bahare ariya 10 اشتراک گذاری ارسال شده در 8 اسفند، ۱۳۹۳ توضیح درمورد رابطه شیب افت FEM لینک به دیدگاه
eng.l.s 5684 اشتراک گذاری ارسال شده در 8 اسفند، ۱۳۹۳ در روش شیب افت با جایگزینی معادلات شیب افت در معادلات تعادل، میزان دوران در گره های سازه به دست می آید و سپس با جایگزینی دوران های به دست آمده در معادلات شیب افت، مقدار لنگر در انتهای عضو های سازه تعیین می شود. معادلات شیب افت معادلات شیب افت مقدار لنگر در انتهای اعضای سازه را بر حسب دوران گره های سازه بیان می کنند. معادلات شیب افت برای عضو ab به طول و سختی خمشی به صورت زیر نوشته می شوند: در این معادلات , به ترتیب نشان دهنده شیب در انتهای a و b عضو (دوران گره های a و b) هستند و میزان تغییر مکان نسبی بین دو انتهای a و b عضو می باشد. عدم وجود برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام عضو در این معادلات بیانگر آنست که روش شیب افت از اثر تغییرشکل های محوری و برشی چشم پوشی می کند. معادلات شیب افت همچنین می توانند با استفاده از ضریب سختی و زاویه دوران عضو به این شکل نوشته شوند: به دست آوردن معادلات شیب افت هنگامی که لنگرهای متمرکز و در جهت عقربه های ساعت در دو انتهای یک تیر به طول و سختی خمشی وارد می شوند، دوران دو انتهای تیر نیز در همان جهت عقربه های ساعت خواهد بود. مقدار این دوران ها با استفاده از برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام به صورت زیر محاسبه می شود: با مرتب کردن این دو معادله، معادلات شیب افت به دست می آیند. شرایط تعادل تعادل در گره ها[ برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام ] شرایط تعادل گره ها ایجاب می کند که لنگرهای وارد به هر گره با یک برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام باید در تعادل باشند. بنابراین: در معادله بالا لنگرهای انتهای عضو، برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام و لنگرهای خارجی وارد بر عضو هستند. تعادل برش وقتی کل عضو به عنوان یک برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام دوران دارد (تغییرمکان نسبی دو انتهای عضو مخالف صفر است)، علاوه بر معادلات تعادل لنگر، تعادل برش نیز باید نوشته شود تا تعداد معادلات و مجهولات با هم برابر گردد. مراحل گام به گام تحلیل سازه ها به روش شیب افت شامل مراحل گام به گام زیر است: ۱- مجهول های مساله را تعیین کنید. دوران در تمام گره ها (به غیر از گره های گیردار) مجهول هستند. همچنین تغییر مکان نسبی دو سر اعضا نیز مجهول محسوب می شوند. ۲- نمودار آزاد تمام اعضا و گره ها را رسم کنید و لنگر، برش و نیروی محوری را در انتهای اعضا و روی گره ها نشان دهید. قرار داد علامت را فراموش نکنید. لنگر و دوران ساعتگرد در انتهای اعضا مثبت محسوب می شود. ۳- به ازای هر مجهول یک معادله تعادل بنویسید. برای مجهولات دوران باید تعادل لنگر در گره مربوطه را بنویسید. برای مجهولات تغییر مکان باید معادله تعادل برش را در همان جهت تغییرمکان برای نمودار آزاد عضو متناظر و گره های متصل به آن بنویسید و سپس با استفاده از نمودار آزاد عضو، برش ها را در معادله به صورت مجموع لنگر دو انتهای عضو تقسیم بر طول عضو بنویسید. ۴- معادلات شیب افت را برای لنگرهای انتهای اعضا بنویسید و آنها را در معادلات تعادل که در گام ۳ به دست آورده اید جایگزین نمایید. ۵- با حل سیستم معادلات به دست آمده، مقدار مجهولاتی را که در گام ۱ تعیین کرده اید به دست آورید. توجه کنید که جواب های مثبت نشان دهنده دوران ساعتگرد و جواب های منفی نشان دهنده دوران های پاد ساعتگرد هستند. ۶- مقادیر به دست آمده برای مجهولات را در معادلات شیب افت که در مرحلۀ ۴ نوشته اید جایگزین کنید تا مقادیر لنگرهای انتهای اعضا را به دست آورید. ۷- با استفاده از نمودارهای آزاد که در مرحله ۲ رسم کرده اید، مقادیر برش و نیروی محوری در انتهای اعضا و همچنین عکس العمل های سازه را تعیین کنید. مثال برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام مثال می خواهیم تیر نشان داده شده در شکل را که دارای مشخصات زیر است تحلیل کنیم. اعضای CD، BC ،AB دارای طول یکسان برابر با هستند. سختی خمشی اعضا به ترتیب برابر با EI و EI، 2EI است. بار متمرکز در فاصله از برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام A وارد می شود. بار گسترده روی دهانه BC وارد می شود. بار متمرکز در وسط دهانه CD وارد می گردد. طبق قرارداد لنگرها و دوران های ساعتگرد را با علامت مثبت در نظر می گیریم. درجات آزادی دوران های , , در گره های C، B، A مجهول های مساله هستند. دوران گره D به دلیل گیرداری برابر با صفر است. تغییر مکان نسبی بین گره ها نیز در این مساله صفر است. لنگرهای گیرداری لنگرهای گیرداری در این مساله در زیر محاسبه شده اند: معادلات شیب افت معادلات شیب افت برای این مساله به صورت زیر نوشته می شوند: تعادل در گره ها به دلیل اینکه سه مجهول مساله دوران در گره های C، B، A هستند کافی است تعادل لنگر در این گره ها را بنویسیم که سه معادله به ما می دهد: مقدار دوران ها با حل دستگاه سه معادله و سه مجهول بالا مقادیر دوران ها به صورت زیر به دست می آید: مقادیر لنگر در انتهای اعضا با جایگذاری مقادیر به دست آمده در معادلات شیب افت مقادیر لنگر در انتهای اعضا به دست می آید: 1 لینک به دیدگاه
ارسال های توصیه شده