جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'تصاویر ماهواره ای'.
4 نتیجه پیدا شد
-
کاربرد تصاویر ماهواره ای بر اکوسیستم دریایی با تاکید بر دریای خزر :icon_gol: تصاویر ماهواره ای2.pdf
- 2 پاسخ
-
- 3
-
-
- کلروفیلa
- اکوسیستم دریایی
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
شهر به عنوان ارگانیزم زنده و سیستمی پویا در فرآیند توسعه جوامع بشری به عنوان خواستگاه تحولات علمی در فرآیند رشد خود تغییرات عمده ای متحمل شده است. امروزه دیدگاه شهر الکترونیک با تکیه بر خلق فضاهای مجازی با بهره مندی از پیشرفت های فناوری اطلاعات و سامانه اطلاعات جغرافیایی (GIS) مورد توجه مدیران و نظریه پردازان شهری می باشد. در این بین، نقش شهر الکترونیک و مدیریت گستردگی در بهینه کردن رشد آتی شهر با تلفیق داده های سنجش از دور، از اهمیت زیادی برخوردار است. با توجه به اینکه در چند دهه اخیر، فرآیند شهرنشینی رشد ارگانیک شهری ایران را تحت تأثیر قرار داده است؛ از این رو برای پی بردن به تغییرات حادث شده منطقه شهری، شهر مرند مورد بررسی قرار می گیرد. در این مقاله برای ارزیابی گستردگی شهری از روش های آماری و همچنین تبدیلات کاربری از تصاویر ماهواره ای چند زمانه ETM ، TM ، IRS سال های 1368 ، 1379، 1385 استفاده شد و پس از عملیات تصحیح و بازسازی برای کشف تغییرات، از روش های فازی استفاده گردید. همچنین برای پیش بینی روند تغییرات تا سال 1359 از روش ترکیبی مدل زنجیره مارکوف و سلول های خودکار استفاده شده است و برای تبیین مسئله نقش شهر الکترونیک در مدیریت گستردگی شهری مورد ارزیابی قرار گرفت. در انتها نقش ایجاد فضای شهری مجازی در بهینه شدن توسعه و کنترل گستردگی شهری مرند تبیین می شود. کلمات کلیدی: شهر الکترونیک، فضای مجازی، گستردگی شهری، تصاویر ماهواره ای، GIS و شهر مرند نویسندگان: مهدی ملازاده، شهریور روستایی دانلود مقاله
-
- 2
-
-
- فضای مجازی
- گستردگی شهری
-
(و 4 مورد دیگر)
برچسب زده شده با :
-
تکنیکهای دور سنجی برای شناخت بیشتر لایه های زمین
XMEHRDADX پاسخی ارسال کرد برای یک موضوع در اکتشاف معدن
(مطالعه موردی: مطالعه کانیهای رسی و کربناتی با استفاده از تکنیکهای دورسنجی در قسمتی از زون زاگرس چین خورده) چکيده در سه دهه اخير ظهور و کاربري فناوري نوين سنجش از دور فضابرد و در پي آن سامانههاي اطلاعات جغرافيايي(GIS)، تحول شگرفي در کسب و بهرهبرداري از اطلاعات منابع زميني و زيستمحيطي ايجاد کرده است. از كانيهاي دگرساني جهت تعيين و به نقشه در آوردن سنگهايي که داراي دگرساني هيدروکسيل هستند استفاده ميشود. آلتراسيونهاي پتاسيک، فيليک، پروپليتيک و سيليسي از مهمترين انواع آلتراسيون هستند که در سنگهاي آتشفشاني و رسوبي ديده ميشوند. نقش دورسنجي در به نقشه آوردن دگرسانيها، براساس تفکيک كانيهايي که بهعنوان راهنما در شناسايي انواع دگرسانيها موثرند، است. در اين مطالعه که از تصاوير ماهوارهاي +ASTER,ETM استفاده شده است به مطالعه كانيها و دگرسانيها با روشهاي آناليز متداولي از جمله تحليل مولفههاي اصلي، نسبتگيري باندي و ترکيب رنگي مجازي پرداخته شده است. اطلاعات طيفي مربوط به كانيها بر اساس اطلاعات کتابخانه طيفي اتحاديه بينالمللي زمينشناسي (USGS) بهعنوان مرجع استخراج شده است. انعکاس طيفي كانيهاي مورد مطالعه براساس باندهاي 1،2،3،4،5 و 7 از تصوير +ETM و 14 باند از تصاوير ASTER تهيه شده است که خروجي آن بهصورت توزيع زوني کانيسازي تهيه شده است. نقشه کانيسازي که از روشهاي جداسازي كانيها استخراج شده مشخص ميکند که کربناتها (کلسيت ـ دولوميت) و كانيهاي رسي و سولفاتها از نظام طيفي مشابهي برخوردارند که خواص گسيلشي آنها بهخصوص در باندهاي حرارتي در اکثر موارد به شناسايي و تفکيک آنها کمک كرده که در منطقه مورد مطالعه در زون زاگرس در محدوده غرب شهرستان شيراز به بررسي و مطالعه آنها پرداختهايم. کليد واژگان: آلتراسيون، تحليل مولفههاي اصلي، سامانه اطلاعات جغرافيايي، نسبت باندي، خواص گسيلشي مقدمه استفاده از تكنيكهاي دورسنجي در کاربردهاي مختلف زمينشناسي بهطور قابل ملاحظهاي در سالهاي اخير رشد يافته که علت اصلي آن اطلاعات مفيد استخراجي از آناليز و تفسيرها است. عامل اصلي اين پيشرفت را ميتوان در دو عامل دانست: 1. روشهاي جديد و تكنيكهاي تفسيري توسط محققان جهت استخراج اطلاعات قابل اعتماد از تصاوير ماهوارهاي پيشنهاد شده است. 2. تصاوير ماهوارهاي با قدرت تفکيک طيفي و مکاني بالا بهراحتي قابل دسترسي و قادر است تا اطلاعات کاملي را در اختيار کاربران در منطقه مورد مطالعه قرار دهد. توسعه روزافزون نرمافزاري را نيز بايد يک نقطه مثبت در اين علم دانست. بيشترين کاربرد علم دورسنجي در آناليزهاي زمينشناسي شامل بررسيهاي ساختاري و به نقشه در آوردن واحدهاي سنگي است. شناسايي ويژگيهاي زمينشناسي خاص از جمله اقدامات مفيد و متداول در اين علم است. هدف از اين مطالعه هدف از اين مطالعه کاربرد تكنيكهاي دورسنجي جهت به نقشه درآوردن دگرسانيها که بر پايه اطلاعات پايه منطقه استوار است، ميباشد. اين محدوده در زون زاگرس چين خورده قرار دارد که ترکيبي از رسوبات مختلف آن را پوشانيده و يک منطقه مناسب جهت بررسي دگرسانيهاي هيدروکسيل است. هدف اصلي از اين مطالعه به نقشه درآوردن كانيهاي دگرساني است. دوگروه آناليز در طي اين مقاله مورد بررسي قرار گرفته که دسته اول شامل محاسباتي است که بر اساس الگوريتمها و ماتريسهايي که از محاسبات کاربردي رياضي استخراج شده است و دسته دوم آناليزهايي که براساس خواص طيفي كانيها و با تکيه بر کتابخانه طيفي اتحاديه بينالملل زمينشناسي (USGS) استخراج شده، است. نگاهي به زمينشناسي منطقه منطقه مورد مطالعه در زون چين خورده زاگرس جاي دارد. اين پهنه شامل دشتهاي بين کوهستاني کوچک و بلنديهاي پيرامون بهصورت کوهستاني است توپوگرافي منطقه همانند بسياري از پهنههاي پيرامون نقشه، داراي الگويي ناهمگون و نايکنواخت است. بخشهاي باختري، شمال باختري نقشه داراي سيمايي از ريختار زمينهاي ناهموار است. ـ چينهشناسي قديميترين واحدهاي رخنمون يافته در گستره نقشه، مارنهاي گلوبوترونکادار کرتاسه بالا مربوط به سازند گورپي است که در بخش باختري نقشه رخنموني محدود دارد. رخنمون بالا و پايين اين واحد در گستره نقشه پوشيده است و نميتوان ستبراي دقيق براي توالي کامل اين واحد را تعيين کرد. بر روي اين واحد، آهکهاي زيستآواري پالئوسن (ميان سازند قربان) قرار گرفته است همبري اين سازند با مارنهاي گلوبيژيرينا دار پالئوسن ـ ائوسن تدريجي است. سازند ساچون از رسوبات آواري پالئوسن تشکيل شده است که گسترش اين واحد در توالي سنگشناسي نقشه محدود به پهنه شمال و شمال خاوري نقشه است و ستبرايي در حدود 120 متر دارد. سازند پابده در گستره منطقه مورد مطالعه محدود به پهنه شمال خاوري نقشه بوده و بهطور کلي از مارنهاي گلوبيژرينادار پالئوسن ـ ائوسن پيشين تشکيل شده است. سازند جهرم نيزدر بخش شمال خاوري نقشه با واحد آواري پالئوسن هم شيب است و بهطور کلي از آهکهاي بيوميکرواسپارايت و همچنين آهکهاي بيوميکرايتي است که گاه با مارنهاي آهندار و سولفاتدار همراه است. همبري پاييني اين سازند در بخشهاي جنوب باختري نقشه با مارنهاي گلوبيژرينادار سازند پابده تدريجي است. بر روي سازند جهرم کنگلومراي ارتوکوارتزيت و آهکهاي چرتي ـ سولفاتي ائوسن قرار گرفته است. اين واحد در زير آهکهاي سازند آسماري قرار گرفته است که سن اليگو ميوسن را دارد و از آهکهاي بيوميکرواسپارايت زيستآواري تشکيل شده است سازند آسماري در محدوده منطقه مورد مطالعه صخرهساز است. بر روي سازند آسماري مارنهاي آهندار و دولوميتهاي ژيپسي بخش زيرين سازند گچساران قرار دارد. از لحاظ سنگشناسي اين واحد تناوبي از سولفاتهاي تبخيري است که بيشتر در قالب لايههاي ژيپس و کمتر به شکل انيدريت مشاهده ميشود. توالي رسوبات در اين واحد لايهبندي ستبر دارد اين توالي داراي تناوبي از مارنهاي سبز تا خاکستري داراي آهن است. اين توالي همچنين داراي تناوبي از آهکهاي گچدار با لايهبندي نازک است. رخساره رازک در خاور منطقه مورد مطالعه گسترش داشته و بهطور کلي از آهکهاي مارني ـ سيلتي و مارنهاي آهندار ميوسن تشکيل شده است. ـ تکتونيک گستره نقشه در زون چينخورده زاگرس قرار دارد اين گستره بخشي از پيش خشکي زون چين خورده زاگرس است. بر پايه ويژگيهاي ساختاري و رسوبي ميتوان اين گستره را در دو زون يا منطقه فرعي انتقالي و مياني جاي داد. اين جدايش براساس وجود تغييرات آشکار در رژيم ساختاري و رسوبي اينگونه پهنههاست. مرز اين دو زون بر پايه آنچه در نقشه ساختاري گستره شيراز آمده است همخوان با گسل گويم ـ بزين است که به سوي بخشهاي جنوب خاوري شيراز ادامه مييابد. از مهمترين زونهاي گسلي موجود در منطقه ميتوان به زون گسلي سبز پوشان بهطول 51 کيلومتر که يک گسل برشي است اشاره کرد. همچنين زون گسلي گويم، زون گسلي بزين ، راندگي فلات، راندگي دراک و زون گسلي دره شور از ديگر زونهاي گسلي مهم در منطقه مورد مطالعه هستند. روش مطالعه محدوده مورد مطالعه شامل قسمتي از زون زاگرس چين خورده مابين طول و عرض جغرافيايي '00 ,°52 و '00, °30 و'30 ,°52 و '30, °29 قرار گرفته که پس از اعمال تصحيحات اوليه هندسي و اتمسفري بر روي تصوير ETM به شماره گذر 39 ـ 163 اخذ شده در تاريخ 5 آوريل سال 2001 و تصاوير ASTER اخذ شده در سال 2003 ميلادي وارد مرحله تفسير و آناليز با اهداف مشخص شديم. لازم بهذکر است که جهت تصحيحات لازم و موزاييک دادهها از نرمافزار Geomatica PCI و جهت آناليز دادهها از نرمافزار Envi4/1 استفاده شده است و در نهايت جهت به نقشه درآوردن دگرسانيها و كانيهاي بارز در محيطبرداري از نرمافزار Arc GIS 9.2 استفاده شده است. مقدمهاي بر آلتراسيون در سنگها آلتراسيون هيدروترمال بهوسيله تغييراتي اعم از فيزيکي و شيميايي از كانيهايي صورت ميگيرد که هيچ شباهتي با محيط سنگ ميزبان ندارند و اين معيار شناسايي آنها بهويژه زمانيکه بهوسيله سيالات گرمابي تشکيل شده باشند، است.[1] طبيعت محصولات دگرساني به عوامل زير بستگي دارد: 1. جنس سنگ ديواره 2. خواص سيال از جمله Eh,Ph ، فشار بخار حاصله، درجه هيدروليز و ترکيبات آنيوني ـ کاتيوني 3. فشار و حرارت در محل رخنمونها[2] بهطور کلي آلتراسيون ميتواند پاسخي از فرآيندهاي زير باشد 1. دياژنز در رسوبات 2. دگرگوني و ساير فرآيندهاي منطقهاي 3. فعاليتهاي پس از آتشفشاني و ماگماتيزم که با سرد شدن همراه باشد 4. کانيسازي مستقيم عواملي که در برونزدگي آلتراسيونها و دگرسانيها تاثير بهسزايي دارند شامل: 1. هيدروليز 2. هيدراته و دهيدراته شدن 3. دگرگوني آلکالي 4. دکربناته شدن 5. سيليسي شدن 6. اکسيداسيون ـ احيا و عوامل ديگري چون فلوئوريزاسيون و سولفيده شدن انواع دگرساني ـ پتاسيک اين دگرساني که بهعنوان دگرساني k سيليکات شناخته ميشود بهعلت حضور پتاسيم فلدسپار دوباره متبلور در يک سنگ و با حضور بيوتيت و سريسيت صورت ميگيرد که كانيهاي مهم آن شامل بيوتيت، کوارتز، کلريت و انيدريت است. بهطوريکه در کانسارهاي مس پورفيري در زون پتاسيک رگههاي زير يافت ميشود: 1. کوارتز 2. کالکوپيريت، کوارتز، پيريت و پتاسيم فلداسپات 3. انيدريت، پيريت و کالکوپيريت شايان ذکر است که اين دگرساني در اکثر کانسارهاي ماگمايي و گرمابي يافت ميشود ـ سريسيک (فيليک) كانيهاي مهم آن شامل پيريت، پيروفيليت، کائولينيت و سريسيت است که درصد سريسيت از بقيه بيشتر است. زون سريسيتيک در اغلب کانسارهايي که از طريق محلولهاي ماگمايي يا گرمابي تشکيل شدهاند، يافت ميشود. لذا در مراحل پيجويي و اکتشاف کليد اکتشافي مناسبي است. ـ آرژيليک كانيهاي مهم اين زون عبارتند از کائولينيت، مونت موريلونيت، پلاژيوکلاز و بيوتيت است که در نوع پيشرفته آن بايد كانيهاي پيروفيليت، سريسيت، آلونيت و کوارتز را اضافه كرد. كانيهاي ايجاد شده در اين زون بستگي به شدت هيدروليز، درجه حرارت محلول و ترکيب کانيشناسي سنگ اوليه دارد بهطوريکه در دماي بالاتر از 300°سانتيگراد پيروفيليت و در حرارتهاي پايينتر کائولينيت و ديکيت يافت ميشود. پردازش دادهها 1. پردازش دادههاي ماهواره اي +ETM اطلاعات ماهوارهاي لندست سالهاست که براي آشکارسازي اکسيدهاي آهن و كانيهاي رسي همراه با زونهاي دگرساني گرمابي استفاده ميشوند. باندهاي 5 و7 سنجنده ماهواره لندست 7 در محدودههايي واقع شدهاند که كانيهاي رسي و سنگهاي دگرساني، ويژگيهاي طيفي خاصي را در آنها نشان ميدهند. كانيهاي رسي در محدوده 15/1 ميکرومتر بيشترين بازتابش در محدوده 02/2 ميکرومتر بيشترين جذب را نشان ميدهند. در روش تحليل مولفههاي اصلي منحني محاسبه واريانس و کوواريانس و ضريب همبستگي بين باندهاي مختلف چندين مولفه به وجود ميآيد که در آنها پديدههاي مزاحم مانند سايه و اثرات توپوگرافي و زاويه خورشيد حذف شده است. اين محاسبات در تصاوير چند باندي ارتباط مستقيمي با رفتارهاي مختلف سطحي موادي مانند سنگها، خاکها و گياهان دارد. در شکل (1) منحني طيفي كانيهاي رسي آورده شده است. حال با علم به اين موضوع که در تصاوير ETM بيشترين و کمترين بازتاب در باندهاي 5 و 7 در كانيهاي رسي ايجاد ميشود با استفاده از تكنيكهاي کروستا و با استفاده از ايجاد مولفههاي اصلي 7 ـ 5 ـ 4 ـ 1به بارزسازي كانيهاي رسي پرداخته و براي تفکيک کاني سازي به بررسي تصاوير ASTER خواهيم پرداخت. 2. پردازش دادههاي ماهوارهاي ASTER پس از بررسي دادههاي ماهوارهاي و شناسايي مناطق داراي دگرساني كانيهاي رسي، به بررسي ورقهها بهخصوص در مناطقي که در تصاوير بارزسازي شده است پرداخته ميشود. دادههاي که از ماهواره اخذ ميشود داراي 14 باند طيفي است که در 3 گروه VNIR,SWIR,TIRقرار ميگيرند. در شكل 2 مقايسه باندهاي طيفي تصاوير Aster و ETM نشان داده شده. با توجه به اين که بيشترين جذب و بازتاب كانيهاي رسي در محدوده طيفي SWIR از تصاوير ASTER قرار ميگيرد، کمک شاياني به شناسايي كانيهاي رسي و کربناتها در اين محدوده ميكند که از اين ميان بايد كانيهايي چون کائولينيت، ايليت، مونت موريلينيت و کلريت را نام برد.- 1 پاسخ
-
- 1
-
-
- فیلیک
- لایه های زمین
-
(و 24 مورد دیگر)
برچسب زده شده با :
- فیلیک
- لایه های زمین
- مهندسی معدن
- معدن
- چین خوردگی
- چینه شناسی
- کوارتز
- کانی رسی
- کربنات
- پتاسیک
- آلتراسیون
- آرژیلیک
- انواع دگر سانی
- اکتشاف معدن
- تکنیک های دور سنجی
- تکتونیک
- تصاویر ماهواره ای
- دورسنجی
- دگر سانی سیلیسی
- دگرسانی پتاسیک
- دگرسانی سدیمی
- زمین شناسی
- زمین شناسی ساختمانی
- زون زاگرس
- سیریسیک
- شناخت لایه های زمین
-
شاخص هاي پوشش گياهي در پردازش تصاوير ماهواره اي
.MohammadReza. پاسخی ارسال کرد برای یک موضوع در اکتشاف معدن
گياهان سبز معمولا در محدوده مرئي ( 400- 700 نانومتر) تيره هستند که اين فرايند ناشي از جذب نور توسط رنگدانه هاي موجود در گياهان سبز (کلروفيل 1 ، پروتو کلروفيل II ، زانتوفيل و ... ) مي باشد. اما در اين محدوده يک افزايش ناگهاني انعکاس در طول موج حدود 550 نانومتر دارند ( نور سبز) به همين دليل آنها معمولا به رنگ سبز ديده مي شوند . در محدوده بين 700 الي 1300 نانومتر گياهان روشن مي باشند زيرا در اين محدوده داراي انعکاس بالايي هستند از 1300 تا 2500 نانومترگياهان سبز به دليل جذب نور توسط آب موجود در برگ گياهان سبز ، سلولز ، ليگنين و ديگر مواد موجود در اين محدوده طيفي تيره هستند . بطور خلاصه : تيره : 400 تا 700 نانومتر روشن : 700 تا 1300 تيره( اما روشن تر از 400 تا 700 ) : 1300 تا 2500 ◄ کداميک از باندهاي سنجش از دور مي توانند پوشش گياهي را بهتر نشان دهند ؟ معمولا باندهايي که در قلمرو 400 تا 700 نانومتر قرار دارند به دليل اينکه گياهان در اين قلمرو تيره هستند مناسب نيستند. براي سنجنده TM : باند هاي 4 و 5 مناسب هستند براي MSS : باندهاي 6 و 7 مناسب هستند البته براي از بين بردن عوارضي مانند اثرات توپوگرافي و آلبدو بهتر است براي تشخيص پوشش هاي گياهي از نسبتهاي باندي استفاده شود. اگر بخواهيم پوشش هاي گياهي به صورت روشن ظاهر شوند نسبت باندهايي که در قلمرو 700 الي 1300 نانومتر قرار گرفته به باندهايي که در قلمرو 400 تا 700 و يا 1300 تا 2500 نانومتر قرار دارند مناسبترند. در حالت اول نسبت مادون قرمز نزديک NIR به IR مي باشد و در واقع هدف اين است باندهايي که در آنها پوشش گياهي انعکاس بالايي دارد در صورت و باندهاي که انعکاس کمي دارند در مخرج قرار گيرند. در سنجنده TM : نسبت باندهاي TM4/TM3 مناسب هستند . همچنين نسبت TM5/TM7 نيز مناسب هستند. اما به دليل اينکه بسياري از رسها نيز در اين قلمرو روشن هستند استفاده از آنها توصيه نمي شود. ◄ چرا معمولا در سنجش از دور پوشش گياهي را به رنگ قرمز نشان مي دهند؟ به اين دليل که رنگ قرمز بهتر با چشم انسان تشخيص داده مي شود و از طرفي ديگر اگر پوشش گياهي به رنگ سبز نشان داده شود که مطابق با رنگ واقعي آنهاست فرض مي شود که بعضي پديده هاي ديگر نيز به رنگ واقعي خود نشان داده شده اند در حالي که رنگ آنها کاذب است. ◄ شاخص پوشش گياهي چيست ؟ در واقع شاخص پوشش گياهي يک شاخص عددي است تا ارتباطي با مفاهيم بيولوژي ، شيمي و يا فيزيک داشته باشد. اما مي تواند اطلاعات مفيدي را در خصوص وضعيت پوشش گياهي در اختيار ما قرار دهد و در واقع از آن به عنوان شاهد تجربي مي توانيم نام ببريم . در اينجا براي بررسي شاخص هاي پوشش گياهي بهتر است در ابتدا خط خاکي يا خط با پوشش گياهي صفر را تعريف کنيم . خط خاکي يک خط فرضي در فضاي طيفي است که تغييرات طيفي خاک هاي بدون پوشش گياهي را در تصوير نشان مي دهد . اين خط بوسيله دو يا چند بخش از خاکهاي ضخيم از يک تصوير که ممکن است انعکاس متفاوت داشته باشند( بوسيله بهترين خط آن) مشخص مي شوند. کارت و توماس(1976) Kart and Tomas شکلي مشهور تحت عنوان Tasseld cap يا کلاه منگوله دار در فضاي طيفي Red – NIR سنجنده Mss مشخص کردند. آنها مشخص کردند نقطه اي از کلاه ( نوک کلاه ، خطي که انعکاس کم در نور قرمز و انعکاس زياد در NIR دارد ) بيانگر مناطقي با پوشش گياهي بالا و بخش صاف کلاه برعکس نوک کلاه بيانگر خط خاکي صفر است . بهترين راه مشخص کردن خط خاکي استفاده از scatter diagram است بطوري که براي محور X ، Red و بر روي محور Y ،NIR نمايش داده شود . پايين ترين خط خاکي که از سمت راست دياگرام پراکندگي نقاط عبور مي کند همان خط خاکي صفر است. در حالت کلي شاخص هاي پوشش گياهي به دو دسته اصلي تقسيم مي شوند و در واقع تقسيم بندي آنها بر اساس ارتباط اين شاخص ها با خط خاکي است. 1) اگر خطوط هم سبزينگي از مرکز عبور کنند و يا در يک نقطه به هم برسند : نمونه هاي شاخص اين گروه RVI , SAVI , NDVI است 2) خط هم سبزينگي موازي خط خاکي هستند : اين شاخص ها را شاخص هاي عمودي Perpendicular مي نامند که در واقع شدت پوشش گياهي با فاصله عمودي از خط خاکي مشخص مي شود. نمونه هاي معروف اين شاخص عبارتند از : WDVI , PVI , DVI ◄ معرفي شاخص ها: + شاخص( RVI ): ( Ratio Vegetation Index ) اين شاخص اولين بار توسط( Jordan1969) مطرح شد. خصوصيات کلي : · شاخصي است بر اساس نسبت باندها · خطوط هم سبزينگي در مبدا به هم مي رسند · خط خاکي با شيب 1/0 از مبدا عبور مي کند · تغييرات آن از صفر تا بينهايت است · محاسبه RVI = NIR/IR : + شاخص(NDVI (Normalized Difference Vegetation Index بوسيله Rouse et al 1967 طرح شد. وقتي افراد از شاخص پوشش گياهي صحبت مي کنند در واقع چيزي که به آن رفرنس مي دهنداين شاخص است. اين شاخص از 1 تا 1- در تغيير است ولي شاخص RVI از صفر تا بينهايت متغير است و در واقع مي توان شاخص RVI را مطابق رابطه زير به NDVI تبديل کرد . (DVI = (RVI -1 ) / (RVI+1 خلاصه شاخص NDVI · بر اساس نسبت باندي عمل مي کند · خطوط هم سبزينه در مرکز به هم مي رسند · خط خاکي داراي شيب 1 و از مرکز عبور مي کند · تغييرات بين 1+ و 1- است · فرمول عمومي NDVI = NIR – RED / NIR + RED + شاخصInfrared Percentage Vegetation Index) IPVI ) براي اولين بار توسط(Crippen1990) مطرح شد. کريپن کاهش قرمز را غير واقعي دانست و در نتيجه شاخص IPVI را به شرح زير بيان کرد. · اساس نسبت باندي است · خطوط هم سبزينه از مبدا عبور مي کند · تغيير بين 0 تا 1 · خط خاکي داراي شيب 1 و از مرکز عبور مي کند · IDVI = (NDVI) / 2 يا IDVI = NIR / NIR + RED + شاخص(DVI ( Divergence Vegetation Index توسط Richardson & Everett ارائه شد. · شاخص عمودي · خطوط هم سبزينگي موازي خط خاکي · خط خاکي با شيب ناچيز (arbitrary ) از مبدا عبور مي کند · تغييرات نامحدود · DVI = NIR – RED + شاخص( PVI (Perpendicular Vegetation Index براي اولين بار توسط Richardson & Wigand ( 1977) ارائه شد. خصوصيات : · شاخص عمودي · خطوط هم سبزينه موازي خط خاکي · خط خاکي با شيب ناچيز از مبدا عبور مي کند · تغييرات بين 1+ تا 1- · فرمول) RED ) NIR – cos ( PVI = sin( = زاويه بين خط خاکي و محور NIR است. + شاخص( WDVI (Weighted Difference Vegetation Index توسط Clevers (1988) ارائه شد. WDVI نسخه خلاصه شده اي از شاخص PVI است اما داراي دامنه نامحدود است. همانند PVI ، WDVI خيلي حساس به تغييرات اتمسفري است ( Qi و همکاران ، 1994) · شاخص عمودي · خط هم سبزينه موازي خط خاکي · خط خاکي با شيب کم از مبدا عبور مي کند و تغييرات نامحدود است WDVI = NIR – g RED فرمول g = شيب خط خاکي ◄ شاخص ها براي به حداقل رسانيدن خط خاکي: + منظور از نويز خاکي چيست ؟ همه خاکها يکسان نيستند. خاکهاي مختلف داراي انعکاسهاي مختلفي هستند. همانگونه که در بخش قبلي بحث شد همه شاخص هاي سبزينگي در ارتباط با خط خاکي هستند که با يک شيب در فضاي IR , NIR مشخص مي شود. بهر حال اگر فرض کنيم که خطوط هم سبزينگي که از يک نقطه عبور مي کنند صحيح نباشد، زيرا تغيير در رطوبت خاک که باعث حرکت خط خاکي به طرف هم سبزينگي مي شود هم باعث خطاي زياد در خطوط کم سبزينگي مي گردد. اين مسئله وقتي بارزتر مي گردد که پوشش گياهي کم باشد. در زير شاخص هاي خاصي است که مي تواند خطوط هم سبزينگي را به مقدار واقعي نزديکتر نمايد. + شاخص( SAVI (Soil Adjusted Vegetation Index براي اولين بار توسط ltuete (1988) ارائه شد. اين شاخص بينابيني در شاخص نسبت بر مبناي نسبت هاي شاخص هاي عمودي دارد. يعني اينکه اين شاخص ها نه عمودي هستند و نه هم ديگر را در يک نقطه قطع مي کنند. بازسازي اوليه اين شاخص بر اساس اندازه گيري هايي بود که بر روي تغييرات پنبه (کتان ) و Canopies ها روي خاک هاي زمينه سياه و روشن انجام گرفت و فاکتور الحاقي L بوسيله اندازه گيري خطاي معادل شاخص پوشش گياهي در خاکهاي روشن و تيره محاسبه گرديد. نتيجه اين شاخص نسبت باندي اين بود که خطوط هم ديگر را در مبدا قطع نمي کردند بلکه محل تقاطع آنها در –NIR و –IR بود. هوت (1988) به اين مسئله توجه کرد که اين شاخص براي تشخيص بهتر زمينه در شاخص پوشش گياهي مناسبتر است. خلاصه: · اساس نست باندي است · خطوط هم سبزينه در محدوده –NIR و - IR همديگر را قطع مي کنند · شيب خط خاکي 1 و از مبده عبور مي کند · تغييرات از 1+ تا 1- است · فرمول : SDVI = {( NIR - RED ) / ( NIR + RED + L )} (1 + L ) L : فاکتور تصحيح بوده (correction factor) از صفر براي منطقه با پوشش گياهي بالا تا 1 براي مناطق با پوشش گياهي خيلي کم تغيير مي کند و براي مناطق با پوشش گياهي متوسط 5/0 است. (1 + L): در اين فرمول باعث مي شود که تغييرات شاخص پوشش گياهي از 1- تا 1 + باشد و اگر فاکتور L به صفر برسد شاخص SDVI برابر با شاخص NDVI خواهد بود. + شاخص( TASVI (Transformed Soil Vegetation Index بوسيله Gvyot ,Baret (1991) ارائه شد. در اين شاخص فرض بر اين است که خط خاکي داري شيب نا چيز و منقطع است. اين شاخص شبيه به SAVI است با اين تفاوت که L حذف شده است. پارامتر X به عنوان پارامتري که اثر خاک زمينه را به حداقل مي رساند بکار برده شده است که مقدار آن را معمولا 0.08 در نظر مي گيرند . محل تلاقي خط هم سبزينگي معمولا بين مبدا و نقطه الحاقي که معمولا در SDVI استفاده مي شود(L = 0.5) مي باشد. خلاصه : · شاخص نسبت باندي است · خطوط هم سبزينگي در محدوده –RED و –NIR تلاقي مي کنند. · خط خاکي داراي شيب ناچيز و Intercept · تغييرات بين 1- و 1+ است فرمول : s ) (1 + S S + X NIR – a RED )} / {a TSAVI = {S(NIR – S a : intercept خط خاکي s : شيب خط خاکي X : فاکتور مرتب کردن adjustment factor که براي حداقل نويز (0.08 ) است. + شاخص( MSAVI (Modified Soil Adjustment Vegetation بوسيله Qietal (1994) ارائه شد. خلاصه: · نسبت باندي است · خطوط هم سبزينگي و خط خاکي در نقاط مختلفي همديگر را قطع مي کنند ، خط خاکي شيب کمي دارد و از مبدا مي گذرد · تغييرات بين 1- تا 1 + است · فرمول : MSAVI = {(NIR – RED) / ( NIR+RED + L)}(1 + L) S = شيب خط خاکي L = 1-2 S(NDVI ) (WDVI) همانطور که در بخش قبلي بحث شد ، فاکتور ها براي SAVI بستگي به درجه پوشش گياهي داشت که معمولا قبل از محاسبه پوشش گياهي بايستي مقدار آن مشخص مي شد. اما در اينجا فاکتور L يا فاکتور صحت بر اساس شاخص هاي WDVI و NDVI حساب مي شود و در نتيجه خطوط هم سبزينگي در يک نقطه يکديگر را قطع نمي کنند. + شاخص( MSAVI 2 (Second Modified Adjusted Vegetation Index بوسيله Qi همکاران (1994) ارائه شد. MSAVI 2 = (1.2)(2(NIR + 1 ) – SQR{(2 NIR + I ) - 8(NIR – RED)} خلاصه : · شاخص بر اساس نسبت باندي · خطوط هم سبزينگي در نقاط مختلف خط خاکي را قطع مي کنند · خط خاکي داراي شيب فضايي 1 است · تغييرات بين 1- تا 1+ است ◄ شاخص هاي کاهش نويز اتمسفري: + نويز اتمسفري چيست؟ به دليل تغيير اتمسفر در زمان ها و مکانهاي مختلف است . اتمسفر هم بر روي نوري که از داخل آن عبور مي کند هم به دليل اينکه پراکندگي آئروسلها بر روي شدت نور تاثير زيادي دارد. اين تاثيرات آنگونه است که حتي در طول يک منظره مي توان مشاهده کرد. براي مثال اثرات اتمسفر در مناطق که ارتفاع زيادي دارد و مناطقي که ارتفاع آن کم است بطور يکسان تحت تاثير قرار نمي گيرند در نتيجه اين فرايند باعث خطا در محاسبه شاخص سبزينگي مي گردد که در اين راستا شاخص هاي خاصي ارائه شده است که مورد بحث قرار مي گيرند. + شاخص( GEMI (Global Environmental Monitoring Index توسط Pinty and Verstraete (1991) ارائه شد. خلاصه: غير خطي ، کمپلکسي از خطوط هم سبزينگي ، تغييرات از صفر تا 1 + است. GEMI = eta(1- 0.25 eta) – {(RED – 0.125 ) / (1- RED)} eta ={ 2(NIR - RED ) + 1.5 NIR + 0.5 RED} / (NIR – RED + 0.5) ◄ شاخص هاي پايداري اتمسفري: شاخص هاي پايداري اتمسفر شاخص هايي هستند که در شرايط اتمسفري تصحيح شده ساخته مي شود که اولين اينها ARVI است. + شاخص AVRI = Atmospheric resistance vegetation index بوسيله Kaufman and tanre (1992) ارائه شده است. آنها انعکاس باند قرمز را در شاخص NDVI به صورت زير جايگزين کردند. RB = red – gamma (blue – red ) در اينجا گاما برابر 1 است ، کافمن و تافر (1994) همين وضعيت براي جايگزيني red در شاخص هاي SDVI پيشنهاد کردند که منجر به ارائه شاخص جديدي تحت عنوان SARVI گرديد. ARVI = (NIR – RB ) / (NIR + RB ) RB = RED – gamma (red – blve) Gamma = 1 معمولا ◄ نتيجه: معمولا شاخص NDVI به عنوان مهمترين شاخص پوشش گياهي مي باشد که در سنجش از دور مورد استفاده قرار مي گيرد. در حقيقت هر کسي با سنجش از دور سرو کار داشته باشد ، اين شاخص را مي شناسد : اين شاخص براي مناطقي که تراکم پوشش گياهي متوسط و بالاتر باشد مناسب است زيرا نسبت به خاک زمينه روشن و اثرات اتمسفر حساسيت کمتري دارد اما براي مناطق پوشش گياهي کم مناسب نيست. PVI : يک شاخص عمومي نيست به دليل اينکه به اتمسفر حساسيت زيادي دارد کمتر مورد استفاده قرار مي گيرد. اما براي مشخص کردن خط خاکي از اهميت زيادي برخوردار است و در بسياري از منطق چون پوشش گياهي ناچيز است نسبت به NDVI جواب بهتري مي دهد. اگر منطقه مورد مطالعه فقير از پوشش گياهي باشد شاخص SAVI شاخص مناسبي است. شاخص MSAVI نيز فاکتور مناسبي است اما کمتر مورد استفاده قرار مي گيرد. ◄ منابع: + ۱-[Hidden Content] + ۲-جزوه درسي دانشگاه تبريز + ۳-[Hidden Content] + ۴-[Hidden Content] + ۵-[Hidden Content] + ۶-[Hidden Content] + ۷- [Hidden Content]-
- 1
-
-
- معدن
- پوشش گیاهی
-
(و 3 مورد دیگر)
برچسب زده شده با :