رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'توربین بادی'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. Amin

    مرجع توربین

    توربينهاي گازي مقدمه : از زمان تولد توربينهاي گازي امروزي در مقايسه با ساير تجهيزات توليد قدرت , زمان زيادي نمي گذرد . با اين وجود امروزه اين تجهيزات به عنوان سامانه هاي مهمي در امر توليد قدرت مكانيكي مطرح مي باشند . از توليد انرژي برق گرفته تا پرواز هواپيماهاي مافوق صوت همگي مرهون استفاده از اين وسيله سودمند مي باشند . ظهور توربينهاي گازي باعث پيشرفت زيادي در رشته هاي مهندسي مكانيك , متالورژي و ساير علوم مربوطه گشته است . بطوري كه پيدايش سوپرآلياژهاي پايه نيكل و تيتانيوم به خاطر استفاده آنها در ساخت پره هاي ثابت و متحرك توربينها كه دماهاي بالايي در حدود 1500 درجه سانتيگراد و يا بيشتر را متحمل مي شوند, از سرعت بيشتري برخوردار شد . به همين خاطر امروزه به تكنولوژي توربينهاي گازي تكنولوژي مادر گفته مي شود و كشوري كه بتواند توربينهاي گازي را طراحي كند و بسازد هر چيز ديگري را هم مي تواند توليد كند . همانطور كه بيان گرديد از اين تجهيزات در نيروگاهها براي توليد برق ( معمولا براي جبران بارپيك) موتورهاي جلوبرنده (هواپيما ,كشتيها و حتي خودروها) , در صنايع نفت و گاز براي به حركت درآوردن پمپها و كمپرسورها در خطوط انتقال فراورده ها و... استفاده مي شود كه امروزه كاربرد توربينهاي گازي در حال گسترش مي باشد . اجزاي توربينهاي گازي : به طور كلي كليه توربينهاي گازي از سه قسمت تشكيل مي شوند : 1.كمپرسور 2.محفظه احتراق 3.توربين كه بنا به كاربرد قسمتهاي ديگري نيز براي افزايش راندمان و كارايي به آنها اضافه مي شود . به عنوان مثال در برخي از موتورهاي هواپيماها قبل از كمپرسور از ديفيوزر و بعد از توربين از نازل استفاده مي شود . كه دراين رابطه بعدها مفصلاً بحث خواهد گرديد سيكل توربينهاي گازي : سيكل ترموديناميكي توربينهاي گازي سيكل استاندارد هوايي يا برايتون مي باشد كه در حالت ايده ال مطابق شكل زير شامل دو فرايند ايزنتروپيك در كمپرسور و توربين و دو فرايند ايزو بار در محفظه احتراق و دفع گازهاميباشد سيكلهاي توربينهاي گازي در دونوع باز و بسته مي باشند . در سيكل باز ( شكل فوق) گازهاي خروجي از توربين به درون اتمسفر تخليه مي شوند كه اين سيكل بيشتر در موتورهاي هواپيما مورد استفاده قرار مي گيرد . در نوع بسته كه عمدتاً در نيرو گاههاي برق مورد استفاده قرار مي گيرد گازهاي خروجي از توربين ( مرحله 4) از درون بخش دفع گرما (cooler ) عبور كرده و بعد از خنك شدن مجددا وارد كمپرسور گرديده و سيكل تكرار مي شود . همانطوركه قبلا بيان گرديد توربينهاي گازي از نظر كاربردي به دو گروه صنعتي و هوايي تقسيم مي شوند كه نوع اول در صنعت و نوع دوم در هوانوردي مورد استفاده قرار مي گيريند . كه ذيلا در ارتباط با هركدام از آنها بحث خواهيم نمود . توربينهاي گازي صنعتي : منظور از توربينهاي گازي صنعتي اشاره به كاربرد آنها غير از بخش هوانوردي مي باشد . در شكل زير شمايي از يك واحد توليد نيروي برق توسط توربين گاز , نشان داده شده است . شكل زير هم نوعي توربين گازي با ظرفيت توليدي 400 مگاوات را نمايش مي دهد. توربينهاي گازي كه در صنعت برق مورد استفاده قرار مي گيرند داراي ظرفيتهاي متفاوتي مي باشند كه شكل قبل نوعي از اين توربينها با ظرفيت 400 مگاوات را نشان مي دهد. توربينهاي گازي هوايي يا موتورهاي جت : همانطور كه گفته شد سيكل توربينهاي گازي موتورهاي هواپيما شبيه به توربينهاي گازي صنعتي مي باشد بجز اينكه قبل از ورود هوا به كمپرسور از يك ديفيوزر و بعداز توربين از يك نازي براي بالا بردن سرعت گازهاي خروجي و حركت هواپيما به سمت جلو استفاده مي كنند . اين گازهاي پرسرعت بر هواي خارج از موتور نيرويي وارد مي كنند كه طبق قانون سوم نيوتن نيروي عكس العمل آن سبب حركت هواپيما به سمت جلو مي شود . شايان ذكر است كه نازل در هواپيماهاي جت از نوع متغير مي باشد . يعني دهانه آن با توجه به دبي (گذرجرمي) گازهاي خروجي قابل تغييرو تنظيم است . موتورهاي هواپيما انواع مختلفي دارند كه به دو سته كلي تقسيم مي شوند : 1- موتورهاي پيستوني : كه از نظر كاري شبيه به موتور خودروها مي باشند. 2- موتورهاي توربيني : اين موتورها به سه دسته كلي توربوجت, توربوفن و توربوپراپ تقسيم بندي مي شوند. توربوجتها اولين موتورهاي جت مي باشند كه امروزه به دليل مسائلي مثل صداي زياد و آلودگي محيط زيست بجز در موارد خاص استفاده اي از انها نمي شود . توربوفنها نوع پيشرفته موتورهاي توربوجت هستند . به اين صورت كه رديف اول كمپرسور در اين موتورها به عنوان فن عمل كرده و مقداري از هواي ورودي به موتور را از اطراف موتور by pass كرده كه اين عمل علاوه بر افزايش نيروي جلوبرندگي باعث كاهش صدا,آلودگي محيطي و ... مي شود . در موتورهاي توربوفن با اتصال يك ملخ به گيربكس و سپس به كمپرسور , نيروي جلوبرندگي ايجاد مي شود . در اين حالت سعي مي شود كه بيشترين انرژي جنبشي گازها صرف چرخاندن توربين و از آنجا كمپرسور و در نتيجه ملخ شود . وجود گيربكس به اين خاطر است كه سرعت دوراني ملخ از حد معيني تجاوز نكند . يعني بايد سرعت انتهاي ملخ از عدد ماخ كوچكتر باشد . زيرا سرعتي بيش از اين سبب ايجاد ارتعاشات شديد و در نتيجه شكستگي ملخ مي شود. موتورهاي توربوشفت نيز نوعي موتور توربوپراپ مي باشند كه از آنها جهت به حركت درآوردن هليكوپترها استفاده مي شود .بطور كلي موتورهاي توربوپراپ بدليل اينكه در ارتفاع پروازي كم از قدرت زيادي برخوردار هستند از آنها در هواپيماهاي ترابري استفاده مي شود ( مثل C130 ) آشنايي با برخي اصطلاحات مهم : 1- نيروي جلوبرندگي يا تراست (Thrust) موتورجت بر اساس قانون سوم نيوتن نيروي تراست را توليد مي كند . يعني نيرويي به سمت عقب بر هوا وارد كرده و عكس العمل اين نيرو براي ما نيروي جلوبرندگي يا تراست را فراهم مي كند . از طرفي ميدانيم كه از قانون دوم نيوتن داريم : با توجه به حقايق فوق مي توان اقدام به نوشتن دو نوع فرمول براي تراست نمود : 1- نت تراست (Net thrust) اين نوع تراست به حالتي اطلاق مي شود كه هواي ورودي به موتور سرعت داشته باشد . به عبارت ديگر تقريباً مي توان گفت موتور در حركت باشد . در اينصورت فرمول آن به دو شكل زير خواهد بود : - وقتي كه نازل در حالت choke نباشد : - وقتي كه نازل در حالت choke باشد : در فرمولهاي فوقجرم هواي ورودي به موتور,سرعت گازهاي خروجي از نازل , سرعت هواي ورودي به موتور , سطح مقطع نازل , و به ترتيب فشار استاتيك نازل و اتمسفر ميباشد .ضمناً در داخل موتور سوخت به هوا افزوده مي شود ولي به دليل نشتي هاي درون موتور از جرم آن صرف نظر مي شود . 1-2 گراس تراست(Gross thrust) حالتي است كه سرعت هواي ورودي به موتور صفر بوده يعني در واقع موتور در حال سكون باشد .پس : - وقتي كه نازل در حالت choke نباشد : - وقتي كه نازل در حالت choke باشد : فرمولهاي بدست آمده فوق مختص موتورهاي توربوجت بوده و براي ساير موتورهاي جت مقادير فوق از روابط پيچيده تري محاسبه مي شوند . 2-راندمان حرارتي (Thermal Efficiency) به اين راندمان اصطلاحاً راندمان داخلي internal efficiency نيز مي گويند و عبارت است از نسبت بين انرژي سينتيك گازها و كل انرژي حرارتي سوخت . اين راندمان در موتورهاي جت حدود 35 درصد و بستگي به ضريب تراكم و درجه حرارت احتراق دارد و هرچه اين دو عامل زياد شوند, راندمان حرارتي نيزافزايش پيدا خواهد كرد . 3-راندمان جلوبرندگي(Propulsive Efficiency) اين راندمان را مي توان بانسبت انرژي جلوبرندگي مفيد برمجموع اين انرژي وانرژي غيرمفيدجت تعريف نمود . به عبارتي ديگر, راندمان جلوبرندگي حاصل تقسيم كارانجام شده برروي هواپيما بر انرژي سينتيك گازها مي باشد . به سادگي مي توان ثابت كرد كه مقدار آن برابر است با : درفرمول فوق V سرعت هواپيماو سرعت گازهاي خروجي مي باشد و بنا به فرمول اگر اين مقدار كاهش يابد راندمان افزايش مي يابد . اين راندمان در موتورهاي جت 85 درصد است . 4-راندمان كلي (Overal Efficiency) اين راندمان تلفيقي از دو راندمان قبل بوده به طوري كه مي توان ثابت كرد : و تعريف آن چنين است : يعني , نسبت كار انجام بر هواپيما به انرژي ناشي از سوخت . راندمان كلي موتورهاي جت حدود 30 درصد است . 5-مصرف ويژه سوخت((Specific Fuel Consumption-SFC منظور از اين واژه مقدار سوخت مصرفي(gr or lb) به ازاي واحد تراست (N or lb) در ساعت است . منبع:انجمن علمی مکانیک
  2. انرژی هاب: رییس بنیاد نخبگان سیستان و بلوچستان گفت: طرح‌هایی که در کارگروه‌های تخصصی انرژی‌های نو مصوب می‌شوند در صورتی از سوی ستادهای فناوری معاونت علمی و فناوری مورد حمایت قرار می‌گیرند که نوآوری داشته، ایجاد اشتغال کند و مشکلی از مشکلات استان را حل کند. پهلوانی در گفت‌و‌گو با خبرنگار خبرگزاری دانشجویان ایران (ایسنا) منطقه سیستان و بلوچستان، با اشاره به اینکه استان سیستان و بلوچستان به عنوان استانی با پتانسیل‌های بادی و خورشیدی مطرح است به ایجاد مزرعه توربین‌های بادی در منطقه سیستان پرداخت و افزود: توربین‌های نصب شده پایلوت در منطقه لوتک سیستان بالا‌ترین راندمان را از نظر تولید انرژی داشته و با توجه به تقاضای حدود ۱۰۰۰ مگاواتی برق افغانستان، خواستار تشکیل شرکت‌های دانش بنیان در این حوزه هستیم. وی تاکید کرد: شرکت‌های دانش بنیان نو پا مورد حمایت معاونت علمی و فناوری ریاست جمهوری قرار گرفته و پس از تایید صلاحیت این شرکت‌ها مبلغ ۱۰۰ تا ۳۰۰ میلیون تومان وام قرض الحسنه از طریق صندوق نوآوری و شکوفایی برای تولید و تجاری سازی تعلق خواهد گرفت. وی ناپایدار بودن انرژی باد، طراحی توربین‌های بادی برای دمای بالا‌تر از ۴۰ درجه سانتی‌گراد مناسب شرایط آب هوایی استان، فقدان نیروی متخصص و تکنسین محلی در حوزه انرژی‌های نو، کافی نبودن اطلاعات خام دقیق در زمینه راندمان انرژی‌های بادی و خورشیدی و زمین گرمایی در استان، پخش بودن باد در کل منطقه و احداث نیروگاههای بادی در سراسر استان و پایین آمدن راندمان پنل‌های خورشیدی در ماههای گرم سال را از مشکلات اساسی در حوزه انرژی‌های نو برشمرد. رییس بنیاد نخبگان استان ادامه داد: تهیه پروپوزال کاربردی برای میکروسایتینگ باد و خورشید و طراحی توربین بادی متناسب با شرایط آب و هوا و باد در استان، طراحی پنل‌های خورشیدی منعطف تا دمای ۴۵ درجه که مناسب شرایط تابش و گرمای خورشید در پژوهشکده انرژی خورشیدی دانشگاه سیستان و بلوچستان با حمایت ستاد فناوری انرژی‌های نو در معاونت علمی و فناوری ریاست جمهوری را باید پیگیری کرد.
  3. به گزارش انرژی‌هاب، محققین هلندی توربینی بادی بدون هیچ قسمت متحرکی را طراحی کرده‌اند که از طریق قطره‌های آب باردار شده و از طریق الکتریسیته ساکن تولید انرژی می‌کند. درحالی که بیشتر توربین‌های بادی از انرژی حرکتی باد و تبدیل آن به حرکت چرخشی ژنراتور، برق تولید می‌کنند؛ این ژنراتور که EWICON نامیده می‌شود به طور مستقیم از باد انرژی تولید می‌کند. این توربین با استفاده از حرکت ذرات باردار توسط باد در جهت مخالف ک میدان الکتریکی، جریان الکتریکی القا می‌کند. این دستگاه دارای یک قاب فولادی با حدود ۴۰ میله افقی ایزوله است که به آن هیبت یک راکت تنیس بزرگ را می‌دهد. هر کدام از این میله‌ها دارای تعدادی الکترود و نازل برای پراکنده کردن قطرات آب با بار الکتریکی مثبت در هوا از طریق پروسه‌ای به نام آفشانه الکتریکی است. این ذرات آب با بار الکتریکی مثبت به صورت معمول به سمت الکترود منفی می‌روند اما باد آنها را به سمت الکترود مثبت سوق می‌دهد که باعث ایجاد یک پتانسیل در سیستم می‌شود - این مانند پرتاب سنگ در مخالف گرانش زمین باشد – با این کار انرژی برای جمع‌آوری افزایش می‌یابد. کل سیستم دارای باتری، مبدل، منبع HVDC، پمپ و سیستم باردهی است. تمام قطعات بر روی یک صفحه فلزی قرار میگیرند که توسط سرامیک عایق بندی شده است. این صفحه فلزی عایق شده مانند یک خازن عمل می‌کند که با جذب قطرات آب باردار در سیستم در سمت مثبت الکترود باردار می‌شود. EWICON دارای مزایای بسیاری است. به غیر از اینکه می‌توان در اشکال مختلف طراحی شود به دلیل نداشتن هیچ قسمت محرک دارای مقبولیت عمومی بیشتری است، دارای هزینه تعمیر نگهداری کمتر به دلیل نبود قطعه محرک است. آرامتر، دارای لرزش کمتر و مناسب محیط‌های شهری است. این مدل توسط دانشگاه صنعتی دلف طراحی و توسعه داده شده است. تیم محقق تاکنون مدل‌های مختلف کوچکی از این توربین ر توسعه داده‌اند و هم اکون به دنبال ساختن نمونه‌ای بزرگ از این سیستم است. مقدار انرژی تولید بستگی به مقدار قطرات باردار افشانه شده روی میله‌های توربین و سرعت باد دارد.
  4. esw1

    منحنی ضریب انرژی Cp توسط متلب

    mfile منحنی ضریب انرژی Cp در برابر نسبت سرعت برای زاویه های متنوع پره های توربین رو نوشتم اماوقتی اجرا می شه منحنی ها رو نشون نمی ده کسی هست کمک کنه تا اشکال کار رو رفع کنم لینک دانلود mfile
  5. مقدمه تبدیل انرژی باد به برق بسیار آسان و ارزان میباشد، لذا در افغانستان خصوصا در مناطق باد خیزی مانند هرات یکی از بهترین راههای کسب انرژی برق میباشد. این صفحه بر آنست تا با اطلاع رسانی خصوصا تصویری به هموطنان عزیز چگونگی کار و ساخت ژنراتور کوچک خانگی بادی را آموزش دهد. در تصویر زیر نقشه یک نیروگاه کوچک بادی خانگی ترسیم شده است. تعریف انرژی: در تعریف انرژی می توانیم بگوییم که: انرژی توانایی انجام کار . یعنی تمامی موجودات برای انجام کار باید غذا مصرف کنند تا این غذا بصورت انرژی در ماهیچه های آنها ذخیره شود که در موقع لازم بتوانند از آن استفاده کنند. با پیشرفت انقلاب تکنولوژیک تمامی دستگاه ها و ماشینها به نوعی از انرژی های مختلف استفاده کنند. مثلا ماشین بنزین مصرف نکند برای ما نمی تواند کار انجام دهد یا یخچال انرژی الکتریکی مصرف نکند نمی تواند عمل سرمایشی انجام دهد. دید کلی: انرژی باد یک انرژی قابل استفاده است، زیرا که به طور مستقیم با بازده زیاد به الکتریسیته تبدیل می شود. در سوئد ، آلمان ، انگلستان ، دانمارک و استرالیا ماشین های بادی بزرگ و کوچک ساخته شده و برنامه هایی را در جهت ادامه پژوهش ها و استفاده عملی از امکانات صنعتی انرژی باد مخصوصا واحد هایی با توان بزرگ مورد مطالعه است. تاریخچه: انرژی باد با ساخت ماشین های اولیه بادی در روزگار قدیم مورد استفاده قرار گرفت.احتمالا نخستین ماشین های بادی به توسط یونانیان ساخته شده است. مصری ها ، رومی ها و چینی ها برای قایقرانی و آبیاری از انرژی باد استفاده کرده اند. بعد ها استفاده از توربین های بادی با محور قائم در سراسر کشور های اسلامی معمول شد. سپس دستگاه های بادی با محور قائم با میله های چوبی توسعه یافت به طوریکه در اواسط قرن نوزدهم در حدود 9 هزار ماشین بادی به منظور های گوناگون مورد استفاده قرار می گرفت.
  6. spow

    توربین بادی

    زیباترین توربین های بادی جهان در این صفحه توربین های منحصر به فردی را می بینید كه علاوه بر زیبایی تولید كننده رایگان انرژی الكتریكی هستند. برج آپارتمانی كه در بالای آن توربین ها قرار دارند. معماران همیشه تمایل دارند بهترین قسمت ساختمان را در بالای برج خود قرار دهند. زیرا مشتری های آنها معمولاً از بالا به مدل آنها نگاه می كنند. یك تونل بادی بر روی پل عابر پیاده این هم رویای مایكل جانتزن طراح است، تا روی پل های عابر پیاده توربین بادی نصب شود كه تولید كننده انرژی الكتریكی باشد. توربین های بادی در اتوبان این توربین بر اساس یك پروژه دانشجویی اجرا شده است. این توربین ها بر اساس توربین دور آرام طراحی شده است و این توربین ها ( دور آرام) معمولاً از نوع عمودی هستند. هر چند نوع افقی آنهم به خوبی كار می كند. لامپ های خیابانی كه با توربین بادی كار می كنند. هلند خانه سنتی توربین های بادی است، چون سرزمین مسطح آن محل خوبی برای وزیدن بادهای ساحلی است. این هم یك نمونه كاربردی پروانه ای شكل از توربین های بادی است، كه برای تامین روشنایی حیابان استفاده می شود. دراین مورد هم خود قضاوت كنید. انرژی بادی منظور از توان بادی تبدیل انرژی باد به نوعی مفید از انرژی مانند انرژی الکتریکی است که این کار به وسیله توربین‌های بادی صورت می‌گیرد. در آسیاب‌های بادی از انرژی باد مستقیماً برای خرد کردن دانه‌ها و یا پمپ کردن آب استفاده می‌شود. در انتهای سال ۲۰۰۶ میزان ظرفیت تولیدی برق بادی در سراسر جهان برابر ۷۳٫۹ گیگاوات بود. گرچه این میزان چیزی در حدود یک درصد از کل انرژی الکتریکی تولیدی در جهان محسوب می‌شد اما در طول بازه زمانی بین سال‌های ۲۰۰۰ تا ۲۰۰۶ تقریباً چهار برابر شده‌است. در این میان کشورهای دانمارک با ۲۰ درصد، اسپانیا با ۹ درصد و آلمان با ۷ درصد از نظر درصد تولید برق بادی از کل تولید انرژی الکتریکی در جایگاه‌های نخست قرار دارند. انرژی بادی در مقادیر زیاد در مزارع بادی تولید و به شبکه الکتریکی متصل می‌شود. از توربین‌ها در تعداد کم معمولاً فقط برای تامین برق در مناطق دور افتاده استفاده می‌شود. اما از جمله دلایل تمایل کشورها برای افزایش ظرفیت تولید برق بادی مزایا بسیار زیاد این روش تولید انرژی الکتریکی است چراکه انرژی بادی فراوان، تجدیدپذیر و پاک است و همچنین در مقایسه با استفاده از انرژی سوخت‌های فسیلی میزان کمتری گاز گلخانه‌ای منتشر می‌کند انرژی باد یک پره از یک توربین بادی نوشتار اصلی: باد منشا باد یک موضوع پیچیده‌است. از آنجاییکه زمین بطور نامساوی به وسیله نور خورشید گرم می‌شود بنابراین در قطب‌ها انرژی گرمایی کمتری نسبت به مناطق استوایی وجود دارد همچنین درخشکی‌ها تغییرات دما با سرعت بیشتری انجام می‌پذیرد و بنابراین خشکی‌ها زمین نسبت به دریاها زودتر گرم و زودتر سرد می‌شوند. این تفاوت دمای جهانی موجب به وجود آمدن یک سیستم جهانی تبادل حرارتی خواهد شد که از سطح زمین تا هوا کره، که مانند یک سقف مصنوعی عمل می‌کند، ادامه دارد. بیشتر انرژی که در حرکت باد وجود دارد را می‌توان در سطوح بالای جو پیدا کرد جایی که سرعت مداوم باد به بیش از ۱۶۰ کیلومتر در ساعت می‌رسد و سرانجام باد انرژی خود را در اثر اصطکاک با سطح زمین و جو از دست می‌دهد. یک برآورد کلی اینگونه می‌گوید که ۷۲ تراوات (TW) انرژی باد بر روی زمین وجود دارد که پتانسیل تبدیل به انرژی الکتریکی را دارد و این مقدار قابل ترقی نیز هست. توان پتانسیل توربین انرژی موجود در باد را می‌توان با عبور آن از داخل پره‌های و سپس انتقال گشتاور پره‌ها به روتور یک ژنراتور استخراج کرد. در این حالت میزان توان تبدیلی با تراکم باد, مساحت ناحیه جاروب شده توسط پره و مکعب سرعت باد بستگی دارد. به این ترتیب میزان توان قابل تبدیل در باد را می‌توان به این ترتیب به دست آورد: که در این فرمول P توان تبدیلی به وات، α ضریب بهره‌وری (که به طراحی توربین وابسته‌است)، ρ تراکم باد بر حسب کیلوگرم بر مترمکعب، r شعاع پره‌های توربین برحسب متر و v سرعت باد برحسب متر بر ثانیه‌است. زمانی که توربین انرژی باد را می‌گیرد سرعت باد کم خواهد شد که این خود باعث جدا شدن باد می‌شود. آلبرت بتز (Albert Betz) فیزیکدان آلمانی در ۱۹۱۹ اثبات کرد که یک توربین حداکثر می‌تواند ۵۹ درصد از انرژی بادی را که در مسیر آن می‌وزد را استخراج کند و به این ترتیب α در معادله بالا هرگز بیشتر از ۰٫۵۹ نخواهد شد. از ترکیب این قانون با معادله بالا می‌توان اینگونه نتیجه گرفت: نمودار میزان و پیشبینی استفاده از برق بادی در سال‌های 1997 تا 2010 * حجم هوایی که از منطقه جاروب شده توسط پره‌ها عبور می‌کند به میزان سرعت باد و چگالی هوا وابسته‌است. برای مثال در روزی سرد با دمای ۱۵ درجه سانتی‌گراد (۵۹ درجه فارنهایت) در سطح دریا، چگالی هوا برابر ۱٫۲۲۵ کیلوگرم بر متر مکعب است. در این حالت عبور بادی با سرعت ۸ متر بر ثانیه در روتوری به شعاع ۱۰۰ متر تقریباً موجب عبور ۷۷٬۰۰۰ کیلوگرم باد در منطقه جاروب شده توسط پره‌ها خواهد شد. * انرژی جنبشی حجم مشخصی هوا به مجذور سرعت آن وابسته‌است و از آنجایی که حجم هوای عبور از توربین به صورت خطی با سرعت رابطه دارد، میزان توان قابل دسترسی در یک توربین با مکعب سرعت نسبت مستقیم دارد. مجموع توان در مثال بالا در توربینی با شعاع جاروب ۱۰۰ متر برابر ۲٫۵ مگاوات است که بر طبق قانون بتز بیشترین میزان انرژی استخراج شده از آن تقریباً برابر ۱٫۵ مگاوات خواهد بود. توزیع سرعت باد میزان باد دائما تغییر می‌کند میزان متوسط مشخص شده برای یک منطقه خاص صرفاً نمی‌تواند میزان تولید توریبن بادی نصب شده در آن منطقه را مشخص کند. برای مشخص کردن فراوانی سرعت باد در یک منطقه معمولاً از یک ضریب توزیع در اطلاعات جمع‌آوری شده مربوط به منطقه استفاده می‌کنند. مناطق مختلف دارای مشخصه توزیع سرعت متفاوتی هستند. مدل رایلی (Rayleigh model) به طور دقیقی میزان ضریب توزیع سرعت در بسیاری مناطق را منعکس می‌کند. از آنجاییکه بیشتر توان تولیدی در سرعت بالای باد تولید می‌شود, بیشتر انرژی تولیدی در بازه‌های زمانی کوتاه تولید می‌شود. بر طبق الگوی لی رنچ نیمی از انرژی تولیدی تنها در ۱۵٪ از زمان کارکرد توربین تولید می‌شود و در نتیجه نیروگاه‌های بادی مانند نیروگاه‌های سوختی دارای تولید انرژی پایداری نیستند. تاسیساتی که از برق بادی استفاده می‌کنند باید از ژنراتورهای پشتیبانی برای مدتی که تولید انرژی در توربین بادی پایین است استفاده کنند.
  7. زیباترین توربین های بادی جهان در این صفحه توربین های منحصر به فردی را می بینید كه علاوه بر زیبایی تولید كننده رایگان انرژی الكتریكی هستند. برج آپارتمانی كه در بالای آن توربین ها قرار دارند. معماران همیشه تمایل دارند بهترین قسمت ساختمان را در بالای برج خود قرار دهند. زیرا مشتری های آنها معمولاً از بالا به مدل آنها نگاه می كنند. یك تونل بادی بر روی پل عابر پیاده این هم رویای مایكل جانتزن طراح است، تا روی پل های عابر پیاده توربین بادی نصب شود كه تولید كننده انرژی الكتریكی باشد. توربین های بادی در اتوبان این توربین بر اساس یك پروژه دانشجویی اجرا شده است. این توربین ها بر اساس توربین دور آرام طراحی شده است و این توربین ها ( دور آرام) معمولاً از نوع عمودی هستند. هر چند نوع افقی آنهم به خوبی كار می كند. لامپ های خیابانی كه با توربین بادی كار می كنند. هلند خانه سنتی توربین های بادی است، چون سرزمین مسطح آن محل خوبی برای وزیدن بادهای ساحلی است. این هم یك نمونه كاربردی پروانه ای شكل از توربین های بادی است، كه برای تامین روشنایی حیابان استفاده می شود. در این مورد هم خود قضاوت كنید.
  8. معاون برق و انرژی وزارت نیرو گفت: شهرک هوشمند انرژی با همکاری وزارت نیرو و دانشگاه صنعت آب و برق به منظور تدوین و اجرای آزمایشی استانداردهای الگوی مصرف در ساختمانها و تاسیسات راه اندازی می شود. به گزارش بانک اطلاعات مهندسی برق به نقل از باشگاه خبرنگاران محمد بهزاد افزود: تولید هم زمان برق و حرارت بهره برداری از انرژی های تجدید پذیر، کاهش انتشار گازهای آلاینده منتشره از تاسیسات برقی کشور، کاهش آلودگی های صوتی و حرارتی، به کارگیری فناوری های نوین و پارک و به کارگیری روش های بازیافت انرژی از دیگر اهداف تاسیس این شهرک است. وی مدیریت انرژی در این شهرک را برای به صفر رساندن تبادل انرژی در ساختمان ها و تاسیسات بسیار موثر دانست و گفت: این شهرک به صورت چند وجهی طراحی شده و در هر بخش آن یکی از فناوری های نوین تولید انرژی و مدیریت انرژی مورد استفاده قرار می گیرد. بهزاد اجرای این طرح را در محل دانشگاه صنعت آب و برق دانست و تصریح کرد: این شهرک دارای آزمایشگاه های شبکه هوشمند توزیع و تاسیسات مصارف نوپدید و فناوری های نوین در تجهیزات مصرف کننده ی انرژی مولدهای همزمان برق و حرارت در مقیاس خانگی توربین های بادی و انرژی های نو و بررسی مصرف تجهیزاتی که دارای رده های بالای انرژی هستند برای آموزش صنعتی غیر صنعتی مدیریت انرژی در سطوح مختلف تحصیلی راه اندازی شده است.
×
×
  • اضافه کردن...