رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'اثر'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. Mehdi.Aref

    مرجع سنسورها!!!

    یک عنصر هال از لایه نازکی ماده هادی با اتصالات خروجی عمود بر مسیر شارش جریان ساخته شده است. وقتی این عنصر تحت یک میدان مغناطیسی قرار می گیرد، ولتاژ خروجی متناسب با قدرت میدان مغناطیسی تولید می کند. این ولتاژ بسیار کوچک و در حد میکرو ولت است. بنابراین استفاده از مدارات بهسازی ضروری است. اگرچه سنسور اثر هال ، سنسور میدان مغناطیسی است ولی می تواند به عنوان جزء اصلی در بسیاری از انواع حسگرهای جریان ، دما ، فشار و موقعیت و ... استفاده شود. در سنسورها، سنسور اثر هال میدانی را که کمیت فیزیکی تولید می کند و یا تغییر می دهد حس می کند. مقاله PDF زیر در مورد سنسورهای اثر هال و ویژگی های آن ها می باشد. دانلود مقاله
  2. با سلام خدمت تمام مهندسان عمران موفق نظر به اینکه رشته مهندسی عمران از گذشته تا کنون از لحاظ کاربرد و همچنین تعداد شرکت کنندگان در کنکور کارشناسی ارشد بسیار مورد توجه بوده است و همچنین دیده میشود که هنوز هم از این رشته شیرین مهندسی استقبال خیره کننده ای به عمل می آید: برای همین اینجانب تصمیم گرفتم تا این تاپیک را برپا کنم و تا جایی که میتوانم سعی کنم تا جزوات مورد نیاز دانشجویان و دانش پژوهان رشته مهندسی عمران را در این تاپیک برای استفاده قرار بدهم موفق و سربلند باشید:ws39::ws45: جزوه خلاصه ضوابط ساختمان بنایی غیر مسلح رو به صورت PDF واسه دانلود آماده کردم. این جزوه بر اساس فصل سوم استاندارد 2800 توسط امیرحسین خلوتی تهیه شده است. دانلود جزوه خلاصه ضوابط ساختمان های بنایی غیر مسلح
  3. سلام به همه دوستان عزیز . شما می توانید از این به بعد مقالات خود را در این پست دریافت کنید . همچنین از دوستان تقاضا می شود که مقالات برای سهولت در جست و جو در این پست قرار دهند . با تشکر امیر رضا حدادی آملی
  4. [TABLE] [TR] [TR] [TD=width: 10][/TD] [TD=class: news_body, width: 100%, bgcolor: #FDFDFD]نتایج حاصل از یک پژوهش نشان داد: مصرف ماست کم چرب در دوران بارداری خطر ابتلای کودک به آسم و تب یونجه را افزایش می دهد. به گزارش سرویس پژوهشی ایسنا منطقه دانشگاه علوم پزشکی تهران، نتایج یک مطالعه که در کنفرانس جامع تنفسی اروپا ارائه شد، نشان داد که مصرف ماست کم چرب در دوران بارداری به علت نبود اسیدهای چرب محافظ، خطر ابتلای کودک به آسم و تب یونجه را افزایش می دهد. محققان رژیم غذایی بیش از ۷۰ هزار زن و کودکان آن ها را تا سن ۷ سالگی بررسی کردند و دریافتند: زنان بارداری که روزانه ماست کم چرب همراه با میوه می خوردند، در مقایسه با مادرانی که ماست کم چرب مصرف نمی كردند، تا ۱.۶ برابر بیشتر امکان داشتند، کودکانی مبتلا به آسم داشته باشند. این پژوهش همچنین نشان داد: کودکان این زنان بیشتر احتمال دارد علائم آسم و تب یونجه را داشته باشند، البته این نتایج تاکید کرد مصرف شیر در دوران بارداری با افزایش آسم مرتبط نیست، بلكه شیر اثر محافظتی نیز در برابر آسم دارد. «اکاترینا ماسلوما» محقق اصلی این پژوهش از دانشکده سلامت عموم هاروارد می گوید: این یافته ها حیرت آور است و نبود اسیدهای چرب در ماست کم چرب را می توان علت این نتایج دانست، زیرا اسیدهای چرب نقش مهمی را در بدن بر عهده دارند. «لینه متکالر لس» مدیر مرکز تحقیقاتی آسم انگلیس می گوید: شواهد کافی دال بر تاثیر عوامل محیطی قبل از زایمان بر آسم کودکان وجود دارد. وی می افزاید: داشتن رژیم غذایی سالم و متنوع در هر زمان به خصوص دوران بارداری توصیه می شود و ما پیشنهاد می کنیم که زنان باردار قبل از هر تغییر قابل توجه در رژیم غذایی با پزشک خود مشورت کنند. [/TD] [/TR] [/TR] [/TABLE]
  5. نقشه های خانه آبشار و می خواید ؟ دوس دارید که کامل با این معمار و بنای معروفش آشنا بشید؟ پس حتما این مقاله رو تا آخر بخونید و نقشه ها رو هم حتما دانلود کنید. فرانك لويد رايت به تحقيق يكي از مهمترين وخلاق ترين معماران ونظريه پردازان قرن بيستم مي باشد . اين معمار در طي 90 سال عمر پر بار خود (1959-1869) بيش از 60 سال فعاليت مستمر معماري داشته وحدود 560 ساختمان اجرا نموده است. تاثیر رایت در معماری مدرن چندان است که نمی توان معماری او را در یک بخش مورد مطالعه قرار داد. یکی از ویژگیها واحتمالاً مهمترین آنها کیفیتی است که رایت آن را معماری ارگانیک می نامید. مراد رایت از معماری ارگانیک چه بود؟ به اعتقاد گیدیون که قدر آثار رایت را نیک می دانست، این معمار توفیق نیافت با زبان و کلمات به توصیف و توضیح این اصطلاح ساخته و پرداخته خویش موفق شود. پاره ای از اروپائیان نیز تعبیری خاص از معماری ارگانیک دارند که احتمالاً منبع آن همان اندیشه ها و گفتارهای رایت است، ولی آن را بیشتر به معماری عملکردی یا معماری توجیهی تعبیر کردند. اما اگر رایت در تعریف ارگانیک به زبان کلمات توفیق نیافت، تعریف و تعبیر وی از این واژه، یا دقیقتر بگوییم از این کیفیت، در زبان معماری کاملاً موفقیت آمیز و به راستی ستودنی است. این کیفیت در پاره ای از آثار رایت بیشتر متجلی می شود و درخانه آبشار به اوج اعتلا می رسد آن نوع معماری را به عرصه وجـود می آورد که چـون عوامـل طـبیعی مانند سنگ و درخت و گیاه و گـل از درون طبیعـت می شکفد و اصالت و قوت آن نیز در همین از درون شکفتگی و طبیعی بودن آن است. از این رو، در این نوع معماری هیچ تصنعی وجود ندارد و معماری همان است که باید باشد. این تعریف و یا به تعبیر اروپایی آن کیفیت ، که در سطور بالا به آن اشاره کردیم نزدیک می کند، زیرا عدم تصنع، در این متن معنایش می تواند این باشد که هیچ فرمی بدون توجیح و دلیل پدید نیامده است و همان گونه که مظاهر طبیعت توجیح پذیرند، برای هر فرم از این نوع معماری، توضیحی می توان فرض کرد. از مشخصه هاي بارز ساختمان های طراحی شده توسط رایت مي توان به پنجره هاي سرتاسري، كنسول نمودن بام ونمايش افقي آن به موازات سطح زمين مسطح ونشان دادن مصالح در ساختمان اشاره كرد. از جمله شاخص ترين نمونه هاي اين ساختمانها می توان به خانه روبي در حومه شيكاگو نام برد. در اوايل قرن بيستم كه به تدريج ايده هاي رايت در ساختمانهيش شكل مي گرفت، دراروپاوامريكا تكنولوژي به سرعت در حال گسترش وپيشرفت بود .اين پيشرفت در زمينه هاي معماري، از نظر تئوري واجرايي بسيار مشهود وبارز بود. اگر چه رايت با تكنولوژي مدرن مخالفتي نداشت،ولي وي آن را به عنوان غايت وهدف تلقي نمي نمود. به اعتقاد رايت ، تكنولوژي وسيله اي است براي رسيدن به يك معماري والاتر كه از نظر وي همانا معماري ارگانيك بود. او در 20 مي 1953 در تليسين معماري ارگانيك را با عبارت ذيل تعريف كرد: 1-طبيعت:فقط شامل محيط خارج مانند ابرها،درختان وحيوانات نمي شود بلكه شامل داخل بنا واجزا ومصالح آن نيز مي باشد 2-ارگانيك:به معناي همگوني وتلفيق اجزا نسبت به كل وكل نسبت به اجزا مي باشد. 3- شكل تابع عملكرد: عملكرد صرف صحيح نمي باشد بلكه تلفيق فرم وعملكرد واستفاده از ابداع وقدرت تفكر انسان در رابطه با عملكرد ضروري است. فرم وعملكرد يكي هستند. 4- لطافت: تفكر وتخيل انسان بايد مصالح وسازه سخت ساختمان را به صورت فرمهاي دلپذير و انساني شكل دهد.همانگونه كه پوشش درخت وگلهاي بوته ها،شاخه هاي آنها را تكميل ميكند.مكانيك ساختمان بايد در اختيار انسان باشد ونه با العكس . 5- سنت: تبعيت ونه تقليد از سنت اساس معماري ارگانيك است. 6- تزئینات : بخشي جدايي ناپذير از معماري است.رابطه تزييات به معماري همانند گلها به شاخه هاي بوته مي باشد. 7- روح:روح چيزي نيست كه به ساختمان القا شود بلكه بايد دردرون آن باشد واز داخل به خارج گسترش يايد. 8-بعد سوم:بر خلاف اعتقاد عمومي ،بعد سوم عرض نيست ، بلكه ضخامت وعمق است. 9-فضا:عنصري است كه دائما بايد در حال گسترش باشد.فضا يك شالوده پنهاني است كه تمام ريتمهاي ساختمان بايد از آن منبعث شوند و در آن جريان داشته باشند. رایت معتقد بود که ماهیت مصالح در ساختمان می بایست نشان داده شود به گونه ای که شیشه به عنوان شیشه، سنگ به عنوان سنگ و چوب به عنوان چوب به کار برود. خانه اوليه رايت به نام خانه هاي دشتهاي مسطح معروف بودند، زيرا اين خانه ها كه غالبا در حومه شهر شيكاگو ساخته شده بودند، در تلفيق وهماهنگي با دشتهاي مسطح و سرسبز اين نواحي طراحي شده بودند.
  6. بررسي اثر شيرابه و آهك روي نفوذپذيري خاك رس موجود در محل دفن زباله هاي شهر تهران (خاكچال كهريزك)
  7. Mehdi.Aref

    --- اثر هارمونيك ها بر خازن ها ---

    نقش خازنها به عنوان المان هاي الكتريكي و الكترونيكي كارآمد در صنايع مربوط به توليد و انتقال و توضيع امروزي غير قابل انكار است بگونه اي كه ديگر هرگز نمي توان چنين صنايعي را بدون وجود خازنهاي نيرو متصور شد.از اين رو شناخت كامل خازنها و عوامل تاثير گذار برآنها و حفظ و نگهداري و نظارت دقيق بر آنها ، براي افزايش طول عمر خازن ها و كار كرد بهينه آنها امري است الزامي و اجتناب ناپذير. مقدمه درسالهاي اوليه هارمونيكها در صنايع چندان رايج نبودند.به خاطر مصرف كننده هاي خطي متعادل. مانند : موتورهاي القايي سه فاز،گرم كنندها وروشن كننده هاي ملتهب شونده تا درجه سفيدي و ..... اين بارهاي خطي جريان سينوسي اي در فركانسي برابر با فركانس ولتاژ مي كشند. بنابراين با اين تجهيزات اداره كل سيستم نسبتا با سلامتي بيشتري همراه بود. ولي پيشرفت سريع در الكترونيك صنعتي در كاربري صنعتي سبب بوجود آمدن بارهاي غير خطي صنعتي شد. در ساده ترين حالت ، بارهاي غيرخطي شكل موج بار غير سينوسي از شكل موج ولتاژ سينوسي رسم مي كنند (شكل موج جريان غير سينوسي). پديدآورنده هاي اصلي بارهاي غير خطي درايوهاي AC / DC ، نرم راه اندازها ، يكسوسازهاي 6 / 12 فاز و ... مي باشند. بارهاي غيرخطي شكل موج جريان را تخريب مي كنند. در عوض اين شكل موج جريان شكل موج ولتاژ را تخريب مي نمايد. بنابراين سامانه به سمت تخريب شكل موج در هر دوي ولتاژ و جريان مي شود. در اين مقاله سعي شده است تا بزباني هرچه ساده تر توضيحي در مورد نحوه عملكرد هارمونيك ها و راه كاري براي دوري از تاثير گذاري آنها بر خازنها ي نيرو ارائه شود. اساس هارمونيك ها : اصولا هارمونيك ها آلوده سازي شكل موج را در اشكال سينوسي آنها نشان مي دهند. ولي فقط در مضارب فركانس اصلي . تخريب شكل موج را مي توان در فركانس هاي مختلف (مضارب فركانس اصلي) بعنوان يك نوسان دوره اي بوسيله آناليز فوريه تجزيه و تحليل كرد. در حال حاضر هارمونيكهاي فرد و زوج و مرتبه 3 در اندازه هاي مختلف ضرايب فركانس هاي مختلف در سامانه هاي الكتريكي موجودند كه مستقيما تجهيزات سامانه الكتريكي را متاثر مي سازند. در معنايي وسيعتر هارمونيكهاي زوج و مرتبه 3 هريك تلاش مي كنند كه ديگري را خنثي نمايند. ولي در مدت زماني كه بار نا متعادل است اين هارمونيك هاي زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژي شديد مي شوند. با تمام احوال هارمونيك هاي فرد اول مانند هارمونيك پنجم ، هفتم ، يازدهم ، سيزدهم و .... عملكرد اين تجهيزات الكتريكي را تحت تاثير قرار مي دهند. براي فهم بهتر تاثير هارمونيك ها ، شكل زير تاثير تخريب هارمونيك پنجم بر شكل موج سينوسي را نشان مي دهد : هارمونيك هاي ولتاژ و جريان تاثيرات متفاوتي بر تجهيزات الكتريكي دارند. ولي عموما بيشتر تجهيزات الكتريكي به هارمونيكهاي ولتاژ بسيار حساس اند. تجهيزات اصلي نيرو مانند موتورها، خازن ها و غيره بوسيله هارمونيكهاي ولتاژ متاثر مي شوند. به طور عمده هارمونيكهاي جريان موجب تداخل مغناطيسي (Magnetic Interfrence) و همچنين موجب افزايش اتلاف در شبكه هاي توزيع مي شوند. هارمونيكهاي جريان وابسته به بار اند ، در حالي كه سطح هارمونيكهاي ولتاژ به پايداري سامانه تغذيه و هارمونيكهاي بار (هارمونيكهاي جريان) بستگي دارد. عموما هارمونيك هاي ولتاژ از هارمونيك هاي جريان كمتر خواهند بود. تشديد: اساسا تشديد سلفي – خازني در همه انواع بارها مشاهده مي شود. ولي اگر هارمونيك ها در شبكه توضيع شايع نباشند تاثير تشديد فرونشانده مي شود. در هر تركيب سلفي – خازني چه در حالت سري و چه در حالت موازي ، در فركانسي خاص تشديد رخ مي دهد كه اين فركانس خاص فركانس تشديد ناميده مي شود. فركانس تشديد فركانسي است كه در آن رآكتنس خازني (Xc) و رآكتنس القايي (XL) برابر هستند. براي تركيبي مثالي براي بار صنعتي كه شامل اندوكتانس بار و يا رآكتنس ترانسفورماتور كه بعنوان XL عمل مي كند و رآكتنس خازن تصحيح ضريب توان كه بصورت Xc خودنمايي مي كند فركانس تشديدي برابر با LC خواهيم داشت . رآكتنس خازني متناسب با فركانس كاهش مي يابد (توجه : Xc با فركانس نسبت عكس دارد). در حاي كه رآكتنس القايي متناسب با آن افزايش مي يابد (توجه : XL با فركانس نسبت مستقيم دارد).اين فركانس تشديد به سبب متغير بودن الگوي بار متغير خواهد بود. اين مساله براي ظرفيت خازني ثابت كل براي اصلاح ضريب توان پيچيده تر است. براي درك صحيح اين پديده لازم است دو نوع وضعيت تشديد شامل حالت تشديد سري و حالت تشديد موازي مورد توجه قرار گيرند. اين دو امكان در زير توضيح داده مي شوند. تشديد سري: يك تركيب سري رآكتنس سلفي – خازني ، مدار تشديد سري شكل مي دهد كه در شكل زير نشان داده شده است. به خاطر تركيب سري سلف و خازن ، در فركانس تشديد امپدانس كل به پايين ترين سطح كاهش مي يابد و اين امپدانس در فركانس تشديد طبيعتي مقاومتي دارد. بنا براين در فركانس تشديد رآكتنس خازني و رآكتنس سلفي (القايي) برابر هستند.اين امپدانس پايين براي توان ورودي در فركانس تشديد ، افزايش تواني جريان را نتيجه مي دهد.شكل داده شده زير رفتار امپدانس خالص در وضعيت تشديد سري را نشان مي دهد. در كاربري صنعتي رآكتنس ترانسفورماتور قدرت به علاوه خازنهاي اصلاح ضريب توان در سمت ولتاژ پايين به عنوان يك مدار تشديد موازي براي سمت ولتاژ بالاي ترانسفورماتور عمل مي كند. اگر اين فركانس تشديد تركيب سلف و خازن بر فركانس هارمونيك شايع در صنعت منطبق شود ، بخاطر بستري با امپدانس پايين ارائه شده توسط خازن ها براي هارمونيك ها ، منجر به افزايش تواني جريان خازن ها خواهد شد. از اين رو خازن هاي ولتاژ پايين در سطحي بسيار بالا اضافه بار پيدا خواهند كرد كه همچنين اين عمل موجب تحميل بار اضافي بر ترانسفورماتور مي شود. اين پديده منجر به تخريب ولتاژ در شبكه ولتاژ پايين مي شود. تشديد موازي: يك تشديد موازي تركيبي از رآكتنس خازني و القايي است كه در شكل زير نمايش داده شده است. در اينجا رفتار امپدانس برعكس حالت تشديد موازي خواهد بود كه در شكل داده شده در زير ، نشان داده شده است.در فركانس تشديد امپدانس منتجه مدار به مقداري بالا افزايش مي يابد. اين ، منجر به بوجود آمدن مدار تشديد موازي ميان خازن هاي اصلاح ضريب توان و اندوكتانس بار مي شود كه نتيجه آن عبور ولتاژ بسيار بالا هم اندازه امپدانس ها و جريان هاي گردابي بسيار بالا درون حلقه خواهد بود. در كاربري صنعتي خازن اصلاح ضريب توان مدار تشديد موازي با اندوكتانس بار تشكيل مي دهد.هارمونيك هاي توليد شده از سمت بار رآكتنس شبكه را افزايش مي دهند. كه موجب بلوكه شدن هارمونيك هاي سمت تغذيه مي شود.اين منجر به تشديد موازي اندوكتانس بار و اندوكتانس خازني مي شود. مدار LC (سلفي – خازني) مواز ي ، شروع به تشديد ميان آنها مي كند كه منجر به ولتاژ بسيار بالا و جريان گردابي بسيار بالا در درون حلقه مدار سلف – خازن (LC) مي شود. نتيجه اين امر آسيب به تمام سمت ولتاژ پايين سامانه الكتريكي است. ايزوله كردن تشديد موازي از ايزولاسيون تشديد سري نسبتا پيچيده تر است.اساسا اين امر بخاطر تنوع بار صنعتي از زماني به زمان ديگر است كه موجب تغيير فركانس تشديد مي شود. شكل زير تاثير ظرفيت خازني ثابت و اندوكتانس متغير را نشان مي دهد. اين تغيير مداوم فركانس تشديد ممكن است موجب تطبيق فركانس تشديد بر فركانس هارمونيك شود كه ممكن است منتج به ولتاژ بالا و جريان بالا كه سبب نقص و خرابي تجهيزات الكتريكي مي شوند ، گردد.بنا بر اين در هر دو تشديد موازي و سري خازنهاي قدرت متاثر هستند كه بكار گيري دستگاه هاي حفاظتي و ايمني را براي خازنها ايجاب مي نمايد. اين امر درك صحيح بر خازنهاي قدرت را قبل از از اعمال تصحيح بخاطر تاثير هارمونيك ها و تشديد ايجاب مي نمايد. خازنهاي قدرت: خازنهاي اصلاح ضريب توان نسبت به هارمونيك ها حساس اند و بيشتر عيوب خازنهاي قدرت ، عيوبي با طبيعت زير را نشان مي دهند : هارمونيك ها – هارمونيك هاي پنجم ، هفتم ، يازدهم ، سيزدهم و ... تشديد اضافه ولتاژ امواج كليد زني جريان هجومي ولتاژ آني بازگيري جرقه تخليه / بازبست ولتاژ بسته به طراحي ساختاري اساسي ، حدود پايداري در مقابل اضافه ولتاژ ، اضافه جريان و هارمونيكها براي دور كردن خازن از خرابي بسيار مهم است. اساسا خازن ها امواج كليد زني توليد مي كنند كه عموما به عنوان جريان هجومي و اضافه ولتاژ آني دسته بندي مي شوند. جريان هجومي پديده اي است كه هنگام به مدار وصل كردن خازن ها رخ مي دهد. امپدانس ارائه شده توسط خازن طبيعتا بسيار كم و مقاومتي است. اين امر منجر به جريان هجومي به بزرگي 50 تا 100 برابر جريان اسمي مي شود كه از خازن عبور مي كند ، اما چرا از خازن؟ زيرا امپدانس ترانسفورماتور در زمان روشن كردن خازن ها فقط در مقابل شار جريان مقاومت مي كند. اين امر هنگامي پيچيده تر مي گردد كه در تركيب موازي بانك خازني ممكن است جريان هجومي كليد زني به سطحي بالاتر از 200 تا 300 برابر جريان اسمي برسد. اين جريان هجومي نتيجه تخليه خازن هاي از پيش شارژ شده موازي با آن مي باشد. در زير اين مطلب نشان داده شده است.نوعا جريان هجومي علاوه بر تخريب در شكل موج جريان سبب تخريب در شكل موج ولتاژ مي شود. در هنگام خاموش كردن (از مدار خارج كردن) خازن ها ، بسته به شارژ ذخيره شده در آن ، اضافه ولتاژ ناگهاني بالاتري در زمان خاموش كردن خازن ها بوجود خواهد آمد كه ممكن است موجب پديد آمدن جرقه در پايه ها شود. هنگامي كه خازن خاموش مي شود شار الكتريكي در خود نگه مي دارد و بوسيله مقاومتهاي تخليه ، تخليه (Discharge) مي شود. مدت زمان تخليه عموما بين 30 تا 60 ثانيه مي باشد. تا زماني كه تخليه بشكل موثري صورت نگرفته نمي توان خازنها را به مدار باز گرداند. هرگونه بازبست خازن قبل از تخليه كامل دوباره موجب افزايش جريان هجومي مي شود. علاوه بر دستگاه هاي مسدود كننده هارمونيك ها كه با صحت خازن ها نسبت مستقيم دارند ، و در سر خط بعدي تشريح مي شوند ، دستگاه هاي تحليل برنده امواج كليد زني مثل جريان هجومي ، اضافه ولتاژ آني و غيره نياز دارند كه بطور دقيق تعريف و بررسي شوند. دستگاه هاي مسدود كننده هارمونيك ها: براي كاربري سالم خازن ها لازم است كه فركانس تشديد مدار LC (سلف – خازن) كه شامل ادوكتانس بار و خازنهاي اصلاح ضريب توان مي شود ، به فركانسي دور از كمترين فركانس هارمونيك تغيير داده شود. براي مثال هارمونيك هايي كه در سامانه توليد مي شوند و خازن هاي قدرت را متاثر مي سازند ، هارمونيك هاي پنجم ، هفتم ، يازدهم ، سيزدهم و غيره هستند. پايين ترين هارمونيكي كه بر خازن ها تاثير مي گذارد هارمونيك پنجم است كه در فركانس 250 هرتز ديده مي شود. اساسا اگر خازن ها با سلف ها موازي شده باشند ، انتخاب مقدار اندوكتانس به شكل زير است : تركيب سري LC (سلف – خازن) در فركانسي زير 250هرتز تشديد مي كند . بنابراين در همه فركانس هاي هارمونيك ها تركيب سري سلف و خازن مانند يك تركيب سلفي عمل خواهد كرد و امكان تشديد براي هارمونيك پنجم يا هر هارمونيك بالاتري از بين مي رود. شكل زير ناميزان سازي (De – Tuning) خازن ها را نشان مي دهد. اين تركيب سلف و خازن كه در آن فركانس تشديد در فركانسي دور از فركانس هارمونيك تنظيم شده است ، مدار LC (سلف – خازن) ناميزان شده (De-Tuned) نام دارد. ضريب نا ميزان سازي نسبت رآكتنس به طرفيت خازني است. در مدار خازني ناميزان شده ، اساسا سلف مانند دستگاه مسدود كننده هارمونيك ها عمل مي كند. براي خازن ها ضريب مناسب ناميزان سازي حدود % 7 است كه فركانس تشديد را در 189 هرتز تنظيم مي كند. اما ، ناميزان سازي % 5.67 همچنين در جايي استفاده مي شود كه فركانس تشديدي معادل 210 هرتز دارد . هر دو درجه ناميزان سازي ، مسدود كردن (بلوكه كردن) هارمونيك ها از خازن ها را تضمين مي كنند. شكل زير درجه ناميزان سازي را نمايش مي دهد. بانك هاي ناميزان سازي خازن: بانك هاي ناميزان سازي خازن نيازمند آن هستندكه با نكات اساسي زير مشخص شوند : انتخاب درجه ناميزان سازي محاسبه خازن كل خروجي مورد نياز محاسبه افزايش ولتاژ بوسيله سلف هاي سري درجه ناميزان سازي مطلوب بر پايه هارمونيك موجود است. لازم است كه هارمونيك هاي سمت بار اندازه گيري شوند تا در درجه ناميزان تصميم گيري شود. * خروجي خازن و سطح ولتاژ نياز به انتخاب صحيح بر اساس درجه ناميزان سازي دارند. براي مثال براي %7 ناميزان سازي براي رسيدن به 200 كيلو ولت آمپر رآكتيو خروجي (KVAR) در 400 ولت ، نياز به آن داريم كه خازن 240 KVAR خروجي با ولتاژ 400 ولت انتخاب نماييم. اين بدليل افزايش ولتاژ بوسيله اندوكتانس سري است. مشابها براي رسيدن به 200 KVAR خروجي در ولتاژ 440 ولت به خازن هاي 240 KVAR خروجي 480 ولتي نياز است. محاسبه افزايش ولتاژ به سبب رآكتنس سري ، بر اساس ناميزان سازي است و به روش زير انجام مي گيرد : ( درجه ناميزان سازي – 1) / (ولتاژ نرمال مجاز) = ولتاژ خازن سامانه خازني ايده آل: براي تصحيح ضريب توان در بار صنعتي كنوني كه شامل هارمونيك ها و تشديد مي شود ، يك سامانه اتصال خازني اساسا بايد خصوصيات زير را دارا باشد : ظرفيت خازني متغير بر اساس توان رآكتيو براي دوري از تغيير فركانس تشديد. اين امر انتخاب صحيح پنل هاي APFC را ممكن مي سازد. پنل APFC بايد خصوصيات زير را داشته باشد. حسگرها بايد به طور مداوم سطح هارمونيك هاي ولتاژ را نمايش دهد و خازن ها را تحت زير سطوح بالاتر هارمونيك ها محافظت نمايد. انتخاب محدوده هارمونيك هاي پنجم ، هفتم ، يازدهم ، سيزدهم و همچنين شناخت تخريب همه هارمونيك ها براي تنظيم حدود ايمن و همچنين پيش بيني تغييرات بعدي هارمونيك ها. مونيتورينگ جريان RMS براي محافظت خازن ها تحت هر حالت تشديد. كنترل مشخصات ، براي دوري از بكارگيري ظرفيت مازاد خازني تحت حالت كم بار. انتخاب خازن با عمر بالا و با تضمين مشخصات زير : ظرفيت اضافه بار : حداقل دو برابر جريان اسمي به طور مداوم و 350 برابر آن هنگام جريان هجومي. قابليت پايداري در مقابل اضافه ولتاژ :بيشتر از %10 و بالاتر از ولتاژ مجاز بصورت پيوسته. قابليت پايداري در مقابل هارمونيك ها : تضمين محدوده هاي هارمونيك هاي پنجم ، هفتم ، يازدهم ، سيزدهم و همچنين براي محدوده هاي THD. مدار سلفي De – Tuned براي مسدود كردن هارمونيك ها (الگوي هارمونيك بار بايد قبل از تعيين درجه ناميزان سازي (De – Tuning) اندازه گيري شود). انتخاب سطح خازن و سطح ولتاژ براساس درجه ناميزان سازي. دستگاه هاي كليدزني با تقليل دهنده هاي داخلي براي تقليل امواج كليد زني براي خازن هاي قدرت. اساسا اين خصوصيات با مطالعه متناسب هارمونيك هاي ولتاژ بار همراه است كه تضمين مي كند كه تاثير مخرب هارمونيك ها و تشديد از خازن ها دور شود كه بدين وسيله عمر خازن ها و كارايي كل سامانه الكتريكي را افزايش مي دهد. نتيجه گيري علم به شرايط و خصوصيات خازن ها و عوامل موثر بر آنها از جمله هارمونيك ها نه تنها موجب افزايش امنيت و سلامتي و طول عمر آنها خواهد شد بلكه سبب كاهش هزينه هاي پيش بيني شده و نشده در بكار گيري انرژي الكتريكي مي شود.
×
×
  • اضافه کردن...