samyar 3407 اشتراک گذاری ارسال شده در 18 آذر، ۱۳۸۹ فن آوری نانو نقطه همگرایی علوم مختلف در آینده است. در این میان یکی از پرکاربردترین شاخه ها نانو الکترونیک می باشد. امروزه افزایش ظرفیت ذخیره داده، افزایش سرعت انتقال آن و کوچک کردن هر چه بیشتر وسائل الکترونیکی و به خصوص ترانزیستورها دارای اهمیت بسیاری است زیرا کوچک تر شدن ابعاد وسائل الکترونیکی علاوه بر افزایش سرعت پردازش، توان مصرفی را نیز کاهش می دهد و نانو الکترونیک می تواند در رسیدن به ابعاد هر چه کوچک تر راهگشا باشد. برای آشنایی بیشتر با این فن آوری و درک عمیق تر پدیده های گوناگونی که در ابعاد نانو متر روی می دهد و در نتیجه تحلیل دقیق نتایج و اصلاح اصولی روش های آزمایش، باید علوم پایه ای نظیر فیزیک کوانتوم و مکانیک کوانتومی و فیزیک حالت جامد مورد مطالعه قرار بگیرند. اهداف: در دهههای اخیر شاهد پیشرفتهای زیادی در زمینه افزایش قابلیت ذخیره اطلاعات روی حافظهها و همچنین کاهش اندازه آنها بودهایم که نتیجه آن دو برابر شدن سرعت پردازش در عرض هر 18 ماه بوده است و این، انتظار تحولی عظیم در صنعت میکروالکترونیک را طی 15 سال آینده از نظر بنیادی و اقتصادی نوید میدهد. اکنون نیز تحقیقات ادامه داشته و هدف از آن تولید خواص نمونه و شکل ظاهری جدید و در نتیجه خلق نانوالکترونیک جدید است. کاربرد نانوالکترونیک در صنعت: با استفاده از این فناوری میتوان ظرفیت ذخیرهسازی اطلاعات را در حد ۱۰۰۰ برابر یا بیشتر افزایش داد که این نهایتاً به ساخت ابزارهای ابرمحاسباتی به کوچکی یک ساعت مچی منتهی میشود. ظرفیت نهایی ذخیره اطلاعات به حدود یک ترابیت در هر اینچ مربع رسده، و این امر موجب ذخیره سازی ۵۰ عدد DVD یا بیشتر در یک هارد دیسک با ابعاد یک کارت اعتباری میشود. ساخت تراشهها در اندازههای فوقالعاده کوچک بهعنوان مثال در اندازههای ۳۲ تا ۹۰ نانومتر، تولید دیسکهای نوری ۱۰۰ گیگابایتی در اندازههای کوچک نیز از دیگر محصولات آن میباشد. نمونه هایی از کاربرد فن آوری نانو در الکترونیک: 1) کربن نانو تیوب ها (carbon nanotubes) نانو تیوب ها دارای فرم لوله ای با ساختار شش ضلعی هستند. نانو تیوب ها را می توان صفحات گرافیتی فرض کرد که لوله شده اند. بر اساس محور چرخش صفحات نانو تیوب ها می توانند رسانا یا نیمه رسانا باشند. به علت اینکه کربن با سه پیوند همچنان دارای یک اوربیتال خالی p می باشد ، حرکت موجی الکترون ها به راحتی در سطح بیرونی این لوله ها صورت می گیرد. این ساختار کربنی علاوه بر رسانایی بالا دارای استحکام مکانیکی بسیار خوبی نیز است. البته در کنار این مزایا مشکلاتی نیز وجود دارد. اغلب فرآیند های ساخت نانو تیوب ها به گو نه ای می باشند که امکان کنترل و نظارت کامل در طول فرآیند وجود ندارد به عنوان مثال تعیین قطر دقیق و یکسان برای لوله های کشت شده در یک محیط، کنترل تولید نانو لوله های تک دیواره و یا چند لایه و یا ساخت نانو لوله های مستقیم و بدون خم شدگی با طول زیاد از مسائلی است که هنوز در فرآیند بهبود کیفیت تولید نیاز به مطالعه و تحقیقات بیشتری دارد. همچنین به علت پدیده تونل زنی الکترون که یک پدیده کوانتومی است امکان افزایش نشتی جریان و در نتیجه افزایش تلفات وجود دارد که بررسی روش های کاهش احتمال تونل زنی از جمله کارهایی است که می توان انجام داد. از کربن نانو تیوب ها به دلیل رسانایی بالا و مقاومت کم در دمای محیط در ساخت کانال هدایت ترانزیستورها ، نوک میکروسکوپ های عکسبرداری در ابعاد نانو استفاده می شود. 2 ) نانو ترانزیستورها (nanotransistors) طبق قانون مور( MOORE Law) تعداد ترانزیستورها در واحد سطح تراشه های الکترونیکی در هر بازه 10 تا 18 ماهه دو برابر می شود. نام فن آوری رایج امروز در ساخت ترانزیستورها، MOSFET می باشد که بر پایه استفاده از سیلیکون است. کوچکتر شدن ابعاد ترانزیستورها در MOSFET دارای مشکلاتی است که از جمله آن نشتی های جریان متفاوتی است که ایجاد می شود. یکی از روش های حل این مشکل ساخت تراتزیستورها با استفاده از نانو سختارها و به خصوص نانو تیوب ها می باشد. 3 ) محاسبه گر ها در مقیاس نانو ( nanocomputers) امروزه در زمینه های مختلف از جمله فن آوری نانو پیوند میان رشته های مختلف علوم امری انکار ناپذیر است. از جمله نتایج این همکاری طراحی نانو محاسبهگرها می باشد. هیدرو کربن های آروماتیک از ریشه بنزن به علت وجود اوربیتال های p و ابر الکترونی در بالا و پایین آنها و همچنین پدیده رزونانس می توانند محیط انتقال خوبی برای الکترون باشند و بر عکس هیدروکربن های زنجیری مانند نارسانا عمل می کنند. از به هم پیوستن این هیدروکربن ها با هم می توان دیود، گیت های منطقی و مدارهای الکترونیکی را طراحی کرد. 4 ) MRAMها ( Magnetic Random Access Memories ) فن آوری های روز حافظه ( RAM, Flash Memory, …) مشکلات متعددی را برای مصرف کنندگان آنها به وجود آورده است که به عنوان نمونه می توان به سرعت پایین خواندن و نوشتن روی Flash Memories و EEPROM و یا محدودیت اقتصادی افزایش فضای RAM اشاره کرد. MRAM یک فن آوری حافظه پایدار است که علاوه بر سرعت بالا می تواند ظرفیت حافظه بالایی را نیز فراهم کند. اساس کار MRAM بر پایه تفاوت مقاومت الکتریکی لایه های نازک مواد بر اثر قطبیده شدن ذرات آنها در راستاهای متفاوت می باشد؛ که به مقاومت مغناطیسی موسوم است. چون سلول های حافظه MRAM بر پایه ترانزیستور عمل نمی کنند پس در ابعاد کوچک مشکلاتی نظیر تونل زنی رخ نخواهد داد و می توان سلول های حافظه MRAM را تا ابعاد نانو کوچک کرد. 5 ) C60 از جمله نانو ساختارها که حتی نسبت به نانو لوله های کربنی دارای مزایای بیشتری نیز می باشد C60 است. C60 از 12 پنج ضلعی و 20 شش ضلعی تشکیل شده که به شکل متقارنی در کنار هم قرار گرفته اند. مولکول های C60 در محلول های بنزن یافت می شوند که با عمل تبخیر قابل استحصال می باشند. انواع ترکیبات C60 با فلزات، نظیر K3C60 , Cs2RbC60 ، که در آنها فلز فضای خالی درون C60 را پر می کند دارای خاصیت ابر رسانایی در دماهای نسبتاً مناسب می باشند؛ البته تحقیقات برای دستیابی به ترکیباتی با خاصیت ابررسانایی در دماهای بالاتر همچنان ادامه دارد. کاربرد دیگر C60 استفاده از آن به عنوان گیت های منطقی است. با لیتوگرافی طلا روی یک سطح سیلیکونی و عبور جریان از سیم های طلا یک صفحه مشبک ایجاد می شودکه فاصله بین اتصالات آن در حدود نانو متر است. محلول رقیق C60 را بین اتصالات قرار می دهند به طوری که در هر فاصله یک C60 قرار گیرد. با برقرار شدن جریان در سیم های طلا C60 به علت یک پدیده کوانتومی شروع به نوسان می کند و به همین علت جریان در زمان های معینی بر قرار می شود از این خاصیت می توان در طراحی گیت های منطقی استفاده کرد. کارهایی که باید در راستای پیشرفت این علم انجام شود: نانو الکترونیک زمینه گستردهای با پتانسیل ایجاد تغییرات بنیادی در علوم مختلف حتی در پزشکی است و انجام کارهای زیر برای پیشبرد آن میتواند مفید باشد: 1. فهم اصول انتقال در مقیاس نانو 2. گسترش فهم هرچه بهتر روشهای خودچیدمانی(self assembly) ذرات برای انجام کارها به صورت ارزانتر، که این خود مستلزم حل مشکلات ارتباطی و جایگزینی در ترانزیستورهاست 3. یافتن راههایی جدید برای به کار بردن علم الکترونیک و عدم تکثیر ابزار و به جای آن تحقیق راجع به انواع جدیدتر. 2 لینک به دیدگاه
سمندون 19437 اشتراک گذاری ارسال شده در 12 آذر، ۱۳۹۰ در سال 1956 گوردون مور بنيانگذار اينتل تحليلي ارايه كرد كه بر طبق آن هر 18 ماه تعداد ترانزيستورهاي بكار رفته در ريزپردازهاي اينتل دو برابر مي شود كه نصف شدن ابعاد گيت ترانزيستورها با شرط ثابت بودن اندازه تراشه سيليكوني در آن ميتواند نتيجه اين قوانين باشد. اين قاعده به قانون مور موسوم شد. اين نصف شدن در واقع پيامآور ابعاد اقتصادي بود يعني هر چه گيت كوچكتر ميشد ترانزيستور ميتوانست سريعتر سوئيچ كند و درنتيجه انرژي كمتري مصرف ميشد و تعداد بيشتري ترانزيستور در يك تراشه سيليكون جاي ميگرفت. افزايش تعداد ترانزيستورها و بازدهي آنها، هزينه را كاهش ميدهد بنابراين مقرون به صرفهتر اين بود كه هر ترانزيستور تا حد امكان كوچكتر شود، اين كوچكسازي بالاخره در نقطهاي متوقف ميشد بنابراين براي ادامه رشد صنعت الكترونيك بايد به فكر فناوريهاي جايگزين بود، فناوري كه مشكلات گذشته را حل كرده و توجيه اقتصادي داشته باشد و اينبار نانو تكنولوژي بود كه توانست به كمك الكترونيك بيايد و فناوري الكترونيك مولكولي يا همان نانوالكترونيك بنا نهاده شد. نانو تكنولوژي يك رشته وابسته به ابزار است ابزارهايي كه به مرور در حال بهتر شدن است نانو تكنولوژي و شاخههاي كاربردي آن مانند نانوالكترونيك درواقع توليد كارآمد دستگاهها و سيستمها با كنترل ماده در مقياس طولي نانو است و بهرهبرداري از خواص و پديدههاي نوظهوري است كه در اين مقياس توسعه يافته است. صنعت الكترونيك امروزي مبتني بر سيليكون است سن اين صنعت به حدود 50 سال ميرسد و اكنون به مرحلهاي رسيده است كه از لحاظ تكنولوژيكي، صنعتي و تجاري به بلوغ رسيده است. در مقابل اين فناوري، الكترونيك مولكولي قرار ارد كه در مراحل كاملاً ابتدايي است و قرار است اين فناوري به عنوان آينده و نسل بعدي صنعت الكترونيك سيليكوني مطرح شود. الكترونيك مولكولي دانشي است كه مبتني بر فناوري نانو بوده و كاربردهاي وسيعي در صنعت الكترونيك دارد. با توجه به كاربردهاي وسيع الكترونيك در محصولات تجاري بازار ميتوان با سرمايهگذاري و تامل بيشتر در فناوري نانو الكترونيك در آيندهاي نه چندان دور شاهد سوددهي كلان محصولاتي بود كه جايگزين فناوري الكترونيك سيليكوني شدهاند. ميل، اشتياق و علاقه مصرفكنندگان و نياز بازار به محصولات جديد با قابليتهاي بالا سازندگان و صنعتگران را بر آن ميدارد كه با سرمايهگذاري در اين فناوري شاهد رشد و شكوفايي اقتصادي هر چه بيشتر باشند، وليكن با توجه به اهميت نانوتكنولوژي و نيز نانو الكترونيك كه به عنوان يك شاخه كاربردي از نانو تكنولوژي مطرح است لزوم سرمايهگذاري كلان در درازمدت و ريسكپذيري و تشكيل مراكز r&d توسط دولتمردان پيش از پيش احساس ميشود. براي پيشبرد فناوري نانو الكترونيك و نتيجه رساندن آن سه مرحله راهبردي پيشنهاد ميشود كه با پيادهسازي اين سهمرحله ميتوان نانو الكترونيك را جايگزين فناوري الكترونيك سيليكوني كرد ونسل جديدي از محصولات الكترونيكي را وارد بازار ساخت. مرحله اول: مولكولي در نظر گرفته ميشود بايد كاربردهايي ساده ارزان و غير پيچيدهاي باشند تا اطمينان نسبي به الكترونيك مولكولي ايجاد شده و سرمايهگذاريها به سمت آن هدايت شود و از طرفي كارايي اين فناوري ثابت شود. به بيان ساده وشفاف و مقايسه نسل جديد محصولات كه بر پايه اين فناوري جايگزين شدهاند، توجيه كاربرد اين محصولات و ايجاد اطمينان در مصرفكنندگان ميتواند به عنوان بهترين حامي اقتصادي در اين مرحله باشد. مرحله دوم: توليدات اوليه الكترونيك مولكولي (نانو الكترونيك) بايد مكملي براي فناوري سيليكون باشند اينگونه نباشد كه انقلابي رااز همان آغاز و ابتدا شروع كرده و اين ادوات و فناوريهاي جديد تافته جدا بافته باشد و هيچ ربطي به فناوري سيليكوني نداشته باشد زيرا فناوري سيليكوني يك صنعت جا افتاده است. پس اگر نانوالكترونيك را بتوان مكملي براي فناوري سيليكوني بكار برد شاهد پيشرفت قابل ملاحظهاي در اين فناوري نوپا بوده و جايگزين مناسبي براي نسل آينده محصولات الكترونيكي در نظر گرفته شده است. مرحله سوم: مرحله سوم مبحث كاملاً جديدي است كه اصلاً در دسترس فناوري سيليكون نبوده و نانوالكترونيك ميتواند بعد از طي مراحل اول و دوم به آن بپردازد، يك مثال ساده وروشن اين موضوع، نمايشگرها هستند، نمايشگرهاي متداول كاملاً سخت و غيرقابل انعطاف هستند ولي با استفاده از الكترونيك مولكولي ومولكولهايي كه در صفحه نمايش استفاده داشته باشد بنابر اين كابردهايي وجود دارد كه از دسترس فناوري سيليكون، آن هم بخاطر جامد و كريستالي بودن ذاتياش دور بوده و براي الكترونيك مولكولي قابل دستيابي است. وقتي كه نانو الكترونيك جا افتاد و وارد بازار محصولات الكترونيك شد آنگاه ميتوان نسل جديدي از محصولات را به دست آورد كه شامل پردازندهايي 1000 مرتبه سريعتر از نوع امروزي باشند. اگر اين مرحله با موفقيت طي شود حدوداً يك دهه طول خواهد كشيد تا نسل جديد محصولات الكترونيكي مبتني بر الكترونيك مولكولي يا الكترونيك در ابعاد نانومتر (نانو الكترونيك) ظهور يابد. بررسي امكانات موجود: براي ساخت ابزارهاي مولكولي بايد ديد از چه چيزهايي ميتوان استفاده كرد،وسايلي كه در اختيار است و تاكنون مدنظر بوده است به شرح ذيل هستند: نانو لولهها حلقههاي بنزني پليمرها dna 1 لینک به دیدگاه
سمندون 19437 اشتراک گذاری ارسال شده در 12 آذر، ۱۳۹۰ نانو لولهها: اگر يك صفحه تخت گرافيكي مدنظر باشد و به شكلي بتوان آن را به صورت نواري در نظر گرفت و لوله كرد يك نانو لوله مفروض به دست ميآيد كه ساختار آن همان ساختار گرافيت بوده و يك هگزاگونال است. اين ماده در سال 1991 در ژاپن كشف شده و به علت خصوصيات جالب آن مورد توجه قرار گرفت. يك خاصيت جالب اين مواد آن است كه بر حسب اينكه در چه جهتي خم شود داراي خاصيت نيمههادي و يا فلزي ميشود. قطر يك نانو لوله كمتر از 2 نانومتر است و از اين نانو لوله ميتوان به عنوان يك سيم كوانتومي يا يك سيم غيرفعال استفاده كرد به عنوان مثال اين لوله ميتواند به عنوان يك سيم انتقال هنگام اعمال اختلاف پتانسيل از يك الكترود به الكترود ديگر عمل كند كه اين موضوع مثالي از اتصالات غيرفعال ميتواند باشد. نانو لوله داراي خاصيت فلزي است اين خاصيت رسانش نه فقط در طول بلكه در عرض نانو لوله نيز وجود دارد براي حالت سيمهاي مولكولي غيرفعال، بهتر است كه نانو لوله داراي خاصيت رسانش باشد، اگر باشد، نانو لوله داراي گاف انرژي خواهد بود كه شبيه نيمه هادي خواهد شد. اگر نانو لوله كربني روي سطحي قرار داده شود و نوك stm (مولكول نانو لولههاي كربني) رابه سطح آن نزديك شود، چنانچه ولتاژي را بين بستري كه نانو لوله روي آن قرار دارد و نوك stm اعمال شود جرياني عبور خواهد كرد، بر حسب مقدار جرياني كه عبور ميكند، ميتوان تشخيص داد كه گاف انرژي چقدر است. حلقه بنزني: حلقههاي بنزني به خاطر چگالي حالت بالا كه بر روي حلقههاي خود دارند جانشيني براي سيمهاي كوانتومي در نظر گرفته ميشود. پليمرها: از نمونههايي كه به عنوالن سيمهاي مولكولي فعال يا غيرفعال ميتوان نام برد پليتيوفن (pt) يا پليانيلين است كه داخل يك سيكلود كسترين1 (cd) قرار گرفته باشد اين دو ماده در اصل پليمرهايي هستند كه به عنوان قسمتهاي هادي سيم بكار ميروند اين پليمرها شبيه حلقه بنزني است كه به همديگر چسبيدهاند و دو سر آن به دو الكترود طلا وصل شده است. اتصالات سيمهاي مولكلولي به الكترودهايش توسط اتمهاي گوگرد برقرار ميشود سطحي كه اين پليمر بر روي آن قرار ميگيرد ممكن است قسمتي از جريان را بكشد يعني اينكه يك جريان اتلافي داشته باشد براي اينكه مانع از اين جريان اتلافي شد بايد اين سيم را داخل يك حفاظ مولكولي قرار داد اين حفاظ نيز شبيه نانو لوله كربني است اما داراي قطر بسيار بزرگتر و ساختار پيچيدهتري است لذا اين لوله مولكولي مانع عبور جريان اتلافي از ديوارههاي سيم و انتقال آن به سطح تماس ميشود. Dnd: Dna نمونهاي از سيمهاي فعال است. ساختمان dna كاملاً شناخته شده است و به طور خودكار اين ساختمان ايجاد ميشود، براي توليد آن مانند پليمرها مشكلي وجود ندارد فقط بايد خواص آن مورد بررسي قرار گيرد تا متوجه چگونگي تغييرات آن شد براي اين منظور به ذكر مثالي پرداخته ميشود: به منظور استفاده از dna براي محاسبه جريان بر حسب ولتاژ، يك فاصله 8 نانومتري بين دو الكترود پلاتين مفروض ميشود، پس با اعمال يك ولتاژ ميتوان جريان را محاسبه كرد. نكتهاي كه از شكل بالا برداشت ميشود اين است كه نمودار جريان بر حسب ولتاژ نموداري نامتقارن است، يعني اينكه جريان براي ولتاژي مثلاً بين 1- و 2 ولت اجازه عبور ندارد در حالي كه براي 2- و 1- جريان ميتواند عبور كند و اين يعني اينكه dna ميتواند عمل يكسوسازي را انجام دهد. در مورد هدايت از داخل dna سه نظريه مد نظر است، يكي اينكه dna يك نيمه هادي با گاف خيلي بزرگ است. ديگر اينكه dna يك نيمه هادي با گاف كوچك ونيز اينكه dna داراي خاصيت فلزي است. موضوع در اصل اين است كه dna ماده بسيار پيچيدهاي است كه شرايط محيطي به شكل بسيار زيادي ميتواند بر روي خواص آن تاثير بگذارد يكي از اين شرايط محيطي موثر حضور آب است، dnaيي كه در محيط خشك باشد با dnaيي كه در محيط مرطوب باشد بسيار متفاوت است. لذا با توجه به شرايط محلي حاكم بر dna نميتوان يك نتيجه قطعي در مورد اينكه dna فلز است يا نيمه فلز بيان كرد اما آنچه كه مسلم است اين است كه dna يك نيمه هادي با گاف بزرگ است. در حالت عادي يونهايي وجود دارد كه با دستكاري آنها ميتوان خواص هدايتي dna را تغيير داد يعني ميتوان اميد داشت كه با افزودن يونهايي بتوان حتي آن را به فلز تبديل كرد يك نكته جالب ديگر اين است كه ميتوان از dna به عنوان قالب استفاده كرد و در مكانهاي مشخصي روي dna يكسري فلزات را قرار داد تا يك سيم فلزي دور dna ايجاد شود. در اين حالت dna به عنوان قالبي براي پايدار نگه داشتن سيم مورد نظر استفاده قرار گيرد. بررسي پايداري dna با توجه به شرايط محلي حاكم بر سيستم نيز امكانپذير است. هدايت dna در دو مسير مشخص صورت ميگيرد. وقتي dna را به عنوان هدايتكننده جريان در نظر گرفته شده يك بار ميتواند در جهت موازي محورش جريان را عبور دهد و يك بار نيز ميتواند عمود بر محورش جريان را عبور دهد، حال براي هدايت در جهت عمود بر محور ميتوان اينگونه فرض كرد كه وقتي نوك stm (مولكول نانو لولههاي كربني) در بالاي dna قرار ميگيرد جريان به شكل عمود از جفتهاي بازي كه وجود دارد وارد نوك stm ميشود اين كار ميتواند هم به عنوان آزمايشي براي ديدن تصوير dna و هم براي اندازهگيري عبور جريان جفتهاي بازي به كار رود وميتوان بدين شكل رسانش at و cg (جفتهاي بازهايي كه در مارپيچ dna وجود دارند) را محاسبه كرد. Dna ميتواند يك ابزار در توليد محصولات نانوالكترونيك كاربردهاي فراواني داشته باشد، با توجه به اينكه dna به طور طبيعي در طبيعت و سلولهاي موجودات زنده وجود دارد ميتوان از آن در توليد ديگر محصولات نانوتكنولوژي همانند نانوموتورها سود جست. كنترل و پايداري dna نيز با توجه به خواص ذاتي و محلي آن امكانپذير بوده و جاي تامل و بحث دارد. 1 لینک به دیدگاه
سمندون 19437 اشتراک گذاری ارسال شده در 12 آذر، ۱۳۹۰ نتيجهگيري: 1ـ آنچه كه مسلم است، الكترونيك مولكولي داراي آيندهاي درخشان است و با آهنگ بسيار سريعي در حال رشد و تكامل است. از اين رو توجه خاصي را ميطلبد. 2ـ نتايج عملي رشد و توسعه شاخههاي نانوتكنولوژي مانند نانوالكترونيك سبب ساخت تجهيزاتي خواهد شد كه در مقايسه با گذشته اختلاف فاحش داشته و نسل كاملاً جديدي با قابليتهاي منحصر به فرد خواهد بود. 3- نانو لولهها و dna به عنوان دو ابزار كارآمد در توليد محصولات نانوالكترونيك از اهميت خاصي برخوردارند، وليكن در اين ميان dna به دليل داشتن خواص محلي و وجود آن در بدن موجودات زنده از اهميت بيشتري برخوردار است. 4- با توجه به دو شاخص تعداد مقالات علمي و اختراعات ثبتشده، در نانو تكنولوژي ميتوان نتيجه گرفت كه اين شاخصها ميتوانند اطلاعاتي مفيد در مورد تكامل اين فناوري را نشان دهند و براي طرح برنامهها و استراتژيها مناسب باشند. 5- نانوتكنولوژي و شاخههاي كاربردي آن در علوم مختلف مانند نانوالكترونيك به عنوان پديدههايي نوظهور هنوز قبل از تجاري سازي محصولاتشان، احتياج به پيشرفت در هر دو زمينه علمي و تكنولوژيكي را دارد. با توجه به اينكه هماكنون برخي از محصولات اين فناوري در بازار وجود دارد پيشبيني اينكه كداميك از محصولات آينده بهتري دارند (از نظر رقابتي) نياز به بررسي بيشتر شاخصهاي اين فناروي در بخشهاي صنعت و زيرمجموعههاي اين فناوري دارد. 6- با توجه به اهميت فناري نانو و كاربردهاي روزافزون آن در دنيا بايد تحقيقات دانشگاهي و دولتي تواماً صورت گيرد و به علت اينكه اهداف تحقيقاتي اين فناوري پايهاي و درازمدت است بخش صنعت توان سرمايهگذاري بر روي تحقيقات درازمدت و مخاطرهآميز را نداشته، از اين رو حمايت دولتمردان به عنوان پشتوانهاي مهم در اين فناوري خواهد بود علاوه بر اين ايجاد ساختارهاي جديد در دانشگاهها و آزمايشگاههاي ملي براي توسعه اين فناوري لازم است نيازمنديها و انتظارات فناوري نانو و شاخههاي كاربردي آن در علوم مختلف مانند نانوالكترونيك فراتر از تمامي چيزهايي است كه مقررات سنتي دانشگاهي، آزمايشگاهي ملي و يا حتي تمام صنعت ميتواند فراهم كند و به خاطر همين مشكلات است كه يك حركت و انديشه ملي پايهريزي و با حمايت دولتي در زمينه اين فناوري حياتي به نظر ميرسد. با توجه به پتانسيلهاي موجود ايران در زمينه مهندسي الكترونيك، لزوم يك مركز r&d دولتي كه به حمايت محصولات توليدي الكترونيكي صنايع پرداخته و بتواند در آينده بازار تجاري محصولات نانوالكترونيك را به دست بگيرد به شدت حس ميشود و اگر تدبيري انديشيده نشود متاسفانه بايد گفت كه همانند گذشته بايد مصرفكننده خوبي بوده و شاهد سودهاي كلان تجاري ديگر كشورها و سرمايهگذاران بود. برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام 3 لینک به دیدگاه
masi eng 47044 اشتراک گذاری ارسال شده در 13 دی، ۱۳۹۲ [h=1]دید کلی[/h]اصولاً اتصالات نیم رسانا - فلز جزء لازمه تمامی قطعات الکترونیکی هستند. چگونگی و رفتار اتصالات الکتریکی به غلظت سطح نیم رسانا (Si) ، تمیزی سطح و واکنشهای بین فصل مشترک فلز - نیم رسانا بستگی دارد. بعد از ابداع ترانزیستور توسط جان باردین ، مفهوم و اهمیت مدارهای مجتمع روشن شد. پس از آن موفقیت بزرگ تجمع و اتصال تعداد بسیار زیادی از قطعات کوچک و اجزای الکترونیکی بر سطح زیر لایه تحول عظیمی در ساخت عملی مدارهای مجتمع بوجود آورد. با ابداع و رشد فناوری مینیاتور کردن قطعات الکترونیکی بشر به یکی از مهمترین دستاوردهای خود در قرن گذشته نائل آمد. [TABLE=align: left] [TR] [TD] [/TD] [/TR] [/TABLE] [h=1]سیر تکاملی و رشد[/h]با گسترش ، طراحی و ساخت مدارهای مجتمع بویژه افزایش انباشت قطعات در مقیاس خیلی بزرگ در دهه 1980 تلاش برای کوچکتر کردن قطعات میکرو الکترونیکی ادامه یافت. از طرف دیگر تقاضای جدید برای ساخت مدارهای مجتمع بویژه مدارهای حافظه شامل حافظه دینامیکی (DRAM) و حافظه استاتیکی (SRAM) با ویژگیهایی نظیر سرعت عمل بالا توأم با کاهش اتلاف توان روز به روز بیشتر شد. در روند تکاملی فناوری فرامینیاتور کردن قطعات الکترونیکی بویژه در هندسه و مقیاس زیر میکرونی کمتر از 0.2 میکرومتر یعنی حوزه فناوری طراحی قطعات نانو الکترونی و فناوری ساخت مدارهای مجتمع از پیچیدگی خاصی برخوردار است. بطور متوسط در هر شش سال ابعاد و اندازه قطعات الکترونیکی به نصف تقلیل یافته است. امروزه با استفاده از مزیتهای مجتمع سازی کوچکی قطعات ، بطور مشخص فناوری نانو الکترونیک ساختار اینگونه مدارهای مجتمع گستردهتر و پیچیدهتر است. بطوری که این مدارها از دهها میلیون ترانزیستور ، برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام ، برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام و برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام تشکیل شده است. عرض خطوط اتصالات بین قطعات مختلف در سال 2000 میلادی 0.18 میکرومتر بود، که کاهش آن همچنان ادامه دارد. در راستای پیشرفت این فناوری ، در همین سال مجموع فروش مدارهای مجتمع در دنیا حدود 150 میلیارد دلار بر آورد شده است. به این دلیل پیچیدگی و ویژگیهای خاص مدارهای مجتمع با ساختار نانومتری بکار گیری مواد جدید و فرآیندهای بهتر تولید و همچنین استفاده روشهای دقیقتر ساخت. [TABLE=align: left] [TR] [TD] [/TD] [/TR] [/TABLE] [h=1]مشخصه یابی لایه نازک قطعات الکترونیکی[/h]مشخصه یابی لایه نازک قطعات مختلف امری الزامی است. بعضی از فرآیندهای مهم ساخت مدارهای مجتمع عبارتند از: نفوذ کاشت یونی لیتوگرافی فلز نشانی غیر فعال سازی و غیره که در فناوری نانو الکترونیک برای انجام اینگونه فرآیندها باید از پارامترها و سیستمهای خاص استفاده کرد. مثلاً در فرآیند فلز نشانی استفاده از برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام بجای فلز رایج برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام برای اتصالات درونی بین قطعات مختلف عملی اجتناب ناپذیر است. اما نفوذ سریع اتمهای Cu در زیر Si در عملیات حرارتی منجر به تشکیل لایه سلیساید مس و در نهایت سبب تخریب قطعه الکترونیکی میشود. برای رفع این مشکل معمولاً از یک لایه میانی از مواد دیرگذار مانند Ta و w یا Mo به عنوان سد نفوذی برای بهبود پایداری حرارتی لایه Cu / Si استفاده میکنند. [h=1]ساخت و مشخصه یابی سیستمهای چند لایهای[/h]مشخصه یابی سیستمهای چند لایهای Cu/Ta /Si اخیراً مورد مطالعه قرار گرفته است. در این زمینه تأثیر ولتاژ بایاس منفی بر بهبود خواص الکتریکی و ساختاری سد نفوذی لایه اسپاترنیگ Ta در سیستم Ta/Si گزارش شده است. همچنین در فناوری طراحی قطعات نانو الکترونی با استفاده ار میکروسکوب نیروی اتمی (AFM) و ساخت لایههای نازک مورد نیاز در مدارهای مجتمع مذکور فقط در محیطهای تعریف شده توسط روشهای دقیق لایه نشانی نظیر لایه نشانی با باریکه مولکولی (MBE) و لایه نشانی با بخار شیمیایی مواد آلی فلزی (MOCVD) امکان پذیر است. [TABLE=align: left] [TR] [TD] [/TD] [/TR] [/TABLE] [h=1]وسعت فناوری نانو الکترونیک[/h]در فناوری نانو الکترونیک فرآیندهایی سطح زیر لایه Si از جمله سوزش توسط فناوری پلاسما و باریکه یونی صورت میگیرد. اینگونه مدارهای مجتمع با ویژگیهای منحصر به فرد خود در مقیاس نانومتری کاربردهای متنوعی از سیستمهای مزوسکوپیک دارند. بعضی از این کاربردها عبارتند از: ساخت نقطهها و سیستمهای کوانتومی تونل زنی در دیودهای تشدید کننده مثل Si و Gi طراحی و ساخت تقویت کنندههای لیزری مثل InGap طراحی و ساخت میکرو احساسگرها و ماشینهای میکرونی برای کاربردهای خاص به دلیل اهمیت فناوری نانو الکترونیک در چند سال گذشته چندین کارگاه عملی در زمینههای مختلف فیزیک و فناوری نانو الکتریک برگزار شده است. با ادامه رشد و گسترش این فناوری پیشرفته ، در آینده شاهد تحول عظیمی در زمینههای ارتباطات خواهیم بود. لینک به دیدگاه
ارسال های توصیه شده