رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'نانو لوله کربنی'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

15 نتیجه پیدا شد

  1. محققان چینی موفق به تولید نانولوله‌های کربنی به طول نیم متر شدند که این رشته‌های بلند برای تحقق رؤیای ساخت آسانسور فضایی ضروری است. به گزارش سایت خبری پپنا، تولید آسانسورهایی از جنس نانولوله‌های کربنی یکی از ایده‌هایی بود که در دهه 1950 مطرح شد، ایده‌ای که نحوه انجام و پیاده‌سازی آن برای همگان در هاله‌ای از ابهام بود. پیشرفت‌های انجام شده در این موضوع در کنفرانس آسانسور فضایی مورد بحث قرار می‌گیرد. یک شرکت ژاپنی اخیرا اعلام کرده که برنامه‌ای برای ساخت این آسانسور تا سال 2050 دارد. این برنامه بر اساس استفاده از نانولوله‌های کربنی به طول 100 هزار کیلومتر است، در واقع باید ابتدا چنین نانولوله‌ای را تولید کرد سپس به سراغ ساخت آسانسور رفت. تا کنون چنین نانولوله‌ای تولید نشده است. پژوهشگرانی که به دنبال تولید محصولاتی با ویژگی‌های مکانیکی منحصر به فرد نظیر فیبرهای فوق مستحکم هستند، همیشه با این سوال روبرو بودند که چگونه می‌توان نانولوله‌های کربنی با طول‌های ماکرومقیاس تولید کرد، بدون این که دانسیته مساحتی آنها کاهش یابد. یکی از اصلی‌ترین مراحل در رسیدن به این هدف آن است که بتوان ساز و کاری برای تولید انبوه نانولوله‌های کربنی با طول‌های بلند ایجاد کرد. اخیرا مقاله‌ای تحت عنوان «Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution» در نشریه ACS NANO به چاپ رسیده است که در آن محققان دانشگاه سینگوا اعلام کردند که می‌توان با روش توزیع شوتز فلوری(Schulz-Flory distribution) شرایط بهینه برای رشد نانولوله‌های بلند را پیدا کرد. این روش در علم پلیمر بسیار رایج است. ینگ‌ینگ ژانگ از محققان این پروژه می‌گوید: توزیع شوتز فلوری دلیل این که چرا با بلندتر شدن طول نانولوله‌های کربنی دانسیته مساحتی آنها کاهش می‌یابد را به خوبی توضیح می‌دهد. در این پروژه ما نشان دادیم که چگونه می‌توان نانولوله‌ای به طول نیم متر تولید کرد، این نانولوله بلندترین نانولوله‌ای است که تا کنون در جهان ساخته شده است. دانسیته مساحتی نانولوله‌های کربنی نسبتا پایین است، بنابراین بلندترین نانولوله تولید شده پیش از این 20 سانتیمتر بوده است. این گروه تحقیقاتی به بررسی فاکتورهای موثر بر رشد نانولوله‌های کربنی پرداخته‌اند، نتایج کار آنها نشان می‌دهد که کاتالیست‌ها اصلی‌ترین نقش را در این میان ایفا می‌کنند. آنها برای رشد نانولوله‌های کربنی از کاتالیست مناسبی استفاده کردند. توزیع شوتز فلوری دقیقا رفتار و تاثیر فعالیت کاتالیست‌ها را روی رشد نانولوله‌های کربنی بلند توضیح می‌دهد. با استفاده از این تئوری، محققان شرایط را برای رشد نانولوله‌هایی به طول نیم متر فراهم کرده و در نهایت به مقصود خود رسیدند. منبع: پینا
  2. پژوهشگران دانشگاه کارولینای شمالی روشی ارائه کردند که با استفاده از آن می‌توان نانولوله‌های کربنی را به تولید انبوه رساند. به گزارش ایسنا به نقل از ستاد نانو، این گروه از رنگ‌پاش برای تولید این نانوساختارها با قطر مختلف استفاده کردند. این روش جدید برای تولید انبوه نانولوله‌های کربنی پوشش‌دار نیز مناسب است. «آناتولی ملنکو» می‌گوید: استفاده از رنگ‌پاش یک روش‌ جالب برای تولید انبوه نانوساختارها است. معمولا برای تولید نانوذرات از کاتالیست‌های نیکل استفاده می‌شود، ما در این پروژه از رنگ‌پاش برای اسپری کردن این نانوذرات روی زیرلایه استفاده کردیم؛ با این کار نانوذرات روی سطح زیرلایه پخش می‌شوند و در نهایت نانولوله‌ها روی این نانوذرات رشد می‌کنند. رنگ‌پاش موجب می‌شود تا ذرات کاتالیست به صورت یکنواخت روی سطح وسیعی از زیرلایه قرار بگیرند؛ مزیت دیگر این روش آن است که می‌توان در مدت زمان بسیار کوتاهی در دمای اتاق مساحت بالایی را پوشش‌دهی کرد. بعد از پوشش‌دهی زیرلایه با رنگ‌پاش، این گروه تحقیقاتی یک لایه پودر سیلیکون را روی آن اسپری کرده و در نهایت زیرلایه را در اتمسفری حاوی استیلن و گاز آمونیاک در دمای 600 درجه سانتی‌گراد قرار می‌دهند. با این کار نانوفیبرهای کربنی روی نانوذرات نیکل رشد کرده و محصولی خالص حاوی پوشش سیلیکونی ایجاد می‌شود. این محصول به صورت جنگلی از نانوفیبرهاست که به صورت عمودی روی زیرلایه رشد کرده است. این گروه تحقیقاتی این روش را روی زیرلایه‌های آلومینیوم، مس و تیتانیوم آزمایش کردند. «مهمت ساراک» از محققان این پروژه می‌گوید: رشد نانوفیبرهای کربنی روی زیرلایه منجر به محصولی رسانا می‌شود که از آن می‌توان در حوزه‌های مختلف استفاده کرد. رشد نانولوله‌ها از طریق رسوب شیمیایی از فاز بخار تقویت شده با پلاسما (pecvd) انجام می‌شود که قبل از آن نانوذرات نیکل روی زیرلایه‌هایی از جنس سیلیسیم، آلومینیوم، مس و تیتانیوم قرار داده می‌شود. توزیع و مورفولوژی محصول نهایی را می‌توان با کنترل پارامترهای رنگ‌پاش تعیین کرد، در واقع نحوه توزیع نانوذرات کاتالیستی تاثیر زیادی روی محصول نهایی دارد. در صورت افزودن میکروذرات سیلیس به راکتور، محصول نهایی با سیلیس پوشش‌دهی می‌شود که این کار موجب افزایش استحکام مکانیکی نانوفیبرهای کربنی می‌شود. از این روش می‌توان برای تولید مواد تشکیل دهنده باتری‌های یون لیتیم استفاده کرد. منبع: مجله بسپار
  3. پژوهشگران ژاپنی با ترکیب نانولوله‌کربنی و پلیمر موفق به تولید مدارات الکترونیکی انعطاف‌پذیر شدند. از این محصول می‌توان برای تولید ادوات الکترونیکی انعطاف‌پذیر استفاده کرد. طی‌ سال‌های گذشته تلاش‌های زیادی برای ساخت ادوات الکترونیکی انعطاف‌پذیر انجام شده است. در بیشتر محصولات تولید شده از الکترودهای فلزی و عایق‌های اکسیدی استفاده شده است که به دلیل استحکام ساختاری، انعطاف‌پذیری اندکی دارند. برخی محققان برای حل این مشکل از پلیمرها و ترکیبات یونی استفاده کرده‌اند اما این مواد نیز به دلیل سرعت کم و عملکرد ضعیف در ولتاژهای بالا نتیجه خوبی نداشته‌اند. اخیرا محققان موفق به ساخت مداراتی از جنس کربن شده‌اند که کاملا انعطاف‌پذیر است. این مدارها را می‌توان در قالب‌های مختلف وارد و شکل‌دهی کرد. با این روش می‌توان مدارات الکترونیکی را با مواد پلاستیکی ترکیب و قالب‌گیری کرد. در نهایت از ماده بدست آمده می‌توان برای تولید ادوات مختلف از تجهیزات پزشکی گرفته تا وسایل منزل تولید کرد. یوتاکا اونهو از دانشگاه ناگویا ژاپن می‌گوید مواد پلاستیکی که در حال حاضر در تلفن‌های همراه استفاده می‌شود، تنها برای محافظت از تلفن‌های هوشمند است اما با این فناوری می‌توان از این پلاستیک‌ها به عنوان مدار یا نمایشگر استفاده کرد. این کار موجب بهبود عملکرد و افزایش قابلیت‌های تلفن‌های همراه می‌شود. سان از محققان این پروژه می‌گوید نکته کلیدی در این پروژه آن است که تمام ساختار تولید شده از نانولوله‌کربنی و پلیمر بوده که این موجب انعطاف‌پذیری بیشتر ساختار و همچنین افزایش خاصیت ارتجاعی آن می‌شود. نتایج این پژوهش موجب می‌شود تا ما بتوانیم ارتباطی میان ادوات الکترونیکی و محصولات پلاستیکی ایجاد کنیم، با این کار سیستم‌های الکترونیکی جدید با قابلیت طراحی بهتر و عملکرد بالاتر بوجود می‌آید. این مدار جدید از ترکیبات کربنی مختلفی تشکیل شده است که از آن جمله می‌توان به نانولوله‌های کربنی اشاره کرد. علاوه‌براین از پلی‌متیل‌متاآکریلات (pmma) و پلی‌اتیلن‌نفتالات (pen) به ترتیب به عنوان لایه دی‌الکتریک و زیرلایه استفاده شده است. برخلاف پلیمرها و سیالات یونی که پیش از این به عنوان دی‌الکتریک انعطاف‌پذیر مورد استفاده قرار می‌گرفته،pmma به مدارات کمک می‌کند تا در ولتاژهای پایین‌تر و با سرعت بالاتر کار کنند. دلیل امکان کار در ولتاژ پایین وجود شبکه‌های نانولوله‌کربنی است. محققان این ساختار را با دمیدن به صورت گنبدی شکل در آوردند بدون این که ترکی در ساختار آن ایجاد شود. محققان معتقداند که برای تولید انبوه این سیستم، باید نانولوله‌هایی با ساختار یکسان و یکنواخت رشد داده شود. منبع: پینا
  4. یک تیم تحقیقاتی چینی موفق شده است با پوشش‌دهی نخ به وسیله نانولوله‌کربنی، پلیمر و MnO2 ابرخازن پلیمری انعطاف‌پذیر تولید کند. امروزه ادوات الکترونیکی انعطاف‌پذیر، در حال توسعه و پیشرفت قابل ملاحظه‌ای هستند. اگر تا دیروز مدارات الکترونیکی درون منسوجات قرار داده می‌شد، اکنون ترکیبات سازنده این مدارات به قدری رشد کرده‌اند که می‌توان خود آن را بافت. بزودی منسوجات الکترونیکی وارد به بازار خواهند شد؛ منسوجاتی که قادر به حس، ذخیره‌سازی و نشر باشند. تمام این منسوجات به یک منبع تولید انرژی نیاز دارند، یک باتری که بتواند انرژی مورد نیاز آنها را تامین کند. محققان مدت‌هاست که به دنبال ساخت منسوجاتی با قابلیت ذخیره انرژی هستند. ابرخازن‌ها نقش مهمی در این میان ایفا می‌کنند؛ ادواتی که قابلیت ذخیره‌سازی انرژی را دارند. نتایج پژوهش انجام شده توسط محققان آزمایشگاه ملی ووهان و محققانی از چند موسسه مختلف دیگر در قالب مقاله‌ای تحت عنوان Cable-Type Supercapacitors of Three-Dimensional Cotton Thread Based Multi-Grade Nanostructures for Wearable Energy Storage به چاپ رسیده است. این محصول یک رشته نخ پنبه‌ای بلند است که روی آن را با نانولوله‌های کربنی پوشش‌دهی کرده‌اند. برای ساخت این محصول، محققان رشته‌های نخ پنبه‌ای را درون یک محلول جوهر حاوی نانولوله‌کربنی غوطه‌ور کردند؛ سپس این رشته‌ها را در آون خشک کردند. در نهایت رشته‌هایی با رسانایی بالا به‌ دست آمد که مقاومتی کمتر از بیست اهم بر سانتیمتر داشتند. رشته‌هایی که با این روش ساده به‌ دست آمده‌اند، انعطاف‌پذیری بسیار بالایی دارند. از سوی دیگر مقدار ضخامت نانولوله‌ای که روی نخ ایجاد شده با تغییر زمان غوطه‌وری قابل کنترل است. در یک مرحله دیگر محققان سطح این نخ را با نانوساختارهای MnO2 و فیلم پلیمری پوشش‌دهی کردند؛ این کار با استفاده از یک فرآیند ترسیب الکتروشیمیایی انجام شد. دلیل استفاده از MnO2 این است که این ماده از نظر تئوری دارای ظرفیت بالایی است (1370 Fg-1)، از سوی دیگر این ماده زیست سازگار، ارزان و فراوان است. ضعف اصلی این ماده، هدایت الکتریکی اندک آن است که در این پروژه با استفاده از نانولوله‌ کربنی این مشکل رفع شده‌ است. فیلم پلیمری نیز استحکام کل رشته را افزایش می‌دهد. نتایج نشان می‌دهد که نخ حاوی PPy-MnO2-SWCNT از استحکام مکانیکی و هدایت الکتریکی بالایی برخوردار است. منبع: پینا
  5. دانشمندان موسسه فن آوری ماساچوست (MIT) سعی نموده اندتا با استفاده از نانولوله های کربنی، سبب استحکام بیشتر الیاف کربن شوند. امروزه موضوعی که در مهندسی هوافضا از اهمیت خاصی برخوردار است، سبک بودن وزن سازه است؛ متخصصان هوافضا تلاش میکنند که یک فروند هواپیما را با بالها، بدنه و چرخ های سبکتری بسازند تا با کاهش وزن هواپیما هزینه های سوخت را کاهش دهند. الیاف کربن پیشرفته در سالهای اخیر برای سبک نمودن وزن هواپیماها استفاده شده است. این مواد میتوانند با آلومینیوم و تیتانیوم ترکیب شده و باعث استحکام و کاهش وزن سازه شوند و همینطور میتوانند در هواپیماهایی چون بوئینگ (Boeing) و ایرباس (Airbus A380) استفاده شوند و تا 20 درصد وزن جت را بکاهند. برای نسل بعدی جت ها، محققان به دنبال مواد قوی تر و سبک تری مانند کامپوزیتهای ساخته شده با پوشش الیاف کربنی هستند که با نانو لوله ها (لوله های کوچک شفاف کربن) توسعه یافته اند. نانولوله ها در مقایسه با فولاد ، مستحکم تر هستندو کامپوزیتهای ساخته شده با این مواد با جذابیت بیشتری در سازه هواپیما ها، تجهیزات هوافضا ، ماهواراه ها، اتومبیل ها وقطارها به کار میروند. دانشمندانی که در توسعه و تقویت الیاف کربن تلاش کردند که در این عرصع از نانولوله های کربنی استفاده شود هم اکنونمتوجه شده اند که استحکام ذاتی الیاف کربن با کاهش لایه های بنیانی به طور قابل توجهی کاهش می یابد. اکنون گروهی از محققان موسسه ماساچوست (MIT) دلیل اصلی کاهش لایه های بنیانی این الیاف را شناسایی نموده اند و روشهایی را برای حفظ استحکام این الیاف ایجاد کرده اند. تحقیقات و کشفیات این دانشمندان این است که الیاف کربنی که با نانو لوله ها پوشیده شده است استحکام بیشتری را ایجاد مینماید. کامپوزیتهایی که با این نوع الیاف کربن ساخته میشوند نه تنها دارای استحکام بیشتری هستند بلکه رسانای الکتریکی خوبی هم دارا خواهند بود. ضمناً محققان میگویند که این روشها میتوانند براحتی در فرآیندهای رایج تولید الیاف ادغام شوند. منبع: انجمن کامپوزیت
  6. unstoppable

    حسگر نانو کامپوزیتی جدید

    پژوهشگران دانشگاه محقق اردبیلی با استفاده از روش جدید قالب زنی، نانوذرات پلیمری قالب‌دار شده با مولکول‌های اتانول را به منظور ‏تشخیص گاز اتانول تولید کردند. ‏ پژوهشگران دانشگاه محقق اردبیلی با استفاده از روش جدید قالب زنی، نانوذرات پلیمری قالب دار شده با مولکول‌های اتانول را به منظور ‏تشخیص گاز اتانول تولید کردند. حسگر تولیدی بر پایه نانوکامپوزیت نانولوله‌های کربنی چند‌دیواره‎-‎نانوذرات پلیمری قالب‌دارشده برای ساخت ‏حسگر‌های گازی مقاومت شیمیایی بوده است. این روش جدید می‌تواند در تولید حسگرهای دیگر با بازده بالا و حساسیت بالا مورد استفاده قرار ‏گیرد.‏ فناوری قالب‌زنی مولکولی یک روش تهیه مواد هوشمند است که قابلیت‌شناسایی و جذب گزینشی مولکول یا یون‌های مورد نظر در ‏محیط‌های مایع یا حتی گازی را دارا است‎.‎‏ این مواد رقبای مصنوعی و سنتزی برای سیستم‌های مشابه مانند آنتی بادی‎-‎آنتی ژن، ‏آنزیم‌ها و یا پذیرنده‌های حسی و یا غیر حسی در موجودات زنده هستند‎.‎‏ ویژگی مهم این مواد این است که دارای پایداری شیمیایی، دمایی و ‏مکانیکی بسیار بالاتری نسبت به رقبای بیولوژیک خودهستند‎.‎‏ همچنین این پذیرنده‌های مصنوعی را می‌توان برای طیف بسیار وسیع و ‏دلخواهی از مولکول‌های شیمیایی تهیه کرد‎.‎‏ در صورتی که تعداد محدودی پذیرنده بیولوژیک در دسترس ما قراردارد‎.‎‏ هم اکنون این مواد ‏کاربردهای بسیار متنوعی در زمینه‌های مختلف مانند جداسازی، کاتالیز واکنش‌های شیمیایی، دارورسانی و حسگر‌های شیمیایی و بیوشیمیایی ‏پیدا کرده است‎.‎‏ تهیه پلیمر‌های قالب دار شده در ابعاد نانومتری ضمن آنکه نقایص پلیمر‌های قالب دار شده توده‌ای و درشت را مرتفع می‌سازد ‏موجب بهبود کارایی این مواد در جذب گزینشی مولکول‌های مورد نظر شده و ظرفیت جذبی آنها را افزایش می‌دهد‎.‎ در این کار نانوذرات پلیمری قالب‌دار شده با مولکول‌های اتانول، با روش پلیمریزاسیون رسوبی تهیه گردیده و به عنوان عناصر تشخیص ‏دهنده یا حدفاصل شیمیایی یک حسگر گازی برای آشکارسازی و اندازه‌گیری اتانول مورد استفاده قرار گرفتند. دکتر طاهر علی‌زاده در ‏توضیحاتی در رابطه با این تحقیقات گفت: «در این تحقیقات، بعد از سنتز نانوذرات پلیمری، با استفاده از میکروسکوپ الکترونی متوسط اندازه ‏نانوذرات در حد 25 نانومتر تخمین زده شد. حسگر گازی مذکور از نوع مقاومت شیمیایی بوده و مبتنی بر نانوکامپوزیت حاصل از آمیختن ‏نانوذرات پلیمری قالب دار شده با اتانول، نانولوله‌های کربنی و پلی‎-‎‏ متیل متااکریلات بود. نانوذرات پلیمری قالب دار شده برای جذب گزینشی ‏مولکول‌های اتانول طراحی شده‌اند و بنابراین وقتی در معرض بخارات اتانول قرار می‌گیرند آنها را جذب کرده و در نتیجه متورم می‌شوند‎.‎‏ از ‏آنجا که نانوذرات پلیمری قالب دار شده به طور مناسب در لابه لای نانولوله‌های کربنی قرار دارند تورم مذکور موجب افزایش فاصله و کاهش ‏اتصالات بین نانولوله‌های کربنی شده و در نتیجه هدایت الکتریکی نانوکامپوزیت به مقدار قابل توجهی کم می‌شود‎.‎‏ این به معنی ترجمه یک ‏رخداد شیمیایی گزینش‌پذیر به یک سیگنال الکتریکی قابل آشکارسازی و ثبت است‎.‎‏ میزان کاهش رسانایی نانوکامپوزیت متناسب با غلظت ‏اتانول در محیط اطراف حسگر است‎.‎‏ به‌دلیل استفاده از فناوری قالب زنی مولکولی برای تهیه عنصر تشخیص دهنده این حسگر، گزینش ‏پذیری بسیار بالایی برای حسگر مذکور به‌دست آمد به طوری که بین دو مولکول اتانول و متانول تفاوت قابل ملاحظه‌ای در پاسخ حسگر ‏مشاهده گردید‎.‎‏ البته نقش پلیمر خطی مورد استفاده (پلی‎-‎متیل متااکریلات) در ایجاد یک محیط آبگریز در نانوکامپوزیت و جلوگیری از اثر ‏مزاحمت بخارات آب به عنوان یک مزاحم بالقوه در کار کرد حسگر شیمیایی گازی پیشنهاد شده نیز اثبات گردید‎.‎‏»‏ از حسگر تولید شده با توجه به ویژگی‌های برتر خود از جمله ساده، ارزان، کوچک و در عین حال حساس و گزینش‌پذیر برای آشکارسازی ‏اتانول، می‌توان به عنوان یکی از ممتازترین حسگرها نام برد. نکته دیگری که در این تحقیقات مورد توجه است، استفاده از یک تکنیک ‏جدید برای ساخت حسگر‌های شیمیایی برای انواع مختلفی از مولکول‌های شیمیایی بر اساس نانوکامپوزیت‌هایی بر پایه پلیمر‌های قالب دار شده ‏در ابعاد نانومتری و نانو‌لوله‌های کربنی است.‏ علی زاده، دانشیار دانشگاه محقق اردبیلی، با اشاره به استفاده از کوپل پلیمری قالب شده به عنوان یک ایده نو توضیح داد: «در این کار ‏یک سازوکار حسگری بر پایه نانوکامپوزیت نانولوله‌های کربنی چند‌دیواره‎-‎نانوذرات پلیمری قالب دار شده برای ساخت حسگر‌های گازی مقاومت ‏شیمیایی معرفی شد‎.‎‏ در این تحقیقات، ما کوپل پلیمر‌های قالب دار شده نانومتری را با نانوتیوب‌های کربنی برای تهیه یک حسگر مقاومت ‏شیمیایی معرفی کردیم‎.‎‏ با این کار یک افزایش قابل ملاحظه در گزینش پذیری و حساسیت را برای حسگر پیشنهادی اثبات نمودیم‎.‎‏ این کار ‏می‌تواند یک زیر شاخه نوین در طراحی و ساخت حسگرهای گازی مقاومت شیمیایی با گزینش پذیری بالا را برای طیف وسیعی از ترکیبات ‏شیمیایی بر اساس فناوری قالب زنی مولکولی فراهم آورد‎.‎‏»‏ این طرح می‌تواند پاسخ گوی نیازهای مرتبط با اندازه‌گیری و آشکارسازی دقیق و در محل برای اهداف مختلف از جمله در تست کردن ‏تنفس افراد مشکوک به مصرف مشروبات الکلی و آشکارسازی شروع فرایند تخمیر باشد. به گفته علی زاده، با توسعه هر چه بیشتر در زمینه ‏حسگری که معرفی گردید می‌توان برای طیف وسیعی از ترکیبات مهم، حسگر‌های دقیق، حساس و بسیار ارزان تهیه نمود که بتواند هم در فاز ‏گازی و هم در فاز مایع ترکیبات مورد نظر را آشکار‌سازی و اندازه‌گیری کند. از جمله این ترکیبات می‌توان به آشکار‌سازی گازهای جنگی، مواد ‏منفجره، آلوده کننده‌های زیست‌محیطی و مواد غذایی، یون‌های فلزات سنگین و حتی نشانگر‌های بیولوژیک اشاره نمود‎.‎ نتایج این کار تحقیقاتی که به دست دکتر طاهر علی زاده و خانم فاطمه رضالو از دانشگاه محقق اردبیلی صورت گرفته است، در مجله ‏Sensors and Actuators B: Chemical‏ (جلد 176، ماه ژانویه سال 2013) منتشر شده است. منبع : مجله بسپار
  7. یک تیم تحقیقاتی موفق شده است با استفاده از کربن ساختار جدیدی ایجاد کند. در این پژوهش نانوسیم‌هایی با پیکربندی الماسی درون نانولوله کربنی ایجاد شده است. نانومواد کربنی دارای ویژگی‌های منحصر به‌فردی هستند که موجب می‌شود از آنها برای حوزه‌های مختلف استفاده کرد برای مثال می‌توان از این مواد در تولید قطعات الکترونیکی، مولد‌های انرژی و مصالح ساختمانی سبک استفاده کرد. اخیرا مقاله‌ای تحت عنوان "Evidence of Diamond Nanowires Formed inside Carbon Nanotubes from Diamantane Dicarboxylic Acid" در نشریه Angewandte Chemie به چاپ رسیده است که در آن محققان یک تیم تحقیقات بین‌المللی موفق شدند فرآیند جدیدی ارائه کنند که می‌توان با استفاده از آن نانوسیم‌های کربنی ویژه‌ای را تولید کرد این نانوساختارها دارای پیکربندی الماس‌مانند هستند. در این فرآیند، مولکول‌ها با ساختاری الماس مانند درون نانولوله کربنی به یکدیگر متصل می‌شوند. تصاویر HR-TEM، طیف‌های رامان و نتایج انتقال ساختاری نشان می‌دهد که تحت تابش پرتو الکترونی می‌توان نانوسیم کربنی تولید کرد. این نانوسیم‌ها دارای ساختاری با پیکربندی الماسی sp3 هستند. این مشاهدات با نتایج بدست آمده از شبیه‌سازی سازگاری دارد. کربن به‌صورت پیکربندی‌های مختلف در طبیعت وجود دارد که الماس و گرافیت از آن جمله هستند. گرافیت دارای ساختار دو بعدی بوده که اتم‌های کربن ساختاری لانه زنبوری دارند اما الماس ساختاری سه بعدی و قفسه مانند دارد. در سال‌های اخیر پیکربندی‌های دیگری نظیر فولرین، نانولوله کربنی، گرافن، نانو الماس و دیاموندویز نیز کشف شده‌اند. دیاموندویز دارای مولکول‌های سیکلو‌آلکانی با پیکربندی قفسی شکل است. به این ترکیب الماس کوچک شده نیز گفته می‌شود که در آن اتم‌های هیدروژن به سطح خارجی یکدیگر چسبیده‌اند. نانوسیم‌ها کاربردهای متعددی دارند، دانشمندان نانوسیم‌ها را با قطرهای مختلف از 50 تا 100 نانومتر تولید می‌کنند، همچنین نانوسیم‌هایی از جنس کربن با پیکربندی الماسی تولید شده است. یک تیم تحقیقاتی قصد دارد تا نانوسیم‌هایی با قطرهای بسیار کم تولید کند با کاهش ابعاد نانوسیم‌ها می‌توان از آنها در میکروسکوپ تونل‌زنی روبشی استفاده کرد. محققان دانشگاه نوگویا از ژاپن برای رسیدن به این هدف ایده اتصال دیاموندویز را مطرح کردند با اتصال این ساختارها می‌توان سیم‌های طویل و بسیار نازک تولید کرد. برای این کار محققان ساختار دیادامانتان را باز کردند. دیادامانتان یک نوع دیاموندویز است که از دو قفسه الماس مانند تشکیل شده است. آنها یک گروه اسید کربونیک را به انتهای هریک از این مولکول‌ها متصل کردند. این مولکول‌ها به فاز گاز منتقل شدند تا فرآیند سنتز آغاز شود. این گاز به‌درون نانولوله‌های کربنی وارد شد، نانولوله‌هایی با قطر 1.3 نانومتر برای این کار ایده‌آل است. درون نانولوله، این مواد به یکدیگر متصل می‌شوند و رشته‌ای را ایجاد می‌کنند. با افزایش دما به 600 درجه فرآیند جوش خوردن اتفاق می‌افتد و رشته سیمی با قطر 0.78 نانومتر ایجاد می‌شود. منبع : مجله بسپار
  8. محققان آمریکایی با انجام شبیه‌سازی کامپیوتری به بررسی تاثیر افزودن مواد مختلف به سطح نانولوله‌های کربنی پرداختند. محققان در این شبیه‌سازی مولکول‌های پلیمری را روی سطح نانولوله قرار داده و در نهایت خواص مکانیکی نانولوله کربنی را مورد بررسی قرار دادند. نتیجه کار نشان داد که با افزودن پلیمر به نانولوله کربنی خواص مکانیکی و هدایت گرمایی سیستم افزایش یافته است . نانولوله‌های کربنی می‌توانند به‌ عنوان افزودنی به مواد مختلف اضافه شوند. در این فرایند که با افزوده شدن نانو لوله کربنی به ماده انجام می‌شود، خواص جدیدی به ماده مورد نظر افزوده می‌شود. برای مثال با اصلاح سطح مواد، خواصی مانند ضد آب بودن در شیشه خودروها ایجاد می‌شود. به همین دلیل محققان حوزه‌های مختلف مانند هوافضا، حسگری، تصفیه آب و... به تحقیق پیرامون این ماده علاقه نشان می‌دهند. نانولوله‌های کربنی از جنس الماس هستند، اما ساختار متفاوتی دارند. به ‌همین دلیل خواص الکتریکی، مکانیکی و گرمایی آنها نیز متفاوت خواهد بود. نانولوله‌های کربنی به ‌طور طبیعی به ‌صورت طنابی شکل چیده می‌شوند که دلیل این موضوع جاذبه واندروالسی میان آنها است. «سادهان جان» استاد پلیمر دانشگاه «آکرون»، روی این خواص جالب نانولوله‌های کربنی مطالعه کرده است. برای این کار او از شبیه سازی ساختار مولکولی استفاده کرده که در مرکز ابر کامپیوترهای «اوهایو» موجود است. «جان» می‌گوید: بزرگترین مانع بر سر استفاده از نانولوله‌های کربنی، تجمع آنها در اثر جاذبه واندروالسی و همچنین برهمکنش الکترواستاتیکی میان نانولوله‌های کربنی منفرد است. دو راهبرد اصلی عامل‌دار کردن «کووالانسی» و «غیرکووالانسی» برای افزودن ترکیبات مختلف به نانولوله‌ها وجود دارد. در عامل‌دار کردن کووالانسی، پیوند شیمیایی با اتم‌های کربن سطح ایجاد می‌شود که موجب تغییر خواص گرافیتی نانولوله کربنی می‌شود که شامل خواص مکانیکی، هدایت الکتریکی و استحکام است. در راهبرد عامل‌دار کردن غیرکووالانسی، از ارتباط دادن مولکول‌ها استفاده می‌شود که در آن زنجیره پلیمری به نانولوله کربنی به ‌هم متصل شده و در نهایت مقاومت به ترک خوردن بهبود می‌یابد. «جی فنگ» از محققان این پروژه می‌گوید: شبیه سازی نانوکامپوزیت‌های پلیمری در محلول به شکلی است که فشار زیادی روی پردازشگر کامپیوتر وارد می‌کند. در راهبردی که ما پیش گرفتیم، قدرت تفکیک شبیه‌سازی برای بخش‌هایی نظیر پدیده‌هایی که در نزدیکی سطح نانولوله کربنی اتفاق می‌افتد، افزایش یافت. برای بخش‌های دیگر سیستم نظیر حرکت مولکول‌های حلال از قدرت تفکیک پایین استفاده شد. این گروه تحقیقاتی در شبیه سازی خود مولکول‌های نانولوله کربنی را روی سطح ماده به ‌صورت غیرکووالانسی قرار دادند که نتیجه کار نشان داد خواص مکانیکی و هدایت گرمایی سیستم افزایش یافته است. در این تحقیق روی درک بیشتر مکانیسم جذب مولکول‌های پلیمری از فاز محلول روی سطح نانولوله کربنی تک جداره تمرکز شده است. از نانولوله‌های کربنی تک جداره که روی دیواره‌های آن ترکیبات پلیمری نشانده شده، می‌توان در تولید حسگرها استفاده کرد.
  9. mim-shimi

    نانولوله‌های کربنی

    کاربردهای مکانیکی نانولوله‌های کربنی با توجه به گسترش روز افزون فناوری نانو و ایجاد تحولات بزرگ در صنایع مختلف توسط این فناوری لازم است که هر کسی بسته به تخصص خود اطلاعی هر چند کلی از کاربردها و قابلیت‌های فناوری نانو داشته باشد. در این مقاله ابتدا توضیحی کلی راجع به فناوری نانو داده شده است و با توجه به اهمیت و نقش گسترده نانولوله‌کربنی در فناوری نانو این ماده معرفی و خواص آن ذکر شده‌است، در ادامه به توضیح برخی از کاربردهای نانولوله‌ها در صنایع مرتبط با مهندسی مکانیک چون کامپوزیت‌ها، محرک‌ها و فیلترها پرداخته شده است. مقدمه یک نانومتر يک ميليونيوم يک متر است بنابراین علم نانو آن بخش از است که ماده را در مقياسی بسيار کوچک بررسی می‌کند؛ و فناوری نانو به تولید و ساخت در مقیاس مولکولی و اتمی می‌پردازد، یا به عیارت دیگر با اجسام و ساختارها و سیستم‌هایی سر و کار دارد که حداقل در یک بعد اندازه‌ای کمتر از100 نانومتر دارند. با پیشرفت و گسترشی که علم و فناوری نانو طی چند سال اخیر داشته است انتظار می‌رود که به زودی تمامی زمینه‌های علم و فناوری را تحت تاثیر خود قرار دهد. نانوفناوری صنایع مرتبط به مهندسی مکانیک را نیز بی بهره نگذاشته است و تحولات زیادی را از تولید کامپوزیت‌ها با استفاده از نانومواد تا تولید شتاب‌سنج هایی در اندازه نانو، ایجاد نموده است. در صنایع خودروسازی در قسمت‌های مختلف ماشین کاربردهای نانوفناوری را می‌بینیم، از شیشه‌های خود تمیز شو و بدنه‌های ضدخش گرفته تا باتری‌هایی با طول عمر بیشتر و وزن کمتر. در این میان نانولوله‌هاي کربني[1] یکی از مواد اولیه‌ای هستند که به علت ویژگی ساختمانی‌، دارای کاربردهای مکانیکی مختلف و ویژه‌ای هستند. نانولوله‌های کربنی نانولوله‌هاي کربني يکي ازمهم ترين ساختارها در مقياس نانو هستند.این مواد اولین بار در سال 1991 توسط دانشمندي ژاپني به نام ايجما[2] در درون دوده‌هاي حاصل از تخليه الکتريکي کربن در يک محيط حاوي گاز نئون کشف شد.[] اين ترکيبات شيميايي ، با ساختار اتمي شبيه صفحات گرافیت، از استوانه‌هايي با قطر چند نانومتر و طولي تا صدها ميکرومتر تشکيل شده‌اند. نانولوله‌ها داراي مدول يانگي تقريباً 6 برابر فولاد ( 1TPa) و چگالي برابر 1.4 g/cm3 هستند. [[ii]] اين مواد در جهت محوري مقاومت کششي بسيار زيادي دارند و اين مزيت بسيار خوبي براي ساخت سازه‌هايي با مقاومت بالا در جهت خاص است. دليل اين مقاومت بالا از يک طرف استحکام پيوند كربن-كربن در ساختار نانولوله‌کربنی و از طرف ديگر شکل شش ضلعی اين ساختار است که به خوبي بار را در میان پیوندها توزيع مي‌کند. از طرف دیگر پایداری حرارتی نانولوله‌ها نیز بسیار بالا است. این خواص منحصربه فرد مکانیکی در نانولوله‌‌ها امکان استفاده از آن‌ها را در کاربردهای مختلف فراهم می‌کند. از جمله این کاربردها می توان از الکترونیک در مقیاس نانو، استفاده در کامپوزیت‌ها و نیز به عنوان وسایل ذخیره کننده گازها نام برد. مقاومت نانولوله‌ها رفتار مکانیکی نانولوله‌های کربنی به عنوان یکی از بهترین فیبرهای کربنی‌ای که تا کنون ساخته شده اند، بسیار شگفت انگیز است. فیبرهای کربنی معمول دارای مقاومتی تا 50 برابر مقاومت مخصوص (نسبت مقاومت به چگالی) فولاد هستند و از طرف دیگر تقویت کننده‌های خوبی در برابر بار در کامپوزیت‌ها هستند. بنابراین نانولوله‌ها یکی از گزینه‌های ایده‌آل در کاربرد ساختمانی[3] هستند. در نانولوله‌های کربنی چندلایه مقاومت حقیقی در حالات واقعی بیشتر تحت تاثیر لغزیدن استوانه‌های گرافیتی نسبت به هم قرار دارد. در واقع آزمایشاتی که به تازگی با استفاده از میکروسکوپ الکترونی[4] جهت اندازه گیری تنش‌های نانویی صورت گرفته است مقاومت کششی نانولوله‌های کربنی چندلایه مجزا را اندازه گیری کرده اند.[[iii]] نانولوله‌ها بر اثر شکست sword-in-sheath می‌شکنند. این نوع شکست مربوط به لغزش لایه‌ها در استوانه‌های هم محور نانولوله چندلایه ونیز شکست استوانه‌ها به طور مجزا است. مقاومت کششی دیده شده در نانولوله‌های چندلایه حدود اندازه‌گیری مقاومت یک نانولوله تک‌لایه مجزا مشکلات زیادی دارد. به تازگی روشی جهت این اندازه‌گیری پیشنهاد شده است: در این روش از یک میکروسکوپ نیروی اتمی استفاده می کنند تا خمشی را در نانولوله ایجاد کنند سپس با اندازه‌گیری مقدار جابجایی می توان ویژگی‌های مکانیکی آن را با مقادیر عددی بیان کرد.[[iv]] اکثریت آزمایشاتی که تاکنون صورت گرفته مقدار تئوری پیش‌بینی شده برای مدول یانگ نانولوله(1TPa) را تایید می‌کنند؛ ولی در حالی که پیش‌بینی مقاومت کششی در تئوری حدود 300GPa بوده است، بهترین مقادیر تجربی نزدیک به 50GPa می باشد. که اگرچه با تئوری فاصله‌ دارد اما هنوز هم تا ده برابر بیشتر از فیبرهای کربنی است. شبیه سازی‌ها در نانولوله های تک لایه نشان می‌دهد که رفتار شکست و تغییر شکلی بسیار جالبی در آن‌ها وجود دارد. نانولوله‌ها در تغییر شکل‌های بسیار بالا با آزاد کردن ناگهانی انرژی به ساختار دیگری تبدیل می شوند. نانولوله‌ها تحت بار دچار کمانش و پیچش می شوند و به شکل مسطح تبدیل می‌گردند. آن‌ها بدون نشانی از کوچکترین شکست و خرابی دچار کرنش‌های خیلی بزرگی (تا 40%) می شوند. بازگشت پذیریِ تغییر شکل‌ها، مثلا کمانش، مستقیما در نانولوله های چندلایه با استفاده از میکروسکوپ عبور الکترون[5] ثبت شده است.[[v]] به تازگی نظریه جالبی برای رفتار پلاستیکی نانوتیوب‌ها ارائه شده است.[[vi]] طبق این نظر بسته‌های 5و7 تایی کربن( پنتاگون-هپتاگون) تحت کرنش زیاد دچار عیب در شبکه مولکولی می شوند و این ساختار ناقص در طول جسم حرکت می‌کند و این حرکت باعث کاهش قطر مقطعی خواهد شد. جدایش این نقصان‌ها گلویی شدن در نانولوله را به همراه خواهد داشت. علاوه بر گلویی شدن مقطعی، در آن مقطع آرایش شبکه کربنی نیز تغییر خواهد کرد. این تغییرات در آرایش باعث می شود که میزان رسانش نانولوله کربنی تغییر یابد، این ویژگی می‌تواند منجر به کاربردی منحصر به فرد از نانولوله شود: نوع جدیدی از پروب، که با تغییرات در ویژگی‌های الکتریکی اش به تنش‌های مکانیکی پاسخ می‌دهد.[[vii]] نانولوله‌های کربنی و کامپوزیت‌های پلیمری مهم‌ترین کاربرد نانولوله‌های کربنی، که بر اساس ویژگی‌های مکانیکی آن‌ها باشد، استفاده از آن‌ها به عنوان تقویت کننده در مواد کامپوزیتی است. اگرچه استفاده از کامپوزیت‌های پلیمری پرشده با نانولوله یک محدوده کاربردی مشخص از این مواد است، اما آزمایشات موفقیت آمیز زیادی در تایید مفیدتر بودن نانولوله‌های کربنی نسبت به فیبرهای معمول کربنی، وجود ندارد؛ مشکل اصلی برقرار نمودن یک ارتباط خوب بین نانولوله و شبکه پلیمری و رسیدن به انتقال بار مناسب از شبکه به نانولوله‌ها در حین بارگذاری است. دلایل آن دو جنبه اساسی دارد: اول نانولوله‌ها صاف بوده و نسبت طولی‌ای[6] (طول به قطر) برابر با رشته‌های پلیمری دارند. دوما نانولوله‌ها تقریبا همیشه به صورت توده‌های به هم پیوسته تشکیل می‌شوند که رفتار آن‌ها در مقابل بار، نسبت به نانولوله‌های مجزا، کاملا متفاوت است. گزارشات متناقضی از مقاومت اتصال در کامپوزیت‌های پلیمر-نانولوله وجود دارد.[[viii],[ix]] نسبت به پلیمر استفاده شده و شرایط عملکرد، مقاومت اندازه‌گیری شده متفاوت است. گاه گسست در لوله‌ها دیده شده است که نشانه‌ای از پیوند قوی در اتصال نانولوله-پلیمر است، و گاه لغزش لایه‌های نانولوله‌های چند لایه و جدایش آسان آن‌ها دیده شده که دلیلی بر پیوند اتصال ضعیف است. در نانولوله‌های تک لایه سر خوردن لوله‌ها بر روی یکدیگر را عامل کاهش مقاومت ماده می‌دانند. برای ماکزیمم کردن اثر تقویت کنندگی نانولوله‌ها در کامپوزیت‌های با مقاومت بالا، بایستی که توده های نانولوله در هم شکسته شده و پخش شوند و یا اینکه به صورت شبکه مربعی[7] درآیند تا از سرخوردن جلوگیری کنیم. علاوه برآن بایستی سطح نانولوله‌‌ها تغییر داده شود، ضابطه‌مند[8] گردند، تا اتصال محکمی بین آن‌ها و رشته‌های پلیمری اطرافشان ایجاد شود. استفاده از نانولوله‌های کربنی در کامپوزیت‌هایی با ساختار پلیمری فواید مشخص و روشنی دارد. تقویت کنندگی با نانولوله به خاطر جذب بالای انرژی طی رفتار انعطاف‌پذیر الاستیک آن‌ها میزان سفتی[9] کامپوزیت را افزایش می دهد؛ این ویژگی مخصوصا در شبکه‌های سرامیکی کامپوزیتی برپایه نانو اهمیت می‌یابد. چگالی کم نانولوله‌ها ، در مقایسه با استفاده از فیبرهای کوچک کربنی، یک ویژگی بسیار خوب دیگری در این کامپوزیت‌ها می‌باشد.نانولوله‌ها در مقایسه با فیبرهای کربنی معمول، تحت نیروهای فشاری کارایی بهتری ازخود نشان می‌دهند، که به خاطر انعطاف‌پذیری و عدم تمایل به شکست آن‌ها تحت نیروی فشاری است.تحقیقات تازه نشان داده اند که استفاده از کامپوزیت نانولوله‌کربنی چندلایه و پلیمر کاهنده زیستی[10] (مانند PLA[11]) در رشد سلول‌های استخوانی[12]، بخصوص در تحریک الکتریکی کامپوزیت، بسیار کارآمدتر ازفیبرهای کربنی هستند.
  10. نگاهی کلی به نانولوله‌های کربنی بعضی اوقات تجارت به جهان داروینی شبیه می‌شود؛ جهانی که شرکتها برای تسلط بر یکدیگر، در آن با هم به رقابت می‌پردازند. در این فرآیند، شرکتهای ضعیف‌تر مجبور به ترک صحنة سرمایه‌گذاری تجاری می‌شوند. به نظر می‌رسد این ماجرا در مورد یکی از شاخه‌های اصلی نانوتکنولوژی یعنی نانولوله‌های کربنی نیز صادق باشد. شرکتهایی از سراسر جهان، از جزیره کوچک قبرس گرفته تا جمهوری بزرگ خلق چین، ادعای ریسک و سرمایه‌گذاری بر روی نانولوله‌های کربنی را دارند؛ محصولاتی که از فولاد سخت‌تر، از آلومینیوم سبک‌تر و از مس ضریب هدایت بیشتری داشته و نیمه‌هادی خوبی نیز هستند. تولید کنندگان در حال سرمایه‌گذاری جهت پیشبرد این بخش و کاهش قیمتهای این فرآورده هستند. اما در واقع بقای این شرکتها وابسته به نوع لوله‌هایی است که ارائه می‌دهند، چه از لحاظ کیفی و چه از لحاظ ثبت اختراعات در این زمینه. آقای دِرسِلهوس، استاد فیزیک و مهندسی برق در M.I.Tکه نوشته ها و مقالات فراوانی در زمینه نانولوله‌های کربنی دارد، چنین ابراز داشت که نانولوله‌های کربنی خواص فیزیکی منحصر به‌فردی دارند که هر کسی را متقاعد به استفاده از آنها در بسیاری از کارها می‌کند. نانولوله‌های توخالی در راستای طولی مانند فنر خاصیت ارتجاعی داشته و مرتباً در حال نوسان می‌باشند. آخرین تحقیقات نشان می‌دهد که نانولوله‌ها در واقع متشکل از مجموعه‌ای از لوله‌های چند جداره و تک جداره با عرض نانومتری می‌باشند که بسته به نحوة قرارگیری اتم‌های کربنشان می‌توانند دارای خاصیت فلزی و یا خاصیت نیمه هادی باشند. تاکنون چندین شرکت, موارد استفاده نانولوله‌های کربنی را تشریح کرده‌اند: o شرکت بزرگ کره‌ای سامسونگ، نمونه‌ای از نمایشگرهای گسیل میدانی (fieled emissions display) را با استفاده از نانولوله‌های چند دیواره‌ای ارائه داد. این شرکت مدعی است که ولتاژ لازم برای نمایشگر گسیل میدانی از طریق صفحه نمایش صاف متکی بر نانولوله‌‌، نسبت به آنچه به صورت سنتی در روش اشعه کاتدی استفاده می‌شده کمتر می‌باشد و این لوله‌ها با ولتاژ کمتر، نور بیشتری را تولید می‌کنند. o شرکت بزرگ IBM در ایالات متحده، ترانزیستوری را با استفاده از نانولوله‌های کربنی تک دیواره‌ای ساخته است که می‌تواند در ساخت وسایلی با اندازه‌های مولکولی به کار آید. این‌گونه وسایل با اندازه‌های مولکولی نوید تولید ساختارهای سریعتر و بهتر نسبت به تکنولوژیهای کنونی را می‌دهند. محققان قبلاً نانولوله‌هایی را با استفاده از روشهایی چون تخلیه الکتریکی در مقیاس اندک تولید کرده بودند ولی تولید انبوه توسط چنین روشهایی عملی نیست. این امر شرکتها را وادار کرده است که تولیدات جدید و اختراعات خود را در جهت قیمت مناسب و بازدهی بالا و به عبارتی تجاری سازی نانولوله‌ها سوق دهند. o شرکت بین‌المللی کاتالیستی Hyperion چهار سال قبل از ایجیما (کاشف نانولوله‌های کربنی) روشی را جهت تولید نانولوله‌ها ابداع کرد و با استفاده از اتیلن وبرخی مواد دیگر، شکل‌هایی از نانولوله‌های کربنی را تولید می‌کرد. این شرکت لوله‌هایی را به نام فیبریل تولید می‌کند که شبیه به صفحات کربنی لوله شده هستند. فیبریل ها قابلیت مخلوط شدن با رزین را داشته و در قطعات پلاستیکی اتومبیل به کار می‌روند. این مواد همچنین در ساخت مواد با هادی الکتریسیته نیز کاربرد دارند. این پلاستیکها می‌توانند با استفاده از فرآیندهای الکترواستاتیک، رنگ شده و از میزان آلودگی و ضایعات ناشی از رنگ کردن بکاهند. پاتریک کولین, مدیر بازاریابی نانولوله‌ها این شرکت عقیده داردکه هر کسی می‌تواند به آزمایشگاه رفته و نانولوله‌های کربنی بسازد، اما به عقیده وی ساخت یک گرم از این ماده با ساخت یک کیلوگرم یا یک تن از آن بسیار متفاوت است. در سال 1982، شرکت Hyperion یک واحد آزمایشی را راه‌اندازی کرد تا قابلیت تولید این محصولات را در مقیاس‌های بزرگ مطابق با نیاز برآورد کند. طبق ادعای کولین، شرکتش می‌تواند میلیونها تن تولید داشته باشد. وی می‌گوید: "ما کاربردهایی را درنظر داریم که می‌تواند در قسمت‌های پلاستیکی اتومبیل، نقش بزرگی را داشته باشد." روز به روز بر تعداد رقبای شرکت Hyperion افزوده می‌شود. این کارگاه‌ها نه تنها به تولید معمولی نانولوله‌ها بلکه به تولید انواع سفارشی آنها نیز اقدام می‌کنند. چرا که همه انواع تولیدی، برای تمام کاربردها مناسب نیستند. فیبریل ها و لوله‌های چند دیواره‌ای شرکت Hyperion دارای قطر بزرگی بوده و از این رو ویژگیهای قابل پیش‌بینی آنها نسبت به نانولوله‌های کربنی تک دیواره‌ای، کمتر است. لذا این شرکت طرحهایی را برای تولید لوله‌های تک دیواره‌ای مدنظر دارد. البته تولید آنها محدودیت‌های مربوط به خود را دارد چرا که ضخامت اندک دیواره اتمی موجب ظرافت فوق‌العاده این مواد می‌شود. o شرکت Plastics GE با اضافه کردن افزودنیهایی به فیبریل از آن جهت استفاده در آینه‌های بیرونی اتومبیل استفاده می‌کند. استفاده از این مواد در سال 1997، در مدلهای Ford Taurus و Mercury Sable انجام گرفته است. تولید کننده‌های اتومبیل تصمیم دارند از فیبریل ها در ضربه‌گیر و سپر اتومبیل و نیز خط سوخت آن استفاده کنند. صنعت الکترونیک نیز با استفاده از این مواد در ساخت هارد دیسک، پتانسیل‌ها و قابلیت‌های جدیدی را در زمینه تجارت این مواد به وجود آورده است. o شرکت کربن‌نانوتکنولوژی (CNI) واحدی را در هوستون، جهت تولید نانولوله‌های تک دیواره‌‌ای‌ با استفاده از اختراع خود موسوم به فرآیند منواکسید کربن فشار بالا Hipco)) راه‌اندازی کرده است. این طرح که بوسیله گروه تحقیقاتی ریچارد اسمالی ارائه شده است، فرآیندی است که موجب تولید پیوستة نانولوله‌های با قطر کم می شود. این شرکت، کمتر از دو سال قبل یک محوطه 6000 فوت مربعی را برای این طرح آزمایشی پیش‌بینی کرده بود. طبق اظهارات باب گُوِر، رئیس هیئت اجرایی شرکت، CNI سه راکتور اتمی خود را به منظور آزمایش میزان تولیدات بکار خواهد گرفت و برای افزایش قابلیت و کاهش قیمت تلاش خواهد کرد. هدف این شرکت برآورده شدن اهداف تجاری تا سال 2005 می‌باشد. وی مدعی شد که: "حتی اگر ما در کار خود هیچ پیشرفتی نداشته باشیم، می‌توانیم نانولوله‌ها را به قیمت 2000 دلار برای هر پوند بفروشیم. این بدترین حالت ممکن است؛ اما درصورت پیشرفت می‌توانیم آنها را با قیمت 200 دلار عرضه کنیم ما عقیده داریم که حتی می توان قیمت آن را به زیر 100 دلار هم رساند." o از دیگـــر تولیــدکننـــده‌های برجستـــة جهـــان می‌توان آزمایشگاه نانو و هیئت تحقیقات مواد و الکتــروشیمی در ایالات متحده، میتسوبیشی و Showa Denko در ژاپن و Sun Nanotech Co. Ltd و.Shaanxi Nanfeng Chemical Industry Group Sharehoding Co. Ltd در چین را نام برد. o در نوامبر 2001، گروه صنایع شیمیایی اعلام کرد که این گروه و محققانش در دانشگاه تسینگهوا یک روش کاتالیستی رسوب دهی شیمیایی فاز بخار CVD)) را جهت تولید ناپیوسته نانولوله‌ها ابداع کرده است. این شرکت مدعی است که می‌تواند 15 کیلوگرم نانولوله را در هر ساعت تولید کند. o شرکت Rosseter Holding Ltd. بر این ادعاست که توانایی تولید مقادیر زیادی از نانولوله‌های تک دیواره‌‌ای و چند دیواره‌ای را با استفاده از مایعات هیدروکرین به همان کیفیتی که با روش تخلیه الکتریکی تولید می‌شوند دارد. روش مایع نیاز به انرژی کمتری داشته و قیمت این محصولات را کاهش می‌دهد. طبق ادعای این شرکت، یک ژنراتور توانایی تولید 3 کیلوگرم نانولوله را در هفته دارد. اما این شرکت برای افزایش این مقدار باید تعداد ژنراتورهایش را به مراتب افزاش دهد. کریستین چایلو، مسؤول فروش Rosseter چنین بیان می‌دارد که ما امکان افزایش تولید و کاهش قیمت را داریم. این شرکت که از سال 1998 شکل گرفته است، هم‌اکنون نمونه‌هایی را برای مشتریان که معمولاً آسیایی هستند تهیه می‌کند. به هر حال همه روشهای تولید ناخالصی‌هایی را در کنار نانولوله‌ها تولید می‌کنند. کاربرد این مواد، مشخص ‌کنندة نوع ودرجة خلوص لوله‌های مورد نیاز است. کیفیت مهمترین شاخص تولید است.
  11. پترونت : يك روش جديد براي مشاهده درون سلول‌هاي زيست‌شناختي با استفاده از نانولوله‌هاي كربني بعنوان نانوآندوسكوپ‌هاي چندعاملي توسط پژوهشگران آمريكايي ساخته شده است. اين گروه تحقيقاتي مي‌گويد كه آندوسكوپ‌هاي نانولوله‌اي آنها اجازه مطالعه موازي بسياري از پاسخ‌هاي سلولي مختلف در يك سلول منفرد را بدون صدمه زدن به آن، مي‌دهد و مي‌تواند در كشف داروهاي جديد و كاربردهاي تشخيص مفيد واقع شود. روش‌هاي موجود براي بدست آوردن اطلاعات درون سلول مانند ميكروپيپت‌هاي شيشه‌اي و نانوسوزن‌ها اغلب قادر به بررسي درست سيالات نمي‌باشند و خطر تخريب سلول را دربردارند. اكنون گروهي از دانشگاه دركسل آمريكا، با ساخت آندوسكوپ‌هاي نانومقياسي با استفاده از نانولوله‌هاي كربني كه به ميكروپيپت‌هاي شيشه‌اي استاندارد متصل شده‌اند، براي رفع اين مشكلات راه‌حلي ارائه كرده است. گري فرايدمن، يكي از اين پژوهشگران، مي‌گويد: "از بسياري جهات، اين وسيله شبيه به ابزارهاي آندوسكوپي است كه اطباء براي كاوش درون بدن انسان با كمترين جراحت استفاده مي‌كنند. وسيله ما فقط چندين برابر كوچكتر است." اين گروه آندوسكوپ‌هاي مذكور را با استفاده از يك تكنيك سيالي براي قرار دادن نانولوله‌هاي كربني چندديواره در نوك پيپت شيشه‌اي، كه در مرحله بعد با چسب اپوكسي محكم ‌شد، ساخت. با پركردن نانولوله با مگنتيت مغناطيسي (نانوذرات Fe3O4) مي‌توان از آهنربا براي ايجاد حركات ريز در نوك نانولوله و كنترل دقيق آن استفاده كرد. آزمايش‌هاي انجام شده با اين آندوسكوپ‌ها نشان داد كه سيگنال‌هاي نوري مشاهده شده از طيف‌سنجي رامان افزوده سطحي (SERS) از نواحي مختلف سلول با مشاهدات موجود از SERS درون‌سلولي تطابق دارد. اين گروه همچنين قادر به ضبط سيگنال‌هاي الكتروشيميايي و انتقال سيالات و نانوذرات به و از يك سلول بود. براي تعيين اينكه آيا اين آندوسكوپ‌ها خسارتي به سلول مي‌زنند يا نه، گروه مذكور سيگنال‌هاي كلسيم سلولي را كه هنگام قرار گرفتن تحت تنش افزايش مي‌يابد، زير نظر قرار داد. علاوه براين، غشاي سلولي و شبكه‌هاي رشته‌اي درون- سلولي را با ميكروسكوپ مورد مشاهده قرار دادند. آنها شاهد كمترين خسارت سلولي در مقايسه با ميكروپيپيت‌هاي شيشه‌اي استاندارد بودند. نتايج اين كار تحقيقاتي در مجله‌ي Nature Nano. منتشر شده است..
  12. شركت نانو كامپ واقع در آمریكا گزارشی از محصولات، برنامه های تحقیق و توسعه و برنامه های كاربردی خود منتشر كرد كه نمایانگر پشرفت نانولوله های كربن در كاربردهای ضد گلوله، هوافضا و قطعات و سازه های الكترومغناطیسی می باشد. به گزارش سانا، پیتر آنتوانیت، نماینده و رئیس اجرایی شركت نانو كامپ اظهار می دارد: شركت نانو كامپ در حال حاضر ورق هایی از نانو لوله های كربن در ابعاد 2/1 متر در 4/2 متر می سازد كه به صورت رول هایی به طول 6/7 متر تا 5/30 متر در آیند و در محلی به مساحت 371 متر مربع به كار می روند كه تا سال 2013 این مساحت به 9،290 متر مربع افزایش می بابد. این شركت امیدوار است سالانه 4 تا 6 تن نانو لوله كربن تولید كند. آقای آنتواینت می گوید: "نانو لوله های كربن این شركت در صفحات الكترومغناطیسی و محصولات ضد گلوله به كار می روند." شركت نانو كامپ به منظور تكمیل بدنه زره پوش و استفاده از این نانو لوله ها به صورت لایه هایی در قسمت پشت آن با مركز نظامی ناتیك آمریكا همكاری می كند. ضخامت لایه های مذكور عمدتاً 2 میلیمتر است كه به صورت 200 لایه در هر سمت محور بدنه زره پوش قرار می گیرد. آزمایشات نشان داده اند كه بدنه زره پوشی كه توسط شركت نانو كامپ تكمیل شده، می تواند یك گلوله 9 میلیمتری را متوقف كند . در كاربردهای الكترومغناطیسی، نانو لوله های شركت نانو كامپ در مقابل سیگنال های الكتریكی نقش حفاظت كننده را ایفا می كنند. شركت نانو كامپ بر آن است تا كیفیت نانو لوله های كربن خود را در پیش آغشته ها هم بالا ببرد كه در ماتریس رزین شركت های سایتك، تنكیت و رنه گیت به این موفقیت نائل شده است. به گفته آقای آنتواینت، هدف شركت، رساندن رشد نانو لوله های خود به سطح الیاف كربن است تا قیمت آن به ازای هر كیلوگرم به 350 تا 400 دلار برسد. آقای آنتواینت در پایان گفتند: "هیچ چیز نمی تواند مانع رسیدن ما به محصولی با كیفیت الیاف كربن شود." منبع:[Hidden Content]
  13. مطالعات جدید بر روی مقاومت نانولوله‌های كربنی، نشان می‌دهد كه نانولوله‌ی كربنی به ازای هر واحد اونس، 117 بار مقاوم‌تر از فولاد و 30 بار مقاوم‌تر از kevlar (ماده‌ای كه در جلیقه‌های ضد گلوله و سایر محصولات مشابه به آن استفاده می‌شود) است. به گزارش مجله‌ی science daily در 16 سپتامبر 2010، نانولوله‌های كربنی (ذرات بسیار ریزی كه موجب انقلابی در صنایع الكترونیك، داروسازی و سایر زمینه‌ها می‌شوند)، بسیار مقاوم‌تر از حد تصور است. این یافته‌ها كه می‌تواند كاربردهای تجاری و صنعتی نانولوله را گسترش دهد، در مجله‌ی ماهانه «ACS nano» به چاپ رسیده‌است. استفان كرونین و همكارانش اظهار كردند كه نانولوله‌ها -كه یك پنجاه‌هزارم ضخامت موی انسان هستند- به‌دلیل مقاومت منحصربه‌فرد و رسانایی الكتریكی بالا و دیگر ویژگی‌هایشان بسیار تحسین‌برانگیزند. نانولوله‌ها می‌توانند به‌صورت قابل توجهی و شبیه به شكلات‌های تافی، قبل از پاره شدن، كش بیایند. این ویژگی، آنها را به مواد ایده‌آلی برای كاربردهای جدیدی تبدیل می‌كند؛ به‌طوری‌كه شاید تخیل‌های علمی نیز به واقعیت بپیوندند، مثلاً ساخت كابل‌های آسانسور فضایی كه اشیا را از سطح زمین به فضا می‌برند. دانشمندان، برای برطرف كردن تردیدها در مورد مقاومت حقیقی نانولوله‌ها، نانولوله‌های كربنی تك‌جداره را با طول‌ها و ضخامت‌های متفاوت، تحت كشش بسیار شدید قرار دادند. آنها دریافتند كه نانولوله‌ها می‌توانند تا بیش از 14% طول اولیه‌شان كش بیایند یا به عبارتی طول آنها می‌تواند به اندازه‌ای بیش از دو برابر آن میزانی افزایش یابد كه قبلاً به‌وسیله‌ی دیگران گزارش شده بود. نتایج این پژوهش، حد پایین جدیدی برای استحكام نهایی نانولوله‌های كربنی نشان می‌دهد. جزئیات این پژوهش در مجله‌ی ACS nanoمنتشر شده‌است. منبع: ستاد نانو
  14. پژوهشگران آمریکایی کشف کردند که معایب حاضر در نانولوله های کربنی می تواند منجر به تولید ابر خازنهایی شود که میزان انرژی دستگاههای الکترونیک قابل حمل به خصوص تلفنهای همراه را بهبود می بخشند. به گزارش بانک اطلاعات مهندسی برق به نقل از خبرگزاری مهر، محققان بخش مهندسی مکانیک و علوم مواد دانشگاه کالیفرنیا در ساندیگو کشف کردند که اگر به طور مصنوعی در نانولوله های کربنی یک نقص ایجاد کرد می توان "ابر خازنهای با شارژ بالا" را توسعه داد. این دانشمندان در این خصوص اظهار داشتند: "در صورتیکه باتریها ظرفیت خازن بالایی داشته باشند می توانند مدت زمان طولانی تری شارژ بمانند و اگر خازنهای الکترواستاتیک بتوانند به سرعت شارژ شوند توانایی محدودی خواهند داشت. این درحالی است که ابرخازنهای الکتروشیمیایی از هر دو مزیت بالا برخوردارند." نانولوله های کربنی به عنوان یکی از شگفت انگیزترین مواد قرن 21 شناخته می شوند که توانسته است در انقلاب فناوری نانو نقش بسزایی ایفا کنند. این در حالی است که نقص در هر ساختاری از جمله این نانولوله ها اجتناب ناپذیر است. به گفته این دانشمندان می توان از این نقص در توسعه باتریهای نسل آینده دستگاههای الکترونیکی به خصوص تلفنهای همراه و رایانه های قابل حمل بهره گرفت. این محققان افزودند: "ما فهمیدیم که نقص نانولوله های کربنی می تواند برای خازن انرژی استفاده شود وقتی ما این موضوع را بررسی کردیم مشاهده کردیم که از این معایب می توان به عنوان الکترودهایی برای حسگرهای شیمیایی استفاده کرد. در طول آزمایشات اولیه ما توانستیم معایب شارژ شده ای ایجاد کنیم که بتوانند برای افزایش شارژ خازنهای نانو لوله ای استفاده شوند. به این ترتیب معایب روی نانولوله های کربنی توانستند شارژ ذخیره شده را افزایش دهند." براساس گزارش سافت پدیا، این محققان متدی را کشف کردند که با کمک آن می توان شارژ خازن را با بمباران نانولوله های کربنی از طریق گازهای آرگون و هیدروژن افزایش و یا کاهش داد.
  15. mim-shimi

    نانولوله‌های کربنی

    نانولوله‌های کربنی، با آسانسور به فضا برویم ، فناوری نانو چیست؟، بازگرداندن بینایی موش کور با استفاده از فناوری نانو، پای مارمولک و نوارچسب‌های قوی و ... نانولوله‌های کربنی آیا تاکنون این نام را شنیده‌اید؟ می‌دانید نانولوله‌های کربنی چه موادی هستند؟ چه خواصی دارند؟ به چه روش‌هایی تولید می‌شوند؟ چه کاربردهایی دارند؟ با مطالعه آنچه دوستانتان «ثمره شجاعی» و «وحیده رحیمی» از تهران درباره نانولوله‌های کربنی نوشته‌اند، می‌توانيد پاسخ اين سوال‌ها را بيابيد. كشف نانولوله‌های کربنی یكی از اتفاقات مهم حوزه فناوری‌نانو است. نانولوله‌های کربنی اولین بار توسط «سومیو ایجیما» در سال 1991 و به‌صورت کاملاً اتفاقی کشف شدند. ایجیما در حال مطالعه سطوح الکترودهای کربنی با استفاده از روش تخلیه قوس الکتریکی بود که با نانولوله‌های کربنی مواجه شد. در یک نانولوله کربنی، اتم‌های کربن در ساختاری استوانه‌ای‌ شکل، آرایش یافته‌اند؛ یعنی اين ماده یک لوله توخالی است که جنس دیواره‌اش از اتم‌های کربن است. آرایش اتم‌های کربن در دیواره این ساختار استوانه‌ای، دقیقاً مشابه آرایش کربن در صفحات گرافن است. در گرافن، شش‌ضلعی‌های منظم کربنی در کنار یکدیگر قرار می‌گيرند و يک صفحه را تشکيل می‌دهند. انبوهی از این صفحه‌های کربنی از طریق پیوندهای ضعیف واندروالس به هم پیوند می‌خورند و گرافیت را تشکیل به‌وجود می‌آورند. در نانولوله‌های کربنی صفحات گرافن لوله می‌شوند و استوانه‌هایی با قطر چند نانومتر تولید می‌کنند. نانولوله‌های کربنی دو نوع هستند: نانولوله‌های تك‌دیواره‌ و چنددیواره‌. نانولوله تك‌دیواره از یک دیواره‌ استوانه‌ای گرافنی به قطر 1 تا 2 نانومتر تشکیل شده است. حالا اگر اين نانولوله‌های تک ديواره را با فاصله 3-4 نانومتر، درون هم قرار دهيم و قطر استوانه‌های خارجی را بزرگتر کنيم، يک نانولوله چنددیواره تشکيل می‌شود. قطر خارجی نانولوله‌های چنددیواره 2 تا 25 نانومتر و قطر داخلی آن در حدود 1 تا 8 نانومتر است. طول متوسط نانولوله‌ها می‌تواند تا چندین میكرون باشد. روش‌های تولید نانولوله‌های کربنی دانشمندان برای تولید نانولوله‌های کربنی از روش‌های مختلفی چون قوس الكتریكی، رسوب‌گذاری بخار شیمیایی و تبخیر لیزری استفاده ‌می‌کنند. با استفاده از این روش‌‌ها، امروزه تولید این مواد در برخی از کشورها به حد نيمه‌صنعتی رسیده‌است. پژوهشگاه صنعت نفت ايران می‌تواند با روش رسوب‌گذاری بخار شیمیایی، روزانه چند کیلوگرم نانولوله‌ کربنی توليد کند. مشخصات نانولوله‌های کربنی ساختار توخالی نانولوله‌های کربنی، باعث شده که اين مواد بسيار سبک باشند؛ به طوریکه چگالی نانولوله‌های چنددیواره‌ 8/1 و نانولوله‌های تك‌دیواره‌ 8/0 گرم بر سانتی‌متر مکعب است. نانولوله‌های کربنی بسيار مستحکم هستند، سطح ویژه بالايی دارند و خصوصیات الكتریكی و الكترونیكی آنها منحصربه‌فرد است. نانولوله‌ها 100 برابر از فولاد محكم‌ترند، در حالی كه وزنشان یك‌ششم وزن فولاد است. اين مواد مقاومت خوبی در برابر مواد شیمیایی دارند و از پایداری گرمایی بالایی برخوردارند. از آنجايی که الکترون‌ها می‌توانند در در راستای محور نانولوله‌های کربنی (محور استوانه) متقل شوند، اين مواد در راستای محور خود رسانا هستند؛ هم رسانای الکتريسيته و هم رسانای گرما. نانولوله‌های کربنی از لحاظ شيميايی فعال هستند، بنابراين می‌توانند كاتالیزورهای خوبی باشند. آنها خاصیت مویینگی بالایی دارند و می‌توانند گازها و مایعات را در خود جای دهند. داشتن خواص متنوع و منحصربه‌فرد سبب شده نانولوله‌های کربنی كاربردهای بی‌شماری داشته باشند. با آسانسور به فضا برویم آیا غیر از سفینه‌های فضاپیما، راه دیگری برای رفتن به فضا وجود دارد؟ آسانسور چطور است!؟ دانشمندان مدت‌هاست كه به ساخت آسانسورهایی می‌اندیشند که از یک طرف به ماه و از طرف دیگر به زمین منتهی شوند. با استفاده از این آسانسورها می‌توان تنها با فشار دادن یک دکمه، به ماه سفر کرد و یا هر وسيله و شيئی را به آنجا فرستاد! دانشمندان می‌گويند این آسانسورها وزن زیادی خواهند داشت و برای جابه‌جایی آنها نیازمند یک کابل بسیار بسیار قوی هستیم؛ کابلی که بتواند این دستگاه را تا هزاران کيلومتر بالاتر از سطح زمين حمل کند. دانشمندان برای حل این مشکل در فكر استفاده از نانولوله‌های کربنی هستند؛ نسبت طول به عرض بالا (بيش از 1000 برابر) و استحکام فراوان (100 بار محکم‌تر از فولاد) باعث شده که اين مواد گزینه‌ی مناسبی برای این منظور باشند. بنابراین، يکی از گام‌های مهم در ساخت آسانسورهای فضایی، تولید کابل‌هایی از جنس نانولوله‌های کربنی است که طول زیادی داشته باشد و بتواند در فاصله میان ماه و کره زمین قرار گیرد. فكر می‌كنید چنین چیزی ممكن است؟ اگر ساخت آسانسورهای فضایی به واقعیت بپیوندد، روزی خواهد رسید که سفرهای فضایی، تبدیل به سفری معمولی می‌شود و شايد هر کس ‌بتواند به فضا سفر کند. فناوری نانو چیست؟ «جهان مادی ما از اتم ساخته شده است» این ادعایی بود که دموکراتوس- فیلسوف یونانی- 2400 سال پیش آن را بر زبان آورد. 200 سال بعد لوکریتوس رومی، فرضیه او را بدین گونه بیان کرد:« جهان از فضاهای بی نهایت و تعداد نامتناهی از ذرات ریز تجزیه‌ناپذیر یعنی همان اتم‌ها ساخته شده است. تنوع اتم‌ها تنها در شکل و اندازه و جرم آنهاست.» علی‌رغم ارزشی که این اطلاعات داشت، ولی در آن زمان چیزی جز فرضیه محض نبودند. با گسترش دانش بشر، ایده درخشان دموکراتوس بسیار تغییر کرد. او اطلاعات بسيار زيادی در مورد اتم‌ها و مولکول‌ها کسب کرد اما تا پيش از دهه 1980 هيچ‌گاه نتوانست آنها را مشاهده کند. در اين دهه بشر میکروسکوپ جدیدی ساخت که به کمک آن توانست وارد دنيای اتم‌ها و مولکول‌ها شود؛ این توانمندی او را مصمم‌تر نمود تا دانش خود را در ارتباط با اتم‌ها و مولکول‌‌ها- واحدهای تشکیل‌دهنده مواد- افزایش دهد و به بررسی ساختار و چیدمان اتمی مواد بپردازد و این داستان مقدمه‌ای شد برای شکل‌گيری و توسعه فناوری نانو. در چند دهه اخیر، مطالعات بسیاری پیرامون پدیده‌ها و تغییر خواص مواد در مقیاس نانو صورت گرفته است. نتيجه اين مطالعات در محدوده دانش نانو (يا علوم نانو) قرار می‌گيرد. آنچه که "دانسته‌های" ما از پديده‌های نانومقياس را تبديل به "محصول" می‌کند و به زندگی روزمره ما وارد می‌کند، فناوری‌نانو است. به عنوان مثال دانش نانو به ما می‌گويد که نانوذرات طلا در اندازه‌های مختلف به رنگ‌های مختلف دیده شوند و چرايی اين موضوع را برای ما شرح می‌دهد. او برای ما توضيح می‌دهد که چگونه وجود یک لایه نانومتری بر سطح برگ نیلوفر آبی این امکان را فراهم می‌آورد که آب به سرعت و سهولت از سطح آن لیز بخورد. دانش‌نانو می‌داند چرا ذرات آلومینیوم در مقیاس نانو دارای خاصیت انفجاری زیادی هستند و ... ؛ فناوری‌نانو از رنگارنگی نانوذرات طلا برای تشخيص سرطان استفاده می‌کند، با استفاده از لایه‌های نانومتری لباس‌‌های خودتمییزشونده می‌سازد و از نانوذرات آلومینیوم برای سوخت راکت موشک استفاده می‌کند. تبدیل دانسته‌های علمی به محصولات جدید و پیشرفته، مهم‌ترین هدف فناوری‌نانو است. بازگرداندن بینایی موش کور با استفاده از فناوری نانو آیا تا به حال به زخم‌های روی بدن خود توجه کرده‌اید؟ وقتی قسمتی از بدن زخم می‌شود، رشته‌های عصبی موجود در بدن، از هم فاصله گرفته و در محل زخم حالت دَلَمه ایجاد می‌کنند. دلمه روى زخم یکى از عواملى است که مانع از اتصال دوباره دو رشته‌هاى عصبى قطع‌شده مى‌شود. محققان هنگ‌‌کنگى و آمریکایى به‌منظور برطرف نمودن این مشکل، به فکر استفاده از امکاناتى افتادند که فناورى‌نانو در علوم زیستى و مقیاس مولکولى ارائه مى‌دهد. این گروه، با قطع اعصاب بینایى یک همستر (نوعى موش صحرایى) ابتدا موش را کور کردند و سپس با تزریق محلولى حاوى نانوذرات به رشته‌هاى قطع‌شده اعصاب بینایى، امکان رشد دوباره اين اعصاب را فراهم کردند. آنها موفق شدند که با اين روش بینایى جانور را بازگردانند. محلول تزریقی، حاوى پپتیدهاى مصنوعى بود و اندازه هر یک از آنها به گونه‌اى تنظیم شده بود که از پنج نانومتر تجاوز نکند. پپتیدها با رسیدن به بخش‌هاى جراحت‌دیده، به‌صورت خودجوش یک ساختار داربست‌مانند و ضربدرى از رشته‌هاى نانومترى ایجاد مى‌کنند تا از این طریق، بین بخش‌هاى قطع‌شده پلى بوجود آورند. دانشمندان مشاهده کردند که رشته‌هاى قطع‌شده اعصاب بینایى، با استفاده از این داربست نانومتری، دوباره شروع به بازسازى و اتصال مجدد می‌کند و از بروز حالت دلمه بر روى زخم جلوگیرى می‌نمايد. دانشمندان این کار را بر روی موش‌های پیر و جوان انجام دادند و به اين نتيجه رسيدند که پس از تزریق دارو رشته‌هاى عصبى هم در مغز همسترهاى جوان (که به‌صورت عادى در حال رشد و تولید رشته‌هاى جدید هستند) و هم در مغز همسترهاى بزرگ‌سال (که رشد آنها متوقف شده) فعال می‌شوند و شروع به تولید رشته‌هاى جدید می‌کنند. نتيجه حیرت‌آور اين پژوهش نشان می‌دهد که نانومواد مى‌توانند مستقیماً خود رشته‌هاى عصبى را فعال کنند و آنها را وادار به رشد کنند. علاوه بر این در این آزمایش مشاهده شده که پپتیدهای موجود در بدن، به‌وسیله اجزاى بدن همستر به مواد بى‌خطرى تجزیه شده و سه تا چهار هفته پس از تزریق از طریق ادرار جانور از بدن او خارج مى‌شوند. محققان امیدوارند در مرحله بعدى بتوانند این شیوه را بر روى انسان نیز آزمايش کنند. هدف نهایى این روش آن است که بتوان از آن براى اتصال رشته‌هاى عصبى قطع‌شده بر اثر سکته مغزى یا جراحت‌هاى وارده به سر استفاده شود.   پای مارمولک و نوارچسب‌های قوی حتماً بارها حرکت وارونه مارمولک بر روی سقف را دیده‌اید. به نظر شما اندام‌های حرکتی این جانور چگونه طراحی شده‌اند که به‌راحتی می‌توانند به سطوح مختلف بچسبند؟ دست و پاهای مارمولک از هزاران موی نازک نانومتری پوشیده شده‌اند که به‌طور نامنظمی بر روی سطح آن قرار گرفته‌اند. فاصله اندک این موها با سطح، سبب می‌گردد که نیروی جاذبه قوی‌ای میان آنها برقرار گردد. میزان این نیرو به حدی است که حیوان می‌تواند به‌آسانی روی سقف حرکت کند. دانشمندان با الهام از پای مارمولک، چسب‌های بسیار قدرتمندی ساخته‌اند که این چسب‌ها تحمل وزنی برابر 100کیلوگرم را دارند. این چسب‌ها از لحاظ ظاهری مشابه نوارچسب‌های معمولی هستند. همان‌طور که ما برای چسباندن عکس‌های کاغذی بر روی دیوار می‌توانیم از چسب‌های نواری استفاده کنیم، با استفاده از این چسب‌های جديد می‌توان چسب‌هايی توليد کرد که می‌توانند LCDهای بزرگ به دیوار متصل ‌كنند، بدون آنكه هیچ‌ اثری بر روی دیوار باقی بگذارند. برای ساخت این نوارچسب‌ها، دانشمندان از صفحات حاوی نانولوله‌های کربنی استفاده کرده‌اند که با اتصال رشته‌های مجعد کربن به سطح آنها، سطوح چسبنده‌ای ایجاد می‌شود. عملکرد این سطح کاملاً شبیه عملکرد پرزهای ظریفی است که بر روی پای مارمولک وجود دارد. وقتی این رشته‌های مجعد را به سطحی بچسبانیم، نانولوله‌ها با سطح هم‌ردیف شده و اتصال بسیار محکمی را ایجاد می‌کنند. نیرویی که حتی 10 بار قوی‌تر از نیروی جاذبه پای مارمولک است. شاید بعدها بتوانیم با استفاده از این چسب‌ها در اتصالات الکتریکی بی‌نیاز از جوشکاری شویم. منبع: کام پلی نیک
×
×
  • اضافه کردن...