به عنوان مرحله دوم فرایند جرمی نیز قابلیت كاربرد دارد(مانند فرایند تولید پلی استیرن مقاوم). زیرا معمولاً ادامه پلیمریزاسیون تا رسیدن به درجه تبدیل نهایی توسط فرایند تعلیقی انجام می گیرد. پس از پایان پلیمریزاسیون، دانه های پلیمری از طریق سانتریفوژ جدا و خشك می گردند. اختلاط در پلیمریزاسیون امولسیونی نسبت به پلیمر یزاسیون تعلیقی از اهمیت كمتری برخوردار است و عمدتاً جهت تسهیل انتقال حرارت طراحی می شود . كاربرد زیاذ امولسیفایر در پلیمریزاسیون امولسیونی، جداسازی آن را در پایان واكنش دشوار می سازد . به همین سبب معمولاً از فرایندهای امولسیونی در جایی استفاده می شود كه در شكل نهایی مصرف به صورت لاتكس یا امولسیون باشد(مانند امولسیون نهایی اكریلیك). در صورت لزوم استفاده از پلیمر خالص، محلول پلیمریزاسیون ابتدا منعقد و سپس دانه های پلیمر به كمك ***** جدا و خشك می گردد. مقایسه انواع تكنولوژی های پلیمریزاسیون و معایب (Fail) بررسی مشكلات فرایند پلیمریزاسیون مشكلات تولید صنعتی پلیمرها با تولید تركیبات آلی با وزن ملكولی كم بسیار متفاوت است. در اینجا برخی از مهمترین ویژگی های واكنش های پلیمریزاسیون مورد بحث قرار می گیرند. افزایش ویسكوزیته یكی از مهمترین مشكلات واكنش های پلیمریزاسیون، افزایش شدید ویسكوزیته با پیشرفت واكنش است .در حقیقت بخش عمده مشكلات در مهندسی فرایند های پلیمریزاسیون بازتابی از افزایش ویسكوزیته است و علم نوبنیاد ” مهندسی واكنش های پلیمریزاسیون” نیز چیزی جز چگونگی خنثی نمودن اثر افزایش ویسكوزیته در چارچوب مهندسی شیمی نیست. در پلیمریزاسیون زنجیری به محض شروع واكنش، پلیمرهای با وزن ملكولی بالا تولید می شود . تغییرات وزن ملكولی با درجه تبدیل نسبتاً كم است. از این رو افزایش ویسكوزیته به واسطه افزایش میزان پلیمر در مخلوط واكنش صورت می گیرد. در پلیمریزاسیون مرحله ای تنها الیگومرها تا درجات تبدیل بالا وجود دارند و تنها بعد از آن وزن مولكولی پلیمر به طور ناگهانی و به شدت افزایش می یابد . ویسكوزیته محلول در حال واكنش نیز تا مراحل پایانی واكنش نسبتاً كم است و سپس به طور ناگهانی افزایش می یابد. بنابراین عامل افزایش ویسكوزیته تا مراحل پایانی واكنش، میزان پلیمر در مخلوط واكنش است. در حالیكه در مراحل پایانی افزایش درجه پلیمریزاسیون یا به عبارت دیگر وزن ملكولی پلیمر سبب اف زایش ویسكوزیته می شود كه اثرات آن به مراتب شدیدتر است. افزایش ویسكوزیته در سیستم های همگن به مراتب شدیدتر از ناهمگن است . افزایش ویسكوزیته در پلیمریزاسیونهای جرمی و محلول تا106برابر نیز تخمین زده می شود. در حالیكه در پلیمریزاسیون امولسیونی كه به واسطه امولسیفایرهایی با وزن ملكولی كم تثبیت م یشود، ویسكوزیته به طور متوسط تا 103 برابر افزایش نشان می دهد. افزایش ویسكوزیته در پلیمریزاسیون تعلیقی مشهود نیست و ویسكوزیته آن به وسیله فاز آب دیكته می شود. از مهمترین اثرات افزایش ویسكوزیته كاهش ضریب نفوذ ملكولی و ضریب انتقال جرم است . كاهش ضریب نفوذ ملكولی باعث كاهش تحرك ماكرورادیكال های در حال واكنش شده و در نتیجه از وقوع واكنش پایان جلوگیری به عمل می آورد كه این امر پدیده اثر ژل را به دنبال دارد . بروز اثر ژل باعث افزایش ناگهانی و شدید سرعت واكنش می گردد. به موازات افزایش سرعت واكنش،از یك طرف شدت آزادسازی حرارت آهنگ صعودی پیدا می كند و از طرف دیگر توان مكانیكی همزن افزایش می یابد .در نتیجه كاهش توان سرمایشی راكتور كاهش می یابد .این موضوع منجر به بروز مشكلاتی در كنترل و پایداری راكتور پلیمریزاسیون می گردد. در ناحیه ای كه تولید ژل زیاد می شود، انرژی آزاد شده به اندازه ای است كه حالت انفجاری به سیستم می دهد. در بسیاری از واحدهای صنعتی وقایع مصیبت باری به واسطه خارج شدن كنترل واكنش پلیمریزاسیون به دلیل عدم موفقیت در جذب حرارت آزاد شده گزارش شده است . به همین دلیل طراحی دقیق راكتور و سیستم كنترل آن در فرایندهای پلیمریزاسیون از اهمیت خاص برخوردار است. حرارت زایی بسیاری از واكنش های پلیمریزاسیون با پیشرفت واكنش مقدار قابل توجهی انرژی از خود آزاد می كنند . علاوه بر این، انرژی مكانیكی لازم برای اختلاط نیز در ویسكوزیته بالا تبدیل به انرژی گرمایی می شود . جذب انرژی آزاد شده در پلیمریزاسیونهای با درجه خلوص بالا به واسطه افزایش ویسكوزیته ، چسبندگی پلیمر به سطوح انتقال حرارت و تغییرات فاز در طی واكنش، از مهمترین دشواری های مهندسی واكنش های پلیمریزاسیون است. طراحی راكتور واكنشهای پلیمریزاسیون به میزان قابل توجهی انرژی آزاد می كنند. در واكنشهای مواد با وزن مولكولی كم بالاترین شدت حرارت در ابتدای واكنش كه در آن غلظت مواد واكنش كننده حداكثر است رخ می دهد . در حالیكه در واكنشهای پلیمریزاسیون به ویژه نوع جرمی آن به علت وقو ع اثر ژل و افرایش ناگهانی سرعت واكنش نقطه اوج آزادسازی حرارت در اواسط واكنش رخ می دهد . متوسط مقدار حرارت آزاد شده و همچنین حداكثر مقدار آن همسو با درجه حرارت و مقدار شروع كننده تغییر میكند . مقادیرحرارت و به ویژه حرارت ماكزیمم در پلیمریزاسیون متیل متاكریلات به مراتب بیشتر از پلیمریزاسیون استیرن است . این اختلاف ریشه در وجوذ اثرژل قوی در پلیمریزاسیون متیل متاكریلات نسبت به استیرن دارد. در مورد متیل متاكریلات اثر ژل در اوایل واكنش رخ میدهد. از این رو حرارت آزاد شده دارای یك نقطه اوج كاملاً متمایز است. در حالیكه اثر ژل در مورداستیرن در اواسط واكنش به وقوع میپیوندد یعنی در جایی كه سرعت واكنش پلیمریزاسیون به واسطه مصرف مونومر و شروع كننده بسیار كم شده است. بنابراین ممكن است كه حتی اثر ژل نیز قادر به افزایش سرعت واكنش تا مرز مقادیر اولیه آن نباشد. [/TD] [/TR] [/TABLE]
  4. [TABLE=class: text] [TR] [TD]علوم و فناوري نانو در دهه 1980 ميلادي توسط فيزيكدان آمريكايي "ريچارد فاينمن" تشريح شد. در اين فناوري خواص فيزيكي مواد نانوابعاد در حوزه‌اي بين اثرات کوانتومي و خواص توده قرار مي‌گيرد. علوم نانو محصول مطالعات دانشمندان در رشته‌هاي مختلف بوده است كه با راه‌حل‌ها و روش‌هاي گوناگون و خلاقانه به صورت علوم بين رشته‌اي درآمده است . محققان و سياستگذاران سراسر جهان انتظار دارند كه علوم نانو موجب تغييرات وسيعي در نحوه زندگي شود. در اين نوشتار، ضمن بررسي فرايند كراكينگ / شكست كاتاليستي، انواع كاتاليست‌هاي مورد استفاده در اين فرايند و تاثير فناوري نانو بر آنها كه منجر به ايجاد نسل جديدي از كاتاليست‌ها با نام "نانوكاتاليست‌ها" شده، بررسي گرديده است. مقدمه پالايش نفت با تقطير جزء به ‌جزء نفت‌خام به گروه‌هاي هيدروكربني شروع شده و خواص محصولات مستقيماً متناسب با نحوه انجام فرآيند تبديل نفت مي‌باشد. فرآيندها و عمليات پالايش نفت به پنج بخش اصلي تقسيم مي‌شود : الف) تفكيك (تقطير) ب) فرآيندهاي تبديلي كه اندازه و ساختار ملكولي هيدروكربن‌ها را تغيير مي‌دهند اين فرآيندها شامل: ب-1) تجزيه (تقسيم) ب-2) همسان‌سازي(تركيب) ب-3) جايگزيني(نوآرائي) مي‌باشند. ج) فرآيندهاي عمل‌آوري د) تنظيم و اختلاط فرايند تجزيه كه از زير شاخه‌هاي فرايندهاي تبديلي محسوب مي‌شود، شامل هيدروكراكينگ، شكست كاتاليستي و شكست گرمايي مي‌شود. پليمريزاسيون پليمريزاسيون در صنايع پتروشيمي، فرآيند تبديل گازهاي اولفين سبك، شامل اتيلن، پروپيلن و بوتيلن به هيدروكربن‌هاي با وزن مولكولي بيشتر و عدد اكتان بالاتر مي‌باشد كه به‌عنوان مخلوطهاي سوختي مرغوب استفاده مي‌شود. درطي اين فرآيند 2 يا بيشتر مولكول‌هاي اولفين يكسان، تشكيل يك مولكول با عناصر يكسان و خواص يكسان به‌عنوان مولكول‌هاي جديد مي‌دهند. پليمريزاسيون مي‌تواند بطور گرمايي يا در حضور كاتاليست دردماي پايين‌تر اتفاق بيفتد.[/TD] [/TR] [TR] [TD] [/TD] [/TR] [TR] [TD] شكل 1 ) نمايه فرايند پليمريزاسيون [/TD] [/TR] [TR] [TD]ايزومريزاسيون در ايزومريزاسيون بوتان نرمال، پنتان نرمال و هگزان نرمال، به ايزوپارافين‌هاي مربوطه با عدد اكتان بالاتر تبديل مي‌شود. پارافين‌هاي با زنجيره مستقيم، به زنجيره‌هاي شاخه‌دار با همان تعداد اتم ولي با ساختار هندسي متفاوت تبديل مي‌شوند. محصولات ايزو بوتان اين واحد، خوراك واحد آلكيلاسيون بوده و ايزوپنتان و ايزوهگزان براي مخلوط گازوئيل بكار مي‌رود. کاربردهاي فناوري نانو در پليمريزاسيون و ايزومريزاسيون پليمريزاسيون به‌علت اينكه پليمر شدن در اين‌جا به معني واقعي كلمه اتفاق نمي‌افتد بلكه واكنش تا تشكيل دي‌مر‌ها و تري‌مرها خاتمه مي‌يابد لذا بايد طراحي فضاي واكنش به گونه‌اي صورت گيرد كه با تشكيل دي‌مرها واكنش ادامه نيابد لذا مي‌توان از مواد نانومتخلخلي استفاده كرد كه ابعاد كانال‌هاي آن براي تحقق اين امر مناسب باشند.اين مواد نانوتخلخل را مي‌توان نانوراكتور ناميد. در اين زمينه به کار "سانو" و "اومي" اشاره کرد که از سيليكا مزوپروس به عنوان نانو راكتور براي پليمريزاسيون اولفين‌ها استفاده کرده‌اند.[1][/TD] [/TR] [TR] [TD]در اين روش ماده متخلخل MCM-41 حاوي فلز توسط روش Post – Synthesis با تركيبات ارگانومتاليك يا آلكوكسيد آماده شد و به عنوان نانوراكتور براي فرآيند پليمريزاسيون اولفين بكار رفت. در حقيقت MCM-41 حاوي فلز به عنوان كوكاتاليست غيرهمگن به‌ كار مي‌رود. [1] ايزومريزاسيون به دليل اينكه كانال‌هاي مواد متخلخل مكان مناسبي براي انجام واكنش‌هاي شيميايي مي‌باشد مي‌توان از نانومواد متخلخل براي اين منظور استفاده كرد. اين كار در واكنش مشابه پتروشيمي مورد بررسي قرار گرفته است. به عنوان مثال بائر و همكاران زئوليت‌هاي نانوساختار HZSM – 5 را در ايزومريزاسيون زايلن بررسي كرده‌اند.[2] هيدروژن در جداكننده‌هاي با فشار عملياتي بالا (Separator)، جدا شده و كلريد هيدروژن در ستون جداساز (Stripper) حذف مي‌شود. حاصل آن که مخلوط بوتان بدست آمده مي باشد وارد تفكيك‌كننده (Fractionator) شده، در آن بوتان از ايزوبوتان جدا مي‌شود.در كليه موارد بالا مي‌توان از نانومواد متخلخل كربني براي جداسازي گازها استفاده كرد. در فرايند ايزومريزاسيون مي‌توان به كاربردن متنوعي از مواد نانوساختار اشاره كرد همچنان كه در طي تحقيقاتي براي پيدا كردن نانومواد مناسب براي فرايند ايزومريزاسيون آنتونلي و همكاران از ميکروقفس هاي توخالي زيرکونيا با استفاده از پايه هاي مالسيلي کروي استفاده كرده‌اند.[3‍‍] [/TD] [/TR] [TR] [TD] مراجع : 1Tsuneji Sano and Yasunori Oumi 2Catalysis Surveys from Asia Volume 8, Number 4 December 2004 295 - 304 Authors : Shim H.; Phillips J.1; Fonseca I.M.; Carabinerio S. Source : Applied Catalysis A: General, November 2002, vol. 237, no. 1, pp. 41-51(11) : 3Antonelli D.M , Micro Porous & mesoporous Mat.vol 28 [/TD] [/TR] [TR] [TD] 1Tsuneji Sano and Yasunori Oum 2Bauer , Frank et.al 3Antonelli D.M [/TD] [/TR] [/TABLE]
  5. spow

    الياف پليمری مصنوعی 1

    در اين مقاله ما به توصيف الياف پليمري مصنوعي مي پردازيم. توليد الياف پليمري مصنوعي به گفته بسياري پيشرفت عظيمي در نيمه دوم قرن بيستم به شمار مي آيد. در حقيقت از لحاظ منطقي عمر الياف با ظهور الياف مصنوعي مانند نايلون، پلي استر و ... شروع شده است. اين پيشرفت شگرف در اواخر دهه ي 1930 اتفاق افتاد. در اين زمان بسياري از شرکت ها مانند دوپون (Dupont)، مانساتو (Monsato)، بي اي اس اف (BASF)، هوي چست (Hoechst)، آي سي آي (ICI) و ... در بخش الياف فعاليت کردند. براي آگاهي از وسعت فعاليت ها مي توان فعاليت هاي شرکت دوپون را در بين سال هاي 1902-1980 بررسي نمود. بسياري از الياف پليمري مصنوعي مانند پلي استر، نايلون و... داراي خواص يکنواخت هستند و مي تواند آنها را چندين بار بازيافت کرد. به هر حال، اين الياف داراي مدول الاستيک پايين هستند، از اين رو کاربرد اين الياف بيشتر به پوشاک و منسوجات محدود مي شود. کارهاي تحقيقاتي انجام شده باعث شد تا الياف پليمري مصنوعي با استحکام و سفتي مناسب جهت تقويت کننده ي کامپوزيت ها توليد گردد. اين کارهاي تحقيقاتي در اواخر دهه ي 1950و ابتداي دهه ي 1960 شروع شد. که باعث ورود الياف پليمري محکم مانند آراميدها (aramid) و پلي اتيلن با زنجيره هاي طويل به عرصه تجاري شد. در ادامه به توصيف توليد، ساختار و خواص تعدادي از الياف پليمري مصنوعي مي پردازيم. تاريخ مختصري از الياف آلي مرور مختصري بر کارهاي انجام شده در زمينه الياف آلي مي تواند ما را در آگاهي يافتن از جايگاه اين مواد در زندگي کمک کند. براي اين کار ما از کشف نايلون شروع مي کنيم. نايلون بوسيله شرکت دوپون در سال 1938 کشف و تجاري سازي شد. والاس کارتررز (Wallas Carothers) از شرکت دوپون عموماً به عنوان پدر نايلون در نظر گرفته مي شود. نايلون براي اولين بار و پيش از جنگ جهاني دوم به مراکز فروش جوراب وارد شد. در حقيقت سال 1988، پنجاهمين سالگرد ورود نايلون به عنوان ماده ي اوليه در توليد جوراب زنانه ساق بلند بود. نايلون بوسيله روش ريسندگي مذاب (melt spinning) توليد مي شود اين فيبر بسيار انعطاف پذير و با دوام است و حالت کشباف دارد. همه ي اين ويژگي ها منجر شد تا نايلون به عنوان يکي از مهمترين الياف در صنعت منسوجات درآيد. همچنين استحکام بالاي نايلون و خواص ضربه اي و مقاومت به خستگي مناسب اين فيبر باعث شد تا نايلون در صنعت الاستيک سازي نيز مصرف شود. اين مسأله بايد مورد توجه قرار گيرد که واژه ي نايلون به گروهي از مواد شبيه به هم اطلاق مي شود، همانگونه که ما گروهي از مواد را با نام شيشه، فولاد و يا کربن مي شناسيم. و به همين خاطر ما نايلون را با حروف بزرگ ننوشته ايم. (در انگليسي حروف اول کلمات خاص با حروف بزرگ نوشته مي شود). پس از نايلون، پلي اتيلن ترفتالات (PET) و پلي اکريلونيتريل (PAN) دو کشف در زمينه ي الياف آلي بودند. پلي اتيلن ترفتالات از روش ذوبي ريسندگي مي شود و اين در حالي است که پلي اکريلو نيتريل از روش Spinable Polymer solution dope به الياف تبديل مي شود. پلي اتيلن ترفتالات يک پلي استر ترموپلاست است. اين ماده به سرعت به عنوان جايگزين براي پنبه، پشم و رايون در فرش، پتو و ... درآمد. پلي اکريلونيتريل نيز به عنوان پيش ماده در توليد الياف کربن (Carbon fiber) استفاده مي شود. از ميان تمام ويژگي هاي منحصر به فردي که الياف مصنوعي مانند نايلون، PET، PAN و ... دارند، برخي از ويژگي ها مانند خواص سايشي، مقاومت در برابر چروک خوردن، دوام و قابليت شستشوي آنها باعث شده اند تا الياف مصنوعي موفق باشند. توليد الياف پليمري مصنوعي به عنوان يکي از پيشرفت هاي شگرف بشر در نيمه ي دوم قرن بيستم به حساب مي آيد. به هر حال، مهم تر از اين مسئله اين است که هنگامي که اهميت رابطه ي ميان خواص و ساختار در پليمرها کشف شد، عصر جديدي در الياف ساخته بشر شروع شد. تعدادي از کارهاي مؤثر در زمينه ي کريستاليزاسيون پليمرها در اواخر دهه ي 1960 باعث پديد آوردن اين دوره شد. شناخت از فرآيند کريستاليزاسيون پليمرها باعث شد تا رابطه ي ميان ساختار و خواص مواد پليمري شناخته شود. يکي از نتايج اصلي که از کارهاي انجامي بر روي رابطه خواص و ساختار بدست آمد اين مسئله بود که «آرايش زنجيره هاي پليمري به صورت جهت دار و در طول فيبر باعث بهبود خواص مکانيکي مي گردد.» توليد الياف آلي با استحکام کششي و مدول بالا مانند آراميدها و پلي اتيلن، نتيجه ي مستقيم اين تلاش هاست. در واقع در توليد الياف با استحکام و مدول بالا از دو مسئله ساختاري متفاوت استفاده شده است. در پليمرهاي با استحکام بالا و صلب مانند آراميدها ما از صلبيت ذاتي و بسيار بالاي گروه هاي آراميدي در زنجيره ي اصلي به همراه آرايش فيزيکي زنجيره ها بهره گرفته ايم. در حالي که پليمرهاي داراي زنجيره ي انعطاف پذير مانند پلي اتيلن ما از آرايش زنجيره هاي پليمري براي بدست آوردن مدول بالا بهره برده ايم. در ادامه ما تکنيک هاي عمومي در توليد الياف پليمري مصنوعي را بيان مي کنيم و پس از آن فرآيندهاي توليد، ساختار و خواص برخي از الياف آلي با مدول پايين را توصيف مي کنيم. سرانجام ما به توصيف دو نوع از الياف آلي تجاري مهم که داراي سفتي و مدول بالايي هستند، (آراميدها و پلي اتيلن) مي پردازيم. توليد عموماً، پليمرهاي مصنوعي بوسيله فرآيند ريسندگي به فيبر تبديل مي شود. ريسندگي فيبر (Fiber spinning) فرآيندي است که در طي آن مايعي از ميان سوراخ هاي کوچک عبور مي کند و به صورت فيلامنت هاي جامد در مي آيد. در شکل 1 شماتيک کلي اين فرآيند نشان داده شده است. در ابتداي فرآيند ما نيازمند محلول يا مذاب پليمر هستيم. فيلامنت ها از سوراخ هاي رشته ساز (spinnert) بيرون مي آيند و پس از آن ممکن است از داخل حمام و آون عبور کند. و سپس به صورت تک نخ بر روي يک بوبين (bobbin) پيچيده مي شود. واژه ي ريسندگي (spinning) همچنين به معني ريسندگي نخ (spinning yarn) نيز استفاده مي شود و اين يک وضعيت نامناسب ايجاد مي کند. در طبيعت کرم ابريشم و عنکبوت ها بوسيله ي همين روش فيلامنت هايي مداوم توليد مي کنند. فرآيند ريسندگي الياف جامد بدين گونه است که يک مايع از ميان روزنه هاي بسيار ريز عبور مي کند و در حقيقت اين موقعيت از آنجايي بدست که مواد خاصي مانند پليمرهاي آلي و شيشه هاي غيرآلي بر پايه ي سيليس داراي ويسکوزيته ي متعادلي براي ايجاد فيلامنت پايدار از روزنه ها هستند. خروج فيلامنت ها از رشته ساز ممکن است بوسيله ي جريان هوا يا حمام انعقاد (coagulating bath) پايدار گردد. اگر ويسکوزيته پايين باشد، جريان خروج فيلامنت ها به خاطر کشش سطحي، ناپايدار مي شود. فلزات مذاب معمولاً داراي ويسکوزيته بسيار پاييني هستند (نزديک به ويسکوزيته ي آب) و بنابراين به طور عادي نمي توان از ريسندگي مذاب براي تهيه ي فيلامنت هاي فلزي استفاده کرد. نقطه ي کليدي که بوسيله آن مي توان تشخيص داد که چگونه جريان مذاب با ويسکوزيته ي پايين را به صورت جريان پايدار درآورديم، امواج رايليت (Rayleigh Waves) است. بر طبق اين امواج کشش سطحي مناسب تعيين مي گردد و با تنظيم کشش سطحي جريان فلامينت ها پايدار مي شود. يک راه جهت ايجاد فيلامنت هاي مداوم و پايدار اين است که جريان فيلامنت هاي خروجي از روزنه ها را از يک محيط فعال شيميايي عبور دهيم. ويسکوزيته ي پليمرهاي آلي و شيشه ها در گستره اي است که فيلامنت هاي عبوري از روزنه ها تا زمان سرد شدن مشکلي ندارند. (اين ويسکوزيته بيش از 10 به توان 5 poise است.) در واقع عدم پايداري فيلامنت ها گاها به خاطر چسبيدن آنها به همديگر رخ مي دهد که در مورد جريان هاي مذاب با ويسکوزيته پايين مي توان از پايدار کننده هاي شيميايي استفاده کرد. براي مثال والنبرگر (wallenberger) و همکارانش در سال 1992 فرآيندي براي توليد الياف (آلومينا و سيليس) را ابداع کردند که در آن جرياني از فيلامنت ها با ويسکوزيته ي پايين (10poise) را بوسيله ي پروپان پايدار مي کنند. و پيش از اينکه فيلامنت ها به صورت قطره درآيند فرآيند پايدار کنندگي الياف انجام مي شود.
  6. *mishi*

    کوپلیمریزاسیون

    هموپلیمرها (homopolymers) ساده ترین انواع پلیمرها ، هموپلیمرها هستند که از زنجیره های پلیمری متشکل از واحدهای تکراری منفرد تشکیل شده‌اند. بدین معنی که اگر A یک واحد تکراری باشد، یک زنجیره هموپلیمری ، ترتیبی به صورت… AAAدر زنجیره مولکولی پلیمر خواهد داشت. به عبارت دیگر می توان برای هموپلیمرها فرمول عمومی An را در نظر گرفت. از جمله هموپلیمرها می توان پلیمرهایی مثل پلی‌اتیلن ، پلی‌پروپیلن ، پلی‌استایرن و پلی‌وینیل‌کلراید یا PVC را نام برد. کوپلیمرها (Coplymers) کوپلیمرها، پلیمرهایی هستند که از پلیمریزاسیون دو یا چند مونومر مختلف و مناسب با یکدیگر بوجود می‌آیند که از این راه می توان پلیمر را با ساختمانهای متفاوتی بوجود آورد. در کوپلیمریزاسیون دو مونومر B,A ، زنجیرهای پلیمر می‌توانند مونومر A یا مونومر B را در انتهای رشد کننده خود داشته باشند. در نتیجه ، چهار واکنش امکان پذیر است، واکنش زنجیر دارای انتهای A با مونومر A یا B و واکنش زنجیر دارای انتهای B با مونومر A یا B هر یک از واکنش ها ثابت سرعت مشخصی دارند. از روی نسبت داده شده مولکولهای مونومر می‌توان نسبت واحدهای مونومرهای بکار رفته در یک پلیمر را بدست آورد. نسبت واکنش پذیری مقدار نسبت های واکنش پذیری در تعیین ترکیب کوپلیمر دارای اهمیت زیادی است. اگر نسبت واکنش پذیری از 1 بزرگتر باشد، رادیکال ترجیحا با زنجیری که دارای واحد انتهایی مشابه با آن است، واکنش می‌دهد (یعنی رادیکال A با رادیکال A). ولی اگر نسبت واکنش پذیری کوچکتر از 1 باشد، مونومر با زنجیرهایی که در انتها دارای نوع دیگری مونومر هستند واکنش می‌دهد. در موارد خاص که نسبت واکنش پذیری برابر 1 باشد، واکنش به عنوان "کوپلیمریزاسیون ایده آل" شناخته می‌شود، چون کوپلیمر به صورت کاملا تصادفی تشکیل شده و ترکیب آن هماننتد ترکیب مخلوط واکنشی است که پلیمریزاسیون در آن انجام می‌شود. هنگامی که به دو نسبت واکنش پذیری ، صفر باشد، مونومرها به هیچ وجه با زنجیرهای پلیمر در حال رشد که دارای واحد انتهایی مشابه آنها باشد، وارد واکنش نمی‌شوند. در نتیجه "کوپلیمریزاسیون متناوب" انجام می‌گیرد. خواص کوپلیمرها اگر مونومرهای B و A با هم واکنش بدهند و یک کوپلیمر را بوجود بیاورند این کوپلیمر اغلب خواص کاملا متفاوتی نسبت به مخلوط فیزیکی دو هموپلیمر جداگانه B و A خواهد داشت. خواص یک کوپلیمر به روشنی بستگی به نحوه توزیع واحدهای B و A در زنجیرهای کوپلیمر دارد. توزیع مونومرها نباید الزاما برابر نسبت غلظت مونومرهای B,A موجود مخلوط اولیه باشد. بطور کلی در یک کوپلیمر متشکل از مونومر B و A ، در صورتیکه مونومر A فعالتر باشد کوپلیمری که در مراحل اولیه تشکیل می شود از A نسبت به B غنی‌تر خواهد بود ولی در مراحل بعدی واکنش از آنجا که غلظت مونومر A کم می‌شود کوپلیمر تشکیل شده بیشتر شامل B خواهد بود. این مسئله که ترکیب کوپلیمر در ضمن پلیمریزاسیون تغییر پیدا می‌کند را می‌توان با افزایش تدریجی مونومر فعالتر تا حدودی کاهش داد. از مزیت های کوپلیمریزاسیون این است که کیفیتهای خوب و دلخواهی که هر یک از هموپلیمرها دارند می توانند با هم در یک کوپلیمر جمع شده و خواص مورد دلخواه را به یک کوپلیمر بدهند. انواع کوپلیمریزاسیون کوپلیمرها انواع مختلفی دارند و لیکن می توان آنها را به چهار نوع مجزا از کوپلیمرها به صورت تصادفی ، تناوبی ، دسته ای و پیوندی دسته بندی نمود. کوپلیمرهای تصادفی یابی نظم (Random Copolymers) این کوپلیمرها بوسیله پلیمریزاسیون مخلوط مناسبی از مونومرهای مختلف که به طور تصادفی در زنجیره های پلیمر مرتب شده اند، تهیه می‌شوند. اگر B و A مونومرهای یک کوپلیمر باشند، در اینصورت آرایش کوپلیمر ممکن است به صورت زیر باشد: ...AABABBBAA مثالهایی از این نوع ، کوپلیمرهای کلرواتن- اتنیل- اتانوات (وینیل کلراید- وینیل استات) و فنیل اتن- بوتا 1و3 - دین می‌باشند. در مورد کوپلیمر کلرواتن – اتنیل اتانوات حضور اتینل اتانوال باعث افزایش حلالیت و بهبود خاصیت قابلگیری (توسط افزایش میزان جاری شدن) در مقایسه با هموپلیمر کلرواتن می‌شود. کوپلیمرهای متناوب (alternating copolymers) در این کوپلیمرها ، واحدهای تکراری مختلف بصورت متناوب درون زنجیر پلیمری قرار گرفته اند. در واقع هنگامی که نسبت واکنش پذیری دومونومر B و A صفر باشد، مونومرها به هیچ وجه با زنجیرهای پلیمر در حال رشد که دارای واحد انتهایی مشابه با آنها باشد، وارد واکنش نمی‌شوند. در نتیجه "کوپلیمریزاسیون متناوب" انجام می گیرد. آرایش یک کوپلیمر متناوب متشکل از مونومرهای B,A به صورت زیر می باشد: ...ABABAB مثالی از این کوپلیمرها ، محصولی است که از کوپلیمریزاسیون رادیکالی بوتن دیوئیک انیدرید (مالئیک ایندرید) و فنیل اتن با نسبت های مولی تقریبا مساوی بدست می آید. بوتن دیوئیک انیدرید همچنین می‌تواند بصورت رادیکال آزاد با فنیل اتین (فنیل استیلن) کوپلیمر شود. کوپلیمرهای دسته‌ای (Block Polymers) این کوپلیمرها بوسیله پلیمریزاسیون واحدهای هموپلیمر با جرم مولکولی کم بصورت دسته- دسته که با یکدیگر واکنش داده و کوپلیمر را تشکیل می دهند، تهیه می‌شوند. آرایش یک کوپلیمر دسته‌ای متشکل از مونومرهای B و A عبارتست از AAAA-BBB-AAAA…. کوپلیمرهای دسته ای را می‌توان با روشهای مختلفی تهیه کرد. یکی از این روشها با مکانیسم آنیونی انجام می‌شود که در مرحله اول یک نوع از مونومرها بصورت آنیونی پلیمر می‌شوند و واکنش تا آنجا ادامه پیدا می کند که مونومرها به مصرف برسند پس به پلیمر زنده بدست آمده مونومر دیگر اضافه می‌شود که این مونومر نیز به زنجیر اضافه می‌گردد و قسمت دوم زنجیر را بوجود می‌آورد و این فرآیند را می‌توان در صورت لزوم به همیتن ترتیب تکرار کرد. کوپلیمرهای دسته‌ای که از نظر تجارتی دارای اهمیت هستند شامل کوپلیمرهای قسمتی فنیل اتن- بوتا- 1و3- دین می‌باشند که از جمله لاستیک های گرمانرم بشمار می‌روند. کوپلیمرهای پیوندی (Graft Copolymers) در این کوپلیمرها ، یک شاخه اصلی هموپلیمر با تعدادی شاخه جانبی وجود دارد که هر شاخه جانبی ، هموپلیمر مونومر دیگری می باشد که روی شاخه اصلی پیوند زده شده است. آرایش یک کوپلیمر پیوندی شامل مونومرهای A بعنوان شاخه اصلی و مونومرهای B بعنوان شاخه فرعی بصورت زیر می‌باشد: AAAAAA BB BB کوپلیمرهای پیوندی را می‌توان با آغاز کردن پلیمریزاسیون مونومری مانند B بصورت رادیکال آزاد در حضور هموپلیمری از مونومر A تهیه کرد. رادیکالهای آزادی که بوجود می آیند باعث برداشته شدنم اتمهایی در امتداد زنجیر پلی (A) می‌شوند. و به این طریق محلهای رادیکالی را بر روی زنجیر بوجود می‌آورند که پس از این محل‌ها پلی (B) می‌تواند رشد پیدا کند. نمونه ای از یک کوپلیمر مهم صنعتی ، کوپلیمری است که از حدود 85 درصد کلرید پلی وینیل و 15 درصد استات پلی وینیل تشکیل شده است و به عنوان ماده پایه در اکثر ثباتهای وینیلی بکار می‌رود. از دیگر کوپلیمرهای پیوندی که از اهمیت صنعتی برخوردارند می‌توان پروپن نیتریل بوتا- 1و3 – دین و فنیل اتن را نام برد.
  7. يك سيستم پليمريزاسيون امولسيوني شامل آب، شروع كننده (Initiator) به طور معمول قابل حل در آب، يك مونومر (غيرقابل حل در آب) و فعال كنندة سطحي است. دو نوع پليمريزاسيون امولسيوني با نام هاي پليمريزاسيون ميكروامولسيوني و پليمريزاسيون ميني امولسيوني وجود دارد. در نوع ميكرو، شرايط به گونه اي انتخاب مي شود كه قطرات مونومر بسيار كوچك باشد (با شعاع بين 10 تا 30 نانومتر). ميكروامولسيون تشكيل شده در ابتداي فرآيند، به طور كامل از لحاظ ترموديناميكي پايدار است. در پليمريزاسيون ميني امولسيوني شعاع قطرات بين 50 تا 1000 نانومتر است و امولسيون نيز از لحاظ ترموديناميكي ناپايدار، اما از لحاظ سينتيكي شبه پايدار است (با زمان ماندگاري به مدت چند ماه). اين امولسيون ها به وسيله هيدروفوب (ماده اي كه در فاز پيوسته غيرقابل حل است). در برابر فرآيند استوالد پايدار مي شوند. پليمريزاسيون امولسيوني، با ساخت امولسيون از مونومرها در فاز پيوسته (آب) و پايدارسازي قطرات به كمك مواد فعال كنندة سطحي آغاز مي شود. در غلظت بيشتر از غلظت بحراني ميسل، مولكول هاي فعال كنندة سطحي ميسل ها را در آب تشكيل مي دهند. قسمت هاي آب گريز ميسل ها، در مركز توده و قسمت هاي آب دوست آنها به سمت بيرون قرار دارد. مركز ميسل، محل استقرار مونومرهاست. بنابراين، ميسل با جذب مونومر، متورم مي شود و تشكيل ذرات لاتكس پليمري را مي دهد. با وجود اين، اندازة ميسل آن چنان كوچك است كه با چشم ديده نمي شوند. پس از متورم شدن ميسل ها، كه به نظر مي رسد مونومر قابليت انحلال پيدا كرده است. گرما سبب تجزية شروع كننده ها (تجزيه پراكسيد به راديكال هاي آزاد) شده و باعث شروع واكنش مس شود. در پليمريزاسيون امولسيوني، امولسيفاير به سه منظور استفاده مي شود : 1- پايدارسازي قطرات مونومر در شروع پليمريزاسيون 2- انجام فرآيند پليمريزاسيون با تشكيل ميسل ها 3- پايدارسازي ذرات لاتكس پليمري مك كوي (MC Coy) نقش امولسيفايرها را در پليمريزاسيون امولسيوني، بررسي و تغييرات سرعت فعل و انفعال، اندازة هر ذره، ثبات و جرم مولكولي را به عنوان تابعي از نوع و غلظت امولسيفاير بررسي كرده است. پژوهش هاي ديگري در اين زمينه توسط گرت (Greth) و ويلسون (Wilson)، با استفاده از روش HLB انجام گرفته است. بررسي پليمريزاسيون استيرن و وينيل استات با استفاده از مخلوطي از امولسيفايرهاي آنيوني و غيريوني نشان داده است كه تغييرات تشديد در سرعت واكنش و اندازة ذرات و گرانروي در محدوده بخصوصي از مقدار HLB صورت مي گيرد. براي مثال، بهترين نتايج براي پليمريزاسيون استيرن در HLB برابر 13 و براي وينيل استات در محدوده HLB بين 15 تا 17 به دست مي آيد. براي نمونه از امولسيفايرهاي آنيوني در اين زمينه مي توان سديم دودسيل سولفات و سديم دي اكتيل سولفوسوكسينات را نام برد. به دليل اينكه بيشتر فعل و انفعالات بالا در محيط قليايي صورت مي گيرد، از انواع صابون ها، بيشتر استفاده مي شود. يكي از امولسيفايرهاي كاتيوني مورد استفاده در پليمريزاسيون امولسيون، دودسيل آمين هيدروكلرايد است. اگرچه اين روش خود داراي معايبي است، به هر حال، پيشرفت چشمگيري در فرآيندهاي پليمريزاسيون پايه امولسيوني بوجود آمده است. نونيل فنل اتوكسيلات ها، از امولسيفايرهايي قابل تجزيه در محيط زيست اند كه كاربرد فراواني در پليمريزاسيون امولسيوني دارند. در فرآيند پليمريزاسيون بوتادين، تركيبي از صابون هاي اسيدهاي چرب به عنوان امولسيفاير استفاده مي شود. در پليمريزاسيون مونومرهاي وينيل، از امولسيفايرهاي آنيوني و غيريوني استفاده مي شود. در پليمريزاسيون استيرن نيز از آلكيل لاريل سولفونات، الكل سولفات و پلي گليكول اترها استفاده مي شود. از امتيازات مهم پليمريزاسيون امولسيوني مي توان به موارد زير اشاره كرد : 1- استفاده از رقيق كنندة ارزان مانند آب كه تبديل مونومر به يك پليمر با جرم مولكولي بسيار بالا، سريعا" انجام مي شود. 2- گرانروي كم سيستم 3- تبادل حرارتي يكنواخت و بسيار خوب از معايب بارز اين روش مي توان آغشته بودن پليمر به مواد فعال كنندة سطحي را نام برد. زيرا پس از انجام پليمريزاسيون، امولسيفاير جذب پليمر مي شود. يكي از كاربردهاي مهم پليمريزاسيون امولسيوني در تهية رنگ ها است. در اروپا بيشتر رنگ هاي امولسيوني بر پايه لاتكس هاي پلي وينيل استات تهيه مي شوند. اين لاتكس ها، از پليمريزاسيون امولسيوني وينيل استات حاصل مي شوند، به وسيلة تركيبي از فعال كننده هاي سطحي و كلوئيدهاي حفاظتي (Protection colloid) پايدار مي شوند. پلي وينيل استات (PVAc) ، مانند پلي متيل آكريلات، يك پليمر به نسبت نرم است و دماي شيشه اي آن بيشتر از دماي اتاق است. رنگ هاي خانگي بايد در دماي اتاق تشكيل فيلم دهند. بنابراين براي كاهش دماي شيشه اي پلي وينيل استات، به آن نرم كنندة لاك الكل (دي بوتيل فتالات، وينيل و رسانات يا وينيل آكريلات) ، افزوده مي شود.
  8. توزيع اندازه ذرات از مشخصات مهم پليمر شدن تعليقي است. شرايط معيني بايد فراهم شود تا توزيع مناسب به دست آيد. اين شرايط در مورد پليمر شدن برخي مواد مطالعه شده است. در اين مطالعه اثر برخي پارامترها بر سيستم اختلاط، پايداري و سينتيک مانند غلظت آغازگر، مقدار پايدار کننده و دور همزن بر توزيع نهايي اندازه ذرات در پليمر شدن تعليقي استيرن بررسي شده است و حدود مقدار مناسب اين پارامترها معين شده است. نتايج نشان مي دهد که دانه هاي با توزيع باريک عمدتا در محدوده بين 200 تا µm 400 بدست مي آيند. دانلود مقاله منبع : پایگاه اطلاعات علمی
×
×
  • اضافه کردن...