رفتن به مطلب

setayesh_sokoot

عضو جدید
  • تعداد ارسال ها

    14
  • تاریخ عضویت

  • آخرین بازدید

اعتبار در سایت

106 Excellent

درباره setayesh_sokoot

  • درجه
    <b><font color="#000099" face="Tahoma">عضو جدید </b></font>
  • تاریخ تولد تعیین نشده

اطلاعات شغلی و تحصیلی

  • رشته تحصیلی
    مهندسی برق
  1. setayesh_sokoot

    مشاعره

    تمام روز در آینه گریه می کردم بهار پنجره ام را به وهم سبز درختان سپرده بود تنم به پیله تنهاییم نمی گنجید و بوی تاج کاغذیم فضای آن قلمرو بی آفتاب را آلوده کرده بود نمی توانستم دیگر نمی توانستم صدای کوچه صدای پرنده ها صدای گم شدن توپ های ماهوتی و هایهوی گریزان کودکان و رقص بادکنک ها که چون حباب های کف صابون در انتهای ساقه ای از نخ صعود می کردند و باد ‚ باد که گویی در عمق گودترین لحظه های تیره همخوابگی نفس می زد حصار قلعه خاموش اعتماد مرا فشار می دادند و از شکافهای کهنه دلم را بنام می خواندند
  2. setayesh_sokoot

    مشاعره

    تا به کی باید رفت از دیاری به دیار دیگر نتوانم ‚ نتوانم جستن هر زمان عشقی و یاری دیگر کاش ما آن دو پرستو بودیم که همه عمر سفر می کردیم از بهاری به بهاری دیگر
  3. setayesh_sokoot

    مشاعره

    دیروز ما زندگی را به بازی گرفتیم امروز، او ما را ... فردا ؟
  4. طراحی و اجرای سیستم مانیتورینگ On-line ترانسفورماتور مقدمه: با توجه به اهمیت ترانسفورماتورها و لزوم بهره‌برداری مناسب از آنها، پروژه طراحی و اجرای سیستم مانیتورینگ On-line ترانسفورماتور از اسفند سال84 در گروه خط و پست پژوهشگاه نیرو آغاز و پس از گذراندن مراحل طراحی و اجرا با موفقیت بر روی ترانسفورماتور 230 کیلوولت پست‌کن، در اسفند 86 با موفقیت به پایان رسید. در این مقاله ابتدا به بیان نتایج بدست آمده از تحقیق و بررسی درخصوص لزوم به کارگیری این سیستم‌ها در صنعت برق و سپس معرفی ویژگی‌ها و قابلیت‌های سیستم طراحی شده در پژوهشگاه نیرو پرداخته می‌شود معرفی سیستم مانیتورینگ On-Line ترانسفورماتور عملکرد ترانسفورماتور در سطوح مختلف نقش کلیدی و موثری در حفظ پایداری و ارتقای قابلیت اطمینان شبکه قدرت دارد، اما عوامل متعددی از قبیل بهره‌برداری غلط، عدم انجام سرویس و تعمیرات به موقع که ناشی از عدم دسترسی به اطلاعات جامع درخصوص ترانسفورماتور است، موجب به وجود آمدن شرایط بحرانی برای آن می‌شود. این شرایط بحرانی علاوه بر اینکه منجر به کاهش طول عمر ترانسفورماتورها (پیری زودرس) و یا تحمیل هزینه‌های تعمیرات و تعویض قطعات آن می‌شود، بعضاً موجب از مدار خارج شدن ترانسفوماتورها و به دنبال آن محدودیت در انتقال قدرت در شبکه می‌شود. با توجه به اهمیت ترانسفورماتور، در سالهای اخیر کنترل بهینه آن در دنیا مورد توجه قرار داشته است و برای رسیدن به این هدف سیستم‌های مانیتورینگ On-Line ترانسفورماتور که بر پایه استخراج پارامترهای ترانسفورماتور و پردازش و آنالیز آنها عمل می‌کنند طراحی و ساخته شده‌اند. هرچند دستگاه‌های متداول حفاظتی ترانسفورماتور شامل انواع رله‌ها، ترمومتر، برقگیر و ... برای تشخیص و حفاظت از خطا در شبکه استفاده می‌شوند، اما به دلیل اهمیت موضوع، امروزه مراقبت از ترانسفورماتور دامنه وسیع‌تری پیدا کرده و شامل انواع روش‌های حفاظتی و نگهداری بازدارنده و تشخیص عیوب قریب‌الوقوع شده است. در حقیقت بسیاری از بهره‌برداران علاقمند هستند که از وضعیت داخل ترانسفورماتورهای قدرت باخبر شوند. به این ترتیب علاوه بر جلوگیری از وارد آمدن خسارات جدی به ترانسفورماتور، با اطلاع‌رسانی به موقع می‌توان موجب تداوم انتقال انرژی الکتریکی شد. به طور کلی می‌توان به مزایای زیر درخصوص بکارگیری از سیستم مانیتورینگ On-Line اشاره کرد: - افزایش قابلیت اطمینان به ترانسفورماتور با حداقل‌سازی قطعی‌های ناخواسته - کاهش ضرر ناشی از انرژی توزیع نشده و یا پرداخت خسارت به مشترکان - امکان اعمال تعمیرات براساس شرایط واقعی و نیز کاهش هزینه‌های ناشی از خطاهای غیر منتظره و در نتیجه کاهش هزینه‌های تعمیر و نگهداری - بهره‌برداری از ظرفیت ترانس - افزایش طول عمر بهره‌برداری از ترانس که موجب به تعویق انداختن سرمایه‌گذاری برای جایگزینی ترانسفورماتور یا بهینه‌سازی آن می‌شود. معماری کلی سیستم مانیتورینگ On-line ترانسفورماتور طراحی شده در پژوهشگاه نیرو در سیستم مانیتورینگ On-line ترانسفورماتور، اطلاعات از بخش‌های مختلف ترانس به صورت سیگنال‌های آنالوگ و از تابلوهای کنترل ترانس و کنترل تپ چنجر و ... به صورت سیگنال‌های آنالوگ و دیجیتال جمع‌آوری می‌شود. اطلاعات جمع‌آوری شده از این بخش‌ها وارد تابلویی به نام Junction-Box می‌شود. این تابلو که در محوطه بیرونی پست قرار می‌گیرد، از یک‌سری ترمینال جهت دسته‌بندی اطلاعات تشکیل شده است. سپس اطلاعات دسته‌بندی شده از طریق کابل‌های پررشته به صورت گروه‌های ورودی دیجیتال، ورودی آنالوگ و خروجی دیجیتال به اتاق کنترل ارسال می‌شود. در اتاق کنترل اطلاعات به کارت‌های دیجیتال و آنالوگ سیستم کنترل وارد شده و توسط CPU پردازش‌های لازم بر روی آنها انجام می‌شود. جهت دسترسی به یک‌سری امکانات دیگر نظیر مشاهده On-Line، ذخیره‌سازی و آنالیز، اطلاعات به یک کامپیوتر صنعتی ارسال می‌شود. قابلیت‌های سیستم‌های مانیتورینگ On-Line ترانسفورماتور در ادامه، به معرفی قابلیت‌ها و امکانات سیستم مانیتورینگ On-line ترانسفورماتور که در پست 230 کیلوولت کن بر روی ترانسفورماتور T4 اجرا شده، می‌پردازیم. - اندازه‌گیری دماهای بالا و پایین روغن: دمای روغن یکی از پارامترهای مهم ترانسفورماتور است که به عنوان مبنای کنترل ورود و خروج فن‌ها و صدور فرامین آلارم و تریپ حرارتی درنظر گرفته می‌شود. در سیستم‌های قدیمی این دما فقط در قسمت بالای روغن اندازه‌گیری می‌شد، اما در سیستم مانیتورینگ On-Line به منظور افزایش دقت درمحاسبات، دما در دو قسمت مختلف ترانسفورماتور یکی در قسمت بالای روغن و دیگری در قسمت پایین، اندازه‌گیری و نمایش داده می‌شود. در این سیستم دمای روغن علاوه بر موارد ذکر شده، پارامتر اساسی در محاسبه دمای نقطه داغ سیم‌پیچ نیز است. - محاسبه دمای نقطه داغ سیم‌پیچ: از دیگر دماهای با اهمیت در ترانسفورماتورها، دمای نقطه داغ سیم‌پیچ است که مشابه دمای روغن پارامتر کنترل کننده سیستم خنک کننده و صدور فرامین آلارم و تریپ حرارتی است. از سوی دیگر از آنجایی که استرسهای حرارتی یکی از مهمترین عوامل زوال عایقی ترانسفورماتورها است و داغ‌ترین نقطه سیم‌پیچ ترانسفورماتور محتمل‌ترین مکان برای شکست عایقی است، بنابراین مهمترین عامل محدودکننده بارگذاری ترانسفورماتور است و تعیین دقیق آن سبب می‌شود ارزیابی بهتری از قابلیت بارگذاری، عمر از دست رفته و عمر باقیمانده ترانسفورماتور امکان‌پذیر شود. سه روش اصلی به شرح زیر برای تعیین دمای نقطه داغ وجود دارد: - اندازه‌گیری مستقیم (حسگر فیبر نوری) - شبیه‌سازی دمای نقطه داغ - محاسبه با استفاده از مدل‌های حرارتی استاندارد روش‌ اندازه‌گیری مستقیم با استفاده از فیبر نوری دقیق‌ترین روش موجود است. اما به علت هزینه بالا و قابلیت اطمینان نسبتاً پایین و حساسیت و شکنندگی، حسگرهای فیبر نوری هنوز به طور گسترده مورد استفاده قرار نگرفته است و بیشتر در تحقیقات آزمایشگاهی به کار می‌رود. نکته دیگری که درباره این حسگرها باید گفت این است که نصب آنها تنها در هنگام ساخت یا تعمیرات ترانسفورماتور امکان‌پذیر است. در ترانسفورماتورهای موجود، این دما از طریق قرار دادن یک ترمومتر دمایی و به روش شبیه‌سازی بدست می‌آید. مشکل این نوع تجهیزات این است که صحت دمای اندازه‌گیری شده و نقاط تنظیم به دقت دماسنج و همچنین توانایی تکنسین بستگی دارد. دقت این ترمومترها که توسط پست‌های حرارتی در کارخانه کالیبره می‌شود معمولاً حدود 2 تا 3 درجه سانتیگراد است و با گذشت زمان ممکن است به 5 تا 10 درجه سانتیگراد هم تغییر یابد که در این زمان باید مجدداً کالیبره شود. به دلایل ذکر شده در سیستم مانیتورینگ On-line ترانسفورماتور، به جای روش شبیه‌سازی، دمای سیم پیچ از طریق یک‌سری محاسبات طبق استاندارد IEC که متناسب با شرایط مختلف خنک‌کنندگی ترانسفورماتور است، به دست می‌آید. اندازه‌گیری و نمایش ولتاژ و بار و توان: ولتاژ و جریان و توان ترانسفورماتور در بخش‌های HV، LV اندازه‌گیری و در سیستم مانیتورینگ نمایش داده می‌شود. علاوه بر آن به کمک این مقادیر توان راکتیو و ضریب توان محاسبه می‌شود. محاسبه پیری حرارتی عایق ترانسفورماتور: در سیستم مانیتورینگ On-line ترانسفورماتور، پیری حرارتی عایق ترانسفورماتور بر پایه دمای نقطه داغ سیم پیچ محاسبه می‌شود. آشکارسازی گازهای محلول: یکی از خطاها و اشکالات موجود در ترانسفورماتور تولید گازهای مضر محلول در روغن در اثر عواملی از جمله تخلیه جزئی، حرارت ناشی از افزایش بارگیری و .. است. در حال حاضر برای شناسایی این اشکالات، از روغن ترانسفورماتور به صورت دوره‌ای نمونه‌برداری و در آزمایشگاه آنالیز می‌شود. از آنجائی که برنامه نمونه‌گیری و آنالیز روغن در دوره‌های زمانی معین انجام می‌شود ممکن است بعضی از خطاها آشکار نشود و یا اینکه بر طبق این برنامه ثابت دوره‌ای، انجام تست پس از به وجود آمدن یک شرایط بحرانی برای ترانسفورماتور انجام شود. در سیستم مانیتورینگ On-Line با قراردادن یک دستگاه آشکارساز گاز در روغن می‌توان مقدار گاز را به طور پیوسته اندازه‌گیری و نمایش داد و در صورت بروز خطا توسط این دستگاه آلارم مناسب تولید کرد. علاوه بر اینکه به کمک این دستگاه می‌توان خطاها را در زمان تولید آشکار کرد، خطاهای در حال پیشرفت در ترانسفورماتور نیز از طریق نرخ تغییرات گازهای تولید شده مشخص می‌شود و از این راه می‌توان از بوجود آمدن خطرات جدی بر روی ترانسفورماتور جلوگیری کرد. اندازه‌گیری رطوبت در روغن: رطوبت به عنوان یکی از عوامل مخرب، نقش مهمی در کاهش عمر عایقی ترانسفورماتور دارد. عمر حرارتی کاغذ متناسب با مقدار رطوبت آن است به طوری که اگر مقدار رطوبت کاغذ دو برابر شود عمر آن به نصف کاهش می‌یابد. از طرف دیگر افزایش رطوبت در نواحی با شدت میدان الکتریکی بالا موجب کاهش آستانه شروع تخلیه جزئی و افزایش شدت آن شده و در نهایت موجب وارد شدن خسارات جدی به ترانسفورماتور می‌شود. در ترانسفورماتورها معمولاً مقداری رطوبت در طی فرآیند خشک کردن باقی می‌ماند که به مرور زمان این مقدار در اثر رطوبت هوا و تجزیه روغن و مواد سلولزی بیشتر می‌شود. در حال حاضر روغن ترانسفورماتور به صورت دوره‌ای نمونه‌برداری و در صورت لزوم به کمک دستگاه oiltreatment تصفیه می‌شود. از آنجائی که این نمونه‌برداری به صورت دوره‌ای است ممکن است در زمان مناسب انجام نشود و خسارات جدی به سیستم عایقی ترانسفورماتور وارد شود. در سیستم مانیتورینگ On-Line با توجه به اهمیت رطوبت، دستگاهی برای اندازه‌گیری آن قرار داده می‌شود که به طور مداوم مقدار رطوبت روغن را اندازه‌گیری می‌کند. در این سیستم در صورت افزایش رطوبت با تولید آلارم، بهره‌بردار جهت انجام تست دوره‌ای مطلع می‌‌شود. کنترل سیستم خنک‌کنندگی: سیستم خنک‌کنندگی ترانسفورماتور یکی از مهمترین بخش‌های آن است که کنترل آن باید از طریق سیستم مانیتورینگ ترانسفورماتور به صورت بهینه انجام شود. هدف از این کنترل قراردادن ترانسفورماتور در دمای نسبتاً ثابتی است. برای رسیدن به این هدف در تعیین دمای ترانسفورماتور باید دقت کافی اعمال شود. در این سیستم دمای بالای روغن توسط سنسور حرارتی با دقت بالا اندازه‌گیری و دمای نقطه داغ سیم پیچ با توجه به بار و دمای محیط محاسبه می‌شود. با استفاده از این مقادیر پیش فرض برای کنترل سیستم خنک‌کننده، فرامین کنترلی مناسب برای راه‌اندازی سیستم از طریق PLC به مدارات فرمان ارسال می‌شود. پیش‌بینی زمان سرویس تجهیزات سیستم خنک‌کننده: تعمیرات و سرویس به موقع تجهیزات خنک‌کننده ترانسفورماتور نقش به سزائی در عملکرد صحیح این سیستم دارد. در حال حاضر سرویس تجهیزات به صورت دوره‌ای انجام می‌شود. ولی از طریق سیستم مانیتورینگ ترانسفورماتور با اندازه‌گیری مدت زمان روشن بودن هر یک از فن‌ها زمان مورد نیاز برای سرویس این تجهیزات برحسب شرایط و نیاز واقعی مشخص می‌شود. اندازه‌گیری دمای روغن تپ‌چنجر: تپ‌چنجر یکی از بخش‌های مهم و اساسی ترانسفورماتور است که سلامت آن تاثیر مستقیمی در عملکرد ترانسفورماتور دارد. طی نتایج بررسی‌های به عمل آمده از تحقیقات آماری برای شناسایی خطاهای ترانسفورماتور مشخص شده که بخش عظیمی از این خطاها مربوط به بخش تپ‌چنجر آن است. یکی از مشکلات تپ‌چنجر کثیفی کنتاکت‌ها و ایجاد گرمای اضافی در روغن است که این افزایش گرما باعث کربنیزه‌شدن روغن و ایجاد آلودگی بیشتر شده که در نهایت کاهش قدرت عایقی روغن را به همراه دارد. به همین دلیل یکی از روش‌های شناسایی خطا در تپ‌چنجر اندازه‌گیری دما به صورت پیوسته است. از آنجایی که تانک تپ‌چنجر به صورت مکانیکی به تانک اصلی کوپل شده است، بنابراین اختلاف بین دمای تپ‌چنجر و تانک اصلی می‌تواند به عنوان معیاری برای شناسایی خطاهای آن باشد. نمایش Tap-Position ترانسفورماتور: یکی از پارامترهای قابل اندازه‌گیری ترانسفورماتور مقدار تپ آن می‌باشد. علاوه بر نمایش این مقدار در سیستم مانیتورینگ از آن در محاسبات نیز استفاده می‌شود. پیش‌بینی زمان سرویس قطعات تپ‌چنجر: سلامت تپ‌چنجر نقش کلیدی در صحت عملکرد ترانسفورماتور دارد. قطعات تپ‌چنجر در هنگام عملکرد ناشی از تغییر تپ و یا در اثر خوردگی ناشی از جریان فرسوده شده و نیاز به سرویس و یا تعویض دارند. این سرویس باید در زمان مناسبی انجام شود، تا عملکرد ترانسفورماتور تحت تاثیر خرابی تپ‌چنجر قرار نگیرد. در سیستم مانیتورینگ به کمک ثبت تعداد عملکردهای انجام شده و انجام محاسبات می توان زمان سرویس و یا تعویض قطعات را پیش‌بینی کرد. تعیین عملکرد رله‌های حفاظتی: به منظور ارزیابی صحیح‌تر از وضعیت ترانسفورماتور سیگنال‌های حفاظتی ترانسفورماتور از تابلوهای موجود پست استخراج و در سیستم ثبت می‌شود. محاسبه ظرفیت اضافه بار: در شرایط کارکرد نرمال شبکه، بارگیری از ترانسفورماتور باید در محدوده بار نامی آن انجام شود، اما در شرایط بحرانی شبکه، شرایطی به وجود می‌آید که پذیرش اضافه بارگیری از ترانسفورماتور اجتناب‌پذیر است. از آنجائی که بارگیری بیشتر از مقدار نامی موجب افزایش دما و متعاقب آن افزایش پیری‌ ترانسفورماتور و در درازمدت موجب وارد شدن خسارات جدی به آن می‌شود بنابراین قبول این اضافه بارگیری باید در زمان محدود و با توجه به شرایط دمایی واقعی انجام شود به طوری که عمر ترانسفورماتور تحت تاثیر آن قرار نگیرد. تحقق این امر بدون وجود یک سیستم مانیتورینگ On-Line ترانسفورماتور که به طور پیوسته مقادیر دما و بارگیری را ثبت می‌کند، غیر عملی است. در سیستم مانیتورینگ On-Line به این منظور برای ترانسفورماتور قابلیتی با عنوان محاسبه ظرفیت اضافه بار که بر پایه اندازه دمای محیط، دمای روغن و دمای نقطه داغ سیم‌پیچ عمل می‌کند در نظر گرفته می‌شود. در گذشته جهت بارگیری از ترانسفورماتورها از جداول ثابت و تقریبی استفاده می‌شد که موجب افزایش خطرات ناشی از اعمال آن می‌شد. ولی امروزه می‌توان از قابلیت‌های سیستم مانیتورینگ On-line ترانسفورماتور برای تشخیص حدود مجاز بارگیری استفاده کرد. برای این منظور برنامه‌ای با عنوان بارگیری از ترانسفورماتور تهیه شده و به کمک این برنامه که براساس شرایط واقعی ترانسفورماتور در شروع بارگیری عمل می‌کند مشخص می‌شود ترانسفورماتور بار را تا چه مدت زمانی می‌تواند تحمل کند تا به شرایط بحرانی نرسد و یا به کمک این برنامه مشخص می‌شود که در یک بازه زمانی معین تا چه باری می‌توان به ترانسفورماتور اعمال کرد. گفتنی است با اندازه‌گیری و تحلیل این اطلاعات به طور کلی می‌توان به اهدافی نظیر زیر دست یافت: - تعیین وضعیت Active part - کنترل سیستم خنک‌کنندگی - تعیین وضعیت تپ‌چنجر علاوه بر قابلیت‌های ارایه شده برحسب تقاضا قابلیت‌های زیر و یا هر امکان قابل اجرای دیگری که مورد نیاز باشد می‌تواند در سیستم اضافه شود: - تعیین خطاهای مکانیکی تپ‌چنجر - مانیتورینگ بوشینگ - تعیین وضعیت مدار سیستم خنک‌کننده - اندازه‌گیری سطح روغن ویژگی‌های سیستم مانیتورنیگ On-line ترانسفورماتور به طور کلی می‌توان به ویژگی‌های زیر درخصوص سیستم طراحی شده اشاره کرد: - اندازه‌گیری پیوسته مقادیر - ثبت مقادیر اندازه‌گیری شده و توانایی تهیه گزارش از آنها - توانایی انجام عملیات محاسباتی دقیق و پیشرفته - امکان تنظیم آستانه‌های مورد نیاز برای آلارم و تریپ - قابلیت توسعه‌های آتی در نرم‌افزار و سخت‌افزار - قابلیت انعطاف در تعیین معماری سیستم - سازگاری با شرایط آب و هوایی مناطق گرم و مرطوب نمونه اجرا شده: یک نمونه از سیستم مانیتورینگ ترانسفورماتور با مشخصات ذکر شده پس از گذراندن موفقیت‌آمیز تست‌هایی نظیر ESD و EFT و نیز تست‌های عملکردی بر روی یکی از ترانسفورماتورهای 230 کیلوولت پست کن در برق منطقه‌ای تهران نصب شده است. موارد کاربرد: از آنجایی که بروز خطا در ترانسفورماتورها و عدم شناسایی به موقع آنها بعضاً باعث خروج ترانسفورماتورها از شبکه قدرت و یا کاهش عمر عایقی آنها و در نهایت وارد شدن خسارات اقتصادی و کاهش قابلیت اطمینان می‌شود از این رو استفاده از سیستم‌های مانیتورینگ On-Line به منظور پیشگیری و یا تشخیص به موقع عیوب، در ترانسفورماتورهای مهم شبکه قدرت و صنایعی نظیر فولاد بسیار مثمرثمر خواهد بود.
  5. روغن ترانسفورماتور روغن ترانسفورماتور بخش تصفیه شده روغن معدنی می باشد که در دمای بین 250 تا 300 درجه سانتی گراد به جوش آمده است . این روغن پس از تصفیه از لحاظ شیمیایی کاملاً خالص بوده و تنها شامل هیدرو کربنهای مایع می باشد. روغن ترانسفورماتور دو وظیفه اساسی بر عهده دارد:اول اینکه بعنوان عایق الکتریکی عمل می نماید و ثانیاً حرارت های ایجاد شده در قسمتهای برقدار ترانسفورماتور را به خارج منتقل می کند.با ولتاژ های بالایی که هم اکنون در شبکه انتقال انرژی صورت می گیرد نیاز به روغن ترانسفورماتور ها بعنوان عایق الکتریکی و وسیله خنک کننده افزایش یافته است.چنانچه روغن خالص باشد مشخصات الکتریکی آن خوب خواهد بود و نیز اگر ویسکوزیته (چسبندگی) روغن کم باشد ، خاصیت خنک کنندگی بهتری خواهد داشت و POUR POINT آن پائین خواهد بود . به هر حال ویسکوزیته روغن را نمی توان بسیار پائین انتخاب کرد زیرا در این صورت flash point روغن پائین تر خواهد آمد و از روغن با flash point پائین نبایستی استفاده کرد.پائین ترین حد flash point در اینگونه موارد 130 درجه سانتی گراد در نظر گرفته میشود.در عین حال ویسکوزیته روغن نباید به اندازه کافی پائین باشد تا p.p روغن کمتر از 40- درجه سانتی گراد باشد.( در بعضی کشورهای اروپای شمالی از روغنهایی با p.p پائیت استفاده میشود ) . خصوصیات یک روغن ایده آل میتواند ایتمهای زیر را در بر داشته باشد : 1-استقامت الکتریکی بالایی داشته باشد. 2-انتقال حرارت را بخوبی انجام دهد . 3- جرم مخصوص پائینی داشته باشد . در روغن هایی که جرم مخصوص پائینی دارند ، ذرات معلق براحتی و به سرعت ته نشین میگردند و این خاصیت باعث تسریع در روند هموژنیزه روغن میشود. 4-ویسکوزیته پائینی داشته باشد، روغنی که وسکوزیته پائینی دارد سیالیت آن بهتر است و بیشتر است و در نتیجه خاصیت خنک کنندگی بهتری خواهد داشت. 5- Pour point پائینی داشته باشد .روغنی که Pour point پائینی دارد در درجه حرارت های پائین حرکت خود را از دست خواهد داد. 6- Flash point بالایی داشته باشد. Flash point مشخص کننده تمایل روغن به تبخیر شدن میباشد. هر چه Flash point روغن پائین تر باشد تمایل به تبخیر شدن در روغن بیشتر است.هنگامی که روغن تبخیر میشود ، ویسکوزیته آن بالا میرود و روغن های تبخیر شده ترکیبات اتش زایی را با هوای بالای روغن ایجاد می کنند. 7- به مواد عایقی و استراکچر فلزی نمی بایستی آسیبی برساند. 8- خاصیت شیمیایی پایداری داشته باشد.این مسئله به عمر بیشتر روغن کمک خواهد کرد. خصوصیات روغن ترانسفورماتور : روغنی که در ترانسفورماتور بکار میرود می بایستی دو خصیصه زیر را داشته باشد : 1- روغن باید تمییز باشد .مواد جامد معلق یا ترکیبات شیمیایی زیان آور و یا آب در آن هرگز موجود نباشد. 2- روغن از لحاظ شیمیایی بایستی پایدار باشد .تغییرات روغن با توجه به گرما و اکسیژنی که با آن در تماس باشد در درجه حرارت کار نرمال ترانس میبایستی تا حد امکان کم باشد. ناخالصی ها : ناخالصی ها در اولین قدمخاصیت الکتریکی روغن را تحت تاثیر قرار می دهد. با توجه به نوع ناخالصی تاثیر پذیری روغن متفاوت خواهد بود.بطور مثال : 1- ذرات جامد با قطر بیشتر از mμ 15 و قطرات کوچک آب استقامت دی الکتریک روغن را کاهش میدهد. 2- چنانچه ذرات جامد در روغن باشد ، استقامت دی الکتریک روغن توسط آب های غیر محلول در روغن کاهش خواهد یافت. 3- ذرات جامد بسیار کوچک (mμ 15> ) برای مثال ترکیبات قطبی حل نشده در میدانهای الکتریکی بالا تلفات دی الکتریکی در روغن را بالا خواهد برد. به هر حال هر چه میزان ناخالصی ها در روغن بیشتر باشد،تاثیر پذیری روغن بیشتر خواهد شد.بنابر این برای انواع مختلف نا خالصی ها و خصوصیات الکتریکی وابسته به روغن می بایستی محدودیت هایی در نظر گرفت. البته این حدود تابع ولتاژ وسایلی است که بدان وابسته می باشند. حد اکثر میزان آب مجاز در روغن مطابق IEC 422 ، mg/dm3 20 برای ولتاژهای بیش از 170 کیلو ولت و mg/dm3 30 برای ولتاژ های کمتر از 170 کیلو ولت می باشد. برای ضریب پراکندگی دی الکتریک (tg δ ) که تابع ذرات کوچک و ترکیبات قطبی حل نشده در روغن می باشد ، حدود کاملاً مشخص نمی باشد. معمولاً می توانیم حد بالای tg δ را /00 ْ400 برای درجه حرارت 90 درجه سانتی گراد را در نظر بگیریم برای برخی روغن ها به هر حال حد بالای tg δ را می توانیم تا/ 00 ْ2000 در نظر بگیریم. زوال و اضمحلال روغن : از آنجا که روغن یک ترکیب آلی است زوال و تاثیر ناپذیری آنرا در مقابل گرما و اکسیژن نمی توانیم کاملاً از بین ببریم. بنابراین روغن اکسیده میشود و ترکیبات اسیدی و قطبی به تبع آن بوجود می آید و کشش سطحی روغن در مقابل آب کاهش می باید. از طرف دیگر ترکیبات اسیدی بر کاغذ و تخته های فشرده شده عایق های سیم پیچی ها تاثیر نامطلوبی خواهد گذاشت. در حقیقت سلول های عایقی هنگامی که تحت حرارت قرار می گیرند در محیط اسیدی سریعتر از محیط خنثی ترد و شکننده می شوند. تشکیل لجن و کثافات در روغن ترانسفورماتور از پیامدهای دیگر زوال و اضمحلال روغن می باشد. پس از این مرحله تغییرات در روغن نسبتاً سریعتر صورت می گیرد . برای مثال کشش سطحی در این مرحله از مقدار اولیه خود N/M 3- 10 * 45 به مقدار N/M 3- 10 * 15 کاهش می یابد.لجن و کثافات هنگامی که در روغن ترانسفورماتور تشکیل میشوند ، بر روی سیم پیچی ها رسوب می کنند و باعث می گردند که سیم پیچی ها بطور موثر خنک نشوند. هنگامیکه اسیدیته (Neutralization value) روغن بسیار بالا باشد و یا کثافات در روغن مشاهده شده است توصیه میشود اقدامات آمده در جدول انجام گیرد.همانگونه که خواهید دید از ته نشین شدن و رسوب هر گونه کثافات در روغن ترانس باید جلوگیری بعمل آید. تجزیه و تحلیل گازها برای آشکار کردن نقصهای ابتدایی در ترانسفورماتور : عایقها در یک ترانسفورماتور تنها به دلیل حرارت و تجزیه شیمیایی زائل نمی شوند، بلکه تخلیه الکتریکی نیز در این فرایند موثر می باشند. بوسیله تخلیه الکتریکی و درجه حرارت نسبتاً بالای محیط ، روغن و کاغذ به مواد گازی از قبیل هیدروژن – متان – اتیلن – استیلن – و اکسید کربن تجزیه می گردند . این پدیده در ترانسفورماتور بدین معنی است که نقصی وجود دارد . این نقص می تواند کاملاً بی ضرر باشد و نیز می تواند بسیار جدی بوده و دیر یا زود منتهی به عملکرد بد ترانسفورماتور شود. منشاء و میزان گازهای مختلف تولید شده بستگی به نوع و جدی بودن خطا دارد. بنابراین با بررسی گازهای حل نشده در روغن ترانسفورماتور نیاز به بازدید و تعمیر ترانسفورماتور آشکار می گردد. برای مثال اضافه حرارت روغن باعث ایجاد گاز متان و اتیلن ، تخلیه الکتریکی جزئی در روغن باعث ایجاد هیدروژن و تخلیه الکتریکی شدید ، گاز استیلن در روغن ایجاد خواهد نمود. به هر حال ، چگونگی بررسی اینگونه گاز های ایجاد شده در روغن و تجزیه و تحلیل آنها هنوز کاملاً قطعی نشده و در کشور های مختلف در این خصوص مطابق با استاندارد های IEC تحقیقات ادامه دارد. نظارت بر روغن و رطوبت گیر :بررسی روغن های نمونه برداری شده از ترانس که در فواصل منظمی صورت می گیرند ، نظارت خوبی بر کار ترانسفورماتور خواهد بود . با این عمل نه تنها برخی مشخصات روغن در زمانهای معینی ضبط می گردد ، بلکه همچنین میزان پیشرفت و تغییرات این مشخصه با زمان نیز آشکار خواهد شد.که این خود مبنای بهتری برای ارزیابی وضعیت روغن می باشد.چنانچه نتایج بعضی از اندازه گیریها هماهنگ با نتایج قبلی نباشد ، این بدان معنی است که در اندازه گیری ها و یا هنگام نمونه برداری خطایی وجود داشته است . روغن نمونه برداری شده براحتی بوسیله آلودگی و رطوبت شیر ها و یا بطری نمونه برداری ، آلوده می گردد و بنابراین نمونه برداری از روغن ترانسفورماتور بایستی با حد اکثر دقت صورت گیرد. ترکیب روغن ها : چه نوع روغنی را میتوانیم به ترانسفورماتورها اضافه نمائیم؟ در حقیقت ترکیب دو نوع روغن متفاوت می تواند نتایج غیر قابل انتظاری به همراه داشته باشد.بازدارنده اکسیداسیون دو روغن ممکن است بر یکدیگر تاثیر گذاشته و یا ترکیبات ناشی از کهولت در یک روغن می تواند رسوبات ایجاد کند در حالیکه این رسوبات توسط روغن دوم رقیق گردد. به هر حال روغن ها می توانند به دلایل مختلفی با یکدیگر نا سازگار باشند. در موارد نامشخص، آزمایشات مربوط به ترکیبات دو نوع روغن متفاوت می تواند انجام شود . معمولاً باید اصول زیر را همواره در ترکیب دو نوع روغن متفاوت مراعات نمود. روغن دو نوع ترانسفورماتور را در صورت داشتن شرایط زیر می توان ترکیب نمود. 1- مطابق با استاندارد واحدی باشند. 2- شامل باز دارنده اکسیداسیون یکسان و یا باز دارنده اکسیداسیون قابل مقایسه ای باشند. 3- مقدار خنثی (Neutralization value) کوچکتر از mg KOH/g 0.5 داشته باشد. 4- میزان آب در روغن ازg/g μ 20 کمتر باشد.
  6. نحوه فیلتر کردن روغن ترانسفورماتور روغن ترانسفورماتورهای قدرت نقش بسیار مهمی در عملكرد ترانسفورماتورها دارند. نقش عایق كنندگی، خنك كنندگی و تشخیص عیب از جمله مهمترین وظایف روغن می باشند. با پیرشدن ترانسفورماتور ، روغن این دستگاه بعضی از خصوصیات شیمیایی و الكتریكی خود را از دست می دهد. از جمله مهمترین این خصوصیات می توان به خصوصیات الكتریكی كه حائز اهمیت می باشند، اشاره نمود. دلایل اصلی كه روغن ترانسفورماتورهای قدرت را دچار مشكل می نمایند عبارتند از: ۱) افزایش ذرات معلق در روغن ۲) وجود آب به مقدار زیاد در روغن ۳) وجود آلودگی های شیمیایی مانند اسیدیته و... مسائل فوق باعث تغییر پارامترهای متعدد می شوند. به عنوان مثال افزایش ذرات معلق و وجود آن باعث كاستن قدرت دی الكتریك روغن و افزایش اسیدیته، باعث خوردگی كاغذ و اجزای داخلی ترانسفورماتور می شود. برای بهبود روغن ترانسفورماتوری كه دچار ضعف های متعدد شده است می توان از فیلتراسیون استفاده نمود. با فیلتر نمودن روغن می توان ذرات معلق آن را جدا نمود و در نتیجه ولتاژ شكست را بالا برد. می توان با خلاء نمودن روغن ، آب را بصورت بخار از روغن جدا نمود. حذف آلودگی های شیمیایی فقط با كمك فیلترهای شیمیایی ممكن است. از جمله مهمترین آلودگی كه روغن ترانسفورماتور را تحت تأثیر قرار می دهد وجود آب به مقدار كم در داخل روغن است. جدا نمودن آن در داخل ترانسفورماتور به راحتی امكان پذیر نمی باشد. علت این مسأله وجود مقادیر بسیار زیاد آب داخل كاغذ ترانسفورماتور می باشد كه با جدا نمودن آب روغن دوباره جایگزین آن می شود. ● روشهای فیلتر نمودن الف) روشهای Off-line از زمانهای دور برای بهبود کیفیت عایقی روغن ترانسفورماتورهای قدرت از روشهای فیلتراسیون هنگامی که ترانسفورماتور خاموش بوده است استفاده می کردند. در این روش هنگامی که ترانسفورماتور خاموش می باشد به مدت چند شبانه روز به صورت پیوسته روغن را داخل ترانسفورماتور چرخانده و آنرا در بیرون تحت فیلتراسیون و خلاء به منظور جدا نمودن ذرات معلق و آب محلول قرار می دادند. این روش دارای معایب فراوانی است از جمله لزوم داغ نمودن روغن ترانسفورماتور و همچنین لزوم خاموش نمودن ترانسفورماتور را می توان نام برد. ب) روشهای نوین – روشهای در حین کار برای جدا نمودن آب به صورت بهینه، لازم است كه از فیلترهای در حین كار استفاده نمود. مهمترین مزایای فیلترهای (خشك كن) های در حین كار خشك نمودن بهینه ترانسفورماتور در طول زمان و همچنین عدم لزوم خاموشی ترانسفورماتور را می توان عنوان نمود. اصول عملکرد این فیلترها مانند شکل زیر است که در آن روغن از مخزن تحت فشار خارج شده و در مسیر آن یک فیلتر فیزیکی قرار می گیرد. در اینجا ذرات معلق فیلتر شده و تحت تاثیر خلاء آب محلول در آن گرفته می شود. روغن فیلتر شده به وسیله پمپ به ترانسفورماتور برگردانده می شود. این چرخه با دبی پایین در حدود ۲۵۰ لیتر در ساعت به صورت پیوسته از چند ماه تا چند سال با توجه به وضعیت ترانسفورماتور صورت می گیرد. ● مزایای خشك كردن On-Line روغن و كاغذ عایقی ترانسفورماتورهای قدرت با استفاده ازدستگاه V۳۰ ▪ رطوبت زدائی از روغن ترانسفورماتور بصورت On-Line ▪ افزایش ولتاژ شکست روغن عایقی ▪ رطوبت زدائی از کاغذ عایقی ترانسفورماتور ▪ کاهش میزان ذرات معلق داخل روغن ترانس ▪ کاهش میزان ضریب تلفات عایقی روغن ▪ کاهش میزان اسیدیته روغن ▪ افزایش قابلیت بارگیری ترانسفورماتور ▪ افزایش عمر باقیمانده ترانسفورماتور ▪ عملکرد مطمئن و عدم تأثیر سو بر بهره برداری عادی از ترانسفورماتور ▪ گاززدائی از روغن ترانسفورماتور با استفاده از روش De-Gassing ▪ اعلام آلارم و خروج ترانسفورماتور از مدار در صورت تشکیل مقدار زیاد گاز
  7. setayesh_sokoot

    عملکرد سنسور در ربات

    عملکرد سنسور در ربات سنسورها اغلب برای درک اطلاعات تماسی، تنشی، مجاورتی، بینایی و صوتی به‌کار می‌روند. عملکرد سنسورها بدین‌گونه است که با توجه به تغییرات فاکتوری که نسبت به آن حساس هستند، سطوح ولتاژی ناچیزی را در پاسخ ایجاد می‌کنند، که با پردازش این سیگنال‌های الکتریکی می‌توان اطلاعات دریافتی را تفسیر کرده و برای تصمیم‌گیری‌های بعدی از آن‌ها استفاده نمود. سنسورها را می‌توان از دیدگاه‌های مختلف به دسته‌های متفاوتی تقسیم کرد که در ذیل می‌آید: * a. سنسور محیطی: این سنسورها اطلاعات را از محیط خارج و وضعیت اشیای اطراف ربات، دریافت می‌نمایند. * b. سنسور بازخورد: این سنسور اطلاعات وضعیت ربات، از جمله موقعیت بازوها، سرعت حرکت و شتاب آن‌ها و نیروی وارد بر درایورها را دریافت می‌نمایند. * c. سنسور فعال: این سنسورها هم گیرنده و هم فرستنده دارند و نحوه کار آن‌ها بدین ترتیب است که سیگنالی توسط سنسور ارسال و سپس دریافت می‌شود. * d. سنسور غیرفعال: این سنسورها فقط گیرنده دارند و سیگنال ارسال شده از سوی منبعی خارجی را آشکار می‌کنند، به‌ ‌همین دلیل ارزان‌تر، ساده‌تر و دارای کارایی کمتر هستند. سنسورها از لحاظ فاصله‌ای که با هدف مورد نظر باید داشته باشند به سه قسمت تقسیم می‌شوند: §سنسور تماسی: این نوع سنسورها در اتصالات مختلف محرک‌ها مخصوصا در عوامل نهایی یافت می‌شوند و به دو بخش قابل تفکیک‌اند. i.سنسورهای تشخیص تماس ii. سنسورهای نیرو-فشار § سنسورهای مجاورتی: این گروه مشابه سنسورهای تماسی هستند، اما در این مورد برای حس کردن لازم نیست حتما با شی در تماس باشد. عموما این سنسورها از نظر ساخت از نوع پیشین دشوارترند ولی سرعت و دقت بالاتری را در اختیار سیستم قرار می‌دهند. دو روش عمده در استفاده از سنسورها وجود دارد: i. حس کردن استاتیک:در این روش محرک‌ها ثابت‌اند و حرکت‌هایی که صورت می‌گیرد بدون مراجعه لحظه‌ای به سنسورها صورت می‌گیرد.به عنوان مثال در این روش ابتدا موقعیت شی تشخیص داده می‌شود و سپس حرکت به سوی آن نقطه صورت می‌گیرد. ii. حس کردن حلقه بسته:در این روش بازوهای ربات در طول حرکت با توجه به اطلاعات سنسورها کنترل می‌شوند. اغلب سنسورها در سیستم‌های بینا این‌گونه‌اند. حال از لحاظ کاربردی با نمونه‌هایی از انواع سنسورها در ربات آشنا می‌شویم: a. سنسورهای بدنه (Body Sensors) : این سنسورها اطلاعاتی را درباره موقعیت و مکانی که ربات در آن قرار داردفراهم می‌کنند. این اطلاعات نیز به کمک تغییر وضعیت‌هایی که در سوییچ‌ها حاصل می‌شود، به دست می‌آیند. با دریافت و پردازش اطلاعات بدست آمده ربات می‌تواند از شیب حرکت خود و این‌که به کدام سمت در حال حرکت است آگاه شود. در نهایت هم عکس‌العملی متناسب با ورودی دریافت شده از خود بروز می‌دهد. b. سنسور جهت‌یاب مغناطیسی(Direction Magnetic Field Sensor): با بهره‌گیری از خاصیت مغناطیسی زمین و میدان مغناطیسی قوی موجود، قطب‌نمای الکترونیکی هم ساخته شده است که می‌تواند اطلاعاتی را درباره جهت‌های مغناطیسی فراهم سازد. این امکانات به یک ربات کمک می‌کند تا بتواند از جهت حرکت خود آگاه شده و برای تداوم حرکت خود در جهتی خاص تصمصم‌گیری کند.این سنسورها دارای چهار خروجی می‌باشند که هرکدام مبین یکی از جهت‌ها است. البته با استفاده از یک منطق صحیح نیز می‌توان شناخت هشت جهت مغناطیسی را امکان‌پذیر ساخت. c. سنسورهای فشار و تماس (Touch and Pressure Sensors) : شبیه‌سازی حس لامسه انسان کاری دشوار به نظر می‌رسد. اما سنسورهای ساده‌ای وجود دارند که برای درک لمس و فشار مورد استفاده قرار می‌گیرند. از این سنسورها در جلوگیری از تصادفات و افتادن اتومبیل‌ها در دست‌اندازها استفاده می‌شود. این سنسورها در دست‌ها و بازوهای ربات‌ هم به منظورهای مختلفی استفاده می‌شوند.مثلا برای متوقف کردن حرکت ربات در هنگام برخورد عامل نهایی با یک شی. همچنین این سنسورها به ربات‌ها برای اعمال نیروی کافی برای بلند کردن جسمی از روی زمین و قرار دادن آن در جایی مناسب نیز کمک می‌کند. با توجه به این توضیحات می‌توان عملکرد آن‌ها را به چهار دسته زیر تقسیم کرد: 1- رسیدن به هدف، 2- جلوگیری از برخورد، 3- تشخیص یک شی. d. سنسورهای گرمایی (Heat Sensors): یکی از انواع سنسورهای گرمایی ترمینستورها هستند. این سنسورها المان‌های مقاومتی پسیوی هستند که مقاومتشان متناسب با دمایشان تغییر می‌کند. بسته به اینکه در اثر گرما مقاومتشان افزایش یا کاهش می‌یابد، برای آن‌ها به ترتیب ضریب حرارتی مثبت یا منفی را تعریف می‌کنند. نوع دیگری از سنسورهای گرمایی ترموکوپل‌ها هستند که آن‌ها نیز در اثر تغییر دمای محیط ولتاژ کوچکی را تولید می‌کنند. در استفاده از این سنسورها معمولا یک سر ترموکوپل را به دمای مرجع وصل کرده و سر دیگر را در نقطه‌ای که باید دمایش اندازه‌گیری شود، قرار می‌دهند. e. سنسورهای بویایی (Smell Sensors): تا همین اواخر سنسوری که بتواند مشابه حس بویایی انسان عمل کند، وجود نداشت. آنچه که موجود بود یک‌سری سنسورهای حساس برای شناسایی گازها بود که اصولا هم برای شناسایی گازهای سمی کاربرد داشتند. ساختمان این سنسورها به این صورت است که یک المان مقاومتی پسیو که از منبع تغذیه‌ای مجزا، با ولتاژ 5+ ولت تغذیه می‌شود، در کنار یک سنسور قرار دارد که با گرم شدن این المان حساسیت لازم برای پاسخ‌گویی سنسور به محرک‌های محیطی فراهم می‌شود. برای کالیبره کردن این دستگاه ابتدا مقدار ناچیزی از هر بو یا عطر دلخواه را به سیستم اعمال کرده و پاسخ آن را ثبت می‌کنند و پس از آن این پاسخ را به عنوان مرجعی برای قیاس در استفاده‌های بعدی به کار می‌‌برند. اصولا در ساختمان این سیستم چند سنسور، به طور همزمان عمل می‌کنند و سپس پاسخ‌های دریافتی از آن‌ها به شبکه‌ عصبی ربات منتقل شده و تحلیل و پردازش لازم روی آن صورت می‌گیرد. نکته مهم درباره کار این سنسورها در این است که آن‌ها نمی‌توانند یک بو یا عطر را به طور مطلق انداره‌ بگیرند. بلکه با اندازه‌گیری اختلاف بین آن‌ها به تشخیص بو می‌پردازند. f. سنسورهای موقعیت مفاصل : رایج‌ترین نوع این سنسورها کدگشاها (Encoders) هستند که هم از قدرت بالای تبادل اطلاعات با کامپیوتر برخوردارند و هم اینکه ساده، دقیق، مورد اعتماد و نویز ناپذیرند. این دسته انکدرها را به دو دسته می‌توان تقسیم کرد: i. انکدرهای مطلق: در این کدگشا ها موقعیت به کد باینری یا کد خاکستری BCD (Binary Codded Decible ) تبدیل می‌شود. این انکدرها به علت سنگینی و گران‌قیمت بودن و اینکه سیگنال‌های زیادی را برای ارسال اطلاعات نیاز دارند، کاربرد وسیعی ندارند. همانطور که می‌دانیم به‌کار گیری تعداد زیادی سیگنال درصد خطای کار را افزایش می‌دهد و این اصلا مطلوب نیست. پس از این انکدرها فقط در مواردی که مطلق بودن مکان‌ها برای ما خیلی مهم است و مشکلی هم از احاظ بار فابل تحمل ربات متوجه ما نباشد، استفاده می‌شود. ii. انکدرهای افزاینده: این کدگشا ها دارای قطار پالس و یک پالس مرجع که برای کالیبره کردن بکار می‌رود هستند، از روی شمارش قطارهای پالس نسبت به نقطه مرجع به موقعیت مورد نظر دست می‌یابند. از روی فرکانس (عرض پالس‌ها) می‌توان به سرعت چرخش و از روی محاسبه تغییرات فرکانس در واحد زمان (تغییرات عرض پالس) به شتاب حرکت دوارنی پی برد. حتی می‌توان جهت چرخش را نیز فهمید. فرض کنید سیگنال‌های A و B و C سه سیگنالی باشند که از کدگشا بهکنترل‌کننده ارسال می‌شود. B سیگنالی است که با یک چهارم پریود تاخیر نسبت به A. از روی اختلاف فاز بین این دو می‌توان به جهت چرخش پی برد
  8. سیستم خودکار کنترل و قرائت کنتور برق از راه دور پویا AMR قرائت کنتور و ثبت مصرف برق مشتریان به روشهای متداول کاری است وقت گیر، خسته کننده و توام با خطا که از دغدغه های اصلی هر شرکت توزیع برق به حساب می آید.Automatic Meter Reading) AMR) یا قرائت خودکار کنتور راه کاری است برای حل این معضل. دریک سیستم AMR ایده آل تمامی کنتورهای برق یک شهر از یک مرکز واز راه دور بطور خودکار قرائت می شود و صورتحساب مشتریان نیز بدون خطا وبطور خودکار تولید می گردد. مضاف بر آن، جریان برق مشتریان بدحساب هم از راه دور قطع و وصل می گردد. چه چیزی بیش از این یک شرکت توزیع برق را به وجد می آورد که بتواند در تمامی ساعات شبانه روز، مصرف برق یکایک مشترکین خود را از راه دور و از یک مرکز از مسیری مطمئن، سریع، گسترده، از پیش نصب وراه اندازی شده و همواره در دسترس قرائت نماید. تکنیک Power Line Carrier) PLC) یا انتقال اطلاعات از طریق جریان برق این امکان را فراهم آورده است. سیستم AMR ابدائی شرکت پویا از تمامی ویژگیهای پیش گفته برخوردار است. این سیستم با استفاده از شبکه برق شهری اطلاعات کنتور های برق مشترکین را بطور اتوماتیک واز راه دور در زمانهای دلخواه قرائت می کند، صورتحساب بدون خطا تولید می کند و برق مشترکین بد حساب را قطع و وصل می کند. از مزایای سیستم پویا می توان مواردزیر را برشمرد: • استفاده از شبکه برق شهری جهت انتقال اطلاعات مصرف مشترکین • کاهش هزینه و سرعت قرائت کنتور با توجه به دردسترس بودن شبکه سیم کشی برق شهری • از بین بردن خطای قرائت • قرائت در تمامی ساعات شبانه روز • امکان اعمال چند تعرفه بر اساس میزان مصرف مشترک در ساعات مختلف • امکان قطع و وصل برق مشترکین از راه دور • امکان قطع و وصل برق مشترکین از راه دور • امکان پیش فروش برق • امکان کنترل و بهینه سازی منحنی مصرف • امکان متعادل سازی بار فازها سیستم و تجهیزاتی که پویا به این منظور طراحی و تولید نموده است عبارتند از: MIU (Meter Interface Unit )- 1 MIU پایین ترین لایه ارتباطی شبکه AMR پویا را تشکیل می دهد و از آن به منظور برقراری ارتباط کنتور هریک از مشترکین با سایر بخشهای سیستم AMR پویا استفاده می شود. این ارتباط با رعایت استانداردهای رایج اروپایی و امریکایی و به روش( PLC (Power Line Carrier برقرار می گردد.MIU در مدل های External و Internal طراحی شده و امکان اتصال به انواع کنتور برق تک فاز و 3 فاز کنتورهای دیجیتال (الکترونیکی) را دارد. وظایف اصلی MIU عبارتند از: 1- ارتباط با کنتور و ثبت و ذخیره اطلاعات مصرف: MIU پالس های مربوط به مصرف را از خروجی کنتورهای دیجیتال دریافت نموده و پس از شمارش، آنها را در حافظه غیرفرار خود ثبت می نماید. به منظور حفاظت از اطلاعات ذخیره شده در موقع قطع برق، MIU همواره یک نسخه پشتیبان(Backup ) از این اطلاعات را درخود نگهداری می نماید. 2- اجرای فرامین ارسال شده از لایه های بالاتر شبکه AMR :MIU همواره آماده دریافت فرامین از لایه های بالاتر شبکه AMR یا ستاد مرکز می باشد تا در صورت دریافت فرامین، اطلاعات ذخیره شده را به آنها ارسال نماید. از ویژگیهای بارز MIU ، برخورداری از منبع تغذیه ایزوله مستقل از کنتور است. ویژگی دیگر آن، امکان برخورداری از سیستم نمونه برداری از خروجی کنتور می باشد که برای اطلاع از حضور یا عدم حضور برق در خروجی کنتور(کنترل سوءاستفاده از برق) به کار می رود. LDCU (Local Data Collector Unit )- 2 LDCU در مجاورت پست های V220 / KV20 که پست های کم جمعیت محسوب می شوند نصب می شود و به منظور مدیریت مصرف کنتورهای تحت پوشش اینگونه پست ها مورد استفاده قرار می گیرد. حداکثر تا 15 عدد MIU (کنتور) را می توان به طور همزمان و به روش PLC به یک LDCU متصل نمود. LDCU دارای تقویم و ساعت داخلی است و می تواند مقدار مصرف هر MIU را در دوره های زمانی مشخص اندازه گیری نموده و سپس این اطلاعات را در حافظه غیرفرار خود ثبت نماید. LDCU قادر به حفاظت از اطلاعات ذخیره شده در موقع قطع برق می باشد.از طرفی، هر LDCU موجود در شبکه AMR پویا را می توان به روش PLC به سایر LDCU های موجود در شبکه و نیز به DCU متصل نمود. داده های ذخیره شده در LDCU در حافظه LDCU نگهداری می شوند و در صورت درخواست از سوی DCU یا لایه های بالاتر شبکه به آنها منتقل می شوند. LDCU را می توان توسط DCU به طور اتوماتیک تنظیم کرد. همچنین امکان ارتقای نرم افزار داخلی آن از طریق پورت پارالل وجود دارد. LDCU قابلیت اعمال تعرفه های مختلف بر مصرف برق هر کنتور تحت پوشش را نیز دارد. DCU (Data Collector Unit ) - 3 DCU، مدیریت میانی شبکه AMR پویا را به عهده دارد و واسط برقراری ارتباط میان ستاد مرکز، LDCU ها و MIU های موجود در شبکه می باشد. ارتباط DCU با ستاد مرکز از طریق خطوط تلفن یا کابل RS232 و با اجزای لایه های پایین تر شبکه AMR پویا از طریق PLC برقرار می¬گردد. از پورت RS232 دستگاه می توان برای عیب یابی، مانیتورینگ، بارگذاری فرامین، ارتقای نرم افزار درونی و انجام تنظیمات دستگاه نیز استفاده نمود. اگر چه انجام کلیه عملیات مذکور بر روی DCU ، از راه دور (ستاد مرکز)و از طریق خطوط تلفن نیز امکانپذیر می باشد.DCU ، همواره آماده دریافت فرامین از ستاد مرکز است و با ارسال درخواست اطلاعات به LDCU ها یا MIU های تحت پوشش، اطلاعات ذخیره شده در آنها را دریافت نموده ودر حافظه خود ذخیره می نماید.DCU قادر به برقراری ارتباط با 64 عدد LDCU می باشد. C/R (Coupler/Repeater ) - 4 C/R علاوه بر آنکه مسئول متصل کردن دو شبکه الکتریکی ولتاژ پایین مجزا از هم می باشد، وظایف زیر را نیز عهده دار است: 1- Coupling : عبارت است از انتقال الکتریکی داده ها بین دو خط مختلف به روش PLC Repeating -2 : عبارت است از تقویت سیگنال داده ها در شبکه برای جبران افت سیگنال در فواصل طولانی C/R همواره بعنوان Coupler عمل می کند و در مواقع لزوم به عنوان یک Repeater فعالیت خود را به انجام می رساند. C/R دارای دو مدل مختلف می باشد: 1- MIU Type : به منظور ایجاد ارتباط میان MIU های تحت پوشش چند پست مجزا استفاده می شود. با این نوع C/R ، امکان استفاده از یک DCU برای مدیریت مصرف مشترکین تحت پوشش چند پست مختلف وجود خواهد داشت. 2- LDCU Type : به منظور ایجاد ارتباط میان LDCU های تحت پوشش یک DCU استفاده می شود. 5 - R/F PLC Bridge این دستگاه قادر به برقراری ارتباط بیسیم میان پست هایی است که ارتباط کابلی با یکدیگرندارند.به عبارت دیگر، از این دستگاه درمواقعی استفاده می شود که هیچگونه ارتباط PLC میان DCU و LDCU وجود نداشته باشد.در اینصورت R/F PLC Bridge ، امکان ارتباط بیسیم را با استفاده از RF فراهم می سازد.این دستگاه دارای 2 کانال ارتباطی PLC و RF مجزا ازهم می باشدوسیگنال هاواطلاعات PLC دریافتی را به صورت سیگنال های رادیویی ارسال می کند.عکس این عمل نیز توسط دستگاه انجام می شود بطوریکه اطلاعات دریافتی RF رابصورت PLC روی شبکه Power Line تزریق می نماید. 6- نرم افزار مدیریت شبکه : این نرم افزاربرروی HOST ستاد مرکز نصب می شود ومدیریت شبکه AMR پویا را در بالاترین سطح برعهده دارد.نرم افزار مذکور کلیه فعالیتهای سیستم را به انجام رسانده ومطابق نیازهای اطلاعاتی وعملیاتی کارفرما ، قابل پیکربندی می باشد.نرم افزار مدیریت شبکه AMR پویا ضمن کنترل شبکه و جمع آوری ونگهداری اطلاعات ، قادر است گزارشهای مختلفی از میزان ونحوه مصرف مشترکین در ساعات مختلف شبانه روز ازجمله ساعات اوج مصرف وسایر مقاطع زمانی که کارفرما تعریف می نماید نیز تهیه و ارائه نماید.نرم افزار مذکور بوسیله مودم با DCU ارتباط برقرارمی کند ودستورات لازم را از طریق DCU به MIU ها ارسال یا اطلاعات مصرف را از MIU ها دریافت می نماید.
  9. setayesh_sokoot

    تعاريف اوليه کنترل

    تعاريف اوليه کنترل تعاريف و مباني كنترل سيستم: به مجموعه اي از اجزا مي گويندكه با هماهنگي يكديگر هدفي خاص را دنبال مي كنند. اغتشاش(نويز): هر سيگنال ناخواسته كه بر عملكرد خروجي سيستم اثر نامطلوب بگذارد. اغتشاش دو نوع است: 1.بيروني( از بيرون سيستم ) :بطور مثال يك آنتن را در نظر بگيريد اثر باد بر روي آنتن را نويز بيروني مي گويند . و مي توان بعنوان يك ورودي مدل سازي نمود. 2.دروني:مثل نويز حرارتي . اگر بتوان از طريق محاسبات آماري آن را پيش بيني كرد برايش مي توان يك جبران كننده طراحي نمود. سيستم هاي ديناميكي: در اين سيستم ها مدت زماني طول مي كشد تا خروجي به ورودي پاسخ دهد .در واقع مي توان گفت اين سيستم ها حافظه دارند و انرژي هم در آنها ذخيره مي شود.مي دانيم خازن نمي تواند تغيرات ناگهاني ولتاژ داشته باشد پس مدت زماني طول مي كشد تا خازن شارژ شده و سپس به مدار پاسخ مي دهد. سيستم هاي كنترل صنعتي به دو نوع تقسيم مي شوند.سرو مكانيسم و كنترل فرآيند. سرو مكانيسم: يك سيستم كنترل فيدبك دار مي باشد. خروجي اين سيستم موقعيت ، سرعت يا شتاب است. فرآيند:عمل يا پيشرفت طبيعي متداوم با تعدادي تغييرات تدريجي كه به گونه نسبتا"معيني در پي هم روي مي دهند و به نتيجه خاصي مي انجامد. سيستم كنترل فرآيند سيستم تنظيم كننده خودكاري كه خروجي اش متغيري نظير دما ، فشار ، شار ، سطح مايع باشد ،سيستم كنترل فرآيند نام دارد. كنترل فرآيند در صنعت كاربرد گسترده اي دارد . در چنين سيستم هايي اغلب از اعمال كنترل برنامه ريزي شده نظير كنترل دماي كوره هاي حرارتي كه در آنها دماي كوره بر اساس برنامه مشخصي كنترل مي شود استفاده مي كنند. برنامه مشخص مثلا" مي تواند به اين صورت باشد كه دماي كوره در مدت مفروضي تا دماي مشخصي افزايش يابد و سپس در مدت مفروض ديگري كاهش يابد و به دماي مشخص ديگري برسد. در اين نوع كنترل با برنامه نقطه مقرر, يا از پيش تعيين شده, بر اساس جدول زماني معيني تغيير مي كند. و كار كنترل كننده حفظ دماي كوره در نزديكي نقطه مقرر متغير است. سيستم هاي كنترل فرآيند به دو صورت 1.سيستم هاي كنترل بسته اي batch control عمليات پردازش بصورت مرحله به مرحله به بسته هاي مواد انجام مي شود. 2.سيستم هاي كنترل پيوسته continuos control عمليات پردازش بطور پيوسته بر مواد انجام مي گيرد.
  10. سيستمهای کنترل تردد و اعلام خطر شامل مركز كنترل smart rio - rio-كارتخوان مغناطيسي-انواع قفل مكانيكي-لوله فنر هدايت كابل-كليد فشاري و سيستم اعلام خطر. مراكز كنترل مغز سيستم بوده و كليه اطلاعات و فرمانهاي لازم از طريق كامپيوتر حافظه آنها تعريف و برنامه ريزي مي شوند . همچنين فرمانهاي لازم به باز شدن درب و يا قطع سيتسمهاي جانبي اعلام خطر نيز توسط آنها صورت مي گيرد. مراكز كنترل در داخل خود داراي باطري مي باشند كه درمواقع اضطراري برق مورد نيازسيستم وقفلها را تامين مي كند.حال در مورد سيستم توضيح مي دهيم. كارتخوان: قسمتي از سيستم مي باشد كه در كنار درب نصب شده و وظيفه دريافت و انتقال اطلاعات مربوط به كد كارت و كد شناسايي شخصي pincode يا كد مشترك عمومي common code به مراكز كنترل عهده دار مي باشد. انواع كارتخوان: الف:كارتخوان مغناطيسي magnetic reader كه از معمولترين نوع كارتخوانهاست داراي صفحه كليدي جهت دريافت كد شناسايي شخصي ويا كد مشترك عمومي براي باز كردن درب مي باشد .كارت مخصوص اين نوع كارتخوان داراي نوار مغناطيسي در پشت خود مي باشد كه حاوي كد مربوطه بوده ودر مقابل ميدانهاي مغناطيسي حساس مي باشد. ب :كارتخوان ويگاند: كاملا ظاهري شبيه به كارتخوان مغناطيسي را داشته ولي از ضريب اطمينان بسيار بالاتري برخوردار است .كارت مخصوص اين نوع كارتخوان بدون نوار مغناطيسي و غير قابل كپي است در نتيجه در مقابل ميدانهاي مغناطيسي حساسيت نخواهد داشت. ج:كارتخوان از راه دور : با نزديك شدن كارت مخصوص به آن, كارت را مي خواند. اين نوع كارتخوان در محلهايي استفاد ه مي گردد كه كارتخوان نبايد در ديد قرار گيرد و يا بعلت تردد زياد نياز به سرعت عمل بيشتري مي باشد. در اكثر موارد داشتن كارت بر روي سينه جهت فعال نمودن اين نوع كارتخوان كافي است. نرم افزار: سيتسم در دو محيط dos وwindos قابل اجرا بوده و استفاده از آن به نحوي است كه براي اپراتور بسيارساده و مطمئن مي باشد. يكي از روشهاي معمول سري نرم افزارهاي جانبي rita ونرم افزارهاي photo view مي باشد. اين برنامه جهت نمايش عكسهاي ثبت شده پرسنل در هنگام كشيدن كارت آنها براي مقايسه با تصويردوربين نصب شده براي كنترل تردد افراد از درب مورد نظر استفاده مي شود.با نصب دوربين در مدخل ورودي يك درب مجهز به كارتخوان, تصوير دوربين را بايد با افرادي كه از درب وارد مي شوند , كنترل نمود و در صورت مغايرت تصاوير, اپراتور مي تواند زنگ خطر را به صدا در آورد و همچنين درب را بسته نگه دارد . نرم افزار جانبي : Door status اين برنامه جهت نمايش وضعيت هر درب بصورتي است كه رنگ سبز نشان دهنده درب هميشه باز رنگ زرد علامت باز شدن درب بصورت مجاز و رنگ قرمز نشان دهنده وضعيت خطر مانند باز ماندن درب ويا باز شدن غير مجاز آن مي باشد و در حالت عادي هر درب به رنگ خاكستري و نشان دهنده بسته بودن آن مي باشد. همچنين نرم افزارهاي جانبي ديگر از قبيل كليد فشاري كه براي خارج شدن سريع معمولا" در سمت داخلي قسمت محافظت شده به كار مي رود و با زدن شستي در باز شده و بعد از خروج فرد, با فنري كه به درب متصل است, درب بسته مي شود. سيتسمهاي اعلام خطر access control الف:شناسگر شكستن شيشهdetector passive glassbreak از اين شناسگر براي شيشه بانكها- مراكز دولتي وساختمانهاي مهم استفاده مي شود ودر صورت ضربه زدن به شيشه اين شناسگر وارد عمل شده وآژير مربوطه به صدا در مي آيد. ب:شناسگر مغناطيسي درب magnetic contacts اين شناسگر كه داراي نوار مغناطيسي است در صورت ضربه زدن به درب وارد عمل مي شود. ج:شناسگر مادون قرمز: در صورت فعال كردن اين شناسگر هر چيزي كه از مقابلش عبور كند وارد عمل مي شود.اين شناسگرها به control unit وصل مي شوند و توسط مركز كنترل تحت نظارت اپراتور قرار مي گيرند.علاوه بر اين شناسگرها شناسگر لرزشvibration detector مي باشدكه موارد استفاده آن روي درها-پنجره ها –ديوارها و سقف مي باشد.
  11. آشنایی با سیستم دوربینهای مدار بسته امروزه در مراكز صنعتي و اداري جهت نظارت بر محيط فيزيكي و نظارت بركار كاركنان يا كـارگران در جـهت كنترل و مديـريت بهـتر و كارآمـد‌تر بـه وفـور از سيستمهاي تـلويزيوني مـداربسته (closed circuit TV)(cctv) استفاده مي‌شود.اين سيستمها به عنوان سيستمهاي كنترل تصويري نيز ناميده مي‌شوند. گاهي نيز از اين سيستمها با مخفف CCVE (تجهيزات ويدئويي مدار بسته) ياد مي‌شود. در محلهايي مانند بانكها ـ ادارات ـ دانشگاهها ـ كارخانجات ـ فروشگاههاي بزرگ ـ فروشگاههاي فروش اجناس گرانقيمت مانند طلافروشيها ـ در سوپرماركتهاي بزرگ و در كنترل ترافيك خيابانها و چهارراه‌ها اين سيستمها را ميتوان نصب و مورد استفاده قرار داد. استفاده از اين سيستمها در منازل مسكوني رواج چنداني نيافته است ولي با پا به عرصه گذاشتن سيستمهاي تصويري كه قادرند حركت را در محدودة تحت نظارت سيستم تشخيص و اعلام خطر نمايند يا توسط سنسورهاي خاصي تحريك شده و شروع به ضبط فيلم از محل بنمايند انتظار مي‌رود كه استفاده از اين سيستمها در منازل مسكوني نيز گسترش بيايد. به اينگونه سيستمها هم اكنون اصطلاح دزدگير تصويري اطلاق مي‌شود. اصول كار سيستمهاي CCTV به اين صورت است كه ابتدا تصاوير توسط دوربينهاي مدار بسته دريافت شده و براي نمايش و پخش به مانيتور يا تلويزيون انتقال داده مي‌شود. همچنين براي ضبط و يا تغيير نحوه نمايش روي مانيتور و پخش همزمان تصاوير دوربينها روي مانيتور و كنترل از راه دور دوربينها نيز تجهيزات و امكاناتي وجود دارد. چون تصاوير دريافت شده از اين سيستمها براي بينندگان محدودي مي‌باشد لذا به آنها تلويزيون مدار بسته مي‌گويند بر خلاف تلويزيون عمومي (Broadcast TV) كه جهت پخش تصاوير براي عموم مي‌باشد. با توجه به تنظيماتي كه روي دوربينها و ساير تجهيزات ميتوان انجام داد اين سيستمها در شرايط جوي متفاوت و در روز و شب نيز كارآيي خوبي دارند. براي كنترل ورود و خروج افراد به يك محل و براي كنترل مكانهاي وسيع توسط چندين دوربين و نمايش همزمان تصوير آنها و نظارت سمعي و بصري از فواصل بسيار دور از طريق شبكه تلفن بدون نياز به حضور فيزيكي كنترل كننده در محل و در دستگاههايي كه كنترل بصري آنها توسط انسان مقدور نبوده يا خطر آفرين مي‌باشد نيز ميتوان از اين سيستمها استفاده كرد. لذا استفاده از سيستمهاي CCTV روز به روز در حال رشد است و با توجه به تكنولوژي ساخت تجهيزات آن كه مبتني بر صنعت الكترونيك و كامپيوتر مي‌باشد ساخت و توليد تجهيزات اين سيستمها دائماً در حال تكامل و پيشرفت است و ما در اين مختصر سعي نموده‌ايم تا اصول كلي و امكانات عمومي اين سيستمها را به همراه برخي از موارد نمونه از مشخصات و امكانات تجهيزات براي اطلاع و آشنايي خوانندگان عزيز ارائه نماييم. عموماً در سيستمهاي CCTV تجهيزات زير مورد استفاده قرار ميگيرد: 1ـ دوربين (camera) 2ـ كاور دوربين (camera Housing) 3ـ پايه دوربين BASE)يا( Bracket 4ـ نمايش دهنده تصوير monitor) يا TV) 5ـ انتخاب كننده (switcher) 6ـ كواد (Quad) 7ـ تركيب كننده (Multiplexer) 8ـ ضبط كننده (Recorder) 9ـ كنترل كننده (controller) 10ـ كارتهاي تصوير (capture card) 11ـ تقويت كننده راديويي (Booster) 12ـ نظم دهنده ويديويي (Video Router) قسمتی از اصطلاحات متداولی كه ممكن است در مورد سيستم های CCTV و در مشخصات ذكر شده براي تجهيزات با آن ها برخورد كنيد در زيرتوضيح داده شده است : A/D:مبدل آنالوگ به ديجيتال يا همان ADC (ANALOG TO DIGITAL CONVERTOR ) ALPHANUMERIC : وسيله قرار دادن نوشته روی تصوير كه در DVR ومولتی پلكسر كار برد دارد . BACK – FOCUS : تنظيم مكان لنز در رابطه با سنسور CCD در دوربين B.W(WIDTH (BAND: پهنای باند فركانس كه برای سيگنال ويدئويی معمولی 5 مگا هرتز است . BETAMAX :فرمت ضبط ويدئويی شركت SONYو رقيب VHS CCD APERTURE : سطحی از CCD كه به نور حساس است. CCIR :انجمن راديويی بين المللی برای استاندارد تلويزيونی اروپا CDS : ( CORROLATED DOUBLE SAMPLING ) : تكنيكی در ايجاد تركيب رنگ در بعضی از دوربين های CCD CFA ( COLOR FILTER ARRAY ) : فيلترهای نوری كه در دوربين CCD برای توليد تركيب رنگ سيگنال ويدئويی استفاده می گردد . CIE : انجمن بين المللی نور كه واحد های نوری را تعريف و ارائه می كند . CHROMINANCE : به اطلاعات رنگ سيگنال ويدئويی گفته می شود . CONTRAST: يكی از تنظيمات كيفيت تصوير . اختلاف بين روشن ترين و تاريك ترين نقطه تصوير D/A : مبدل سيگنال ديجيتالی به آنالوگ . DARK CURRENT : نشت سيگنال از CCD در نبود نور كه ايجاد نويز (dark noise) می كند . DMA ( DIGITAL MICRO MIRROR DEVICE ): يك تكنولوژی جديد ساخت سنسور ويدئويی كه از تعداد زيادی آينه مينياتوری روی چيپ استفاده می شود. DUPLEX:سيستم ارتباطی كه اطلاعات را در دو جهت رفت و برگشت مبادله می كند. در سيستمهای CCTV معمولاً به امكان ضبط و پخش با هم به صورت مولتی پلكس گفته می شود. D.S.P : مدار الكترونيكی پردازنده سيگنال ديجيتالی DV-MINI: يك فرمت ضبط صدا و تصوير جديد كه اكثراً در هندی كم استفاده می شود . D-VHS : استاندارد جديد ارائه شده توسط JVC برای ضبط سيگنال ديجيتالی روی VHS EBU : اتحاديه پخش برنامه های اروپايی EIA : انجمن صنعتی الكترونيك FCC : كمسيون ارتباطات فدرال آمريكا FIELD : تعداد نصف خطوط فريم را گويند در سيستم CCIR/PAL تعداد فيلدها 50 عدد در ثانيه و درسيستم EIA /NTSC تعداد فيلدها 60 عدد در ثانيه است . FRAME STORE : وسيله الكترونيكی شماره گذاری و ذخيره فريم های تصوير . FRAME SWITHER : نام ديگر مولتی پلكسر ساده است . FRAME TRANSFER : يكی از سه اصل يا روش انتقال شارژ از چيپ CCD می باشد دو روش ديگر عبارتند از FRAME-INTERLINE , INTERLINE FRAME : در سيستم CCIR/PAL ازتركيب 625 خط ودر سيستم EIA /NTSC از تركيب 525 خط يك فريم ساخته می شود سيستم پال 25 فريم بر ثانيه و سيستم NTSC 30 فريم بر ثانيه دارد . GAMMA : اين مشخصه برای تصحيح اختلاف بين پاسخ خطی دوربين و پاسخ غير خطی مانيتور تعريف می شود . مثلاً مقدار نمايی گاما برای مونيتور تك رنگ 2/2 است لذا دوربين بايد روی 2.2/1يعنی 45/0 تنظيم شود . HAD : يك نوع سنسور CCD است كه طرح لايه ای دارد و سطح نويز درآن بسيار پايين است . HDDTV : استاندارد آينده پخش برنامه های تلويزيونی با رزلوشن بالا ( 2000× 1000 پيكسل ) HUM : نويز روی فركانس اصلی را گويند . HYPER-HAD : تكامل يافته چيپ CCD HAD ILLUMINATION : به مقدار روشنايی تصوير اشاره دارد . حداقل روشنايی لازم برای دوربين های معمولی چند دهم لوكس و برای دوربين های ديد شب چند صدم لوكس می باشد . I/0 : خروجی I/P : ورودی IEC : انجمن بين المللی برق INSERTER : وسيله ای برای گذاشتن متن روی تصوير . INTERFERENCE : تداخل ناشی از ميدان الكتريكی يا الكترومغناطيسی ساير وسايل روی سيگنال IP : درجه حفاظت بدنه يك وسيله را در برابر عوامل خارجی به صورت عدد بيان می كند . IR : نور مادون قرمز ISDN : شبكه تلفن جديد با سرعت انتقال داده 64 كيلو بايت بر ثانيه ITU : اتحاديه بين المللی ارتباطات راه دور JPEG : فرمت عكس LINE-LOCKED : در سيستم های CCTV به چند وسيله گفته می شود كه با فركانس منبع تغذيه مشترك ( 50يا 60 هرتز) تغذيه می شوند و از نظر فركانس فيلد قفل شذه اند . LUMINANCE : اطلاعات سيگنال ويدئويی در مورد روشنايی تصوير را گويند . MOD : حداقل فاصله شی از لنز را گويند كه برای لنز های زوم حدود يك متر و برای لنزهای فيكس خيلی كمتر است . ( به طول فاصله كانونی لنز بستگی دارد ) MOIRE PATERN : نويز در تصوير حاصل از CCD در فركانس های بالا NBS : اداره ملی استاندارد در آمريكا ND FILTER : يك نوع فيلتر نوری كه مقدار نور را بدون بر هم زدن تعادل رنگ تقليل می دهد . NIT : يكی از واحد های نوری NTSC : استاندارد رنگی در آمريكا، كانادا ، ژاپن و چند كشور ديگر . OIP : خروجی OBJECTIVE : جلويی ترين قسمت لنز OCULAR : نزديكترين قسمت لنز به CCD PAL : سيستم تلويزيون رنگی اروپا PHOT : واحد نوری معادل ده هزار لوكس POTS يا PSTN : يكی از سيستم های تلفن PRINCIPEL POINT : مركز عدسی PTZ SITE DRIVER : يك قسمت از سويچر ماتريسی كد سيگنال هايی كد دار كنترلی مربوط به كنترولر و DVR يا مولتی پلكسر را در يافت می كند. RETMA : نام ديگر EIA سيگنال RF : سيگنال راديويی كه به طيف تا 300 گيگا هرتز تعلق دارد . RS-232 : يك فرمت ارتباط ديجيتالی كه فقط نياز به دو سيم دارد . RS-485: شكل پيشرفته تر ارتباط ديجيتالی كه می تواند تا 32 دريافت كننده را در مقصد پوشش دهد. S/N RATIO : نسبت سيگنال به نويز كه بر حسب DB بيان می شود . SCOTOPIC VISION : سطح نور زير2-10 لوكس كه برای چشم قابل ديدن نيست . SIMPLEX : درcctv به يكي از دو روش مولتی پلكسی اشاره دارد كه اطلاعات فقط در يك جهت قابل انتقال است (بر خلاف DUPLEX) مثلاً فقط امكان ضبط يا پخش در يك زمان باشد . SMEAR : خطوط عمودی به صورت نويز در محل های بسيار روشن تصوير حاصل از CCD SMPTE : انجمن مهندسين تلويزيون و تصاوير متحرك SPLIT SCREEN : به صفحه نمايش چند تكه شده می گويند S-VHS : يك فرمت ضبط ويدئويی است كه رزولوشن افقی 400 خط دارد . TBC : سنكرون كردن سيگنال های مختلف بر اساس زمان TDG : ايجادكننده تاريخ و زمان روی تصوير TELEMETRY : سيستم كنترل از راه دور اطلاعات ديجيتالی كد دار TERMINATION : اتصال انتهای كابل را به يك كانكتور می گويند . VDA : يك آمپلی فاير سيگنال تصويری با يك ورودی وچند خروجی VHS : ( VIDEO HOME SYSTEM ) سيستم ويدئويی خانگی VIDEO MATRIX SWITCHER : وسيله ای برای انتخاب بيش از يك دوربــين ، VCR يا چاپگر ويدئويی و امثال آن كه قدرتمندتر از سويچرهای معمولی است . VITS: سيگنال تست با شكل خاص كه در سيستم پال در خطوط نامرئی 17و18و33و331 جا زده می شود. VMD ( VIDEO MOTION DETECTOR ) : سيستمی كه در برابر تغيير نور يا جابه جايی و حركت سيگنال آلارم ايجاد می كند . VS : سنكرونيزاسيون عمودی ( در مقابل آن HS سنكرونيزوسيون افقی ) W-VHS: استاندارد جديد ضبط ويدئويی ارائه شده توسط JVC Y/C : يك فرمت ويدئويی كه اطلاعات روشنايی تصوير و رنگ تصوير جداگانه فرستاده می شود . اين فرمت در S-VHS وجود دارد .
  12. آشنایی با دربهای اتوماتیک سیستم های درب بازکن اتوماتیک جهت رفاه بیشتر و همچنین با اهداف حفاظتی و امنیتی در مکانهای مختلف بر روی انواع گوناگون درب ها مانند درب گاراژ - درب حیاط – درب ورودی ساختمان و حتی درب اتاق های ساختمان (برای افراد معلول) نصب و مورد استفاده قرار می گیرد . بعد از نصب این سیستم ها می توان تنها با فشار دادن شستی روی یک ریموت کنترل از فاصله مناسب درب را باز و بسته کرد و یا با نصب سنسورهای خاصی هنگام عبور و مرور در را به طور اتوماتیک باز و بسته کرد . انواع مختلف درب هایی که این سیستم ها را می توان روی آن نصب کرد به قرار زیر است: درب های کشویی (ریلی) (Siliding Door) : این دربها یک تکه بوده و روی ریلی در پایین درب لغزيده و به چپ و راست حرکت می کنند درب های لولایی (Swing Door) : دربهایی هستند که به صورت دو لنگه یا تک لنگه حول یک لولا حرکت افقی دارند. درب های چند تکه (Sectional Door) : این درب ها به صورت تکه های افقی روی هم قرار می گیرد و هنگام باز شدن به بالا حرکت کرده و سپس 90 درجه چرخیده به موازات سقف قرار می گیرند. درب های یک تکه چرخان (Tilt Door) : این درب ها به طور یکپارچه با حرکت عمودی حول دو نقطه در طرفين چرخیده و به موازات سقف قرار می گیرند . درب های کرکره ای (Roller Door) : این درب ها با چرخیدن حول یک محور در بالا جمع می شوند . ( مانند کرکره های مغازه ها ) برای باز و بسته کردن انواع مختلف درب ها سیستم هایی با مکانیسم های متفاوت طراحی شده است ولی اکثر سیستمها از نوع الکترومكانیکی می باشند. قسمتهای اصلی یک سیستم درب باز کن اتوماتیک با مکانیسم الکترومكانیکی را به صورت زیر است: 1- موتور الکتریکی 2- قسمت مکانیکی یا گیربکس 3- برد الکترونیکی 4- تجهیزات ایمنی 5- شستي هاي كنترل دستي 6- ریموت کنترل اكنون به شرح قسمتهاي فوق مي پردازيم: 1- موتور الکتریکی : در اکثر موارد برای سیستم های در باز کن اتوماتیک از موتورهای تکفاز استفاده می شود . این موتوها باید قابلیت چپگرد راستگرد شدن داشته باشند لذا از موتوهای تکفاز با دو سیم پیچ مشابه استفاده می شود که باسری قرار گرفتن یک خازن با هر کدام از سیم پیچ ها می توان جهت حرکت موتور را تغییر داد . معمولا 4 سیم از موتور خارج می شود که یک سیم به عنوان ارت و دوسیم دیگر به دو سر خازن وصل می گردند ويك سيم مشترك ميباشد.تمام سیمهای موتور در انتها به ترمینالهای مدار الکترونیکی وصل میشوند . این موتورها در توانهای 50 وات تا 1000 وات برای درب های مختلف از نظر اندازه و وزن مورد استفاده قرار می گیرد . تنها در مورد درب های دو لنگه از دو موتور استفاده می شود ولی در بقیه موارد یک موتور مورد استفاده قرار می گیرد . نکته ای که باید در مورد کار موتور توجه نمود اینست که کار یکسره و مداوم موتور در این سیستم ها باعث داغ شدن موتور و آسیب دیدن آن می شود. لذا باید از باز و بسته کردن پشت سرهم درب بدون وقفه اجتناب کرد . 2- قسمت مکانیکی یا گیربکس : بدلیل کافی نبودن نیروی یک موتور معمولی تکفاز برای باز و بسته کردن در باید توسط یک سیستم مکانیکی نیروی آن را افزایش داد . معمولا برای این کار از جعبه دنده ( گیربکس ) استفاده می گردد . پس از افزایش نیرو نحوه انتقال آن به درب بستگي به نوع درب داردو به روش های گوناگون صورت می گیرد . برای درب های ریلی ( کشویی ) نیرو توسط یک چرخ دنده از محور محرک مکانیکی به دنده های شانه ای نصب شده زیر در منتقل می گردد . در مورد درب های یک تکه که به طور عمودی باز و بسته می شوند ( Tilt Door ) و درب های تکه ای ( Sectional ) نیرو توسط زنجیر یا تسمه انتقال می یابد و برای درب های تک لنگه یا دو لنگه ( Swing Door ) توسط بازوهايی درب باز و بسته می گردد . در بعضی از مدل های ساخته شده برای درب های دو لنگه یا تک لنگه (Swing Door) سیستم گیربکس عبارت است از یک پیچ حلزونی و مهره متصل به آن که با چرخش پیچ و حرکت مهره در باز و بسته می شود .برای این که بتوانیم در مواقع لزوم (برای تنظیم هنگام نصب یا در موارد قطع برق) درب را به صورت دستی باز وبسته نماییم باید محور گیربکس را خلاص کنیم. در سيستمهاي در بازكن بازويي اين كار توسط آچار آلن كه در محل مربوطه روي قسمت موتور – گيربكس قرار داده و چرخانده ميشود انجام ميگيرد. در سیستم های مربوط به درب های کرکره ای توسط سیم بکسل و در درب های یک تکه چرخان یا چند تکه (Tilt , Sectional) که دستگاه اصلی روی سقف نصب می شود توسط یک ریسمان آویزان انجام می گيرد. در سیستم هايی که برای درب های کشویی ساخته شده اند این امر توسط باز کردن درب کوچک روی دستگاه اصلی توسط یک سويچ انجام می گیرد. 3- برد الکترونیکی : این برد جهت کنترل و تنظیم زمان حرکت درب به کار می رود و محل آن در سیستم های مختلف فرق می کند. به عنوان نمونه این برد در سیستم های درب های ریلی روی دستگاه اصلی و در سیستم های درب های لولایی به صورت جداگانه در یک تابلو در کنار در نصب می گردد . 4- تجهیزات ایمنی : برای اینکه از آسیب رسیدن به افراد و وسایل نقلیه هنگام حرکت درب جلوگیری شود باید از تجهیزاتی استفاده نمود که هم حرکت درب را اعلام کند وهم در صورت عبور فرد یا وسیله ای هنگام حرکت درب آن را به نحو مناسب متوقف نماید یا باز کند. معمولا برای این منظور از تجهیزات زیر استفاده می شود: 1- سنسورهای مادون قرمز (Photo Cell) (Beam Sensor) : این سنسورها که اصطلاحا چشمی نیز نامیده می شوند دارای دو قسمت جداگانه فرستنده (TX) و گیرنده ( RX ) می باشند .يك جفت ازاين سنسورها (گیرنده و فرستنده) در بیرون و يك جفت ديگر در فضای داخل در دو طرف در روبه روی هم نصب میشوند . حداقل ارتفاع نصب 25 سانتی متر می باشد و آن ها را در محل هایی که امکان نصب روی دیوار نباشد بر روی پایه های خاصی نصب می نمایند طرز کار سنسورها به این صورت است که دستگاه فرستنده ( TX ) نور مادون قرمز را توسط یک دیود گالیم آرسنيد تولید و پخش می کند. این اشعه توسط یک فتودیود روی گیرنده ( RX ) دریافت می گردد . معمولا یک دیود LED روی گیرنده قرار دارد که وقتی اشعه دریافت می شود خاموش است . در صورت عبور فرد یا وسیله نقلیه ای از بین این دو قطعه و قطع شدن اشعه عبوری ،LED روی گیرنده روشن می شود و یک رله که روی گیرنده وجود دارد تحریک می شود . کنتاکتهای رله به مدار کنترل روی برد الکترونیکی متصل میشوند و به این وسیله برد می تواند دستور لازم را برای توقف درب (اگر در حال بسته شدن باشد) یا باز شدن درب را بر طبق تنظیمات انجام گرفته روی برد به موتور دستگاه صادر نماید. 5- شستی های کنترل دستی : این شستی ها عبارتند از یک شستی باز و یک شستی بسته ( STOP ) که جهت حرکت در برای باز و بسته شدن و یا توقف آن در صورت نبود ریموت کنترل استفاده می شوند البته باید شستی STOP را در محل مناسبی در دسترس نصب کرد تا در مواقع اضطراری برای متوقف کردن در از آن استفاده کرد . شستی بسته STOP در داخل نصب میشود و شستی باز استارت معمولا به صورت سوئیچی است و با یک كليد مانند کلید درهای معمولی می توان آن را باز کرد (با جا دادن سوئیچ در محل مربوطه و چرخاندن آن کنتاکت باز آن بسته می شود ) و در بيرون نصب ميگردد. 6- ریموت کنترل : برای کنترل از راه دور سیستم درب بازکن اتوماتیک معمولا از یک فرستنده رادیویی کوچک دستی استفاده می شود که به آن ریموت کنترل ( REMOTE ) می گویند . بر روی ریموت شستی های فشاری وجود دارد که برای باز وبسته کردن یا توقف در از آنها استفاده می گردد . دستگاه ریموت به همراه آنتن و کارت رادیویی گیرنده روی برد الکترونیکی اجزای ارتباط رادیویی دستگاه را تشکیل می دهند.
  13. آشنایی با سیستمهای اعلام سرقت در اماکن و ساختمانها در مواقع تعطیلی وعدم فعالیت جهت کنترل و حفاظت در برابر ورود غیر مجاز به ساختمان و اطلاع دادن به نگهبان و به صدا در آوردن آژیر خطر در صورت بروز سرقت سیستمهایی نصب می گردد که قادرند حرکت انسان را توسـط سنسورهایی تشخیس داده و با گزارش دادن آن به یک مرکز کنترل الکترونیکی باعث به صدا در آمدن آژیرها و تلفن زدن به افراد یا محلهای از پيش تعیین شده جهت جلوگیری از سرقت شوند. تجهيزات اصلی كه در اين سیستمهاي اعلام سرقت مورد استفاده قرار ميگيرند به شرح زیر می باشند: دتکتورهای حرکتی (Motion detector)(sensor) دتکتورهای شکستن شیشه (Glass break Detector ) آژیرها (siren) (sounder) تلفن کننده (dialler) سیستم کنترل از راه دور (remote control) با طریهای اضطراری(back up battery) تابلو كنترل مرکزی (control panel) دتکتورهای حرکتی از این دتکتورها که به عنوان سنسور مادون قرمز یا چشمی نیز یاد می شود و در سیستمهای اعلام سرقت برای تشخیص حرکت در یک منطقه مشخص که تحت پوشش دید چشمی قرار دارد استفاده می گردد . از آنجا که بدن موجودات زنده به دلیل وجود حرارت از خـود اشعه مادون قرمز (infrared) پخش می کند از این خاصیت برای تشخیص حرکت در این سنسورها استفاده شده است. قسمت اصلی سنسورها از یک ماده کریستالی به ابعاد 4/3 ×1 میلی متر تشکیل شده است که در اثر برخورد اشعه مادون قرمز روی آن یک شارژ سطحی ایجاد می شود و هرگونه تغییرات در مقدار اشعه تابیده شده بر روی این ماده باعث تغییر شارژ الکتریکی آن شده وسیگنالی ایجاد میشود .در عمل از دو عدد ماده کریستالی که به صورت متقابل وبا فاصله يك ميليمتر بسته شده اند استفاده می گردد تــا نویزهای حاصل از برخورد نور خورشید يا لرزش و تغییر دما خنثی شوند این دو عنصر با مداری مشابه شکل زیر به یک ترانزیستورFET بسته می شوند ودر مجموع یک عنصر 3 پایه برای اتصال به تقویت کننده و مقایسه کننده ایجاد می شود. روی سنسورها دریچه ای برای محدود کردن مقدار اشعه ورودی از جنس پلی اتیلن شفاف وجود دارد. به این عنصر سه پایه که دارای دو المان حساس به اشعه مادون قرمز می باشد PIR (Passiveinfrared)یا سنسور PYRO گفته می شود این عنصر به یک برد الکترونیکی (P.C.B) برای تقویت و مقایسه سیگنال اتصال می یابد در صورت تغییر در مقدار اشعه و تشخیص حرکت توسط سنسور مدار الکترونیکی یک رله را تحریک می کند که از کنتاکت این رله برای اتصال به مرکز کنترل یا هر وسیله حفاظتی دیگر جهت اطلاع دادن استفاده می گردد. مجموعه مدار وسنسور در داخل یک قـاب قرار می گیردکه جلوی قاب دارای پنجره ای به شکل خاص می باشد وظیفه این پنجره تمرکز اشعـه مادون قرمز رویPIR است و مانند یک عدسی محدب در هم شکسته می باشد و به آن (Fresnel lens ) گفته می شود. بعد از اتصال سیمهای لازم به مدار الکترونیکی و بستن قاب سنسور آنرا توسط پایــــه های خاصی (bracket)که می توانند در جهات مختلف حرکت کنند روی سقف یا دیوار نصب می کنند . بعد از نصب چشمی در محل وارتفاع مناسب زاویه دید چشمی را تنظیم کرده وسپس مفصل پایه را محکم می کنند.
  14. آشنایی با سیستمهای اعلام حریق امروزه از سیستم ها ی اعلام حریق به طور گسترده در ساختمان ها و اماکن مسکونی و صنعتی استفاده می شود تا خسارتهای ناشی از حریق را به حداقل برسانند و همچنین برای اطلاع دادن به ساکنین ساختمان در مواقع بروز حریق از این سیستم ها استفاده می شود تا حدالامکان از تلفات جانی جلوگیری شود. برای تشخیص حریق از اثرات سه گانه آن یعنی دود و حرارت و شعله استفاده می شود. به طور کلی سیستم های اعلام حریق در دو نوع عادی و هوشمند ساخته شده اند. درسیستمهاي عادی مکانی را که از نظر حریق می خواهیم حفاظت کنیم به مناطق مشخص تقسیم میکنیم تا در صورت بروزحریق بتوان محل حریق را سریعترو راحت تر تشخیص داد . به هر کدام از این مناطق یک زون ( Zone ) گفته می شود . این عمل در سیستم ها ی هوشمند نیز انجام می پذیرد ولی مزیتی که این سیستم ها نسبت به سیستم ها ی عادی دارند این است که این سیستم ها دارای اجزای قابل آدرس دهی هستند و علاوه براینکه می توان زونی را که در آن حریق اتفاق افتاده است تشخیص داد بلکه می توان دقیقا عنصری را که حریق را تشخیص داده معین کرد و محل دقیق حریق را مشخص نمود و خبردهنده ها یی را که مربوط به آن محل می باشد فعال نمود. اجزای سیستم اعلام حریق به سه قسمت اصلي تقسیم می شوند : تجهیزات تشخیص حریق ( دتکتورها ) تجهیزات اعلام حریق ( فلاشرها ، آژیرها و ... ) مرکز کنترل یا پانل مرکزی که وظیفه ارتباط بین دتکتورها و وسایل اعلام حریق را به عهده دارد. تجهیزات جانبی دیگری نیز برای تکمیل و قدرتمند نمودن سیستم اعلام حریق به کار می روند. تجهیزات تشخیص حریق ( دتکتورها ) دتکتورها وسایل الکترونیکی هستند که در شکل ها و طرح ها ی مختلف و معمولا به رنگ سفید توسط کارخانه های سازنده ارائه می شوند و در محلهای مناسب ساختمان مانند آشپزخانه – موتورخانه – اتاق بایگانی – راهروها – اتاق ها منزل – اتاق ها ی کنفرانس به صورت سقفی یا دیواری روی پایه های مخصوص نصب می شوند و وظیفه آنها تشخیص حریق و اعلام آن به مرکز کنترل میباشد. تغذیه دتکتورها معمولا با ولتاژ 24 ولت DC صورت می گیرد ولی دتکتورها یی وجود دارند که از ولتاژ های 12 و 48 ولت DC و یا AC 220 ولت تغذیه می شوند. جریان عبوری از آن ها در حالت عادی چند ده میلی آمپر است و در مواقع بروز حریق افزایش می یابد. بسته به اینکه دتکتورها از کدام اثر آتش برای تشخیص استفاده می کند در انواع گوناگونی به صورت زیر ساخته می شوند : 1- دتکتور دودی 2- دتکتور حرارتی 3- دتکتور شعله ای تجهیزات اعلام كننده حریق برای آگاه کردن ساکنین ساختمان از بروز حریق از وسایل سمعی و بصری خاص سیستم های اعلام حریق استفاده می شوند که به سه گروه تقسیم می گردند: 1- آژیر ( Sounder ) یا زنگ ( Bell ) 2- چراغ ها ی نشانگر ( (Flasher 3- شستی ها ی اعلام حریق ( Manual Call Point ) ( MCP ) کابل کشی سیستم اعلام حريق نصب و استقرار تجهیزات سیستم اعلام حریق طبق استاندارد BS 5839 و کابل کشی طبق استاندارد BS 6207 انجام می گیرد . به طور کلی می توان سیم ها ی مدار اعلام حریق را به دو گروه تقسیم کرد و با توجه به خصوصیات هر گروه کابل مناسب باآن را به کار برد : گروه1 :کابلهایی که بعد ازآشکارشدن حریق استفاده نمی شود مانندکابل ها ی دتکتورها وشستی ها گروه 2 : کابلهایی که بعد ازکشف حریق استفاده میشوند مانندکابلهاي منبع تغذیه وآژیرها و چراغها در حالت كلي می توان برای هر دو گروه کابل 5/1 میلی متر مربع با روپوش و عایق پروتودور به کار برد ولی در مکان ها ییکه امکان ضربه یا ساییدگی و جویده شدن توسط حیوانات وجود دارد باید کابل ها را حفاظت مکانیکی کرد. می توان در مورد سیم ها ی آژیرها و چراغ ها برای حفاظت آنها را داخل دیوار زیر حداقل 12 میلی متر گچ به صورت توکار گذاشت . کابلها ي سیستم اعلام حریق باید جدا از سایر کابل ها سیم کشی شوند . تست کابل ها توسط اهم متر انجام می شود و در صورت استفاده از مگا اهم سنج باید تمام تجهیزات اعم از دتکتور – آژیر – پانل کنترل و ... را از مدار باز کرد تا ولتاژ تست بالابه آنها آسیب نرساند . هنگام کابل کشی نباید از مسیر زون ها انشعاب گرفت . همچنین نباید از آژیر ها هم انشعاب گرفت . کابل کشی سیستم ها ی عادی به صورت رادیال یا خطی و کابل کشی سیستم ها ی هوشمند به صورت حلقوی انجام می گیرد . در انتهای مسیر زون ها همیشه یک مقاومت موازی با خط که مقدارآن معمولا 7/4 یا 8/6 کیلو اهم است متصل می کنند یا از واحد انتهای خط AEOL استفاده می نمایند.
  15. setayesh_sokoot

    ژنراتور الکتریکی

    ژنراتورها ژنراتورها همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی و کاربردهای خاص دیگر ایفاء کرده است . ساخت اولین نمونه ژنراتور (سنکرون) به انتهای قرن 19 برمی گردد. مهمترین پیشرفت انجام شده در آن سالها احداث اولین خط بلند انتقال سه فاز از لافن به فرانکفورت آلمان بود. در کانون این تحول ، یک هیدروژنراتور سه فاز 210 کیلو وات قرار گرفته بود. عیلرغم مشکلات موجود در جهت افزایش ظرفیت و سطح ولتاژ ژنراتورها، در طول سالهای بعد تلاشهای گسترده ای برای نیل به این هدف صورت گرفت. مهمترین محدودیتها در جهت افزایش و سطح ولتاژ ژنراتورها ، ضعف عملکرد سیستمهای عایقی و نیز روشهای خنک سازی بود .در راستای رفع این محدودیتها ترکیبات مختلف عایقهای مصنوعی، استفاده از هیدروژن برای خنک سازی و بهینه سازی روشهای خنک سازی با هوا نتایج موفقیت آمیزی را در پی داشت به نحوی که امروزه ظرفیت ژنراتورها به بیش از 1600DC افزایش یافته است. در جهت افزایش ولتاژ ، ابداع پاورفرمر در انتهای قرن بیستم توانست سقف ولتاژ تولیدی را تا حدود سطح ولتاژ انتقال افزایش دهد. به نحوی که برخی محققان معتقدند در سالهای نه چندان دور ، دیگر نیازی به استفاده از ترانسفورماتورهای افزاینده نیروگاهی نیست. همچنین امروزه تکنولوژی ژنراتورهای ابررسانا بسیار مورد توجه است، انتظار می رود با گسترش این تکنولوژی در ژنراتورهای آینده ، ظرفیتهای بالاتر در حجم کمتر قابل دسترسی باشند.ژنراتورها:ماشین هایی هستند که انرژی مکانیکی را از محرک اصلی به یک توان الکتریکی در ولتاژ و فرکانس خاصی تبدیل می نماید.کلمه سنکرون به این حقیقت اشاره دارد که فرکانس الکتریک این ماشین با سرعت گردش مکانیکی شفت قفل شده است ، ژنراتورسنکرون برای تولید بخش اعظم توان الکتریکی در سرتاسر جهان به کار می رود. دو اصل فیزیکی مرتبط با عملکرد ژنراتورها وجود دارد. اولین اصل فیزیکی اصل القائی الکترومغناطیسی کشف شده توسط مایکل فاراده دانشمند بریتانیایی است. اگر یک هادی در یک میدان مغناطیسی حرکت کند یا اگر طول یا حلقه ی القائی ساکنی جهت تغییر استفاده شود. یک جریان ایجاد میشود یا القاء می شود. اگر یک جریان از میان یک کنتاکتور که در میدان مغناطیسی قرار گرفته ، عبور کند میدان ، نیروی مکانیکی بر آن وارد می کند. ژنراتور ها دارای دو اصل هستند: قسمتها و میدان که آهنربای الکترو مغناطیسی با سیم پیچ هایش و آرمیچر و ساختاری که از کنتاکتورحمایت می کند و کار قطع میدان مغناطیسی و حمل جریان القاء شده ژنراتور یا جریان ناگهانی به موتور را دارد است . آرمیچر معمولا" هسته ی نرم آهنی اطراف سیم های القائی که دور سیم پیچ ها پیچیده شده اند ، است . ژنراتور ها از دو قسمت تشکیل شده اند: قسمت متحرک را رتور و قسمت ساکن آن را استاتور می گویند . رتور ها نیز از نظر ساختمان دو دسته اند: ماشین های قطب صاف و ماشین های قطب برجسته. همچنین ژنراتورها بسته به آنکه نوع وسیله گرداننده رتور آنها چه نوع توربینی باشد به صورت زیر تقسیم می شوند: 1) توربو ژنراتورها: در این وسیله گرداننده رتور ، توربین بخار است و چون توربین بخار جزء ماشین های تند گرد است بنابراین توربوژنراتور دارای قطب های صاف بوده و این ماشین توانائی ایجاد دورهای بسیاربالا را در قدرت های زیاد دارد امروزه اغلب توربوژنراتورها را دو قطبی می سازند چون با افزایش سرعت گردش کار توربین های بخار با صرفه تر وارزان ترتمام می شود. 2) هیدرو ژنراتور ها : در آن وسیله گرداننده رتور توربین آبی است و چون توربین آبی دارای دور کم است بنابراین هیدروژنراتور دارای قطب برجسته بوده و دارای سرعت کم می باشد 3) دیزل ژنراتور ها : در قدرت های کوچگ و اظطراری وسیله گرداننده رتور دیزل است که در این موره هم قطب های رتور آن برجسته می باشد.ساختمان و اساس کار ژنراتور سنکرون:در یک ژنراتور سنکرون یک جریان DC به سیم پیچ رتور اعمال می گردد تا یک میدان مغناطیسی رتور تولید شود. سپس رتور مربوط به ژنراتور به وسیله محرک اصلی چرخانده میشود ، تا یک میدان مغناطیسی دوار در ماشین بوجود آید.این میدان مغناطیسی ، یک ولتاژ سه فاز را در سیم پیچ های استاتور ژنراتور القاء می نماید. در یک ماشین دو عبارت در توصیف سیم پیچ ها بسیار مورد استفاده است یکی سیم پیچ های میدان و دیگری سیم پیچ های آرمیچر. بطور کلی عبارت سیم پیچ های میدان به سیم پیچ هایی گفته می شود که میدان مغناطیسی اصلی را در ماشین تولید می نماید و عبارت سیم پیچ های آرمیچر به سیم پیچ هایی اتلاق می شود که ولتاژ اصلی در آن القاء می شود . برای ماشین های سنکرون ، سیم پیچ های میدان در رتور است. رتور ژنراتور سنکرون در اصل یک آهنربای الکتریکی بزرگ است . قطب های مغناطیسی در رتور می تواند از نوع برجسته یا غیر برجسته باشد . کلمه برجسته به معنی قلمبیده است و قطب برجسته ، یک قطب مغناطیسی خارج شده از سطح رتور می باشد. ازطرف دیگر ، یک قطب برجسته یک قطب مغناطیسی هم سطح با سطح رتور است . یک رتور غیر برجسته یا صاف معمولا" برای موارد 2 یا 4 قطبی بکار می روند . در حالی که رتورهای برجسته برای 4 قطب یا بیشتر مورد استفاده هستند. چون در رتور میدان مغناطیسی متغیر است برای کاهش تلفات ، آن را از لایه های نازک می سازند. به مدار میدان در رتور باید جریان ثابتی اعمال شود ، چون رتور می چرخد ، نیاز به آرایش خاصی برای رساندن توان DC به سیم پیچ های میدانش دارد برای انجام این کار 2 روش موجود است : 1) تهیه توان DC از یک منبع بیرونی به رتور با رینگ های لغزان و جاروبک . 2) فراهم نمودن توان DC از یک منبع توان DC که مستقیما" روی شفت ژنراتورهای سنکرون نصب می شود.ساختمان و اساس کار ژنراتور سنکروندر یک ژنراتور سنکرون یک جریان dc به سیم پیچ رتور اعمال می گردد تا یک میدان مغناطیسی رتور اعمال می گردد تا یک میدان مغناطیسی رتور اعمال می گردد تا یک میدان مغناطیسی رتور تولید شود. سپس روتور مربوط به ژنراتور به وسیله یک محرک اصلی چرخاند می شود، تا یک میدان مغناطیسی دوار در ماشین به وجود آید . این میدان مغناطیسی یک ولتاژ سه فاز را در سیم پیچ های استاتور ژنراتور القاء می نماید. در یک ماشین دو عبارت در توصیف سیم پیچ ها بسیار مورد استفاده است: یکی سیم پیچ های میدان و دیگری سیم پیچ های آرمیچر. بطور کلی عبارت سیم پیچ ها ی میدان به سیم پیچ هایی گفته می شود که میدان مغناطیسی اصلی را در ماشین تولید می کند. عبارت سیم پیچ های آرمیچر به سیم پیچ هایی اطلاق می شود که ولتاژ اصلی در آن القاء می شود برای ماشین های سنکرون، سیم پیچ های میدان در رتور است.روتور ژنراتور سنکرون در اصل یک آهن ربای الکتریکی بزرگ است. قطب های مغناطیسی در رتور می تواند از نوع برجسته و غیر برجسته باشد. کلمه برجسته به معنی (قلمبیده )است و قطب برجسته یک قطب مغناطیسی خارج شده از سطح رتور می باشد. از طرف دیگر یک قطب برجسته، یک قطب مغناطیسی هم سطح با سطح رتور است. یک رتور غیر برجسته یا صاف معمولاً برای موارد 2 یا چهار قطبی به کار می روند. در حالی که رتور های برجسته برای 4 قطب یا بیشتر مورد استفاده هستند. چون در رتور میدان مغناطیسی متغییر است برای کاهش تلفات، آن را از لایه های نازک می سازند. به مدار میدان در رتور باید جریان ثابتی اعمال شود. چون رتور می چرخد نیاز به آرایش خاصی برای رساندن توان DC به سیم پیچ های میدانش دارد.برای انجام این کار 2 روش موجود است : 1- از یک منبع بیرونی به رتور با رینگ های لغزان و جاروبک . 2- فراهم نمودن توان DCاز یک منبع توان DC ، که مستقیما" روی شفت ژنراتورسنکرون نصب میشود.رینگ های لغزان بطور کامل شفت ماشین را احاطه می کنند ولی از آن جدا هستند. یک انتهای سیم پیچ DC به هر یک از دو انتهای رینگ لغزان در شفت موتور سنکرون متصل است و یک جاروبک ثابت روی هررینگ لغزان سر می خورد . جاروبک ها بلوکی از ترکیبات گرافیک مانند هستند که الکتریسیته را به راحتی هدایت می کنند ولی اصطکاک خیلی کمی دارند و لذا روی رینگ ها خوردگی بوجود نمی آورد. اگر سمت مثبت منبع ولتاژ DC به یک جاروبک و سر منفی به جاروبک دیگروصل می شود. آنگاه ولتاژ ثابتی به سیم پیچ ، جدااز مکان و سرعت زاویه ای آن ، میدان درتمام مدت اعمال می شود. رینگ های لغزان و جاروبک ها به هنگام اعمال ولتاژ DC چند مشکل برای سیم پیچ های میدان ماشین سنکرون تولید می کنند آنها نگهداری را در ماشین افزایش می دهند ، زیرا جاروبک بایدمرتبا" به لحاظ سائیدگی چک شود. علاوه برآن ، افت ولتاژ جاروبک ممکن است تلفات قابل توجه توان را همراه با جریان های میدان به دنبال داشته باشد . علیرغم این مشکلات رینگ های لغزان روی همه ماشین های سنکرون کوچک تر بکار میرود. زیرا راه اقتصادی تر برای اعمال جریان میدان موجود نیست .در موتور ها و ژنراتورهای بزرگ تر ، از محرک های بی جاروبک استفاده می شود تا جریان میدان DC را به ماشین برسانند یک محرک بی جاروبک ، یک ژنراتور AC کوچکی است که مدار میدان آن روی استاتور و مدار آرمیچر آن روی رتور نصب است خروجی سه فاز ژنراتور محرک یکسو شده و جریان مستقیم توسط یک مدار یکسو ساز سه فاز که روی شفت ژنراتور نصب است حاصل می شود که بطور مستقیم به مدار میدان DC اصلی اعمال میگردد. با کنترل جریان میدان DC کوچکی از ژنراتور محرک (که روی استاتور نصب می شود) می توان جریان میدان را روی ماشین اصلی و بدون استفاده از رینگ های لغزان و جاروبک ها تنظیم کرد. چون اتصال مکانیکی هرگز بین رتور و استاتور بوجود نمی آید ، یک محرک جاروبک نسبت به نوع حلقه های لغزان و جاروبک ها ، به نگهداری کمتری نیاز دارد. برای اینکه تحریک ژنراتور بطور کامل مستقل از منابع تحریک بیرونی باشد، یک محرک پیلوت کوچکی اغلب در سیستم لحاظ میگردد . محرک پیلوت ، یک ژنراتور AC کوچک با مگنت های (آهن ربا ) دائمی نصب شده بر روی شفت رتور و یک سیم پیچ روی استاتور است . این محرک انرژی را برای مدار میدان محرک بوجود می آورد که این به نوبه خود مدار میدان ماشین اصلی را کنترل می نماید . اگر یک محرک پیلوتروی شفت ژنراتور نصب شود آن گاه هیچ توان الکتریکی خارجی برای راندمان ژنراتور لازم نیست .بسیاری از ژنراتور های سنکرون که دارای محرک های بی جاروبک هستند ، دارای رینگ های لغزان و جاروبک نیز هستند بنابراین یک منبع اضافی جریان میدان DC در موارد اضطراری در اختیار است . استاتور ژنراتور های سنکرون معمولا" در دو لایه ساخته می شوند : خود سیم پیچ توزیع شده و گام های کوچک دارد تا مولفه های هارمونیک ولتاژ ها و جریان های خروجی را کاهش دهد .چون رتور باسرعتی برابر باسرعت میدان مغناطیسی می چرخد ، توان الکتریکی با فرکانس 50 یا 60 هرتز تولید می شود و از ژنراتور بسته به تعداد قطب ها باید با سرعت ثابتی بچرخد مثلا" برای تولید توان 60هرتز در یک ماشین دو قطب رتور باید با سرعت 3600 دور در دقیقه بچرخد . برای تولید توان 50هرتز در یک ماشین 4 قطب ، رتور باید با سرعت 1500 دور دردقیقه دوران کند . سرعت مورد نیاز یک فرکانس مفروض همیشه از معادله زیر قابل محاسبه است : Fe : فرکانس = سرعت مکانیکی P = تعداد قطب ها ولتاژ القایی در استاتور به شار در ماشین ، فرکانس یا سرعت چرخش ، و ساختمان ماشین بستگی دارد . ولتاژ تولیدی داخلی مستقیما" متناسب با شار و سرعت است ولی خود شار به جریان جاری در مدار میدان رتور بستگی دارد. .ولتاژ درونی برابر ولتاژ خروجی نیست چندین فاکتور ، عامل اختلاف بین این دو هست : 1- اعوجاج موجود در میدان مغناطیسی فاصله هوا به علت جریان جاری در استاتور که به آن عکس العمل آرمیچر می گویند. 2- خود القایی بوبین های آرمیچر 3- مقاومت بوبین های آرمیچر 4- تاثیر شکل قطب ها ی برجسته رتوروقتی یک ژنراتور کار می کند و بار های سیستم را تغذیه می کند آنگاه : 1- توان مستقیم و رآکتیو تولیدی بوسیله ژنراتور برابر با مقدار توان تقاضا شده بوسیله بار متصل شده به آن است . 2- نقاط تنظیم گاورنر ژنراتور ، فرکانس کار سیستم قدرت را کنترل می نماید. 3- جریان میدان ( یانقاط تنظیم رگولاتور میدان ) ولتاژ پایانه سیستم قدرت را کنترل می نماید. این وضعیتی است که در ژنراتورهای جدا و به فواصل دور از هم وجود دارد.مولد های AC یا آلترناتورها:مولد های AC یا آلترناتورها درست مثل مولدهای DC براساس القاء الکترومغناطیس کار می کنند ، آنها نیز شامل یک سیم پیچ آرمیچر و یک میدان مغناطیسی هستند اما یک اختلاف مهم بین این دو وجود دارد ، در حالی که در ژنراتورهای DC آرمیچر چرخیده می شود و سیستم میدان ثابت است در آلترناتورها آرایش عکس وجود دارد.آلترناتورها یک ژنراتور ساده بدون کموتاتور ، یک جریان الکتریکی متناوب تولید می کنند ، چنین جریان متناوبی مزیت زیادی دارد برای انتقال توان الکتریکی و از این رو بیشتر ژنراتورهای الکتریکی بزرگ از نوع AC هستند. ژنراتور AC در دو حالت خاص با ژنراتور DC فرق می کند . پایانه های سیم پیچ آرمیچرش بیرون هستند . برای حلقه های لغزان جزئی شده ی جامد روی شفت (میله ) ژنراتور به جای کموتاتور و سیم پیچ های میدان توسط یک منبع DC خارجی تغذیه انرژی می شود تااینکه توسط خود ژنراتور این کار انجام شود . ژنراتور ها ی AC سرعت پایینی با تعداد زیادی قطب در حدود 100 قطب ساخته می شوند. هم برای بهبود بازه شان و هم برای دست یافتن به فرکانس دلخواه به آسانی . آلترناتورها با توربین های سرعت بالا راه اندازی می شوند . فرکانس جریان گرفته شده توسط ژنراتور AC مساوی است با نیمی از تعداد قطبها و تعداد چرخش آرمیچر در ثانیه.بخاطر احتمال جرقه زنی بین جاروبک ها و حلقه های لغزان و خطر شکستهای مکانیکی که ممکن است سبب اتصال کوتاه شود. آلترناتورها به یک سیم پیچ ساکن که بدور یک رتور می چرخد و این رتور شامل تعدادی آهنربای مغناطیسی میدان هستند ساخته می شوند. اصل عملکرد آنها نیز دقیقا" مشابه عملکرد ژنراتورهای AC توصیف شده اند.ژنراتور ها با ولتاژ بالا:شركت ABB اخيرا ژنراتوري با ولتاژ بالا ابداع كرده است . اين ژنراتور بدون نياز به ترانسفورماتور افزاينده بطور مستقيم به شبكه قدرت متصل مي گردد . ايده جديد بكار گرفته شده در اين طرح استفاده از كابل به عنوان سيم پيچ استاتور مي باشد . ژنراتور ولتاژ بالا براي هر كاربرد در نيروگاههاي حرارتي و آبي مناسب مي باشد . راندمان بالا ، كاهش هزينه هاي تعمير و نگهداري ، تلفات كمتر ، تأثيرات منفي كمتر بر محيط زيست ( با توجه به مواد بكار رفته ) از مزاياي اين نوع ژنراتور مي باشد . ژنراتور ولتاژ بالا در مقايسه با ژنراتورهاي معمولي در ولتاژ بالا و جريان پائين كار مي كند . ماكزيمم ولتاژ خروجي اين ژنراتور با تكنولوژي كابل محدود مي گردد كه در حال حاضر با توجه به تكنولوژي بالاي ساخت كابلها ميتوان ولتاژ آنرا تا سطح 400 كيلو ولت طراحي نمود . هادي استفاده شده در ژنراتور ولتاژ بالا بصورت دوار مي باشد در حاليكه در ژنراتورهاي معمولي اين هادي بصورت مثلثي مي باشد در نتيجه ميدان الكتريكي در ژنراتورهاي ولتاژ بالا يكنواخت تر مي باشد . ابعاد سيم پيچ بر اساس ولتاژ سيستم و ماكزيمم قدرت ژنراتور تعيين مي گردد . در ژنراتورهاي ولتاژ بالا لايه خارجي كابل در تمام طول كابل زمين مي گردد ، اين امر موجب مي شود كه ميدان الكتريكي در طول كابل محدود گردد و ديگر مانند ژنراتورهاي معمولي نياز به كنترل ميدان در ناحيه انتهايي سيم پيچ نباشد . جزيي ( Partialdischarge) در هيچ ناحيه اي از سيم پيچ وجود ندارد و همچنين ايمني افراد بهره بردار و يا تعميركار افزايش مي يابد . سربنديها و اتصالات معمولا در فضاي خالي مورد دسترس در محل انجام مي گيرد ، بنابراين محل اين اتصالات در يك نيروگاه نسبت به نيروگاه ديگر متفاوت مي باشد ، اما در هر حال اين اتصالات در خارج از هسته استاتور مي باشد ، براي مثال اتصالات و سربنديها ممكن است زير ژنراتور و يا خارج از قاب استاتور ( Statorframe ) انجام گيرد . بدين ترتيب اتصالات و سربنديها ، مشكلات ناشي از ارتعاشات و لرزش هاي بوجود آمده در ماشين هاي معمولي را نخواهند داشت .در طرح كنوني ژنراتور ولتاژ بالا دو نوع سيستم خنك كنندگي وجود دارد ، روتور و سيم پيچ هاي انتهايي توسط هوا خنك مي گردند در حاليكه استاتور توسط آب خنك مي گردد . سيستم خنك كنندگي آب شامل لوله هاي XLPE قرار گرفته شده در هسته استاتور مي باشد كه آب از اين لوله ها جريان مي يابد و هسته استاتور را خنك نگه مي دارد .مقايسه جريان اتصال كوتاه در نيروگاه مجهز به ژنراتور ولتاژ بالا با نيروگاه مجهز به ژنراتور معمولي نشان مي دهد كه به دليل اينكه در نيروگاه با ژنراتور ولتاژ بالا راكتانس ترانسفورماتور حذف مي گردد جريانهاي خطا كوچكتر مي باشد .
×
×
  • جدید...