saghar... 6666 اشتراک گذاری ارسال شده در 19 آذر، ۱۳۹۳ امپدانس سری خط انتقالدر یک خط انتقال چهار کمیت مقاومت اندوکتانس ظرفیت خازنی و کنداکتانس روی کارکرد کامل آن به عنوان بخشی از سیستم قدرت اثر می گذارند. کندکتانس بین هادیها و زمین باعث جریان نشتی در مقره های خطوط هوائی وعایق کابلها میشود.چون میتوان از جریان نشتی در مقره های خطوط هوائی چشم پوشید کنداکتانس بین هادیها در یک خط هوائی صفر فرض نمود.... امپدانس سری خط انتقال در یک خط انتقال چهار کمیت مقاومت اندوکتانس ظرفیت خازنی وکنداکتانس روی کارکرد کامل آن به عنوان بخشی از سیستم قدرت اثر می گذارند.کندکتانس بین هادیها وزمین باعث جریان نشتی در مقره های خطوط هوائی وعایق کابلها میشود.چون میتوان از جریان نشتی در مقره های خطوط هوائی چشم پوشید کنداکتانس بین هادیها در یک خط هوائی صفر فرض نمود. دلیل دیگر چشم پوشی از کنداکتانس متغیر بودن آن ونبودن روش مناسب برای محاسبه آن می باشد.جریان نشتی مقره ها عامل اصلی کنداکتانس به طور محسوسی با شرهیط هوائی ورطوبتی که بر مقره ها می نشیند تغییر میکند. بعضی از خاصیت های یک مدار الکتریکی را می توان به وسیله میدانهای الکتریکی و مغناطیسی که در اثر عبور جریان از آن به وجود می آید بررسی نمود. مقاومت و اندوکتانس توزیع شده به طور یکنوهخت در طول خط امپدانس سری خط را تشکیل می دهند.کنداکتانس وظرفیت خازنی بین هادیهای خط تکفاز یا بین هادی وخنثی در خط سه فاز ادمیتانس موازی خط را تشکیل می دهند.اگرچه مقاومت اندوکتانس وظرفیت خازنی در طول خط توزیع شده اند اما درمدار معادل خط از کمیتهای فشرده و متمرکز استفاده می شود. انواع هادیها در انتقال قدرت الکتریکی در آغاز از هادیهای مسی استفاده می شد اما امروزه هادیهای آلومینیومی به علت ارزانتر وسبکتر بودن نسبت به هادیهای مسی با همان مقاومت در خطوط هوائی به طور کامل جای آنها را گرفته اند. یکی دیگر از مزیتهای هادی آلومینیومی این است که در یک مقاومت مشخص قطر آن از هادی مسی بیشتر است.در حالت با قطر بزرگتر به ازای ولتاژیکسان خطوط فوران الکتریکی گرادیان ولتاژدر سطح هادی پائین آمده امکان یونیزه شدن هوای اطراف هادی کاهش یابد. نمادهای زیرانواع مختلف هادیهای آلومینیومی را نشان می دهند: AACهادی تمام آلومینیومی AAAC هادی تمام آلیاژ آلومینیوم ACSR هادی آلومنیومی تقویت شده با فولاد ACAR هادی آلومنیومی تقویت شده با آلیاژ هادیهای آلیاژآلومنیومی دارای قدرت کششی بیشتری نسبت به هادیهای الکتریکی آلومنیومی معمولی هستند. اندوکتانس ناشی از فوران داخلی یک هادی اندوکتانس یک خط انتقال برابر فوران در بر گیرنده آن به ازای عبور جریان یک آمپر است.در خطوط انتقال ما با هادیهای گروهی سروکار داریم از جمله خط سه فاز با فاصله گذاری یکسان وغیر یکسان که به بررسی آنها می پردازیم. نگامی که فاصله گذاری یکسان نباشد،به دست آوردن اندوکتانس نسبت به خط سه فاز متقارن سخت تر می شود. در این حالت فوران در برگیرنده و اندوکتانس هر فاز یکسان نخواهد بود. اندوکتانس گوناگون هر فاز منجر به نامتعادل شدن مدارمی شود.با جابجا کردن هادیهادرفاصله معین و با یک ترتیب مشخص ، به گونه ای که هر هادی جای ابتدائی دو هادی دیگر را در فاصله یکسان اشغال نماید،می توان سه فاز را متعادل نمود.جابجائی هادیها ، جایگشت نامیده می شود .معمولا خطوط قدرت امروزی در فاصله های منظم جابجا نمی شوندوجایگشت هادیها برای متعادل کردن اندوکتانس فازها ،ممکن است در پست کلید زنی صورت گیرد. خوشبختانه،نامتقارنی بین فازهای یک خط جایگشت نشده کم بوده در بیشتر محاسبات اندوکتانی از آن چشم پوشی می شود.اگراز عدم تقارن چشم پوشی گردد،اندوکتانس از آن چشم پوشی گردد، اندوکتانس هر فاز خط جایگشت نشده برابر میانگین اندوکتانس یک فاز ازهمان خط است که به طور صحیح جایگشت شده باشد. اثرباندل کردن درمحاسبه اندوکتانسدرولتاژهای بسیار بالا(EHV)،یعنی ولتاژهایبالاتر ازkv 230،اگرهر فاز دارای یک هادی باشد،کرونا وافت قدرت ناشی ازآنو بویژهتداخل با خطوط مخابراتی پدید می آید.چنانچه هر فاز دارای دو یا چند هادی باشد که در مقایسه با فاصله گذاری فازها به یکدیگر نزدیک باشند،گرادیان ولتاژبالا در هادی در محدوده EHV کاهش می یابد.چنین خطی را خط با هادیهای گروهی می نامند.گروه دارای دو،سه یا چهار هادی است.مزیت مهم گروهی بودن هادیها،کاهش راکتانس است.افزایش تعداد هادیهای گروه،راکتانس واثر کرونا را کاهش می دهد. خاصیت خازنی خط انتقالظرفیت خازنی خط انتقال ناشی از اختلاف پتانسیل بین هادیهاست که باعث می شود هادیها مانند صفحه های خازن باردارشوند.ظرفیت خازنی بین هادیها،میزان بار به ازای واحد اختلاف پتانسیل استودر مورد هادیهای موازی مقداری است ثابت که به اندازه و فاصله بین هادیها بستگی دارد.در خطوط قدرت کمترازkm 80 اثر ظرفیت خازنی کم بوده قابل چشم پوشی می باشد اما در خطوط بلند تربا وولتاژبیشتر به صورت افزاینده ای اهمیت می یابد. ولتاژمتناوبی که به خط انتقال اعمال می گردد، باعث می شود که میزان بارالکتریکی در هر نقطه، هماهنگ با مقدار لحظه ای ولتاژ بین دو هادی درآن نقطه،کو یا زیادشود.تغییربارهمان جریان الکتریکی است واین جریان که حا صل باردار وبی باردار شدن متناوب خط در اثر ولتا ژمتناوب است ، جریان باردار کننده خط نامیده می شود.از آنجا که ظرفیت خازنی بین هادیها به صورت موازی می باشد، جریان باردارکننده حتی درحالت مدار باز شدن خط وجود دارد.این جریان علاوه بر افت ولتاژدرطول خط بر بازده،ضریب توان خط وپایداری سیستمی که خط جزئی ازآن است نیز اثر می گذارد. پایه بررسی ظرفیت خازنی،قانون گوس در میدانهای الکتریکی می باشد. براساس این قانون بار الکتریکی کل داخل یک سطح حلقه بسته برابر فوران الکتریکی است که از سطح بیرون می آید.به عبارت دیگر،بارکل داخل یک سطح حلقه بسته برابرفوران الکتریکی است که از سطح بیرون می آید.به عبا رت دیگر،بار کل سطح حلقه بسته برابر انتگرال مولفه چگالی فوران الکتریکی روی سطح می باشد. ظرفیت خازنی خط سه فاز با فاصله گذاری نامتقارنهنگامی که فاصله گذاری هادیهای یک خط سه فاز یکسان نباشد،محاسبه ظرفیت خازنی مشکلتر می شود.در یک خط معمولی جایگشت نشده، ظرفیت خازنی به خنثای میانگین هر یک از فازها نسبت به خنثی برابر نیستند.در یک خط جایگشت شده،ظرفیت خازنی به خنثی میانگین فازهای دیگر برابر است،چون هادی هر فاز در دوره کامل جایگشت،مکان فازهای دیگر را در فاصله های یکسان اشغال می کند.عدم تقارن خط جایگشت نشده در بیشتر حالتها کم بوده محاسبات ظرفیت خازنی ماند خط جایگشت شده انجام می شود. به دست آوردن ظرفیت خازنی خط سه فاز به طور دقیق کاری مشکل است مگر این که فاصله گذاری تخت بوده فاصله بین هادیهای مجاور یکسان باشد.درفاصله گذاری معمولی با هادیهای متداول با فرض اینکه بار واحد طول هادی در همه بخشهای دوره جایگشت یکسان باشد،ظرفیت خازنی با دقت کافی به دست خواهد آمد.با چنین فرضی در مورد بارها، ولتاژ بین یک زوج هادی درهر یک از بخشهای دوره جایگشت یکسان نمی باشد، پس باید اندازه میانگین بر ای ولتاز بین هادیها به دست آورد و ظرفیت خازنی را با این اندازه میانگین بررسی نمود. اثر زمین بر ظرفیت خازنی خط انتقال سه فاز زمین بر ظرفیت خازنی خط انتقال به علت تغییر دادن میدان الکتریکی خط ، اثر می گذارد، اگر زمین را یک هادی کامل به صورت یک صفحه افقی بی نهایت فرض کنیم، در می یابیم که میدان الکتریکی ناشی از هادی باردار نزدیک سطح زمین با حالتی که سطح هم پتانسیل زمین وجود ندارد، یکسان نمی باشد.میدان الکتریکی هادی باردار شده برای سازگار شدن با سطح زمین نیرویی را متحمل می شود.البته،فرض مسطح بودن و پستی و بلندیهای آن کاملا معتبر نیست.اما این فر ض ما را توانا می سازد تا اثر هدایت زمین را در محاسبه ظرفیت خازنی بفهمیم. اگر مداری شامل یک هادی هوایی با مسیر برگشت از زمین در نظر بگیریم، هنگام باردار شدن هادی، بارها از زمین روی هادی قرار می گیرند واختلاف پتانسیل بین هادی و زمین بوجود می آید. زمین دارای بار مساوی ولی از نظر علامت مخالف با هادی است. خطوط فوران الکتریکی از بارهای روی هادی ب ه بارهای روی زمین به سطح هم پتانسیل زمین عمود است چون سطح را،هادی کامل فرض کرده ایم.تصور کنید درزیرزمین درفاصله ای برابر با فاصله هادی هوایی اصلی تا زمین، یک هادی فرضی با همان اندازه و شکل هادی اصلی وجود داشته باشد. اگر زمین را حذف کرده وباری مساوی ولی مخالف بار هادی فرضی قرار دهیم،صفحه میانی هادی اصلی وهادی فرض ی یک سطح همان مکان را به عنوان سطح هم پتانسیل زمین اشغال میکند. فوران الکتریکی بین هادی هوایی واین سطح هم پتانسیل، همان فوران الکتریکی است که بین هادی وزمین وجود داشت . بنا براین برای محاسبه ظرفیت خازنی باید به جای زمین، یک هادی باردار شده فرضی در زیر زمین با فاصله ای برابر با فاصله زمین تا هادی اصلی قرار دهیم. این هادی دارای باری مساوی ولی مختلف العلامه با بارهادی اصلی است وهادی تصویری یا هادی قرینه نامیده می شود. روش کاربرد هادی قرینه به جای زمین برای محاسبه ظرفیت خازنی یک هادی هوایی را می توان برای بیش از یک هادی نیز به کار برد. در این صورت اگر به جای هرهادی هوایی، یک هادی قرینه درنظر گرفته شود، فوران الکتریکی بین هادیهای اصلی و قرینه های انها بر صفحه ای که به جای زمین قرارمی گیرد عمود بوده واین سطح، یک سطح هم پتانسیل می باشد.فورانهای الکتریکی بالای این صفحه به حالتی که زمین به جای هادیهای قرینه قرار داشت، برابر است. ظرفیت خازنی و باندل کردنهدف ما در خطوط انتقال کاهش اثر سلفی خط و افزایش اثر خازنی آن است.برای این کار دو راه وجود دارد: 1-زیاد کردن سطح مقطع سیم ها 2- استفاده از هادی های گروهی یه به اصطلاح باندل کردن روش اول با توجه به اینکه هادیهای به کار رفته در خطوط انتقال 30% تا40%هزینه کل خط را شامل میشود به هیچ وجه به صرفه نیست، بنابر این از هادیهای گروهی استفاده میکنیم که هوم بهعث کاهش اثر کرونا وخاصیت سلفی خط می شود وهم باعث افزایش اثر خازنی خطوط انتقال می شود .با مقایسه روابط بدست آمده برای سلف وخازن خط انتقال مشاهده می شود که این دو رابطه دوگان یکدیگرندودر کل تعداد معادلات حاکم بر محیط کم بوده و روابط بدست امده در تمام زمینه ها کاملا مشابه بوده ودوگان یکدیگرند. افزایش ظرفیت خطوط انتقال در ۲۴ آوریل سال ۱۹۹۶ كمیسیون تنظیم انرژی فدرال (FERC) مربوط به كشورهای آمریكا، كانادا، شمال كالیفرنیا و مكزیك در پاسخ به مفاد قانون سیاست انرژی (EPACT) سال ۱۹۹۲ یك قانون نهایی بنام امریه شماره ۸۸۸ صادر كرد. امریه شماره ۸۸۸ راه را برای رقابت عمده فروشی برق هموار میكند. در اجرای این امریه شركتهای خدماتی برق و گاز كه مالكیت، كنترل یا بهرهبرداری از خطوط انتقال را بعهده دارند میتوانند بدون تبعیض به تعرفهها دسترسی آزاد داشته باشند. دومین قانون بنام دستور شماره ۸۸۹ است كه در همان تاریخ صادر شد. طبق این امریه لازم است مالكیت سیستمهای خطوط انتقال برق و شركتهای وابسته به آنها به اطلاعات روز دسترسی كامل داشته باشند و برای فروش برق از طریق سیستم انتقال از مزیت رقابت غیرعادلانه استفاده نكنند. انتظار میرود دستورهای ۸۸۸ و ۸۸۹ و سایر اقدامات كمیسیون خدمات عمومی ایالتی به منظور ایجاد رقابت بیشتر در صنعت نیروی برق باعث تقاضای زیاد برای خدمت انتقال برق شود. قانون سیاست انرژی اعلام میدارد چون ظرفیت انتقال محدود است شركت خدمات برق بایستی ظرفیت خطوط انتقال خود را افزایش دهد ودر صورت نیاز خدمات انتقال را توسعه دهد. بهرحال به دلایل مسائل زیستمحیطی، اثرات بهداشتی احتمالی میدانهای مغناطیسی و الكتریكی (EMF)، نگرانی در مورد منافع ویژه گروهها و نگرانی برای كاهش ارزش املاكی كه در مسیر خطوط انتقال قرار میگیرند دریافت مجوز برای محل و ساخت سیستم خطوط انتقال جدید مشكلتر میشود. توسعه ۸/۱۰۱۲۶ مایل خطوط انتقال در كشورهای آمریكا، كانادا، شمال كالیفرنیا، مكزیك هماكنون در حال برنامهریزی و یا در دست ساخت است. ساخت بسیاری از این خطوط ممكن است با تاخیر مواجه شود و یا اصلاً اجرا نشود. بدلیل مشكلات مربوط به ساخت و نصب خطوط انتقال جدید، بررسی روشهای ممكن برای افزایش ظرفیت و توان انتقال برق در خطوط انتقال موجود و حداكثر استفاده از سیستمهای انتقال موجود بسیار حایز اهمیت است و باید مورد توجه قرار گیرد. بدلیل هزینه و زمان زیاد ساخت خطوط انتقال جدید توسعه و افزایش ظرفیت خطوط انتقال (در صورت امكان) روش جالب توجهی است. این مقاله سیستم برق را برای سیاستگزاران و قانونگزاران توصیف میكند و موانع حرارتی، ولتاژ و بهرهبرداری از توانایی انتقال از یك نقطه به نقطه دیگر را برای آنها مشخص میكند. در اینجا بعضی از اصلاحات احتمالی این موانع از طریق توسعه ظرفیت همراه با مقایسه هزینه توسعه ظرفیت خطوط انتقال با هزینههای ساخت و نصب خطوط انتقال جدید ارایه می شود. ●توصیف تاسیسات بزرگ نیروی برق خطوط انتقال و خطوط توزیع بوسیله میزان ولتاژ آنها طبقهبندی میشوند. خطوط انتقال بطور كلی از ۱۱۵ كیلوولت و بیشتر یعنی ۷۶۵ كیلوولت تعیین میشوند. خطوط فوق توزیع بین ۶۹ كیلوولت و ۱۳۸ كیلوولت و خطوط توزیع كه برق مشتركان را تامین میكنند كمتر از ۶۹ كیلوولت هستند. تاسیسات انتقال معمولاً مشخصكننده بالاترین ولتاژ یا ولتاژهایی است كه در سیستم معینی استفاده میشود و انرژی الكتریكی را از نیروگاهها به خطوط توزیع انتقال میدهند. در اغلب تاسیسات انتقال از خطوط جریان متناوب هوایی استفاده میشود. بهرحال بعضی از تاسیسات خطوط انتقال هوایی با جریان مستقیم و كابلهای زیرزمینی و زیردریایی نیز وجود دارند. ترانسفورماتورهای قدرت در نیروگاهها برای بالابردن ولتاژ برق از ولتاژ تولید به ولتاژ انتقال و در پستهای توزیع برای كاهش ولتاژ برق انتقالی به ولتاژ سیستم توزیع استفاده میشوند و در سایر مكانها برای اتصال سیستمهای انتقال طراحی شده در ولتاژهای مختلف بكار میروند. پستهای بزرگ قدرت برق را به سیستم فوق توزیع كه مابین سیستمهای انتقال و توزیع است انتقال میدهد. سیستم توزیع برق را به مشتركان مسكونی و تجاری و برخی از صنایع كوچكتر انتقال میدهد. پستهای برق برای تغییرو تبدیل انرژی الكتریكی به ولتاژهای مختلف، انتقال انرژی الكتریكی از یك خط به خط دیگر و هدایت جریان برق در مواردی كه مشكلی در خط انتقال یا سایر تجهیزات پیشامد میكند مورد استفاده قرار میگیرند و بنابراین از تاسیسات برق و بهرهبرداری از آنها محافظت بعمل میآید. سیستمهای قطع مدار (جریان) باعث قطع جریان برق از تجهیزات آسیبدیده میشود و بنابراین بیشترآسیبزدن به آنها جلوگیری بعمل میآورد. برای اینكه از تاسیسات عظیم برق بطور اطمینان بخش بهرهبرداری بعمل آید این تاسیسات باید بر اساس اصول زیر طراحی و بهرهبرداری شوند: ▪ مجموع تولید برق در هر لحظه باید با مجموع برق مصرفی و تلفات آن در سیستم انتقال و توزیع مساوی باشد. ▪ برق میتواند از طریق سیستم انتقال طبق قوانین فیزیكی جریان داشته باشد و نمیتواند از طریق خطوط معینی جریان یابد. ▪ برای سرویسدهی بدون وقفه، ظرفیت ذخیره در تولید و انتقال در هنگام طراحی سیستم باید در نظر گرفته شود. ● عوامل محدودكننده در تاسیسات (سیستم) انتقال مقدار نیروی برق در خط انتقال حاصل ولتاژ و جریان است و عاملی است كه كنترل آن مشكل بوده و «عامل قدرت» نامیده میشود. در صورتیكه در خطوط، ظرفیت انتقال به اندازه كافی باشد نیروی برق اضافی میتواند با اطمینان كامل منتقل شود. در سیستم انتقال سه نوع عامل محدودكننده ظرفیت انتقال برق را محدود میكنند: عامل حرارت و جریان، عامل ولتاژ و عامل بهرهبرداری از سیستم. ● عامل حرارتی و جریان محدودیتهای حرارتی معمولیترین عوامل محدودكنندهای هستند كه توانایی و ظرفیت انتقال برق را در خط انتقال، كابل و ترانسفورماتور محدود میكنند. خط انتقال در برابر جریان الكترونها مقاومت میكند و باعث تولید گرما میشود. میزان گرمای ایجاد شده در تجهیزات خط انتقال به جریان یعنی میزان جریان الكترونها و همچنین به شرایط آب و هوایی محیط ارتباط دارد مانند درجه حرارت، سرعت باد، مسیر باد به دلیل تاثیرات آب و هوا و پراكندگی حرارت در هوا. حدود گرما برای خطوط انتقال معمولاً برحسب جریانهای برق بیان میشود. بدلیل اینكه گرمای بیش از حد به دو مساله احتمالی منتهی میشود محدودیتهای گرمایی تحمیل میشود. این دو مساله عبارتند از: ۱) خط انتقال به دلیل گرمای زیاد، قدرت خود را از دست میدهد و این گرمای زیاد عمر خط را كاهش میدهد. ۲) خط انتقال منبسط شده و در مركز فاصله بین دكلهای نگاهدارنده آن دچار خمیدگی میشود. در صورتی كه درجه حرارت بكرات بسیار زیاد باشد خط هوایی دایماً كشیده می شود و ممكن است فاصله آن از زمین كمتر از اندازهای باشد كه به دلایل ایمنی لازم است. چون این گرم شدن بیش از حد بطور تدریجی انجام میشود و برای مدت زمانهای محدود جریانهای بیشتری انتقال مییابد. گرمای عادی برای خط انتقال در اثر میزان جریان برق ایجاد میشود كه این خط بتواند آنرا دایماً انتقال دهد. مقادیر اضطراری اندازههایی هستند كه خط میتواند برای مدت معینی مثلاً چند ساعت از عهده آنها برآید. كابلهای زیرزمینی و ترانسفورماتورهای برق نیز بوسیله عوامل گرمایی محدود میشوند. كابلهای زیرزمینی در هنگام بهرهبرداری در درجه گرمای بیش از حد به دلیل خسارت وارد شدن به عایق از عمر سرویسدهی آنها كاسته میشود. ترانسفورماتورهای قدرت نیز طوری طراحی شدهاند كه در حداكثر افزایش درجه گرما در هنگام بهرهبرداری از عایق آنها محافظت به عمل آید. ● محدودیتهای ولتاژولتاژ عبارت است از مقدار فشاری كه واحد نیروی الكتروموتیو برای جریان الكتریسیته در خط انتقال لازم دارد. به دلیل وجود اختلاف در تقاضای برق و وجود نواقصی در خط انتقال و توزیع ولتاژ دچار نوساناتی میشود. در هنگام طراحی خط انتقال در مورد میزان حداكثر ولتاژ محدودیتهایی تعیین میشود. در صورتی كه از این میزان حداكثر تجاوز شود، اتصال كوتاه، تداخل امواج رادیویی و نویز اتفاق میافتد. به ترانسفورماتورها و سایر تجهیزات پستها و یا تسهیلات مشتریان برق نیز ممكن است خسارت وارد شود. محدودیت حداقل ولتاژ بر اساس نیاز مشتریان برق نیز وجود دارد. ولتاژهای پایین باعث بدكار كردن لوازم برقی مشتریان خواهد شد و ممكن است موتور آنها خسارت وارد كند. از انتهای ارسال برق به انتهای دریافت آن در انتهای خط انتقال اتفاق میافتد. افت ولتاژ در طول خط انتقال جریان متناوب تقریباً متناسب با جریان راكتور (واكنش) و واكنش خط است. واكنش خط با افزایش طول خط افزایش مییابد. خازنها و راكتورها (فعالكنندهها) بر اساس نیاز روی خطوط انتقال برق نصب میشوند تا مقدار افت ولتاژ را تا حدی كنترل كنند. بدلیل اینكه میزان ولتاژ و سطح جریان تعیینكننده جریان برقی است كه میتوان به مشتریان تحویل داد این موضوع بسیار حائز اهمیت است. ● محدودیتهای بهرهبرداری از تاسیسات برقمحدودیتهای بهرهبرداری از تاسیسات عظیم برق از شرایط ایمنی و قابلیت اطمینان سرچشمه میگیرد. این شرایط به حفظ جریان برق در خطوط انتقال و توزیع شبكه مربوط میشود. وقتی كه تقاضا تغییر میكند، وقتی كه الگوهای تولید تغییر میكند یا وقتی كه در اثر قطع یا وصل یك مدار در سیستم انتقال یا توزیع تغییر حاصل میشود در الگوهای توزیع جریان برق تغییر بوجود می آید. ● جریان برق در شبكههاوقتی كه یك شركت تامینكننده برق یا كنترلكننده برق، نیروی برق را از یك نقطه به نقطه دیگر انتقال میدهد برق تولیدی در تمامی مسیرها بدون توجه به مالكیت خطوط جریان مییابد. مقدار برقی كه در هر مسیر در خطوط انتقال جریان دارد به مقاومت ظاهری برق در مسیرهای مختلف ارتباط دارد. مقاومت ظاهری خط انتقال به طول خط وجزییات طراحی آن بستگی دارد. در مقایسه با مسیری كه از مقاومت بیشتری برخوردار است مسیر خطی كه دارای مقاومت ظاهری كمتری است بخش بیشتری از مجموع برق را جذب و منتقل میكند. وقتی كه شركتهای تامینكننده خدمات برق با سایر شركتها یا مشتریان وارد معامله عمده برق میشوند قرارداد مسیر خطوط یا تاسیسات انتقال را كه قرار است برق از طریق آن جریان داشته باشد تنظیم میكنند. جریانهای برق در واقع از قرارداد مسیر پیروی نمیكنند بلكه ممكن است از طریق مسیرهای موازی سایر سیستمهای انتقال جریان یابند كه این خود به شرایط باربرق در زمان انتقال بستگی دارد. به این گونه جریانها «جریانهای مسیر موازی» گفته میشود. وقتی كه سیستمهای انتقال بطور مستقیم یا غیر مستقیم در بیش از یك نقطه به یكدیگر متصل میشوند، جریانهای برق در شبكه سیستمهای دیگر جاری می شوند و به این ترتیب جریانهای حلقهای «لوپ» تشكیل میشود. جریانهای حلقهای و جریانهای موازی هر دو ممكن است مقدار برقی كه سایر سیستمها میتوانند انتقال دهند محدود كنند. ● عمل پیگیری برای ایمنی سیستم به دلیل روندهای پیشگیری از بهرهبرداری (عملكرد) برای ایمنی تاسیسات محدودیتهایی در مورد تاسیسات انتقال وجود دارد. تاسیسات (سیستم) بزرگ برق برای تداوم خدمات تامین برق با در نظر گرفتن وقوع اشكالاتی در واحد تولید، خط انتقال یا در هر یك از سایر اجزاء تشكیلدهنده طراحی و بهرهبرداری میشود. مفهوم روندهای پیشگیری یعنی بهرهبرداری از سیستم بطوریكه اگر در نتیجه خرابی و قطع یك یاچند جزء بقیه سیستم بكار خود ادامه دهد و در برقرسانی وقفهای ایجاد نشود. این امر توسط شورای اطمینان برق آمریكای شمالی (NERC) به عنوان عامل اولیه برای جلوگیری از بروز اشكال در یك ناحیه در اثر عدم كارآیی در ناحیه دیگر به شمار میرود. شورای اطمینان برق آمریكای شمالی استانداردها و دستوالعملهایی را برای هماهنگی سراسری روند خدمات در ایالات متحده، كانادا و بخشهایی از مكزیك فراهم میكند. دستورالعملهای این شورا توصیه میكند كه سیستمها بصورتی باشند كه بتوانند هرگونه اشكال احتمالی را برطرف كنند.طبق نظریه شورای اطمینان برق آمریكای شمالی توانایی كنترل و برطرف كردن چندین اشكال باید از جمله نیازهای بهرهبرداری باشند. پیروی و اجرای دستورالعملهای این شورا (NERC) باعث افزایش ایمنی در عملكرد و بهرهبرداری از تاسیسات و كاهش فركانسهایی است كه دچار مشكلات عمده هستند. ضرورتهای پیشگیری شورای مذكور شامل ایجاد ظرفیت تولید كافی به منظور فراهم كردن خدمات بهرهبرداری اضافه بر تقاضا و محدودیت انتقال برق در تاسیسات انتقال است. در این صورت سیستم طوری عمل میكند كه هر یك از عوامل زیردرجه حرارت عادی تحت شرایط عادی و حدود اضطراری در زمان بروز مشكلات قرار گرفته و عمل خواهند كرد. بنابراین در هنگام بروز هرگونه اشكال در سیستم و برای رفع آن میتوان از ظرفیت ذخیره استفاده كرد. ● پایداری سیستم (تاسیسات) مسائل مربوط به پایداری سیستمهای برق نشاندهنده سایر محدودیتهای بهرهبرداری از سیستم است. این مسائل بطور كلی به دو گروه زیر تقسیم میشوند: ۱- همزمان كردن ژنراتورهای (مولدهای) سیستم ۲- جلوگیری از افت ولتاژ در یك سیستم تولید همزمان مرتبط، تمامی ژنراتورها در یك سیستم همزمان و مرتبط، تمامی مولدها بطور همآهنگ با سرعتی میچرخند كه فركانس ثابتی تولید میكنند. در آمریكا این فركانس ۶۰ دور در ثانیه است. وقتی كه در سیستم انتقال اشكالی پیشامد میكند نیازهای قدرت مولدها تغییر میكند. این اشكال ممكن است باعث كاهش ضرورتهای قدرت مولد شود. بهرحال قدرت مكانیكی كه توربین را به حركت درمیآورد ثابت میماند و باعث تسریع مولد میشود. پس از برطرف كردن عیب جریان برق تغییر میكند و از سرعت توربین كاسته می شود. این امر باعث نوسان در سرعت مولد و در فركانس جریان برق در سیستم میشود. در صورتی كه شرایط طبیعی یا سیستمهای كنترل این نوسانها را كاهش ندهند سیستم پایدار نخواهد بود. این امر بیثباتی موقت نامیده میشود و ممكن است كار سیستم كاملاً قطع شود. برای جلوگیری از ناپایداری موقت انتقال برق بین منطقهها به اندازهای كه مطالعه احتمال حوادث سیستم تعیین میكند محدود میشود. ناپایداری دائم در صورتی اتفاق میافتد كه مقدار زیادی برق از یك خط یا بخشی از سیستم به نقطهای كه نیروهای همزمان كننده دیگر تاثیری ندارند منتقل شود. ناپایداری دائم یك حادثه غیرعادی است. چون براحتی قابل پیشگیری است. بهرحال ناپایداری دائم به عنوان محدودیتی در انتقال برق عمل میكند. ناپایداری با علائم كوچك كه ناپایداری دینامیك نیز نامیده میشود معمولاً وقتی اتفاق میافتد كه تغییرات عادی در تولید و یا مصرف بقدری كوچك است كه به عنوان عیب به حساب نمیآید ولی در فركانسهای پایین باعث نوسان میشود. این شرایط ممكن است باعث نوسانات زیاد ولتاژ و فركانس شده و به از دست دادن پایداری كل سیستم منتهی شود. ناپایداری ولتاژ در صورتی پیش میآید كه سیستم انتقال برای كنترل جریان راكتیو (واكنشی) بطور صحیح طراحی نشده باشد. مقدار زیادی از جریان برق راكتیو در خطوط انتقال بلند موجب افت شدید ولتاژ در محل مصرف شده و مصرفكنندگان جریانهای زیادی را از سیستم دریافت كنند. این گونه جریانهای زیاد باعث جریان راكتیو اضافی و از دست دادن ولتاژ در سیستم شده و به ولتاژهای پایینتر در محل مصرف منتهی میشود. با ادامه این شرایط افت ولتاژ بیشتر شده لازم است برای جلوگیری از خسارت شدید به سیستم برق مصرفكنندگان قطع شود. در نهایت سیستم برق بطور كامل یا بخشی از آن قطع خواهد شد. ●چارهجویی محدودیتهای ظرفیت تاسیسات انتقالمحدودكنندههای مذكور توانایی سیستم را برای انتقال برق محدود میكنند، بنابراین ظرفیت بهرهبرداری از شبكه انتقال موجود را كاهش میدهند. این بخش از این گزارش در مورد توسعه امكانات به منظور افزایش توانایی انتقال خطوط انتقال موجود بطوریكه ظرفیت بیشتری از برق بتواند با اطمینان از یك بخش سیستم به بخش دیگر یا از یك سیستم به سیستم دیگر منتقل شود. چارهجوییهای مربوط به محدودیتهای حرارتی، ولتاژ و غیره به منظور افزایش ظرفیت انتقال برق و روشهای بهرهبرداری از سیستم تشریح خواهد شد. ● چارهجویی های محدودیتهای حرارتی در اجزاء تشكیلدهنده تاسیسات انتقالبرای رفع و یا كاهش محدودیت در انتقال برق به دلیل افزایش گرما در خطوط انتقال هوایی روشهای زیادی وجود دارد. روشهای موجود برای كابلهای زیرزمینی و ترانسفورماتورها بسیار محدود است. مروری در مورد روشهای بكار گرفته شده به منظور تنظیم گرمای خطوط انتقال راههای افزایش ظرفیت انتقال را با هزینه ناچیز یا بدون هزینه آشكار میسازد. در زمان گذشته برای تعیین میزان حرارت خطوط از روش تخمین و سادهسازی استفاده میكردند و كمترین میزان و بالاترین درجه قابلیت اطمینان ازسیستم را انتخاب میكردند. با روشهای جدید محاسبه ظرفیت انتقال برق در خطوط انتقال بدون هیچگونه تغییر فیزیكی در خطوط بوجود میآید. بعلاوه حدود جریان برق را برای خطوط بر اساس رسیدن به حداكثر درجه حرارت در زمان واقعی با استفاده از اطلاعات شرایط آب و هوای محیط در خط انتقال و اطلاعات جریان برق در مركز كنترل میتوان محاسبه كرد. بعضی از شركتهای خدمات برق درجه حرارت خط انتقال را از طریق استفاده از ردیابهای قرار گرفته روی آن محاسبه می كنند و آنرا به مركز كنترل ارسال میكنند. هزینه یك چنین سیستمی كه شامل سنسورها (گیرندهها) و تاسیسات زمینی است حدود ۰۰۰/۷۰ دلار برای هر مكان تخمین زده شده است. چون محدودیت گرمایی خط انتقال بر اساس گرمای بخشی از آن خط است كه سریعتر از سایر بخشهای گرم میشود. افزایش ظرفیت گرمای كل این خط گاهی اوقات با جایگزین كردن یك عامل ارزان قیمت میتواند نتیجه بخش باشد. تعویض كلید قطع مدار بسیار كمخرجتر از تعویض خط یا نصب خط جدید است. قطعات جایگزین شده را میتوان در جای دیگر در سیستم مورد استفاده قرار داد. ممكن است افزایش درجههای حرارت مجاز و برنامهریزی برای كاهش عمر خطوط قابل قبول باشد. در این روش ممكن است در طول خط خمیدگی ایجاد شود بطوریكه حفظ ارتفاع مجاز خط از زمین امكانپذیر نباشد. در صورتی كه ارتفاع خط تا زمین در تعداد محدودی از فواصل خط كافی نباشد، ساخت و نصب مجدد دكلها برای افزایش ارتفاع آنها و یا كشیدن حصار اطراف بخشهای مسیر عبور كه تحت تاثیر قرار میگیرند بطوریكه آنها را از دسترس خارج كنند از نظر اقتصادی قابل توجیه است. در صورتی كه خمیدگی (شكم دادن بطرف پایین) در سرتاسر خط اتفاق افتد، افزایش ارتفاع دكلهای خط بسیار گران خواهد بود. بعضی اوقات مجدداً كشیدن خط به منظور افزایش ارتفاع خط از زمین امكانپذیر است. افزایش ظرفیت انتقال یك خط با كنترل خمیدگی آن برای حرارت و جریان بیشتر امكانپذیر است. برای این كار دو روش مستقیم و غیرمستقیم وجود دارد. روش مستقیم عبارتست از: محاسبه خمیدگی واقعی خط در وسط آن با استفاده از اطلاعات دریافت شده از سنسورهای نصب شده روی دكلها در مورد كشش افقی و درجه حرارت محیط با استفاده از این روش، مركز كنترل حد واقعی جریانی كه خط تحت شرایط واقعی میتواند از خود عبور دهد را محاسبه میكند. روش غیرمستقیم عبارت است از انتقال درجههای حرارت و سرعت باد و محلهای خمیدگی زیاد به مركز كنترل از طریق رادیو یا تلفن با استفاده از این اطلاعات مركز كنترل خمیدگی را محاسبه كرده و هرگونه روند خطرناك را مشخص میكند. واضحترین و گرانترین روش كاهش محدودیتهای حرارتی در یك خط جایگزین كردن آن با خط (هادی) بزرگتر و مجدداً كشیدن آن یا اضافه كردن یك یاچند خط است. در این روش اسكلت دكلها كه خطوط روی آنها نصب میشود باید مورد توجه قرار گیرد. دكلها طوری طراحی میشوند كه بتوانند وزن خطوط موجود و وزن باران یا برف یخزده روی آنها را تحمل كنند. این دكلها لازم است برای تحمل كردن نیروهای شدید بادهایی كه بطور عمودی در مسیر خطوط میوزند دارای قدرت جانبی كافی باشند. جایگزین كردن خطوط با خطوط بزرگتر (ظرفیت بیشتر) یا اضافه كردن خطوط در كنار آنها معمولاً به تقویت اسكلت دكلها و احتمالاً بتنریزی پایه ستونهای دكلها نیاز دارد. كشیدن یا اضافه كردن خطوط به منظور افزایش ظرفیت انتقال نیز به توسعه تجهیزات پست نیاز دارد. هزینه توسعه هر پست تقریباً ۶۰۰۰۰۰ دلار است.● رفع (چارهجویی) محدودیتهای ولتاژ خطوط تكی اكنون ولتاژهای استاندارد در آمریكا عبارتند از: ۵/۳۴ كیلوولت، ۴۶ كیلوولت، ۶۹ كیلوولت، ۱۱۵ كیلوولت، ۱۳۸ كیلوولت، ۱۶۱ كیلوولت، ۲۳۰ كیلوولت، ۳۴۵ كیلوولت، ۵۰۰ كیلوولت، ۷۶۵ كیلوولت و ۱۱۰۰ كیلوولت (كه هنوز بصورت تجاری نصب نشده است). توسعه و تغییر ولتاژهای خط به دو گروه تقسیم میشود: افزایش در یك گروه ولتاژ و تغییر به گروه ولتاژ متفاوت. افزایش ولتاژ بهرهبرداری در یك گروه ولتاژ روشی است كه چندین دهه مورد استفاده قرار گرفته است. در صورتی كه ضمن بارهای سبك تحت بهرهبرداری عادی سیستم به حد ولتاژ بالاتر نرسد، ولتاژ بهرهبرداری عادی میتواند بدون تغییر عمده در خطوط افزایش یابد. بهرحال لازم است ولتاژهای ژنراتورها را افزایش دهیم و برای تولید ولتاژ جدید ترانسفورماتورها را تعدیل و تنظیم كنیم یا احتمالاً ترانسفورماتورها را تعویض كنیم. برای جلوگیری از جریان راكتیو (واكنشی) اضافی بدلیل ولتاژ افزایش یافته در سیستم جانبی هماهنگی با سیستمهای جانبی لازم است. سایر روشهای چارهجویی مسائل مربوط به ولتاژ كه باعث محدود كردن ظرفیت انتقال میشوند شامل كنترل جریانهای راكتیو است. دو نوع منبع راكتیو وجود دارد، خازنها و راكتورها كه به ترتیب جریانهای راكتیو را تولیدو جذب میكنند. نصب خازن یا راكتیو درنقاط مهم خطوط انتقال و توزیع غالباً چارهای برای كنترل جریانهای راكتیو بوده و بنابراین انتقال برق را افزایش میدهد. تغییرات ولتاژ به گروه ولتاژ بالاتر معمولاً به بازسازی اساسی خطوط انتقال نیازدارد. ولتاژهای بالاتر به فاصله بیشترین خطوط وبین اشیاء متصل به زمین از جمله دكلها نیاز دارند. اضافه كردن عایقها و سایر تغییرات باعث افزایش وزن و بار دكلها میشود این تغییرات نیازمند قدرت بیشتر در ساختمان دكلها و پایههای آن است. تبدیلهای (تغییرات) گروه ولتاژ سطوح گرمای عادی(ظرفیت گرمای مجاز) را افزایش میدهد كه به اندازه هادی (سیم) بستگی دارد. بازسازی خط به منظور ولتاژ بالاتر هزینه بیشتری برای تجهیزات پست به همراه دارد. در صورتی كه شبكههای متصل شده در ولتاژ قدیمیتر باقی بمانند در بازسازی خط برای ولتاژ بالاتر لازم است برای اتصال با بقیه سیستم یك ترانسفورماتور در هر یك از دو انتها نصب شود. ● سایر روشهای افزایش انتقال برقسایر روشهای كاهش عوامل محدودكننده انتقال برق كه به اجزاء تشكیلدهنده سیستم ارتباط دارد عبارتند از: تبدیل برجهای (دكلهای) تكمداره به برجهای چند مداره و تبدیل خطوط جریان متناوب (AC) به خطوط جریان مستقیم با ولتاژ بالا (HVDC)، اغلب مدارهای انتقال ۲۳۰ كیلوولت و پایینتر بر روی خطوط برجهای دو مداره نصب میشوند. مدارهای با ولتاژ بالاتر عموماً روی برجهای تكمداره نصب میشوند. برای تبدیل خط تكمداره به خط دو مداره لازم است عرض مسیر عبور خط و ارتفاع برج را كاملاً افزایش دهیم. وقتی كه مقادیر زیادی برق در فواصل طولانی منتقل میشود تبدیل خط جریان متناوب (AC) به خط جریان مستقیم با ولتاژ بالا (HVDC) یا تعویض خط AC بسیار حائز اهمیت است. خطوط جریان مستقیم با ولتاژ بالا از طریق مبدلها در هر انتها به سیستمهای جریان متناوب متصل میشوند. جریان برق در انتهای ارسالكننده از جریان متناوب به جریان مستقیم تبدیل میشود و در پایان دریافت از جریان مستقیم به جریان متناوب تبدیل میشود. برای انتقال مقدار زیاد برق مدارهای جریان مستقیم با ولتاژ بالا نسبت به مدارهای متناوب مزیتهایی دارند. مدارهای جریان مستقیم با ولتاژ بالا را بدون توجه به بهرهبرداری مدارهای متناوبی كه به آنها متصل هستند میتوان برای انتقال مقدار معینی برق كنترل كرد. در صورتی كه خطوط جریان مستقیم با ولتاژ بالا به موازات خطوط جریان متناوب عمل كنند، قطع برق در خط جریان متناوب موازی باعث نمیشود بار اضافی به خط جریان مستقیم منتقل شود. همینطور قطع خط جریان مستقیم با ولتاژ بالا بارخطوط جریان متناوب موازی را افزایش نمیدهد. مدارهای جریان مستقیم با ولتاژ بالا مقاومت دارند ولی واكنش جریان متناوب را ندارند بنابراین نسبت به مدارهای جریان متناوب افت ولتاژ كمتری دارد. مدارهای جریان مستقیم با ولتاژ بالا دارای نقطه ضعف هستند یعنی آنها در انتهای مدار نیاز به ایستگاههای مبدل دارند كه این ایستگاهها بسیار گران هستند و بنابراین این مدارها بجز مواردی كه برق برای فواصل طولانی انتقال داده میشود غیر اقتصادی هستند. مدارهای جریان مستقیم باولتاژ بالا مسائل ناپایداری سیستم مدارهای جریان متناوب را ندارند. ● راه های چارهجویی محدودیتهای بهرهبرداری از سیستم ۱- تغییر جریان برق همانطور قبلاً اشاره كردیم، توزیع جریانهای برق از طریق شبكه انتقال به مقاومت ظاهری خطوط مختلف بستگی دارد. در صورتی كه جریان برق در یك سیستم طوری تغییر داده شود كه بار روی خطی كه اشكال دارد كاهش داده شود، برق بیشتری را میتوان انتقال داد. گاهی اوقات با تغییر اتصالات خطوط در پستهای مختلف به منظور افزایش جریان برق از طریق بعضی خطوط و كاهش آن در سایر خطوط جریان برق از طریق سیستم انتقال بهتر منتقل میشود. تنظیم مجدد از قبیل بستن بعضی از كلیدهای قطع مدار و بازكردن سایر كلیدها احتیاج به سرمایهگذاری نیاز ندارد. سایر تنظیمهای مجدد هزینه كوچكی خواهد داشت مانند اضافه كردن كلیدهای قطع مدار برق یا اتصال مجدد یك خط از یك باس (bus) در پست به باس دیگر. بین بخشهای سیستم انتقال چندین مسیر وجود دارد. اضافه بار قبل از سایر خطوط در خط تكی قرار میگیرد. برای رفع این مشكل و تغییر جریان برق بعضی از دستگاهها را میتوان مورد استفاده قرار داد. تنظیمكننده زاویه انحراف فاز (PAR) یا تنظیمكننده زاویه قدرت غالباً برای این منظور استفاده میشود. تنظیمكننده زاویه انحراف فاز مانند ترانسفورماتور بوده كه جریانی را از طریق خط تنظیم شده القا میكند. توزیع جریان برق درخط تغییر میكند ولی مجموع جریان برق انتقالی تغییر نمیكند. استفاده از تنظیمكنندههای زاویه انحراف فاز در سالهای اخیر افزایش یافته و بهرحال نصب آنها نسبتاً گران است. با كاهش مقاومت ظاهری خط توسط قرار دادن یك سری خازن یا با افزایش مقاومت ظاهری توسط یك سری راكتور میتوان جریان برق را تغییر داد. سری خازنها غالباً در خطوط انتقال بلند استفاده میشوند تا از این طریق مقاومت ظاهری جریان برق را كاهش داده و بنابراین افت ولتاژ را در ط.ول خط كاهش میدهد. همچنین میزان تلفات مربوط به جریان راكتیو را كاهش میدهد خازنها جریان برق را در خطی كه روی آن نصب شدهاند افزایش و جریان برق را در سایر خطوط موازی كاهش میدهند سری راكتورها جریان برق را از طریق خطی كه در صورت نبودن راكتورها تحت بار اضافی قرار میگرفت كاهش میدهند. از راكتور غالباً كمتر از خازنها استفاده میشود. راكتورها یك نقطه ضعف دارند و آن این است كه آنها افت ولتاژ را در خطی كه باعث كاهش ظرفیت انتقال برق میشود افزایش میدهند. ۲- تغییر در فلسفههای بهرهبرداری روش بهرهبرداری جلوگیریكننده تحت عنوان محدودیتهای بهرهبرداری سیستم مشخص میكند. در صورتی كه اشكالی در سیستم پیش آید لازم نیست هیچگونه اقدامی به عمل آید. در صورتی كه احتمال وقوع حادثه وجود داشته باشد سیستم قادر است بدون بیش از حد گرم شدن خطوط، مسائل ولتاژ و ناپایداری به آن جواب دهد. این روش باعمل «اصلاحكننده» كه نیاز به اقدام فوری دارد فرق دارد مانند قطع و وصل مدارها یا اقدامات دیگر پس از وقوع حادثه، بنابراین عملكرد سیستم كفایت میكند. عمل اصلاحكننده كمتر از عمل جلوگیری قابل اعتماد است ولی ضمناً بهرهبرداری عادی باعث میشود برق بیشتری منتقل شود. اقدامات اصلاحكننده گاهی اوقات بین سیستمها بقدری پیچیده میشود كه در صورت وقوع حادثه، سیستم قادر به ادامه بهرهبرداری نیست. تغییر جریان برق برای كاهش بار در خط بحرانی باعث افزایش انتقال برق میشود. فنآوریها بجای اینكه در جهت روشهای جلوگیری كننده باشند در جهت روشهای اصلاحكننده یا رفع نقص توسعه داده میشوند. فنآوریهایی كه به عنوان بخشی از سیستم قابل انعطاف انتقال جریان متناوب (FACTS) توسعه یافتهاند را میتوان برای كمك به كاهش محدودیتهای بهرهبرداری سیستم بازدارنده جریان استفاده كرد. سیستم قابل انعطاف انتقال جریان متناوب برای كنترل سریعتر و دقیقتر تجهیزات به منظور تغییر طریقهای كه جریانهای برق سیستم تحت شرایط عادی یا هنگام وقوع مشكل در سیستم تقسیم شود از كلیدهای الكترونیك و سایر تجهیزات استفاده میكند. برای كاهش جریان در خطی كه اضافه بار دارد و افزایش بهرهبرداری از ظرفیت اضافی مسیرهای دیگر میتوان از تجهیزات FACTS استفاده كرد. این امر باعث افزایش ظرفیت انتقال در تاسیسات انتقال و توزیع موجود تحت شرایط عادی میشود. اكنون بعضی از كاربردهای FACTS امكانپذیر در حال استفاده است. در حالی كه سایر كاربردهای آن در مراحل پیشرفت است. ● نتیجهگیری شركتهای خدمات عمومی برق در انتظار رقابت شدید در آینده هستند و در حال حاضر روشهای پایین آوردن هزینههای خود را دنبال میكنند. اقدام كردن در مورد افزایش ظرفیت انتقال برق بوسیله بالابردن میزان توانایی خطوط موجود مقرون بصرفه و جالب توجه است. چون این عمل باهزینه نسبتاً كمتر از هزینه ساخت خطوط موجود در مدت زمان كوتاهتری انجام میشود. ساخت خطوط انتقال جدید با در نظر گرفتن موضوعات محیطزیستی، اثرات بهداشتی احتمالی میدانهای الكترومغناطیسی و كاهش ارزشهای دارایی واقع در مسیرهای خطوط انتقال كار مشكلی است. توانایی انتقال یك سیستم را میتوان افزایش داد در صورتی كه بتوانیم موانع (محدودیتهای) بهرهبرداری از سیستم خطوط انتقال موجود را از طریق روش هر مذكور از سر راه برداریم. چون بازسازی با افزایش تجارت عمده در این زمینه ادامه دارد. 2 لینک به دیدگاه
ارسال های توصیه شده