رفتن به مطلب

ارسال های توصیه شده

انتخاب سیمان

استفاده از سیمانهای با حرارت هیدراتاسیون کم، ممکن است تا حدودی سبب تخفیف اشکالات مربوط به ازدیاد درجه حرارت بتن شود. ولی باید درنظر داشت که مصرف سیمانهای مذکور پیشگیری های لازم را غیر ضروری نمی سازد. گرچه در درجه حرارتهای معمولی، سیمانهای با حرارت هیدراتاسیون کم، آهسته تر از سیمانهای معمولی هیدراته می شوند ولی میزان هیدراتاسیون آنها با زیاد شدن درجه حرارت افزایش می یابد. هرنوع سیمانی که مصرف شود وقتی بتن گرم می شود قابلیت کاربردخود را سریعتر از موقعی که سرد باشد از دست می دهد به علاوه گرچه وقتی سیمان با حرارت زایی کم به کار رود درجه حرارت بتن ممکن است تا حدودی در تمام مراحل پائین تر باشد، ولی در شرایط خشک کننده، تبخیر آب در مراحل اختلاط، حمل، جادادن و عمل آوردن تسریع خواهد شد. اگر بخواهیم عیوبی نظیر ترک خوردگی خمیری یا به عبارتی ترک خوردگی ناشی از باد رخ ندهد، لازم است برای به حداقل رساندن این تبخیر تدابیری اتخاذ گردد.

انبار کردن مصالح سنگی

اقدامات انجام شده در جهت محدود کردن درجه حرارت دانه های سنگی انبار شده بیشترین تأثیر در به حداقل رساندن درجه حرارت بتن تازه را به وجود می آورد. به نظر می رسد سایه انداختن و آب پاشی توده دانه های سنگی انبار شده در اغلب اوقات صرفاً بخاطرحجم مصالح غیر عملی باشد. معهذا مشکلات را ممکن است در بسیاری از مواردبتوان با محدود کردن مقادیر سنگی به ابعاد عملی کاهش داد. به این معنی که مقادیر به اندازه مصرف در بتن ریزی روز بعد مورد نیاز است می توان در زیر سایه قرار داد و خنک کرد.

 

آب

بعضی اوقات پیشنهاد اینست که آب مورد نیاز برای اختلاط را سرد نمائیم، در حالیکه به لحاظ نظری این موضوع مطلوب است ولی در عمل برای بتن ریزی های زیاد، مقادیر یخ مورد تقاضا به ندرت در مدت کوتاه و با نرخ مناسب در دسترس می باشد. در مواردیکه آب مصرفی از مخازن ذخیره آب استفاده می شود بایستی مخازن مذکور را پوشانید و یا از طریق قراردادن آنها در سایه و رنگ آمیزی با رنگهای منعکس کننده در مقابل تششع خورشیدی محافظت نمود.

چنانچه آب مصرفی از لوله آب رسانی و یا شیلنگ های طویل متصل به لوله اصلی شهر بدست می آید، بایستی جذب حرارتی آنها را از طریق گذاردن روپوش و یا کپه کردن خاک روی آنها ودرصورت امکان از طریق دفن لوله به حداقل رسانید.

 

انبار کردن سیمان

در مواقعی که هوا معمولی است و آب مورد اختلاط و دانه های سنگی سرد هستند، سهم گرمایی که بوسیله سیمان گرم در بتن تازه وارد می شود جزئی است معهذا در شرایط واقعاً گرم، استفاده سیمان گرم قدری بیشتر گرمای ناخواسته به بتن تازه داخل می کند. لذا در حد مقدور و امکان بایستی از مصرف سیمان گرم اجتناب نمود. از آنجاکه سرد کردن سیمان به طریق مصنوعی قبل از حمل، غیر ممکن می باشد لذا تدارکات سیمان باید قبلاً انجام شود به طوری که امکان سرد شدن آن در کارگاه و قبل از مصرف وجود داشته باشد. در هر صورت نحوه صحیح انبارداری و جلوگیری از تشعشع مستقیم خورشید به کیسه های سیمان و یا سیلوهای نگهداری سیمان و محافظت صحیح آنها ضروری می باشد که بایستی مد نظر قرار گیرد.

 

کیل کردن، اختلاط و حمل

حتی در شرایط مطلوب، نباید تأخیری بی مورد بین ساختن بتن و جادادن آن وجود داشته باشد. در هوای خشک، به حداقل رساندن تأخیرات مهمترین اقدام می باشد. از آنجایی که در اثر درجه حرارت های زیاد ترکیب دو عامل تبخیر آب و سفت شدگی باعث تسریع در کاهش قابلیت کاربرد بتن می شود و چون هیچ کدام از این عوامل را نمی توان متوقف کرد، لذا بهترین و تنها راه مبارزه با آنها، جادادن بتن بلافاصله پس از اختلاط است.

اگر اجازه دهیم کاهش قابلیت کاربرد رخ دهد، به ندرت ممکن است کار خوبی بدون آثار نامطلوب داشته باشیم. برای مثال بتنی که مدت طولانی در یک مخلوط کن با دیگ دوار رها شده باشد، محتمل است به همان اندازه که از منبع خارجی نظیر تابش خورشید گرما می گیرد، از اصطحکاک داخلی نیز حرارت جذب کند. به همچنین آب خود را بر اثر تبخیر از دست بدهد. گر چه هر گونه کاهش قابلیت کاربرد را ممکن است با افزودن آب بیشتر قبل از خالی کردن آن از دستگاه تصحیح کرد، ولی افزایش نسبت آب به سیمان ممکن است آثار غیر قابل قبولی بر روی انقباض ناشی از خشک شدن، مقاومت فشاری، مقاومت در مقابل سایش و دوام ایجاد کند. هم چنین اگر به منظور بازیابی کاهش قابلیت کاربرد که بر اثر سفت شدگی حین حمل ایجاد شده، چنانچه سعی شود بتن با آب اضافی در محل جادادن دوباره خمیر گردد، خواص مذکور ممکن است به طریق مشابه فوق آسیب ببیند.

 

جادادن و پرداخت سطوح بتنی

وجود شرایط خشک کننده، احتیاج عادی به جادادن سریع و متراکم کردن مؤثر ( ویبره ) را تاکید می نماید. همواره خارج کردن هوای محبوس از یک توده بتنی جا داده شده مشکل می باشد مطلوب آنست که بتن چنان جا داده شود که در آخرین مرحله جا گرفتن در قالب سریعاً ویبره شود. در شرایط خشک کننده که بتن سریعتر از معمول تمایل به سفت شدگی دارد، توجه به این موضوع مهمتر است. به محض متراکم شدن بتن در محل خود، تبخیر آب فقط از سطح آزاد آن صورت می گیرد. لذا در صورت عدم تدابیر مناسب، وجود شرایط خشک کننده ممکن است میزان تبخیر را به حدی زیاد کند که آب موجود در عمق بیشتر در داخل بتن، نتواند به سرعت کافی به سطح بتن نقل مکان نموده و بنابر این کاهش آب به اندازه زیاد صورت گیرد. در این شرایط سطح بتن منقبض شده و چون بتن خمیری نمی تواند در مقابل تنش مقاومت نماید، لذا ترک ها، بلافاصله پس از جادادن بتن می توانند تشکیل شوند.

هر چند این ترک ها ندرتاً در بتن مسلح از اهمیت سازه ای برخوردار هستند اما این ترک ها گاهی به عمق نفوذ کرده و در اینصورت ممکن است در محل مجاورت با آرماتورها، باعث خوردگی آنها و نهایتاً ضعف پنهانی سازه شود.

لذا توصیه اکید می شود پس از جادادن بتن فوراً تدابیری اتخاذ شود که تبخیر به صورت مثبتی کاهش داده شود. روشهای پیشنهاد شده عبارتند از ایجاد بادشکن های موقت در سمت وزش باد – آب فشانی ریزمه مانندی جهت بالا بردن میزان رطوبت هوائی که در تماس با بتن است – پیش بینی روکشهایی که می توانند فوراً پس از جادادن بتن نصب شوند.

 

عمل آوردن (مراقبت)

هدفهای عمل آوردن اینست که آب در میان بتن محبوس شود که بتواند با سیمان ترکیب گردیده و بتن را در درجه حرارتی نگه دارد که عمل ترکیب به میزان قابل قبولی پیشرفت نماید. پوشش سطح بتن با ورقه های نفوذ ناپذیر نظیر پولی تن که ترجیحاً برای انعکاس تابش خورشید، رنگی آن توصیه شده است چنانچه به درستی مورد استفاده واقع شود می تواند مانع مؤثری در مقابل تبخیر باشد. بهتر است در همان حال که تکمیل بتن پیشرفت می کند، ورقه های مذکور نصب شود به طوری که هم سطح بتن تازه خراب نگردد و هم لبه های پوشش طوری محکم شود که از وزش باد زیر آن ها جلوگیری به عمل آید.

چنانچه باد زیر ورقه ها بوزد، تبخیر افزایش یافته و موضوع عمل آمدن به مخاطره خواهد افتاد. در اینصورت یک ورقه شل ممکن است از نبودنش باعث ایجاد ترک خوردگی خمیری شود.

بعضی روشهای عمل آوردن مانند آب گرفتن، پوشش با ماسه نم دار یا خاک اره نمدار با گونی خیس بهتر است تا موقعی که سطح بتن به اندازه کافی سخت نشده و استحکام کافی در مقابل آسیب پیدا نکرده است بکار نروند در صورت کاربرد آنها، مراقبت دائمی برای محافظت در مقابل خشک شدن لایه های محافظت فرضی و جلوگیری از بی فایده شدن آنها لازم است. چنانچه لایه های ماسه، خاک اره و گونی خشک شوند، نبودنشان بهتر از وجودشان می باشد زیرا در این حالت مانند فتیله ای رطوبت را از بتن کشیده و تبخیر آن را در هوا تسریع می کند .

در صورت کاربرد آب، درجه حرارت آن باید نظر درجه حرارت خود بتن باشد و باید از یک آب فشان با سوراخ ریز نظیر مه خارج شود.

مه مصنوعی که بدین شکل ایجاد می شود ممکن است به علت وزش باد از بتن دور شود. لذا لازم است بادشکن های موقت در جهت وزش باد به سمت سطح بتنی که باید عمل آید، تعبیه شود.

در اکثر موارد، منطقی ترین راه برای رسیدن به نتیجه مطلوب، به حداقل رساندن ضریب زاویه منحنی افزایش درجه حرارت است تا کوشش برای کنترل سطح درجه حرارت بدین معنی که افت حرارت از قسمت خارجی توده توده بتن باید محدود شود. به قسمتی که حرارتی که از سیمان آزاد می شود، قادر باشد درجه حرارت تمام توده بتنی که در حال عمل آمدن است بصورت یکنواختی بالا ببرد. بدیهی است بتنی که بدین طریق به عمل آمده است نیز باید حتی الامکان بصورت یکنواختی سرد شود. در غیر اینصورت، در حالی که قسمت خارجی بتن خیلی سریعتر از داخل آن سرد می شود، تنش کشش ممکن است توسعه یابد. در صورت امکان ساده ترین روش عملی اینست که قالب عایق شده یا چوبی به کار برده شود و نه تنها تا هنگامی که بتن در حین سخت شدن و گرم آن است بلید بار شد بلکه تا هنگامی که درجه حرارت آن به حد محیط اطرافش تنزل پیدا کند، لازم است قالب در محل خود بماند

 

منبع: بانک اطلاعات مهندسین ایران - allengineering.com

لینک به دیدگاه
  • 1 ماه بعد...
  • پاسخ 45
  • ایجاد شد
  • آخرین پاسخ

بهترین ارسال کنندگان این موضوع

بهترین ارسال کنندگان این موضوع

ضدآب کردن بتن با فناوری کریستالی

© مهدی مشهدی

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Concrete Waterproofing With Crystalline Technology

 

 

مواد شیمیایی کریستالی مقاومت بتن را بهبود بخشیده , هزینه های نگهداری را پایین آورده و دوره استفاده از بنا ر ا افزایش می دهند.

Cristalline01.jpg

از پی , کف طبقات و پانل های پیش ساخته خارجی تا بناهای آبی و زیربناهای شهری , بتن یکی از عمومی ترین مصالح مورد استفاده در ساخت و ساز می باشد. هرچند از ترکیب دانه های سنگی , سیمان و آب ناشی می شود, ولی اغلب مستعد خرابی با نفوذ آب و ترکیبات شیمیایی می باشد.

 

این تاثیرات مخرب را می توان با استفاده از فناوری ضد آب کردن کریستالی دور کرده و پایایی و دوام ساختار بتنی را بهبود بخشیده و با این وسیله هزینه های نگهداری دردراز مدت را کاهش داد. این مقاله چگونگی اجرای یک سطح عالی را با مخلوط های بتن , مواد و ترکیبات سبک توضیح داده و چگونگی اقتصادی بودن این روش را به طراحان حرفه ای نشان میدهد.

طبیعت بتن

 

ماده اصلی پرکننده در یک ترکیب بتنی دانه های سنگی می باشد که ماده چسباننده حاصل از ترکیب آب و سیمان , آنها را به یکدیگر میدوزد.زمانی که اجزاء سیمان هیدراته می شود ویا با آب ترکیب میگردد , آنها تشکیل سیلیکات کلسیم هیدراته را می دهند که این ترکیب همانند یک توده صلب سخت می گردد.

 

بتن یک ترکیب آبی است . برای ساخت این ترکیب کارا و پیوسته و یکپارچه از آبی بیشتر از مقدار لازم برای هیدراتاسیون سیمان استفاده میگردد. این آب اضافی که برای روانی بتن استفاده می شود از منافذ و شیارهای نازک بتن بیرون می آید. با وجود اینکه بتن ظاهرا یک جسم صلب و سخت شده است , ولی یک جسم متخلخل و نفوذپذیر می باشد.تقلیل دهنده های آب و فوق روان کننده ها به منظور کاهش مقدار آب در مخلوط بتن و افزایش کارایی آن بکار میروند , با این وجود منافذ , سوراخها و مسیر های نفوذی در بتن سالم , باقی می مانند و می توانند آب و مواد شیمیایی مهاجم را به عناصر سازه ای انتقال داده و باعث پوسیدن فولاد مسلح کننده و تخریب بتن گردند. که با این وجود بی نقصی سازه به خطر خواهد افتاد.

خاصیت نفوذپذیری و تخلخل بتن

 

بتن بهترین نمونه برای توصیف یک ماده نفوذ پذیر و متخلخل است.تخلخل مقدار منافذ و سوراخهای داخل بتن می باشد که با درصدی از مجموع حجم ماده نشان داده می شود. نفوذپذیری نیز بیانی از چگونگی ارتباط میان منافذ می باشد. این خاصیت ها به کمک یکدیگر اجازه تشکیل مسیری برای انتقال آب به درون ماده را همراه با ایجاد شکافی که هنگام انقباض بوجود می آید , میدهد.

 

Cristalline02.jpgنفوذپذیری مدت زمان انتشار از منافذ , توانایی عبور آب در فشار بین منافذ ماده می باشد.نفوذپذیری با یک مقدار مشخص مثل ضریب نفوذپذیری توضیح داده می شود و عموما به ضریب "دارسی" باز می گردد. نفوذپذیری آب در یک ترکیب بتنی شاخص خوبی برای سنجش کیفیت کارایی بتن است . ضریب "دارسی" کم نشان دهنده غیر قابل نفوذ بودن و کیفیتی بالا برای مصالح می باشد.با اینکه یک بتن با نفوذپذیری کم نسبتا مقاوم می باشد , اما ممکن است هنوز نیاز به ضدآب کردن برای جلوگیری از نشت میان شکاف ها وجود داشته باشــــد.

با وجود دانسیته (تراکم) معلوم آن , بتن یک ماده نفوذ پذیر و متخلخل است که می تواند با جذب آب و برخورد با مواد شیمیایی متجاوز نظیر دی اکسید کربن , مونواکسید کربن , کلراید ها و سولفات ها و دیگر ترکیبات آنها به سرعت تباه شود. اما راه دیگری نیز وجود دارد که هر آبی می تواند به عمق بتن نفوذ پیدا کند .

جریان بخــار و رطوبت ناشی از آن

 

آب همچنان در قالب بخار همانند رطوبت نسبی انتقال می یابد . رطوبت نسبی همان آب موجود در هوا به صورت یک گاز محلول می باشد. زمانیکه دمای بخار آب بالا می رود , آب زیاد آن فشار بخاری ایجاد میکند . آب به صورت بخار نیز به میان بتن انتقال می یابد . مسیر جریان از فشار بخار زیاد , عموما منابع , به فشار بخار کم با یک فرایند انتشار می باشد . مسیر انتشار بسیار متکی بر شرایط محیطی است.

جریان انتشار بخار , زمانیکه اجرای ضد آب کردن در مکان هایی که فشار بخار آب موجود به صورت غیر یکنواخت می باشد , بحرانی است . چند نمونه از این موارد شامل :Cristalline03.jpg

- استفاده از پوسته ایی که در مقابل بخار بسیار کم نفوذپذیر است , مانند یک پوشش حرکتی روی یک بتن مرطوب [ ولو اینکه پوشش رویی خشک باشد ] در یک روز گرم , در اثر فشار بخار ، فشار موجود افزایش یافته و باعث طبله شدن یا تاول زدن بتن می شود.

- بکار بردن یک اندود یا بتونه برای دیوارهای خارجی یک بنا ممکن است در صورت بقدر کافی نفوذ پذیر نبودن بتونه در مقابل بخار , رطوبت را به داخل دیوارها انتقال دهد.

- استفاده از کف با قابلیت نفوذ پذیری کم در مقابل بخار روی یک دال شیبدار در محلهای زیر سطحی در برخورد با رطوبت بالا ممکن است باعث تورق (لایه لایه شدن ) کف گردد.

 

عموما یک بتونه یا پوشش کم نفوذ در برابر بخار نباید روی سطح داخلی یک بنا یا سازه قرار داده شود. فشار بخار یا فشار آب برای خراب کردن و یا طبله کردن اندود عمل خواهد کرد . بعضی از انواع پوشش ها و افزودنی های کاهنده آب در بتن حرکت بخار آب را به طور قابل ملاحظه ای اصلاح می کنند و بدین صورت اجازه می دهند از آنها در قسمت داخلی استفاده شود. مثالهای اولیه پوشش های ضد آب سیمانی و مواد افزودنی تقلیل دهنده نفوذ آب می باشند.

 

چگونگی عملکرد فناوری ضد آب کردن کریستالی

 

فناوری کریستالی دوام و کارایی ساختار بتن را بهبود بخشیده ، هزینه های نگهداری آن را پائین آورده و با محافظت کردن بتن در مقابل تاثیرات مواد شیمیایی مهاجم ، طول عمر آن را افزایش می دهد. این کیفیت کارایی بالا از راه کار با فناوری کریستالی منتج می گردد. زمانیکه فناوری کریستالی در بتن استفاده می گردد ، ضد آب کردن و دوام بتن را با پر کردن و مسدود ساختن منافذ ، شیارهای موئین ، شکافهای بسیار ریز و دیگر سوراخها بوسیله یک فرم کریستالی بسیار مقاوم حل نشدنی ، اصلاح می کند . این ضد آب بودن بر پایه دو واکنش ساده شیمیایی و فیزیکی اتفاق می افتد . بتن ماده ای شیمیایی است و زمانیکه ذرات سیمان هیدراته می شوند ، واکنش بین آب و سیمان باعث می شود [ بتن ] شروع به سختی کند ، توده ای صلب گردد.همچنین واکنشی شیمیایی با مواد پنهان داخل بتن اتفاق می افتد .

 

ضدآب کردن کریستالی ، مجموعه ای از مواد شیمیایی دیگر را در [ بتن ]جمع می کند . زمانیکه مواد شیمیایی اجزاء سیمان هیدراته شده و مواد شیمیایی کریستالی در حضور رطوبت قرار می گیرند ، واکنشی شیمیایی اتفاق می افتد ، محصول نهایی این واکنش ساختار کریستالی غیر قابل حلی می باشد .

 

این ساختار کریستالی فقط در مکان های مرطوب می تواند اتفاق بیفتد و بدین ترتیب در منافذ ، شیارهای موئین و ترک های ناشی از جمع شدگی بتن شکل خواهد گرفت . هرجایی نشت آب صورت پذیرد ضد آب کریستالی با پر کردن منافذ و سوراخها و شکافها ایجاد خواهد گردید.

زمانیکه ضد آب کریستالی در سطوح همانند یک پوشش یا همانند عملکرد پاشش خشک روی دال بتنی تازه بکار گرفته می شود ، فرایندی به نام انتشار شیمیایی رخ می دهد. طبق نظریه انتشار ، محلول با دانسیته بالا میان محلولی با دانسیته پائین جا خواهد گرفت تا این دو متعادل گردند .

 

Cristalline04.jpgCristalline05.jpgبدین سان ، زمانیکه بتن قبل از اجرای ضد آب کردن کریستالی با آب اشباع می شود ، یک محلول با دانسیته شیمیایی کم بکار برده شده است و زمانیکه ضد آب کریستالی در بتن بکار گرفته می شود ، محلولی با دانسیته شیمیایی بالا روی سطح آن ایجاد می شود که فرایند انتشار شیمیایی را راه اندازی می کند ، ضد آب کریستالی با جابجا شدن میان [ محلول با دانسیته پائین ] به تعادل می رسد .

 

مواد شیمیایی ضد آب کریستالی میان بتن پخش شده و در دسترس اجزای سیمان هیدراته قرار میگیرد و اجازه می دهد واکنشی شیمیایی اتفاق افتاده ، یک ساختار کریستالی شکل گیرد و همانند ماده شیمیایی ادامه می یابد تا میان آب پخش گردد . این رشد کریستالی ، پشت مواد شیمیایی مهاجم شکل خواهد گرفت . واکنش تا جایی که ترکیب شیمیایی کریستالی آب را تمام کرده و یا آن را از بتن خالی کند ، ادامه می یابد .انتشار شیمیایی ، ترکیب بوجود آمده را در حدود 12 اینچ به داخل بتن انتقال می دهد . چنانچه آب فقط 2 اینچ در عمق بتن جذب شده باشد ، در این صورت ماده شیمیایی کریستالی فقط 2 اینچ پیشرفت خواهد کرد و سپس خواهد ایستاد .در صورت ورود مجدد آب به بتن از چند نقطه دیگر در آینده ، با واکنش شیمیایی مواد ، قابلیت پیشروی تا 10 اینچ دیگر وجود دارد .

 

بجای کاهش تخلخل بتن همانند تقلیل دهنده های آب و روان کننده ها و فوق روان کننده ها ، ماده کریستالی ، مواد پرکننده و مسدود کننده سوراخها را در بتن به منظور ایجاد یک بخش بی عیب و پایدار از سازه ، بکار می گیرد.فرم کریستالی در داخل بتن وجود دارد و به صورت نمایان در سطح آن نیست و نمی تواند بتن را سوراخ کرده و یا به صورت های دیگری نظیر اندودها و یا سطوح پوششی آن را خراب کند .ضد آب کریستالی در برابر مواد شیمیایی با PH بین 3 تا 11 در برخوردهای ثابت و 2 تا 12 در برخوردهای متناوب بسیار مقاوم می باشد. این ماده دمای بین 25 - درجه فارنهایت [ 32- درجه سانتی گراد ] و 265 درجه فارنهایت [ 130 درجه سانتی گراد ] را در یک حالت ثابت تحمل می کند .رطوبت ، نور ماوراء بنفش و میزان اکسیژن هیچگونه اثری بر روی توانایی عملکرد محصول ندارد .

 

ضد آب کریستالی محافظت در مقابل عوامل و پدیده های زیر راایجاد می کند:

Cristalline06.jpgمانعی برای تاثیرات CO ، CO2 ، SO2 ، NO2 ، گازهای خورنده و نیز کربناته شدن می باشد. کربناته شدن فرایندی است که گازهای خارجی پدیده خوردگی را در لایه های بتن ایجاد میکنند.آزمایش کربناتی نشان می دهد که افزایش شکل کریستالی جریان گازهای داخل بتن را کاهش می دهد . کربناتاسیون حالت قلیایی خمیر سیمان هیدراته شده را خنثی نموده و محافظت آرماتورها در مقابل خوردگی از بین میرود.

محافظت کردن از بتن در مقابل واکنش توده های قلیایی [ AAR ] با رد کردن آب به فرایند آنها در نتیجه واکنش توده ها

آزمایش انتشار گسترده یون کلراید نشان می دهد که ساختار بتنی که با ضد آب کریستالی محافظت گردیده است ، از انتشار کلراید ها جلوگیری می کند. این ساختار از فولادهای تقویتی بتن حفاظت کرده و از خرابی های ناشی از اکسیداسیون و انبساط آرماتورها پیش گیری می کند.

 

بسیاری از روش های سنتی حفاظت بتن نظیر اندودها و دیگر پوشش ها ، ممکن است در دراز مدت مستعد خرابی از آب و ترکیبات شیمیایی گردند در صورتیکه فناوری کریستالی منافذ و شیارهای ناشی از فرایند خودگیری و عمل آوری بتن را بسته و بتن را مقاوم می نماید.

 

انواع بناها و کاربرد مناسب فناوری کریستالی

 

فناوری حفاظت و ضد آب کردن کریستالی در دو شکل پودر و مایع وجود دارد. سه روش به کارگیری متفاوت شامل :

استفاده کردن بر روی یک ساختار موجود به عنوان مثال یک دیوار سازه ای یا یک دال کف

ترکیب مستقیم با مقدار بتن در کارگاه همانند یک افزودنی

پاشیدن مثل یک پودر خشک ، کاربرد سبز یا بدون رطوبت ماده خشک روی سطح بتن

 

منابع:

آرک نویــز |

لینک به دیدگاه

ازت ممنونم که این تاپیک رو دادی ولی این روش کاربری خیلی پایینی داره و بسیار محدوده

که در مقابل اون روش جدید یا بهتر بگم محصولی با فناوری جدید نانو ساخته شده که دامنه ی کاربری بیشتری داره:

به نام تجاری zycosil یا zydex مشهوره که توی ایران هم پیدا میشه

 

طرز عملکردش اینجوریه که این ماده به صورت مایع و جالب اینکه حلال با خود آبه و منافظ موجود در سطح رو که اندازه ی میکروسکپی اونا از اندازه ی ملکول آب یکم کمتره رو پر میکنه( ابعادش 3 تا 6 نانومتر ه) و در نتیجه آب نمی تونه به این منفظ ها نفوذ کنه>

توی این عکس در سمت راست قطعه از zyicosil استفاده شده:

phoca_thumb_l_img_0234.jpg

خاک رو هم میشه باهاش ضد آب کرد:

1261861855.jpg

شن :

phoca_thumb_l_img_0249.jpg

ضد شوره هم هست :

phoca_thumb_l_img_1345.jpg

راستی هر نوع کانی معدنی رو میشه باهاش کار کرد مثل آجر بلوک سیمانی سفالی بتن ایرانیت ملات ها و .. . به غیر از گچ

و نمیشه ازش به عنوان ماده ی افزودنی در اختلاط بتن استفاده کرد

به نسبت 1 zycosil آب10 ترکیب میشه

راستی این محصول هند

 

منبع: شركت اكسير شرق

Waterproofing Chemicals and Products for Construction Companies for Water Leakage Solution.

لینک به دیدگاه
  • 6 ماه بعد...

مقاومت بتن در برابر فشار بالاست ولی در مقابل كشش ضعیف است. ایجاد پیش فشردگی در بتن با كابل‌های فولادی باعث مي‌گردد بتن همواره در تنش فشاری باقی بماند و در نتیجه میزان باربری آن افزایش خواهد یافت. چون كابلها در حالت فشرده قرار دارند و نیروی کششی را به نیروی فشاری تبدیل مي‌كنند و هیچ ضعفی در مقطع بتن ایجاد نمي‌كنند و بتن فقط تحت بارهای بسیار زیاد به كشش مي‌افتد و ترك نمي‌خورد.

برای پیش فشرده یا پیش تنیده كردن بتن دو سیستم متفاوت وجود دارد. پیش كشیدن و پس كشیدن.

 

الف- پیش كشیدن

تعداد زیادی از قطعات بتن پیش فشرده، از جمله دال های كف با این روش تولید مي‌شوند. كابل‌ها را به صورت آزاد در داخل قالب قرار مي‌دهند و با دستگاه مخصوص كشش لازم را وارد مي‌كند. بتن‌ریزی را انجام مي‌دهند و به كمك لرزاندن، هوای آن را تخلیه مي‌كند و شرایط لازم برای انجام خودگیری سریع‌تر را فراهم مي‌كنند. طول اضافی كابلها را كه در دو انتها ثابت شده‌اند مي‌برند و بتن را تحت فشار رها مي‌سازند. مانند بتن مسلح پیش ساخته مقطع و محل قرارگیری كابل‌ها براساس بارهای محاسبه شده مشخص و رعایت مي‌شود.

 

 

ب‌- پس كشیدن

در روش پس كشیدن، كابل‌ها را در قالب كار،‌ داخل غلاف‌هایی قرار مي‌دهند، بتن‌ریزی را انجام مي‌دهند. وقتی به اندازه كافی خود را گرفت دو سر كابل‌ها را به طرف بیرون مي‌كشند. این كار به وسیله گره‌های مخصوص كه به دو سر سیم‌ها بسته مي‌شوند و پس از قطع شدن كشش محكم مي‌شوند، انجام مي‌گیرد. مزیت پس كشیدن بر پیش كشیدن این است كه مي‌توان آنها را خمیده كرد تا در مسیر تنش قرار گیرند. به این ترتیب مي‌توان بتن را به شكلی ریخت كه كمترین حجم ممكن را داشته باشد.

 

 

منبع

لینک به دیدگاه
  • 1 ماه بعد...

استفاده از مواد مناسب و نسبت هاي صحيح :بكار گيري مواد و مصالح مناسب طبق مشخصات پروژه ، رعايت مصرف سيمان تازه و غير فاسد از نوع مورد نظر و مطابق با استاندارد مورد قبول كاملا" مهم مي باشد . توزين يا پيمانه كردن دقيق و صحيح مصالح مصرفي طبق طرح اختلاط ارائه شده از اهميت برخوردار است . بهتر است مصالح سنگي مصرفي به ويژه سبكدانه در شرايطي قرار گيرد كه نوسانات رطوبتي اندكي داشته باشد . براي مثال خوبست بدانيم ليكاهاي موجود در ايران ميتواند تا بيش از 30 درصد آب را در خود جذب و نگهداري كند . بنا براين بين سنگدانه كاملا" خشك و كاملا" اشباع تفاوت فاحشي وجود دارد و ميتواند بر اسلامپ حاصله و نسبت آب به سيمان و در نتيجه به مقاومت و دوام بتن سبكدانه سازه اي اثر چشمگيري باقي گذارد . بهر حال اگر بدانيم مثلا" سنگدانه هاي ما حدود 5 درصد رطوبت دارد ميتوانيم مقدار آب مصرفي را تنظيم نمائيم تا به طرح اختلاط مورد نظر دست يابيم .

بايد دانست مشكل بزرگ توليد بتن سبكدانه همين تغيير رطوبت است و لذا كنترل نسبت آب به سيمان در اين بتن ها مشكل مي باشد و حتي مانند بتن هاي معمولي نيز نميتوان با كنترل اسلامپ به نتيجه مورد نظر رسيد .

انتخاب اسلامپ صحيح :مانند بتن هاي معمول انتخاب اسلامپ ميتواند مهم باشد . از نظر جدا شدگي ، آب انداختن ، رسيدن به تراكم مورد نظر با توجه به ابعاد قطعه ، طرز قرارگيري ، وضعيت درهمي ميلگردها ، وسايل تراكمي موجود قابل تأمين اين انتخاب كاملا" معنا دار و با اهميت است . به دليل سبكي سنگدانه ها بويژه سبكدانه هاي درشت احتمال جدا شدگي در بتن شل افزايش مي يابد . لذا اسلامپ هاي بيش از ده سانتي متر ابدا" مطلوب نيست مگر اينكه بتن پر عياري داشته باشيم ، همچنين با وجود موادي مانند ميكرو سيليس ممكنست اين جدا شدگي به حداقل برسد .

بنا براين اگر قرار باشد بتن سبكدانه پمپي با اسلامپ 10 تا 15 سانتي متر را داشته باشيم عيار سيمان بايد از حدود 400 كيلو در متر مكعب فراتر رود . در حاليكه اگر اسلامپ كمتر باشد حداقل عيار سيمان در ACI برابرkg/m3 335 مطرح شده است . در حالات عادي اسلامپ هاي 5 تا 8 سانتي متر براي بتن سبكدانه غير پمپي و اسلامپ 7 تا 10 سانتي متر براي بتن سبكدانه پمپي مطلوب تلقي ميشود بدون اينكه اين اعداد جنبه آئين نامه اي داشته باشد .

تغييرات اسلامپ در طول اجراء در بتن سبكدانه بسيار جدي است . در بتن هاي معمولي نيز اين پديده به چشم ميخورد بويژه وقتي سنگدانه هاي درشت خيلي خشك باشند ممكن است حتي در طول 15 دقيقه پس از ساخت شاهد افت جدي در اسلامپ باشيم . در بتن سبكدانه اين امر به شدت وجود دارد . فرض كنيد اگر در طول 15 تا 30 دقيقه جذب آب سبكدانه 5 تا 10 درصد فرض شود و فقط سبكدانه درشت به ميزان 300 كيلو داشته باشيم 15 تا 30 كيلو آب را جذب مي كند كه كاهش اسلامپ 6 تا 15 سانتي متر را ميتوان شاهد بود . اگر قرار باشد طول مدت حمل و ريختن و تراكم زياد باشد كاملا" دچار مشكل ميشويم . همچنين در بتن هاي پمپي ، اين كاهش و افت در اسلامپ مسئله ساز است . بنا براين سعي ميشود كه چنين پروژه هائي حتي الامكان از 24 ساعت قبل از ساخت بتن ، سبكدانه ها را خيس كرد (Presoaking ) تا آب قابل ملاحظه اي را جذب نمايد و پس از اختلاط بتن شاهد افت اسلامپ زيادي نباشيم . اين خيس كردن ممكن است حتي از سه روز قبل شروع شود ادامه يابد . خيس كردن سنگدانه ممكنست با آب پاشي تحت فشار و بصورت باراني باشد و يا از سيستم خلاء براي نفوذ سريعتر آب به داخل سبكدانه استفاده شود كه در ايران روش ساده اول معمولتر و عملي تر مي باشد . ريختن آب و سبكدانه در مخلوط كن و اضافه كردن سيمان و غيره پس از مدتي تأخير ميتواند به افت اسلامپ كمتر منجر شود .

ميزان جذب آب سبكدانه ها علاوه بر زمان تابع ميزان آب موجود در آن ( رطوبت اوليه ) نيز مي باشد كه پيش بيني جذب آب را در مدت معين دشوار مي كند مگراينكه قبلا" آزمايشهائي را با رطوبت اوليه موجود انجام داده باشيم .

اسلامپ هاي كمتر از 5 سانتي متري نيز كار تراكم را با مشكل مواجه مي سازد و فضاي خالي زيادي را در بتن بهمراه دارد .

بسياري از تحقيقات نشان داده اند مقاومت و دوام بتن هاي سبكدانه كه با سبكدانه خشك ساخته شده اند بهتر از وقتي است كه از سبكدانه قبلا" خيس شده يا اشباع شده استفاده گشته است .

 

اصل رعايت دماي مناسب :

حداقل و حداكثر دماي مجاز و مطلوب در أئين نامه ها مشخص شده است . رعايت اين امر براي بتن سبك سازه اي و با دوام بشدت ضروري است و از اين نظر تفاوتي با بتن معمولي وجود ندارد .

حداقل دماي مجاز 5+ درجه سانتي گراد و حداقل دماي مطلوب 10+ درجه سانتي گراد است . حداكثر دماي مجاز معمولا" 32-30 درجه سانتي گراد تا هنگام گيرش مي باشد و بهتر است از اين حد فاصله معقولي را داشته باشيم . در هواي سرد و گرم كه بتن با دماي مناسب توليد مي شود نبايد در حين اجرا آنقدر تأخير و معطلي بوجود آورد كه با تبادل گرمائي ، دماي مطلوب از دست برود .

 

اصل همگني ( عدم جداشدگي ) :

اصول جداشدگي و عوامل مؤثر بر آن براي بتن سبكدانه همچون بتن معمولي است ، اما براي بتن سبكدانه يك عامل ديگر يعني اختلاف در چگالي ذرات و خمير سيمان يا ملات ميتواند به جداشدگي منجر گردد . عوامل جداشدگي ميتوانند داخلي باشند كه صرفا" استعداد جداشدگي را بوجود مي آورند و يا عامل خارجي باشند كه مربوط به اجرا هستند و استعداد را شكوفا مي كنند . از عوامل داخلي بالا رفتن حداكثر اندازه سبكدانه مي باشد كه معمولا" باعث جداشدگي ميگردد و بهتر است حداكثر اندازه سبكدانه براي بتن سازه اي به 20 ميلي متر محدود شود و توصيه مي گردد تا از حداكثر اندازه 15 – 12ر ميلي متر استفاده شود . جالب است بدانيم معمولا" با افزايش حداكثر اندازه ، چگالي حجمي خشك ذرات سبكدانه درشت كاهش مي يابد و از اين نظر نيز امكان جداشدگي را قوت مي بخشد .

بالا رفتن اسلامپ به افزايش استعداد جداشدگي منجر مي شود . كاهش ميزان عيار سيمان و مواد سيماني و چسباننده ميتواند بشدت باعث افزايش استعداد جداشدگي گردد . اختلاف وزن مخصوص ( چگالي ) ذرات سبكدانه با خمير سيمان و يا اختلاف چگالي ذرات ريزدانه و درشت دانه به بالا رفتن استعداد جداشدگي منجر مي گردد . بالا رفتن نسبت آب به سيمان به افزايش پتانسيل جداشدگي مي انجامد . درشت تر شدن بافت دانه بندي سنگدانه ها معمولا" امكان جداشدگي را افزايش مي دهد . وجود مواد ريز دانه و چسباننده مانند پوزولان و ميكروسيليس و سرباره ها مي تواند باعث كاهش استعداد جداشدگي بتن سبكدانه گردد ، همچنين بكارگيري مواد حبابزا و ايجاد حباب هوا ميتواند جداشدگي و آب انداختن را كاهش دهد ضمن اينكه رواني و كارآئي مورد نظر تأمين ميگردد .

از عوامل خارجي مي توان حمل نامناسب ، ريختن غلط ، استفاده از شوت هاي طولاني و يا شيب نامطلوب ، برخورد بتن با قالب و ميلگردها ، ريختن بتن از ارتفاع زياد بدون لوله و قيف هادي و يا بدون پمپ معمولا" به جداشدگي منجر ميشود . بخاطر حساسيت جداشدگي در اين بتن ها بايد دقت بيشتري را اعمال نمود . بايد دانست نتيجه جداشدگي در بتن سبكدانه نيز از نظر مقاومتي و دوام بمراتب حادتر و مضرتر از بتن معمولي است .

لینک به دیدگاه

در طول حمل و ريختن و تراكم نبايد مواد مضر اعم از مواد ريزدانه رسي ( گل و لاي ) ، مواد شيميايي شامل چربي ها و مواد قندي يا انواع مختلف نمكها و آب شور و غيره با بتن مخلوط شود . مخلوط شدن موادي همچون گچ نيز توجيه ندارد . بهرحال در اين رابطه هيچ تفاوتي بين بتن معمولي و سبكدانه سازه اي وجود ندارد .

اصل عدم كاركردن با بتن در مرحله گيرش :

اگر عمليات بتن ريزي با بتني كه در مرحله گيرش است انجام گيرد مقاومت و دوام آن بشدت كاهش مي يابد و نفوذپذيري آن زياد ميشود . از اين نظر بتن مانند ملات گچ زنده است كه اگر آن را مرتبا" بهم بزنيم و ورز دهيم تبديل به ملات گچ كشته ميشود كه بشدت كم مقاومت و كم دوام است ، هرچند گيرش آن به تأخير مي افتد و يا اصلا" خود را نمي گيرد و صرفا" خشك مي شود . بهرحال نبايد بتن را در هنگامي كه در شرف گيرش است مخلوط نمود و يا ريخت و متراكم كرد . از اين نظر بين بتن سبكدانه و بتن معمولي اختلافي احساس نمي گردد .

مسلما" در هواي گرم و يا بتن با دماي زياد ، گيرش زودتر حاصل ميشود . زمان گيرش تابع نوع سيمان ( جنس و ريزي ) ، نسبت آب به سيمان و وجود مواد افزودني مي باشد . براي افزايش زمان گيرش و ايجاد مهلت براي عمليات اجرائي مي توان از بتن خنك ، كار در هنگام خنكي هوا يا شب ، سيمانهاي كندگير كننده استفاده نمود .

 

اصل پيوستگي و تداوم بتن ريزي ( عدم ايجاد درز سرد در بين لايه ها ) :

اگر در هنگام بتن ريزي به هر علت ، لايه زيرين قبل از ريختن و تراكم لايه روئي گيرش خود را انجام داده باشد درز سرد Cold Joint بوجود مي آيد . در اين رابطه فرقي بين بتن سبكدانه و معمولي وجود ندارد . بايد با تجهيز مناسب كارگاه ، افزايش توان توليد و حمل در ريختن و تراكم بتن ، افزايش زمان گيرش بتن و يا ايجاد درزهاي اجرائي مناسب و كاهش سطح بتن ريزي و يا كاهش ضخامت لايه ها امكان ايجاد درز سرد را به حداقل رساند .

 

تراكم صحيح بتن سبكدانه :

از آنجا كه بتن هاي سبكدانه بشدت در معرض جدا شدگي هستند ، تراكم با قدرت زياد و يا مدت بيش از حد مشكلات جدي را بوجود مي آورد . به محض اينكه احساس مي نمائيم كه شيره يا سنگدانه ها شروع به روزدن مي نمايند بايد تراكم را قطع كرد . لرزش ، بيش از فشار و ضربه ميتواند موجب جدا شدگي گردد.

به هر حال بايد كاملا" هواي بتن خارج و فضاي خالي به حداقل برسد تا مقاومت و دوام كافي ايجاد گردد.

 

پرداخت سطح بتن سبكدانه :

آب انداختن بتن همواره مشكل بزرگي در پرداخت نهائي سطح بتن مي باشد و اين امر اختصاص به بتن سبكدانه ندارد . خوشبختانه به دليل جذب آب تدريجـــي توسط سبكدانه ها ، آب انداختن ميتواند به كمترين مقدار برسد اما اگر سبكدانه ها قبل از اختلاط كاملا" اشباع شده باشد امكان آب انداختن بيشتر مي گردد . كم بودن عيار سيمان و مواد چسباننده سيماني ، فقدان مواد ريزدانه ، عدم وجود حباب هوا در بتن ، درشتي بافت دانه بندي ، افزايش حداكثر اندازه سبكدانه ، گردگوشه گي سنگدانه ها و بافت صاف سطح سنگدانه ، بالا بودن اسلامپ ، زيادي نسبت آب به سيمان و ... ميتواند موجب افزايش آب انداختن شود .

وقتي بتن آب مي اندازد بايد اجازه داد آب تبخير گردد و اگر تبخير به سرعت ميسر نمي گردد يا نگران گيرش هستيم بايد سعي كنيم آب روزده را با وسيله مناسبي ( گوني يا اسفنج ) از سطح پاك نمائيم و سپس سطح را با ماله چوبي و بدنبال آن با ماله فلزي يا لاستيكي صاف كنيم .

عدم رعايت اين نكات موجب افزايش نسبت آب به سيمان در سطح و كاهش مقاومت و دوام و افزايش نفوذپذيري بتن سطحي مي گردد .

 

عمل آوري بتن و سبكدانه :

هر چند عمل آوري رطوبتي و حرارتي بتن سبكدانه با بتن معمولي تفاوت چنداني ندارد اما اعتقاد بر اين است كه سبكدانه ها بعلت پوكي و تخلخل و جذب آب ميتوانند در صورت فقدان عمل آوري رطوبتي از ناحيه اجرا كنندگان ، بخشي از آب خود را در اختيار خمير سيمان قرار دهند و توقف شديدي در هيدراسيون سيمان رخ ندهد . اين امر را عمل آوري داخلي بتن سبكدانه مي گويند .

 

كنترل كيفي بتن سبكدانه :

كنترل كيفي بتن سبكدانه شامل بتن تازه و سخت شده است . كنترل رواني ، وزن مخصوص و هواي بتن از مهمترين كنترلهاي بتن تازه است . استفاده از آزمايش اسلامپ ، ميز آلمانی ( رواني ) و درجه تراكم براي اين بتن ها پيش بيني شده است . وزن مخصوص بتن تازه سبكدانه متراكم معمولا" كنترل مي شود و در آئين نامه هاي مختلف اختلاف 2 تا 3 درصد مجاز شمرده ميشود ( نسبت به طرح اختلاط ) . هواي بتن را براي بتن سبكدانه نميتوان بكمك روش فشاري بدست آورد و حتما" بايد از روش حجمي بهره گرفت . براي بتن سبكدانه سخت شده ، وزن مخصوص ، مقاومت فشاري ، كششي خمشي و نفوذپذيري ، جذب آب ، جذب موئينه و آزمايشهاي دوام در برابر خوردگي قابل كنترل است .

وزن مخصوص بتن سخت شده سبكدانه بصورت اشباع و خشك اندازه گيري ميشود و گاه بجاي خشك كردن از جمع زدن مقادير اجزاء در هر متر مكعب و افزودن مقداري رطوبت ثابت به آن ، وزن مخصوص بتن سخت شده را بدست مي آورند .

براي تعيين مقاومت فشاري و ساير پارامتر ها تفاوت چنداني بين بتن سبكدانه و معمولي وجود ندارد و شباهت جدي و كامل بين آنها وجود دارد . بهرحال ممكنست در مواردي نتايج حاصله در مقايسه با بتن هاي معمولي گمراه كننده باشد . مثلا" اگر جذب آب بتن سبكدانه را بصورت درصد وزني گزارش كنيم و آنرا با جذب آب بتن معمولي مقايسه نمائيم دچار اشتباه ميشويم و لذا توصيه ميشود جذب آب بتن بصورت درصد حجمي گزارش گردد .

 

بتن فاقد ريزدانه ( Concrete finez – No ) :

اگر سنگدانه هاي درشت تك اندازه را با سيمان و آب مخلوط كنيم و در قالب بدون تراكم بريزيم بتن فاقد ريزدانه و متخلخل بدست مي آيد كه از وزن مخصوص كمتري نسبت به بتن معمولي برخوردار خواهد بود . اگر چگالي سنگدانه ها در حدود معمولي باشد وزن مخصوص بتن فاقد ريزدانه حدود 1600 تا kg/m3 2000 بدست مي آيد اما اگر از سبكدانه درشت استفاده نمائيم ممكنست وزن مخصوص بتن حاصله از kg/m3 1000 كمتر شود ( حتي تا حدود kg/m3 650 ) . بهرحال در هر مورد بتن مورد نظر سبك يا نيمه سبك تلقي مي شود اما اگر سنگدانه معمولي استفاده شود نميتوان آنرا بتن سبكدانه دانست .

مسلما" اگر سنگدانه تك اندازه بكار نرود و حاوي ذرات ريز تا درشت باشد وزن مخصوص بتن حاصل نيز زياد خواهد شد . سنگدانه درشت مصرفي بايد 20-10 ميلي متر باشد و 5 درصد ذرات درشتر و 10 درصد ذرات ريزتر در اين نوع سنگدانه تك اندازه (Singl Size) مجاز است اما بهرحال نبايد ذرات ريزتر از 5 ميلي متر در آن مشاهده گردد . سنگدانه درشت بهتر است پولكي و كشيده و يا بسيار تيزگوشه نباشد . سنگدانه هاي گرد گوشه يا نيمه شكسته براي توليد اين بتن ارجح است .

ساختار بتن فاقد ريزدانه داراي تخلخل ظاهري است و حفرات موجود در بتن با چشم براحتي ديده مي شود كه در اين مجموعه خمير سيمان بايد صرفا" تا حد امكان سنگدانه ها را بهم چسباند و از پر كردن فضاها با خمير سيمان پرهيز شود زيرا وزن مخصوص بالا خواهد رفت . وجود خمير سيمان با ضخامت حدود 1 ميلي متر بر روي سنگدانه ها كاملا" مناسب است .

اگر سنگدانه معمولي بكار رود معمولا" مقدار شن اشباع تك اندازه بين 1400 تا 1750 كيلوگرم مي باشد . حجم اشغالي ذرات شن در حدود 550 تا 700 ليتر در هر متر مكعب است . وزن سيمان مصرفي بين 75 تا 150 كيلو در متر مكعب يا بيشتر است كه حجم آن حدود 25 تا 50 ليتر مي باشد . معمولا" نسبت آب به سيمان مصرفي 4/0 تا 5/0 مي باشد كه افزايش آن مي تواند به شلي خمير سيمان و رواني آن منجر شود كه موجب جداشدگي و پرشدن خلل و فرج مي گردد و بتن مورد نظر حاصل نمي شود . با كاهش نسبت آب به سيمان چسبندگي لازم بوجود نمي آيد و از نظر اجرائي دچار مشكل مي شويم . نسبت وزني سيمان به سنگدانه تا مي باشد . همانطور كه از محاسبات فوق بر مي آيد فضاي خالي اين بتن ( پوكي ) بين 25 تا 40 درصد مي باشد و ابعاد اين فضاها نيز بزرگ است درصد جذب آب بصورت وزني حدود 15 تا 25 درصد است . طبيعتا" با افزايش مقدار سيمان و آب و يا مصرف شن با دانه بندي پيوسته ( Graded Size ) وزن مخصوص بتن بيشتر خواهد شد . توصيه مي شود شن ها قبل از مصرف خيس و اشباع گردند .

طرح اختلاط اين بتن ها بصورت آزمون و خطا خواهد بود و بشدت تابع شرايط ساخت بتن مي باشد . بتن فاقد ريزدانه معمولا" بدون تراكم توليد مي شود و اگر مرتعش يا متراكم شود بسيار جزئي خواهد بود زيرا خمير سيمان ميل به پر كردن فضاي خالي بين سنگدانه ها را خواهد داشت و چسبندگي سنگدانه به يكديگر به حداقل خواهد رسيد .

معمولا" انجام آزمايش كارآئي يا اسلامپ براي اين نوع بتن موردي نخواهد داشت . از آنجاكه سنگدانه تك اندازه مصرف مي شود جداشدگي از نوع جدائي ريز و درشت سنگدانه معنائي ندارد و مي توان آن را از ارتفاع قابل ملاحظه ريخت .

بعلت محدوديت دامنه نسبت آب به سيمان و وجود فضاي خالي قابل توجه در اين نوع بتن ، مقاومت فشاري اين نوع بتن اغلب در حدود 5 تا 15 مگا پاسكال مي باشد و طبيعتا" يك بتن سبك سازه اي تلقي نمي گردد و بصورت مسلح مصرف نمي شود . برخي اوقات سعي مي كنند ميلگردها را با يك لايه ضد خوردگي ( پوشش مناسب ) آغشته كنند و سپس در بتن فاقد ريزدانه بكار برند . اگر از سبكدانه براي ساخت اين بتن استفاده شود ، مقاومت فشاري آن 2 تا 8 مگا پاسكال مي باشد .

جمع شدگي بتن هاي فاقد ريزدانه بمراتب كمتر از بتن معمولي است زيرا مقدار سنگدانه در مقايسه با خمير سيمان زياد است و يقه قابل توجه بوجود مي آورد . بتن فاقد ريزدانه سريعا" خشك مي شود زيرا خمير سيمان در مجاورت هواي موجود و فضاي خالي است و علي القاعده در ابتدا از جمع شدگي بيشتري نسبت به بتن معمولي برخوردار مي باشد و عمل آوري آن از اهميت برخوردار است . قابليت انتقال حرارتي آن بمراتب از بتن معمولي با سنگدانه مشابه كمتر است ( حدود تا ) كه با افزايش رطوبت و اشباع بودن اين بتن ، اين قابليت انتقال حرارت افزايش مي يابد .

مدول الاستيسيته اين بتن ها بين 5 تا Gpa20 است ( براي مقاومت هاي 2 تا 15مگا پاسكال ) . نسبت مقاومت خمشي به فشاري حدود 30 درصد است كه از نسبت مقاومت خمشي به فشاري بتن هاي معمولي بيشتر مي باشد . ضريب انبساط حرارتي اين نوع بتن در حدود تا بتن معمولي است . نفوذپذيري زياد از مزايا و شايد معايب اين نوع بتن است . اما نكته مهم آنست كه موئينگي در اين نوع بتن كم تا ناچيز مي باشد . اگر اشباع از آب نباشد در برابر يخبندان مقاوم است . بعنوان يك نفوذپذير زهكش و تثبيت شده و همچنين يك مسير درناژ و مقاوم بسيار مفيد است . بازي كردن لايه هاي قلوه سنگ و شن درشت و متوسط يا ريز بعنوان زهكش يا بلوکاژ و ***** از مشكلات اجرائي محسوب مي شود بويژه اگر بخواهد باربر باشد يكي از معدود راههاي حل مشكل ، استفاده از بتن فاقد ريزدانه است و در اين حالت مسئله سبكي زياد مهم نيست .

اين نوع بتن مانند بسياري از بتن هاي سبك مي تواند جاذب صوت باشد ( نه عايق صوت ) و براي اين منظور نبايد سطح اين بتن با اندودي پوشانده شود .

اندودكردن اين بتن بسيار خوب و ساده انجام مي شود . استفاده از اين بتن براي روسازي و پياده رو سازي اطراف درختان و يا پاركينگ ها بسيار مفيد است ( بدليل نفوذپذيري ) . در ديوارهاي باربر با طبقات كم مي توان از اين نوع بتن استفاده نمود . براي ايجاد نفوذپذيري بعنوان لايه اساس يا زير اساس ميتواند بطور مؤثر عمل نمايد . همچنين بعنوان يك لايه بتن مگر نفوذپذير مناسب است در زير دال كف يا شالوده منابع آب بتني نيز از اين بتن مي توان استفاده نمود .

لینک به دیدگاه

در طرح اختلاط هر نوع بتن ابتدا بايد خواسته ها را بررسی و فهرست نمود که در مورد بتن سبک نيز اين خواسته ها عبارتند از :

مقاومت فشاری در سن مورد نظر ، وزن مخصوص بتن تازه و خشک ، دوام بتن در شرايط محيطی يا سولفاتی ، اسلامپ و کارآئی بتن ، مقدار حباب هوای لازم با توجه به حداکثر اندازه وشرايط محيطی ، و احتمالا" موارد ديگری همچون مدول الاستيسيته يا خواص فيزيکی مکانيکی ديگر مثل قابليت انتقال حرارت و غيره ، در کنار اين موارد ممکنست محدوده دانه بندی مطلوب ( بويژه در روشهای اروپائی ) از جمله محدوديت ها و خواسته ها باشد .

ارائه شده است

- در کنار اين خواسته ها ، داده هائی نيز بر اساس اطلاعات موجود از سيمان ، سنگدانه و ... در دست است و يا بايد در آزمايشگاه بدست آيد از جمله اينها می توان به موارد زير اشاره نمود :

نوع سيمان ، حداقل و حداکثر مجاز مصرف سيمان ، حداکثر مجاز نسبت آب به سيمان ، نوع مواد افزودنی مورد نظر و مشخصات آن ، نوع سنگدانه درشت و ريزدانه ، شکل و بافت سطحی سنگدانه ها ، چگالی و جذب آب سبکدانه ها و سنگدانه های معمولی ، رژيم و روند جذب آب سبکدانه ، وزن مخصوص توده ای سنگدانه درشت متراکم با ميله ( در طرح امريکائی ) ، دانه بندی سنگدانه ها و حداکثر اندازه آنها ، ويژگيهای مکانيکی و دوام سنگدانه ها ، مدول ريزی سنگدانه ها و ريزدانه ها ( بويژه در روش امريکائی ) ، چگالی ذرات سيمان و افزودنيها : گاه لازمست دانه بندی يا مدول ريزی سبکدانه ها معادل سازی شود يعنی با توجه به اختلاف در چگالی ذرات ، دانه بندی وزنی به دانه بندی و مدول ريزی حجمی تبديل گردد که در اين حالت لازمست برای چگالی ذرات هر بخش اندازه ای را تعيين کنيم .

 

روش طرح اختلاط و جداول و اطلاعات ضروری در هر روش :

معمولا" در هر نوع روش طرح اختلاط لازمست حدود مقدار آب آزاد با توجه به کارآئی ، حداکثر اندازه سنگدانه و شکل آن فرض گردد و بدست آيد . نسبت آب به سيمان از جداول راهنما يا تجربيات گذشته و شخصی فرض می گردد . پس مقدار سيمان در اين صورت مشخص می گردد . هر چند گاه در طرح اختلاط بتن سبک ابتدا عيار سيمان فرض شده و با در نظر گرفتن نسبت آب به سيمان يا کارآئی ، مقدار آب مشخص می شود .

اختلاف عمده روش ها در تعيين مقدار سنگدانه ها خواهد بود و بويژه در طرح مخلوط بتن سبکدانه يا نيمه سبکدانه ، اختلافات موجود روشها برای بتن معمولی ، بيشتر می گردد .

در روشهای اروپائی ( آلمانی و اتحاديه بتن اروپا ) با توجه به محدوده مطلوب دانه بندی حجمی، سهم سنگدانه های ريز و درشت ( خواه هر دو سبکدانه يا يکی از آنها سبکدانه باشد ) بدست می آيد، سپس چگالی متوسط سنگدانه ها تعيين شده و در فرمول حجم مطلق قرار می گيرد و مقدار کل سنگدانه بدست می آيد .

اگر افزودنی داشته باشيم حجم افزودنی از تقسيم وزن به چگالی آن بدست می آيد و در رابطه قرار داده می شود .

پس از تعيين با توجه به سهم هر سنگدانه ، وزن آن مشخص می گردد و با توجه به ظرفيت جذب آب هر نوع سنگدانه می توان وزن خشک هر کدام و آب کل را تعيين کرد . وزن مخصوص بتن تازه نيز از جمع اوزان اجزاء بتن بدست می آيد ( بصورت محاسباتی ) در عمل پس از ساخت مخلوط آزمون با توجه به نتيجه محاسبات و اطلاعات حاصله مانند اسلامپ ، کارآئی و مقاومت و وزن مخصوص بتن ميتوان اصلاحات لازم را در محاسبات به انجام رسانيد و طرح اختلاط را نهائی کرد. امريکائی ها نيز در ACI 211.1 و ACI 211.2 و ACI 213 R سه روش را برای طرح اختلاط بتن سشبکدانه و يا نيمه سبکدانه توصيه نموده اند :

 

1. روش حجم مطلق :

در اين روش عملا" پس از تعيين آب آزاد ، سيمان ، سنگدانه درشت خشک و اشباع ، ازفرمول حجم مطلق استفاده نموده و وزن ماسه اشباع با سطح خشک بدست می آيد . اين روش برای بتن معمولی ، نيمه سبکدانه و تمام سبکدانه قابل اجراست . مشکل عمده در اين حالت تعيين مقدار چگالی اشباع با سطح خشک سبکدانه ها و ظرفيت جذب آب آنهاست . علاوه بر آن عملا" يک اشکال مفهومی نيز در اين حالت وجود دارد و آن اينکه آيا اصولا" در هنگام ريختن و گيرش بتن ، سبکدانه ها به مرحله اشباع با سطح خشک رسيده اند که بتوان از چگالی اشباع با سطح خشک آنها برای تعيين حجم اشغال آنها در بتن استفاده نمود . از آنجا که تفاوت حالت واقعی با فرضی گاه خيلی زياد است . استفاده از اين روش بويژه اگر قرار باشد وزن اشباع با سطح خشک و چگال مربوط در فرمول حجم مطلق بکار رود محل تأمل است مگر اينکه از يک چگالی يا وزن ديگر با توجه به جذب آب واقعی در اين حالت استفاده نمود که روش بسيار دقيقی حاصل می گردد . امروزه سعی شده است با اين روش به طرح اختلاط مناسب دست يافت . مثلا" در روش های اروپائی که اين مشکل وجود دارد سعی می شود از جذب آب و چگالی نيم ساعته ، 1 ساعته يا 2 ساعته و حتی 4 ساعته استفاده گردد.

آنچه در اينجا اهميت دارد آنست که در هنگام گيرش نسبت آب به سيمان واقعی چقدر است و با دانستن اينکه آبهای موجود در بتن ، در سنگدانه يا خمير سيمان است به اين نتيجه رسيد که آب آزاد واقعی چيست و چقدر می باشد . مسلما" کارآئی و اسلامپ را آب آزاد مربوط به زمانهای کوتاهتر مثل 15 دقيقه يا 30 دقيقه تعيين می کنند . اين امر مستلزم آنست که رژيم جذب آب سبکدانه را بدانيم و در هر حالت چگالی سبکدانه را محاسبه کنيم .

 

2. روش حجمی ( Volumetric ) :

در روش حجمی از يک مخلوط آزمون با مقادير تخمينی استفاده می شود ( آب ، سيمان ، سنگدانه ريز و درشت ) . پس از ساخت مخلوط آزمون و انجام آزمايشهای لازم مانند : اسلامپ ، درصد هوا و وزن مخصوص بتن تازه و مشاهده قابليت تراکم ، ماله خوری و کارآئی ، خصوصيات ديگر نيز می تواند در زمانهای بعد بدست آيد ( مثل مقاومت و ..... ) . اما پس از ساخت بتن و اندازه گيری وزن مخصوص بتن تازه ، با توجه به وزن مصالح مورد استفاده در ساخت بتن ، حجم بتن حاصله تعيين می شود . حجم محاسباتی بتن نيز قبلا" مشخص شده است و لذا و اصلاح در مخلوط برای يکی شدن اين ها صورت می گيرد . مسلما" بايد اهداف مقاومتی و دوام نيز تأمين گردد . در اينجا نيز مشکل چگالی ذرات و جذب آب وجود دارد که معمولا" رطوبت و چگالی موجود مد نظر قرار می گيرد . لازم به ذکر است که اين روش برای بتن های نيمه سبکدانه و تمام سبکدانه کاربرد دارد. همچنين در اين روش از حجم سنگدانه ها بصورت شل استفاده می گردد .

 

3. روش وزنی يا فاکتور چگالی ( Weight Method or Specificgravity factor Method ) :

اين روش صرفا" برای سبکدانه درشت و ريز دانه معمولی کاربرد دارد يعنی صرفا" برای بتن نيمه سبکدانه مورد استفاده قرار می گيرد . در اين روش از فاکتور چگالی بجاب چگالی ذرات سبکدانه استفاده می شود . فاکتور چگالی تعريف خاصی است که فقط در ACI 211.2 ( در ضميمه A ) آمده است و با تعريف چگالی تفاوت دارد . S فاکتور چگالی بصورت زير می باشد. C وزن سبکدانه ( خشک يا مرطوب ) و B وزن پيکنومتر پر از آب و A وزن پيکنومتر پر از آب و سبکدانه می باشد.

بنابراين در اين تعريف وضعيت رطوبتی مشخص نيست و ميتواند از حالت خشک تا کاملا" اشباع انجام شود اما بايد وضعيت رطوبتی در هر مورد گزارش شود يعنی بگوئيم فاکتور چگالی برای سبکدانه ای با رطوبت معين برابر S می باشد . با توجه به روند معمولی طرح اختلاط امريکائی ، مقدار آب آزاد ، نسبت آب به سيمان ، مقدار سيمان ، وزن سبکدانه درشت خشک و مرطوب بدست می آيد که در اين رابطه مدول زيری ماسه و حداکثر اندازه سنگدانه ها و کارآئی مورد نياز کاربرد دارد . جذب آب سبکدانه می تواند طبق دستورهای استاندارد موجود و يا ضميمه B مربوط به ACI 211.2 مشخص شود که بر اين اساس آب کل بدست می آيد . در اين روش نيز باتوجه به وزن يک متر مکعب بتن مقدار ماسه بدست می آيد و بتن مورد نظر با اصلاحات رطوبتی ساخته شده و حک و اصلاح لازم بر روی مقادير بدست آمده صورت می گيرد تا بتن مطلوب حاصل شود .

 

کاربردهای بتن سبک همانطور که می دانيم بتن سبک می تواند به صورت های مختلفی طبقه بندی شود ، مثلا" سازه ای و غير سازه ای . از اين نوع طبقه بندی می توان کاربردها را حدس زد . اما گاه از طبقه بندی ديگری استفاده می نمائيم مثل بتن سبکدانه ، بتن اسفنجی و بتن فاقد ريز دانه . در اين نوع طبقه بندی ظاهرا" نمی توان کاربردها را حدس زد .

• ساخت قطعاتی است که صرفا" جنبه پر کننده دارند . در نوع سازه ای نيز دو نوع بتن داريم : مسلح و غير مسلح . مثلا" اجزاء سازه ای غير مسلح مثل بلوکهای ساختمانی را بايد از اين جمله موارد دانست . بتن سبکدانه ای سازه ای مسلح کاربردهائی شبيه بتن معمولی مسلح دارد و حتی ممکن است پيش تنيده هم باشد . جالب است بدانيم بتن های سبکدانه سازه ای مسلح در ابتدا عمدتا" در ساخت کشتی های تجاری و جنگی در جنگ جهانی اول از سال 1918 تا 1922 بکار رفته است . کشتی Atlantus به وزن 3000 تن در سال 1918 و کشتی Selmaبه وزن 7500 تن و طول 132متر در سال 1919 به آب افتادند . همچنين در جنگ جهانی دوم ( تا اواسط جنگ) بدليل محدوديت هائی در توليد ورق فولادی ( مانند جنگ جهانی اول ) کشتی ها و بارج های زيادی ساخته شدند که در همه آنها از بتن سبکدانه ( و معمولا" سبکدانه رسی منبسط شده ) استفاده شده بود . 24 کشتی اقيانوس پيما و 80 بارج دريائی تا پايان جنگ جهانی دوم در امريکا ساخته شد که ظرفيت آنها از 3 تا 000/ 140 تن بود .

جالب است بدانيم تا اين اواخر يک کشتی بنام Peralta که در جنگ جهانی اول ساخته شده بود ، شناور بود و آزمايشهای ارزشمندی نيز بر روی آن انجام شده است که نشان دوام عالی بتن آن از نظر خوردگی ميلگردها و کربناسيون می باشد .

مخازن شناور آب و مواد نفتی از جمله موارد استفاده بتن سبکدانه ای مسلح در طول دوران جنگ جهانی اول و دوم بوده است که ظاهرا" بعدها نيز بر خلاف ساخت کشتی ها ، توليد و ساخت آنها ادامه يافته است اما بدليل اقتصادی در زمان صلح بواسطه وفور ورق فولادی ، توليد کشتی مقرون به صرفه نمی باشد .

در سالهای 1950 و 1960 پل ها و ساختمانهای زيادی با بتن سبکدانه مسلح سازه ای در دنيا ساخته شد . بطور مثال در ايالات متحده و کانادا بيش از 150 پل و ساختمان از اين نوع مورد بهره برداری قرار گرفت . بطور مثال ساختمان هتل پارک پلازا در سنت لوئيز امريکا ، ساختمان 14 طبقه اداره تلفن بل جنوب غربی در کانزاس سيتی در سال 1929 از ساختمانهائی هستند که در دهه 20 و 30 ميلادی ساخته شده اند .

ساختمان 42 طبقه در شيکاگو ، ترمينال TWA در فرودگاه نيويورک ( 1960 ) ، فرودگاه Dulles واشنگتن در 1962 ، کليسائی در نروژ در 1965 ، پلی در وايسبادن آلمان در 1966 و پل آب بر در روتردام هلند در 1968 از جمله اين موارد هستند . در هلند ، انگلستان ، ايتاليا و اسکاتلند در دهه 70 و 80 ميلادی پلهائی از نوع ساخته شده اند .

مخازن عظيم گاز طبيعی ، اسکله شناور ، مخزن نفت در زير آب و ساختمانهای فرا ساحلی مانند سکوهای استخراج نفت و گاز با بتن سبکدانه مسلح سازه ای ساخته شده اند که اغلب بصورت نيمه سبکدانه و گاه تمام سبکدانه بوده اند . سکوی بزرگ پرش اسکی ، جايگاه تماشاچی در برخی استاديومها و همچنين سقف اين استاديومها گاه از بتن سبکدانه ساخته شده است .

بزرگترين بنای بتن سبکدانه ، يک ساختمان اداری 52 طبقه در تکزاس با ارتفاع 215 متر می باشد. در هلند در سالهای 60 تا 73 ميلادی 15 پل با دهانه بزرگ با بتن سبکدانه ساخته شده است. در سالهای دهه 70 ميلادی ساخت بتن های سبکدانه پر مقاومت آغاز شد و در دهه 80 بدليل نياز برخی شرکتهای نفتی در امريکا ، نروژ و مکزيک ، ساخت سازه ها و مخازن ساحلی و فرا ساحلی مانند سکوهای نفتی با بتن سبکدانه پر مقاومت آغاز شد که در اواخر دهه 80 و اوائل دهه 90 به بهره برداری رسيد و نتايج آن منتشر شده است .

FIP ( fib ) برخی پروژه های مهم ساخته شده با بتن سبکدانه را منتشر نموده است که کاربرد آن را نجومی نشان می دهد .

 

 

بتن اسفنجی

معمولا" بع دو نوع گازی و کفی تقسيم ميشود . اين نوع بتن هارا بتن پوک و متخلخل نيز می نامند و در برخی منابع بتن Cellular نام دارد . اغلببتن های گازی و کفی غير سازه ای هستند اما برخی بتن های گازی از قابليت سازه ای شدنو حتی مسلح شدن برخوردار می باشند .

بتن های اسفنجی عمدتا" پر کننده هستند . ساخت برخی پانل های جداکننده ، ايجاد کف سازی و شيب بندی ، عايق های حرارتی و جاذبصوت از جمله موارد مورد استفاده بتن اسفنج غير سازه ای است . توليد قطعات و بلوکهایساختمانی برای بنائی از جمله کاربردهای بتن گازی است . نوعی بتن گازی بنام سيپورکسدر سوئد ساخته شد که می توانست مسلح گردد و در ايران نيز مدتی قطعات بتنی مسلحسيپورکسی بکار رفت از جمله دالهای بتن مسلح پيش ساخته برای پوشش سقف از جنس سيپورکسدر برخی پروژه های کشور ما مصرف گشته است . قطعات نما از جنس بتن کفی و گازی ياسبکدانه غير سازه ای نيز توليد و مصرف شده است .

کاربردهای بتن فاقد ريزدانهنيز در مبحث جداگانه ای نيز

لینک به دیدگاه

مراقبت از بتن در هوای سرد

مشکل مراقبت از بتن در هوای سرد تأمین حرارت است که با روشهای مختلف این کار را انجام میدهند . از جمله ی این روش ها استفاده از لحاف های عایق است که معمولا پوشش های عایق پشم شیشه ای ، مناسب ترین پوشش هستند . با توجه به اینکه بتن در هنگام گرفتن ، گرمازا بوده و گرمای آزاد شده ، دمای محدوده ی خود بتن را بالا می برد ، اگر چنانچه یک پوشش عایق روی بتن کشیده شود ، دمای بتن از دمای محیط بالاتر رفته و به دلیل عایق بودن پوشش ، تبادل حرارتی بتن با محیط خارج قطع شده و در نتیجه قطعه ی بتنی نسبت به دمای بیرون گرم تر می شود . این تکنیک ساده و عملی است ، به خصوص برای دمای حدود صفر درجه بسیار مناسب است ، ولی متاسفانه در عمل کمتر از آن استفاده می شود .

اگر دما باز هم سردتر باشد ( مثلا حدود 4 الی 5 درجه زیر صفر ) استفاده از پوشش هایی که مجهز به وسایل گرمازا هستند مناسب است . در این روش پوشش هایی که المان های حرارتی از داخل آنها عبور کرده است ( شبیه پتوهای برقی ) را مورد استفاده قرار داده و با اتصال این وسایل به برق و تولید گرما ، مراقبت از بتن را انجام می دهند . استفاده از این گونه وسایل ، باید کاملا توجیه اقتصادی داشته باشد .

همچنین استفاده از بخاری یا شعله جهت مراقبت از بتن در هوای سرد نیز در مواردی مناسب است . ( به عنوان مثال در صورت امکان می توان قطعات بتنی را در یک فضای سربسته قرار داده و آنها را با بخاری یا شعله گرم نمود .)

شایان ذکر است که در مراقبت از بتن در هوای عادی مسئله ی حرارت مطرح نبوده و مشکل ، رطوبت است ولی در دمای سرد تقریبا مسئله ی رطوبت منتفی است و مسئله ی حرارت باید مد نظر قرار گیرد . به هر حال هر مهندس کارگاهی می تواند به ابتکار خود در این خصوص اقدام نموده و بسته به نوع کار ، حجم کار ، دمای محیط ، موقعیت و شرایط کار چاره اندیشی کند .

لینک به دیدگاه

اين ضديخ داراى عملكرد چند گانه به شرح ذيل مى باشد:

1- كاهش نقطه انجـماد آب كه موجـب برطرف شدن خطر يخ زدگى در بتن تازه مي شود. با استفاده از ضديخ AFCOM-F7 مى توان تا درجه برودت 15- درجه سانتى گراد بتن ريزى نمود.

 

2- اسلامپ بتن را افزايش مى دهد و يا به عبارت ديگر نقش روان كنندگى هم دارد . لذا مى توان براى يك اسلامپ ثابت از ميزان آب مصرفى كم نمود.

 

3- خاصيت هوازائى آن باعث بالا رفتن مقاومت بتن در مقابل سيكلهاى متناوب يخ زدگى و آب شدن مى شود. اين خصوصيت ضديخ بتن AFCOM-F7، بسيار مفيد و حائز اهميت بوده و توصيه مي شود براى بتن هايى كه در معرض سيكلهاى مداوم يخ زدگى و آب شدن قرار دارند، حتما استفاده شود.

 

4- ضديخ AFCOM-F7 فاقد يون كلر بوده و هيچگونه اثر سوئى بر روى آرماتورها ندارد.

 

 

 

روش و ميزان مصرف :

 

ضديخ بتن AFCOM-F7 را بر اساس مقادير ذكر شده در جدول ذيل در هنگام مخلوط كردن بتن به آن اضافه نمائيد.

 

مقدار مصرف رابطه مستقيم با دماي محيط دارد و مى بايست توجه شود كه در محاسبه دماى محيط حداقل دمائى كه ممكن است بتن در طول زمان گيرش خود با آن مواجه شود بايد ملا ك محاسبه قرار گيرد.

 

 

 

 

 

 

بتن 350

 

(كيلوگرم سيمان/مترمكعب)

 

 

بتن 300

 

(كيلوگرم سيمان/مترمكعب)

 

 

بتن 250

 

(كيلوگرم سيمان/متر مكعب)

 

 

حداقل درجه برودت هوا

 

(°c )

 

 

 

مشخصات فنى :

حالت فيزيكى : مايع

 

رنگ : آبى

 

وزن مخصوص : gr/cm³ ا 3/1

 

PH : ا 8- 9

 

يون كلر : ندارد

 

استاندارد : ASTM C- 494&C- 666

 

زمان مصرف و نحوه نگهدارى : حداقل يك سال در محيط هاى سر پوشيده

 

بسته بندى : در گالنهاى پلاستيكى 25 كيلوئى و بشكه هاى 250 كيلوئى

لینک به دیدگاه

- برای مصالح و شرایط عمل آوردن (Curing) معین، کیفیت بتن سخت شده به مقدار آب در مقابل با مقدار سیمان بستگی دارد.

 

 

مزایای کاهش مقدار آب

 

 

1.افزایش مقاومت فشاری و مقاومت خمشی

 

 

2.افزایش قابلیت آب بندی (Water Tightness)

 

 

3.کاهش جذب آب (Absorption)

 

 

4.افزایش مقاومت نسبت به عوامل جوی

 

 

5.پیوستگی بهتر بین لایه های متوالی

 

 

6.چسبندگی بهتر میان میلگرد و بتن

 

 

7.کاهش تغییرات حجمی در اثر تر و خشک شدن

 

 

 

 

 

 

 

 

 

 

 

 

انواع سیمان پرتلند

 

-نوع 1 : برای استفاده عمومی ومناسب برای همه کارها

 

 

-نوع 2 : زمانی که احتیاطات علیه حمله سولفات ها مهم باشد

 

 

-نوع 3 : با مقاومت زودرس که مقاومت های بالا را در مدت کوتاهی می دهد

 

 

-نوع 4 : با حرارت هیدراسیون کم در جائی که میزان و حرارت تولید شده باید حداقل باشد

 

 

-نوع 5 : در بتن هائی که در معرض شدید سولفاتها قرار دارن (ضد سولفات)

 

 

-سیمان حباب زا (نوع A1، A2، A3) در برابر یخ زدن و آب شدن و همچنین پیوسته شدگی حاصل از اثرات مواد شیمیائی برای از بین بردن یخ جاده ها مقاومت بهبود یافته ای دارند.

 

 

سیمان پرتلند سفید تفاوت بنیادی آن در رنگ می باشداختلاط

 

 

ترتیب 5 مادﮤ متشکله بتن در مخلوط کن نقش مهمی را در یکنواختی بتن خواهد داشت.

 

 

کنترل ترک

 

 

دو عامل اصلی برای ترک در بتن عبارتند از :

 

 

1.تنش بر اثر بارهای وارده (Control joints)

 

 

2.تنش بر اثر آب رفتگی در حین خشک شدن یا تغییرات دما (Restraint)شیوه جلوگیری

 

1.درزهای کنترل مؤثرترین شیوه جلوگیری از ترک های غیر قابل رؤیت به شمار می آیند (Isolation Joints)

 

 

2.درزهای جداکننده دال را از قسمتهای دیگر سازه جدا می کنند و اجازه حرکت افقی و عمودی را در دال می دهد (Footings)

 

 

3.درزهای اجرائی جائی که کار بتن ریزی روزانه پایان می یابد، ایجاد می شوند; و مناطقی را که در دفعات مختلف بتن ریزی می شوند از یکدیگر جدا می سازند.

 

 

-

 

 

 

مواد افزودنی بتن (Admixtures)

 

 

1.مواد افزودنی حباب زا (Air-entraining )

 

 

2.مواد افزودنی کاهنده آب (Water Reducing)

 

 

3.مواد افزودنی کندگیرکننده (Retarding)

 

 

4.مواد افزودنی تسریع کننده (Accelerating)

 

 

5.پوزولانها

 

 

6.مواد کارائی ساز شامل روان سازهای اعلا (Super Plasticizers)

 

 

7.مواد متفرقه مانند مواد پیوند ساز، ضد رطوبت، کاهنده نفوظ پذیری، دوغاب ساز و گاز سازبتن ریزی و پرداخت

 

 

-تدارکات پیش از بتن ریزی

 

 

شامل متراکم کردن، درست شکل دادن، مرطوب نمودن سطح زمین ، بستن قالبها،قرار دادن آرماتورها و سایر اقلام کار گذاشته شده بطور محکم در محلهای خود.

 

 

قالبها باید بطور دقیق قرار داده شوند وخود یا آستر آنها با مصالحی ساخته شده باشد که سرانجام نمای مطلوبی را به سطح بتن سخت شده ارائه کنند.قالبهای چوبی باید قبل از بتن ریزی مرطوب شوند در غیر اینصورت آب بتن را جذب کرده و متورم می شوددر استفاده از قالبهای چوبی باید از بکار بردن میخهای خیلی بزرگ یا به تعداد خیلی زیاد اجتناب ورزید تا برداشتن قالبها آسان شود و آسیب پذیری کاهش یابد.و برای سهولت در برداشتن قالبها باید آنها را با یک ماده رها ساز مانند روغن یا لاک آغشته کرد.

 

 

هنگامی که بتن ریخته می شود،میلگردهای فولادی باید تمیز بوده وعاری از زنگ یا لایه اکسیده باشد. میلگردهای فولادی و سایر اقلام کار گذاشته که آغشته به ملات باشند، نیازی به .پاک کردن ندارند به شرطی که عملیات بتن ریزی در عرض چند ساعت پایان پذیرد.

 

 

ریختن بتن

 

 

بتن باید بطور پیوسته تا حد امکان در نزدیکی محل نهای خود ریخته شود.در اجرا دالها ، بتن ریزی باید در امتداد پیرامون انتهای دال آغاز شو د و هر پیمانه روی بتن ریخته شده قبلی تخلیه شود. عموما بتن در لایه­های افقی با ضخامت یکنواخت ریخته شود وهر لایه باید قبل از ریختن لایه بعدی بطور کامل تراکم یابد. میزان بتن ریزی باید به اندازه کافی سریع بوده تا هنگام ریختن لایه جدید روی لایه قبلی ،آن لایه در حالت خمیری باشد . این امر باعث جلوگیری از خطوط جریان، درزها و سطوح سفحات ضعیف می شود که هنگام ریختن بتن تازه روی بتن سخت شده روی می­دهد.

 

 

پیمانه های نخستین در هر مرحله بتن ریزی در دیواره ها و تیرهای اصلی باید در دو انتهای عضو ریخته شوند و سپس بتن ریزی های بعدی به سوی قسمت مرکزی پیش روند. در تمام حالات باید از جمع شدن آب در انتهاها، در گوشه ها جلوگیری شود.

 

 

-ارتفاع سقوط آزاد بتن نیازی به محدود شدن ندارد مگر اینکه جدائی درشت دانه ها رخ دهد که در آن صورت بتن از طریق بازشوهای پهلوئی موسوم به پنجره، که در اطراف قالبهای بلند و باریک وجود دارند، ریخته می شوند. در خارج بازشوها باید از یک مخزن قیفی شکل جمع شونده استفاده شود تا بتن امکان یابد آرام تر از کنا بازشو جریان یافته و تمایل به جدائی دانه ها کاهش یابد.

 

 

قبل از اینکه سطح بتن سخت شود بتن ریزی باید دوباره از سر گرفته شود تا بدینوسیله از ایجاد اتصال سرد جلوگیری به عمل آید.

 

 

متراکم کردن بتن

 

متراکم کردن عبارتست از نزذدیک ساختن ذرات جامد در بتن تازه به گونه ای که ریختن آن در قالبها و دور اقلام کار گذاشته شده و آرماتورها انجام گیرد و نیز محفظه های سنگی و هوای محبوس که بصورت حفره های هوائی اتفاقی یا تصادفی در بتن موجود است از بین برود.

 

 

تراکم بوسیله دست یا توسط روشهای مکانیکی صورت می گیرد. روش انتخاب شده بستگی به روانی مخلوط و شرایط بتن ریزی مانند، پیچیدگی قالب بندی و مقدار آرماتورها دارد. مخلوط های خمیری و روان را می توان بطور دستی با کوبیدن بتن با یک میله فولادی یا یک وسیله فولادی دیگر متراکم ساخت.

 

 

تراکم مکانیکی مناسب، بتن ریزی مخلوطهای سفت با نسبتهای آب به سیمان پایین و بتن های خوب حاوی درشت دانه های زیاد را امکان پذیر می سازد.برداشتن قالبها( باز کردن آنها)

 

قالبها راتا مادامی که بتن به اندازه کافی مقاومت پیدا نکرده تا بتواند به طور رضایت بخشی تنشهای ناشی از بار مرده و نیز هر گونه بار اجرایی((construction load وارده را تحمل کند،نباید برداشته شود.بتن باید به اندازه کافی سخت شده باشد به نحوی که وقتی دقت معقولی در باز کردن قالبها انجام شود هیجگونه آسیبی به به سطوح نرسد.به طور کلی برداشتن قالبهای مقاطع نسبتا ضخیم را می توان 12 تا 24 ساعت پس از بتن ریزی برداشت.در اغلب شرایط ، برای زمان برداشتن قالبها بهتر است که متکی به مقاومتی از بتن بوده که بوسیله آزمایش تعیین می شود .

 

 

میله نوک تیز یا سایر ابزار فلزی را نباید جهت شل کردن قالبها میان بتن و قالب به زور گذاشته شود.اگر لازم باشد جدا کردن قالب از بتن با استفاده از گوه (wedge(انجام گیرد، فقط باید با گوه های چوبی بکار روند.

 

 

برداشتن قالبها باید از قسمتهای ساده آغاز شده وسپس به سوی قسمتهای پیش آمده پیشروی شود.این امر فشار وارد به گوشه های پیش آمده را کاهش می دهد.

 

 

لکه گیری، پاک کردن،وپرداختن سطوح قالب گیری شده

 

 

پس از برداشتن قالبها تمام برجستگیها،خطوط نشت،و پیش آمدگیهای کوچک باید به وسیله قلم زنی (chipping( از بین برده شود.سطح بتن سپس باید سابیده یا مالیده شود. هر گونه باید پر شود.سطوح کرمو باید مرمت شده و تمام لکه ها باید پاک شوند . با دقت در عملیات اجرای قالب بندی و بتن ریزی ، تمامی این عملیات به حداقل می رسد.

 

 

بتن کرمو و دیگر بتن های معیوب باید کنده شوند تا مصالح خوب و سالم پدید آید.

 

 

اگر بتن معیوبی مجاور محل لکه گیری شده باقی بماتد ،ممکن است رطوبت به درون خلل و فرج راه یابد و به مرور زمان عوامل جوی موجب کنده شدن بتن مرمت شده شود. لبه ها باید به طور مستقیم و عمود بر سطح ، بریده یا قلم زنی شوند ،یسا مقدار کمی تو بریدگی داده شوند تا زبانکی را در کنار جای لکه گیری شده فراهم سازد.

 

 

پیش از اعمال بتن لکه گیری ، بتن اطراف باید برای چندین ساعت خیس نگه داشته شود.تمام سطوحی که بتن جدید به آنها پیوند داده می شوند،باید بوسیله برس دوغاب زده شوند.

 

 

تکه های کم عمق را با ملات سفت مشابه آنچه کهدر بتن بکار می رود ،می توان پر کرد.لکه گیری باید لایه به لایه انجام شود. به گونه ای که ضخامت هر لایه بیشتر از13 میلی متر نبوده و نیز هر لایه به صورت مضر س پرداخت شود تا پیوند آن به لایه بعدی بهتر صورت گیرد. لایه نهایی را با استفاده از تخته ماله به نحوی پرداخت کرد که با بتن اطرهف خود همگون باشد

 

 

عمل آوردن تکه های لکه گیری شده

 

 

پس از لکه گیری، عمل آوردن باید تا جایی که ممکن است زودتر آغاز شودتا از خشک شدن زود هنگام جلوگیری شود . کرباس تر،ماسه خیس، نایلون را می توان به کا برد.

 

 

عمل آوردن و حفاظت

 

 

عمل آوردن بتن تاثیر قوی روی خواص بتن سخت شده مانند دوام، مقاومت، آب بندی، مقاومت سایشی، ثبات حجمیو مقاومت در برابر یخ زدن وآب شدن دارد.

 

 

تمامی سازه های بتنی تازه ریخته شده، باید از خشک شدن سریع، از تغییرات شدید دما، و از آسیبهای ناشی از کارهای ساختمانی و عبور و مرور بعدی محفوظ بمانند.

 

 

عمل آوردن تا حد امکان باید بلافاصله پس از پایان کار بتنی آغاز شود.

 

 

عمل آوردن به دلایل زیر ضروری است :

 

نگهداری بتن تحت دمای ثابت و جلو گیری از افت رطوبت برای مدت زمانی که برای هیدراسیون مطلوب سیمان ونیز برای کسب مقاومت بتن لازم است.

 

 

بتن ریزی در هوای گرم

 

 

هوای گرم می تواند اشکالاتی زیر را در بتن تازه ایجاد کند :

 

 

-افزایش نیاز به آب

 

 

-افت سریع تر و شدیدتر اسلامپ

 

 

-افزایش سرعت گیرش

 

 

-افزایش امکان ترک های پلاستیک

 

 

-اشکالات در کنترل مقدار حبابهای هوا

 

 

-نیاز شدید به عمل آوردن سریع

لینک به دیدگاه

چکیده :

اولین گزارشهای تاریخی در مورد کاربرد بتن سبک و مصالح سبک وزن به روم باستان بر می گردد. رومیان در احداث معبد پانتئون و ورزشگاه کلوزیوم از پومیس که نوعی مصالح سبک است استفاده کرده اند. کاربرد بتن سبکدانه پس از تولید سبکدانه های مصنوعی و فراوری شده در اوایل قرن بیستم وارد مرحله جدیدی شد. در سال .........

اولین گزارشهای تاریخی در مورد کاربرد بتن سبک و مصالح سبک وزن به روم باستان بر می گردد. رومیان در احداث معبد پانتئون و ورزشگاه کلوزیوم از پومیس که نوعی مصالح سبک است استفاده کرده اند. کاربرد بتن سبکدانه پس از تولید سبکدانه های مصنوعی و فراوری شده در اوایل قرن بیستم وارد مرحله جدیدی شد. در سال 1918، S. J. Hayde با استفاده از کوره دوار اقدام به منبسط کردن رس و شیل کرد و بدینوسلیه سبکدانه ای مصنوعی تولید کرد که از آنها در ساخت بتن استفاده شد. تولید تجاری روباره های منبسط شده نیز از سال 1928 آغاز گردید.

این سبکدانه مصنوعی در هنگام جنگ جهانی اول به دلیل محدودیت دسترسی به ورق فولادی برای ساخت کشتی بکار رفت. کشتی Atlantus به وزن 3000 تن که با بتن سبک هایدیتی ساخته شد، در اواخر سال 1918 به آب افتاد. در سال 1919 کشتی Selma به وزن 7500 تن و طول 132 متر با همین نوع بتن ساخته و به آب انداخته شد. تا آخر جنگ جهانی اول و سپس تا سال 1922 کشتی ها و مخازن شناور متعددی ساخته شد که یکی از آن ها Peralta تا سال های اخیر شناور بود.

برنامه ساخت کشتی ها در اواسط جنگ جهانی دوم متوقف شد و دوباره به دلیل محدودیت تولید ورق فولادی مورد توجه قرار گرفت. تا پایان جنگ جهانی دوم 24 کشتی اقیانوس پیما و 80 بارج دریایی ساخته شد که ساخت آن ها در دوران صلح، اقتصادی محسوب نمی گشت. ظرفیت این کشتی ها 3 تا 140000 تن بود.

در سال 1948 اولین ساختمان با استفاده از شیل منبسط شده در پنسیلوانیای شرقی احداث گردید. در ادامه، از سال 1950 ساخت بتن سبک گازی اتوکلاو شده در انگلستان متداول شد. اولین ساختمان بتن سبکدانه مسلح در این کشور که یک ساختمان سه طبقه بود در سال 1958 و در شهر برنت فورد احداث گردید.

ساختمان هتل پارک پلازا در سنت لوئیز، ساختمان 14 طبقه اداره تلفن بل جنوب غربی در کانزاس سیتی در سال 1929 از جمله ساختمان های دهه 20 و 30 میلادی ساخته شده در آمریکای شمالی با استفاده از بتن سبک هستند. ساختمان 42 طبقه در شیکاگو، ترمینال TWA در فرودگاه نیویورک در سال 1960، فرودگاه Dulles در واشنگتن در سال 1962، کلیسایی در نروژ در سال 1965، پلی در وایسبادن آلمان در سال 1966 و پل آب بر در روتردام هلند در سال 68 از جمله ساختمان هایی هستند که با بتن سبکدانه ساخته شده اند.

در هلند، انگلستان، ایتالیا و اسکاتلند نیز در دهه 70 و 80 پل هایی با دهانه های مختلف ساخته و با موفقیت بهره برداری شده اند. در سال های 1970 ساخت بتن سبکدانه پرمقاومت آغاز شد و در دهه 80 به دلیل نیاز برخی شرکت های نفتی در امریکا و نروژ برای ساخت سازه ها و مخازن ساحلی و فراساحلی مانند سکوهای نفتی یک رشته تحقیقات وسیع برای ساخت بتن سبکدانه پرمقاومت در این دو کشور با هدایت واحد آغاز شد که نتایج آن در اواخر دهه 80 و اوایل دهه 90 منتشر گشت.

در سالیان اخیر نیز استفاده بتن سبک در دال سقف ساختمانهای بلند مرتبه، عرشه پلها و دیگر موارد مشابه و همچنین کاربردهای خاص مانند عرشه و پایه دکلهای استخراج نفت کاربرد فراوانی یافته است.

1- طبقه بندی بتن سبک بر مبنای مقاومتی

بتن‌های سبک از دیدگاه مقاومتی در سه دسته طبقه‌بندی می‌شوند که عبارتند از بتن سبک غیرسازه‌ای، بتن سبک سازه‌ای و بتن سبک با مقاومت متوسط که در ادامه به آن پرداخته می شود.بتن سبک غیرسازه‌ای که معمولاً به عنوان جداسازهای سبک مورد استفاده قرار می‌گیرد، دارای جرم مخصوص کمتر از 800 کیلوگرم بر مترمکعب است. با وجود جرم مخصوص کم، مقاومت فشاری آن حدود 35/0 تا 7 نیوتن بر میلیمترمربع می‌باشد. از معمولیترین سنگدانه‌های مورد مصرف در این نوع بتن می توان به پرلیت (نوعی سنگ آذرین) و ورمیکولیت (ماده‌ای با ساختار ورقه‌ای شبیه لیکا)اشاره کرد.

بتن‌های سبک سازه‌ای دارای مقاومت و وزن مخصوص کافی می‌باشند، به گونه‌ای که می توان از آن‌ها در اعضای سازه‌ای استفاده کرد. این بتن‌ها عموماً دارای جرم مخصوصی بین 1400 تا 1900 کیلوگرم بر مترمکعب بوده و حداقل مقاومت فشاری تعریف شده برای آنها 17 نیوتن بر میلیمتر مربع (مگاپاسکال) می باشد. در بعضی حالات امکان افزایش مقاومت تا 60 نیوتن بر میلیمتر مربع نیز وجود دارد. در مناطق زلزله خیز، آیین‌نامه‌ها حداقل مقاومت فشاری بتن سبک را به 20 نیوتن بر میلیمتر مربع محدود می‌کنند.

بتن‌های سبک با مقاومت متوسط، از لحاظ وزن مخصوص و مقاومت فشاری در محدوده‌ای بین بتن‌های سبک غیرسازه ا‌ی و سازه‌ای قراردارند، به گونه‌ای که مقاومت فشاری آنها‌ بین 7 تا 17 نیوتن بر میلیمترمربع و جرم مخصوص آن‌ها بین 800 تا 1400 کیلوگرم بر مترمکعب می باشد.

1-1- بتن سبک غیرسازه‌ای

این نوع بتن‌ها با جرم مخصوصی معادل 800 کیلوگرم بر مترمکعب و کمتر، به عنوان تیغه‌های جداساز و عایق‌های صوتی در کف بسیار مؤثر هستند. این نوع بتن می‌تواند در ترکیب با مواد دیگر در دیوار، کف و سیستم‌های مختلف سقف مورد استفاده قرار گیرد. مزیت عمده آن، کاهش هزینه‌های لازم برای تهویه‌ی گرمایی یا سرمایی فضاهای داخلی ساختمان و کاهش انتقال صوت بین طبقات و فضاهای ساختمان می باشد. بتن‌های سبک غیرسازه‌ای بر اساس ساختارداخلی می‌توانند به دو گروه جداگانه تقسیم‌بندی شوند.

دسته اول بتن‌های اسفنجی[1] که در حین ساخت آن‌ها با ایجاد کف، حباب‌های هوا در خمیر سیمان یا در ملات سیمان - سنگدانه ایجاد می گردد. کف مورد نظر یا از طریق مواد کف‌زا در حین اختلاط تولید شده و یا به صورت کف آماده به مخلوط اضافه می‌شود. بتن اسفنجی می‌تواند جرم مخصوصی تا حدود 240 کیلوگرم بر مترمکعب داشته باشد.

دسته دوم بتن با سنگدانه سبک یا به اختصار بتن سبکدانه است که با استفاده از پرلیت، ورمیکولیت منبسط شده و یا دیگر سبکدانه های طبیعی و مصنوعی ساخته می‌شوند. جرم مخصوص خشک این مخلوط بین 240 تا 960 کیلوگرم بر مترمکعب می‌باشد.

امروزه اضافه کردن ریزدانه‌هایی با وزن معمولی، موجب افزایش وزن بتن و مقاومت آن می شود، لیکن به منظورحصول خواص عایق‌بندی حرارتی (ضریب انتقال حرارت پایین)، حداکثر جرم مخصوص به 800 کیلوگرم در مترمکعب محدود می‌گردد.

هنگام ساخت و استفاده از بتن سبک غیرسازه‌ای، سعی بر این است که با کاهش وزن بتوان خصوصیات عایق حرارتی را افزایش داد، اما ذکر این مطلب ضروری است که باکاهش وزن مخصوص بتن، مقاومت آن نیز کاهش می‌یابد. مقاومت فشاری و وزن مخصوص بتن، ارتباط نزدیکی با هم دارند و با افزایش وزن مخصوص، بالطبع باید مقاومت بالاتری را انتظار داشت. با توجه به مقاومت به دست آمده از این نوع بتن، محل کاربرد آن تعیین می گردد. به عنوان مثال بتن‌هایی با مقاومت فشاری حدود 7/0 نیوتن بر میلیمترمربع و کمتر برای عایق‌سازی لوله‌های بخار زیرزمینی مناسب هستند و از بتن‌های با مقاومت بالاتر تا حدود 5/3 نیوتن بر میلیمتر مربع در پیاده‌روها استفاده می شود. باید توجه داشت که انقباض بتن‌های سبک در هنگام خشک شدن در اکثر موارد و به خصوص در موارد حذف سنگدانه‌های درشت از مخلوط، همواره مشکل‌ساز است.

1-2- بتن سبک با مقاومت متوسط

بتنهای سبک موجود در این طبقه عمدتا از نوع بتنهای سبکدانه و بتنهای با ساختار باز می باشند. به عبارت دیگر برای کاهش چگالی بتن از سنگدانه های سبک طبیعی یا مصنوعی استفاده شده است. سبکدانه های مورد استفاده در بتنهای سبک با مقاومت متوسط معمولا از یکی از روشهای آهکی شدن (تکلیس)، سنگدانه‌ی کلینگر، محصولات منبسط شده‌ای نظیر روباره‌های منبسط شده، خاکستر بادی، شیل و اسلیت یا سنگدانه‌های تولیدی از مصالح طبیعی مانند پوکه سنگ‌های آذرین و سنگ‌های آذرین متخلخل (توف) تولید می‌شوند. جرم مخصوص بتن ساخته شده با سنگدانه‌های فوق بین 800 تا 1400 کیلوگرم بر مترمکعب است. کاربرد مواد افزودنی نظیر تسریع کننده‌ها و روان‌کننده‌ها می‌تواند در تغییر مقاومت بتن‌های ساخته شده با سنگدانه‌های تولید شده از روش‌های مذکور موثر باشد. کاربرد این بتنها معمولا در بلوکهای مجوف بتنی، کف سازیها و موارد مشابه است.

1-3- بتن سبک سازه ای

بتنهای سبک سازه ای بتنهایی هستند که علی رغم دارا بودن چگالی کمتر از 2000 کیلوگرم بر مترمکعب، مقاومت فشاری بیش از 17 مگاپاسکال دارند. ساخت این بتنها صرفا با استفاده از سنگدانه های سبک و مقاوم امکان پذیر است. تمام بتنهای سبک سازه ای از خانواده بتن های سبکدانه می باشند که در آن برای کاهش وزن مخصوص بتن از سنگدانه های سبک استفاده شده است. به این دلیل بعضا از عبارات بتن سبکدانه و بتن سبک سازه ای برای بیان یک مفهوم استفاده می شود. در بتن‌های سبکدانه سازه‌ای از سنگدانه‌هایی استفاده می‌شود که بتن ساخته شده مقاومتی بیش از 17 مگاپاسکال و جرم مخصوصی کمتر از 2000 کیلوگرم بر مترمکعب را دارا باشد. سنگدانه‌هایی که این شرایط را عموماً برآورد می‌کنند و طبق استاندارد [2] ASTM-C330 برای ساخت بتن سبک سازه‌ای مورد استفاده قرار می گیرند، عمدتا عبارتند از:

الف) شیل، رس و اسلیت منبسط شده در کوره‌ی دوار

ب)سنگدانه هایی که از فرآیند های کلوخه ای شدن به دست می آیند

ج) سرباره‌های منبسط شده

د) پوکه‌های معدنی

هـ) پوکه‌های صنعتی

و) خاکستر بادی ته نشین شده

تأمین مقاومت فشاری معادل 20 نیوتن بر میلیمترمربع و بیشتر با بعضی از این سنگدانه‌ها امکان‌پذیر است. شرایط سایر سنگدانه‌ها نیزطوری است که قادر به حصول حداقل مقاومت فشاری مقرر شده برای بتن سبک سازه‌ای می‌باشند. همانطور که پیش از این ذکر شد،‌ مقاومت بتن سبک ‌تابعی از جرم مخصوص آن است. باید توجه داشت که جرم مخصوص بتن عمدتاً متأثر از جرم مخصوص سنگدانه‌های مصرفی است، به گونه‌ای که استفاده از مصالح سبکتر موجب کاهش وزن مخصوص بتن می شود. ولی استفاده از مصالح سنگین‌تر از سبکدانه‌ها، لزوماً باعث افزایش مقاومت بتن ساخته شده نخواهد شد. بیشترین مقاومت بتن سبکدانه معمولا وقتی حاصل می شود که از سبکدانه های ساخته شده از شیل، رس و اسلیت منبسط شده در فرآیند کوره دوار برای سبک سازی چگالی بتن استفاده گردد.

لینک به دیدگاه

چکیده :

آب دریا حاوی سولفاتها بوده و می توان انتظار داشت كه با حمله به فاز c3a موجود در تركیب سیمان مصرفی در بتن ، تشكیل اترینگایت داده و موجب انبساط و ......

آب دریا حاوی سولفاتها بوده و می توان انتظار داشت كه با حمله به فاز c3a موجود در تركیب سیمان مصرفی در بتن ، تشكیل اترینگایت داده و موجب انبساط و ترك خوردگی در بتن شود . اما چون كلرورها هم در آب دریا وجود دارند ، تهاجم آب دریا معمولا" باعث انبساط بتن نمی شود. توضیح مسئله در این واقعیت نهفته است كه گچ و اترینگایت در محلول كلروری خیلی بیشتر حل می شوند و این بدان معنی است كه به سادگی توسط آب دریا شسته می شوند. در نتیجه هیچگونه تجزیه یا ترك خوردگی به وجود نمی آید. ولی تخلخل مقداری افزایش و متعاقبا" مقاومت كاهش می یابد.

از سوی دیگر، فشار ناشی از تبلور نمكها در حفره های بتن ، می تواند باعث انبساط شود. تبلور در بالای سطح آب، در نقطه تبخیر آب، انجام می شود. چون محلولهای نمك در اثر فرآیند موئینگی به داخل بتن وارد می شوند ، حمله فقط هنگامی انجام می شود كه آب بتواند به داخل بتن نفوذ كند. بنابراین بازهم نفوذ پذیری بتن دارای اهمیت زیادی می باشد.

بتن در فاصله بین ترازهای جذر و مد در معرض تناوب های تر و خشك شدن قرار داشته و به شدت مورد تهاجم قرار می گیرد ، در حالی كه بتنی كه همیشه داخل آب است، كمترین آسیب را خواهد دید . در نتیجه مسدود شدن حفره های بتن به دلیل رسوب هیدروكسید منیزیم و گچ، كه از واكنش سولفات منیزیم و هیدروكسید كلسیم پدید می آیند ، تهاجم آب دریا به داخل بتن آرامتر می گردد.

در بعضی شرایط اثر آب دریا روی بتن با تاثیر مخرب یخبندان ، ضربه امواج ، و سایش همراه می گردد . با جذب نمكها توسط بتن ، خوردگی آرماتورها در نتیجه فرآیند الكتروشیمیایی آغاز شده و در نتیجه آن بتن ترك می خورد و این می تواند باعث خرابی بیشتری شود . با همان اقداماتی كه برای جلوگیری از حمله سولفاتها به كار می رود ، می توان از تهاجم آب دریا نیز جلوگیری نمود. اما در مورد آب دریا نوع سیمان در مقایسه با كاهش نفوذپذیری به میزان لازم ، از اهمیت كمتری برخوردار می باشد . در بتن مسلح ، رعایت پوشش كافی ، حداقل 5 تا 7.5 سانتیمتر ، روی آرماتورها ضروری می باشد . مصرف سیمانی معادل 350 كیلوگرم در متر مكعب در بالای سطح آب و 300 كیلوگرم بر متر مكعب در زیر سطح آب ، و نسبت آب به سیمان كمتر از 0.4 الی 0.45 توصیه شده است . تراكم خوب بتن و روش ساخت ماهرانه ، بخصوص در درزهای ساختمانی ، دارای اهمیت حیاتی می باشند .

لینک به دیدگاه

امروزه با استفاده از انواع الياف شيشه، پلي‌پروپيلن، فولاد و بعضاً كربن، توليد انواع بتنهاي كامپوزيتي در كاربردهاي مختلف صنعتي ممكن گرديده و به‌كارگيري آنها دركشورهاي پيشرفتة دنيا مورد قبول بخش ساختمان و عمران واقع شد است

بتن اليافي خواص مناسبي همچون شكل‌پذيري بالا، مقاومت فوق‌العاده، قابليت جذب انرژي و پايداري در برابر ترك خوردن را دارا ميباشد كه متناسب با آنها ميتوان موارد كاربرد فراواني براي آن يافت. به طور مثال در ساخت كف سالن‌هاي صنعتي، ميتوان از اين نوع بتن به جاي بتن آرماتوري متداول سود جست اين نوع بتن از بهترين مصالح مورد استفاده در ساخت بناهاي مقاوم‌به‌ضربه، همچون سازه پناهگاهها و انبارهاي نگهداري مواد منفجره به شمار ميرود و بناي شكل گرفته از بتن، قابليت فوقالعادهاي در جذب انرژي ضربه دارد. همچنين در ساخت باند فرودگاهها به خوبي ميتوان از اين نوع بتن كمك گرفت. موارد ديگري از به كارگيري اين بتن،

قطعات پيش ساخته ساختماني همچون پانلهاي سايبان و يا پاشش بتن روي سطوح انحنا‌دار همچون تونلها ميباشد. به‌كارگيري اين بتن در بناي يك سازه علاوه بر موارد ياد شده از مزايايي همچون عايق بودن سازه در برابر صدا و سرعت بالاي اجرا نيز برخوردار است .

اما از آنجا كه نحوه قرار گرفتن الياف داخل بتن كاملاً تصادفي ميباشد، از اين بتن معمولاً نميتوان به نحو مطلوبي در ساخت تيرها و ستون‌ها بهره گرفت و در اين نوع سازهها استفاده از روش سنتي و شبكهبندي فولادي به‌صرفهتر و مناسبتر ميباشد. لازم است به اين نكته توجه شود كه ناكارآمدي يك تكنولوژي جديد در نقاط ضعف خود نبايد مانع ناديده گرفتن كاربردهاي مناسب آن در نقاط قوت آن و عدم توجه به آن گردد .

 

بتن پاشیده

 

بتن پاشیده ،بتن یا ملاتی است که با فشارهوا وبا سرعت زیادروی سطح پاشیده می شود. مخلوط نسبتا خشک با نیروی حاصل از ضربه متراکم می شود و می تواند روی سطوح قائم یا افقی اجرا شود،بدون آنکه شره کند. این نوع بتن برای سازه های بتنی نازک یا دارای انحنا و تعمیرات سطحی بسیار مناسب است. خواص سخت شده بتن پاشیده به میزان زیادی به عملکرد شخص پاشنده بستگی دارد. جرم حجمی(وزن مخصوص) و مقاومت فشاری بتن پاشیده به مشابه مقاومت بتن معمولی وبتن پر مقاومت است. از سنگدانه با اندازه های تا 19 میلی متر (4/3 اینچ) می توان در بتن پاشیده استفاده کرد

 

بتن پاشیده را می توان به روش تر یا خشک ساخت . در روش خشک،آمیزه ای از سیمان و سنگدانه مرطوب ، که از قبل با یکدیگر مخلوط شده اند به کمک هوای فشرده در طول یک شلنگ به جلو رانده می شود تا به افشانک برسند.آب در افشانک به مخلوط سیمان و سنگدانه افزوده می شودو تمامی اجزا ،که به خوبی با یکدیگر مخلوط شده اند،روی سطح پاشیده می شوند .

 

در روش تر ، تمامی اجزای تشکیل دهنده از قبل با یکدیگر مخلوط می شوند . هوای فشرده ، مخلوط را از طریق شیلنگ به افشانک منتقل می کند. در لحظه پرتاب مخلوط بر روی سطح ، هوای فشرده اضافه ای در افشانک دمیده می شود تا سرعت پرتاب را افزایش دهد .

لینک به دیدگاه

چکیده :

بیشتر شیشه های تولیدی بصورت بطری هستند و مقدرا زیادی از شیشه های جمع آوری شده دوباره برای تولید بطری به کار می روند. اثر این پروسه به شیوه جمع آوری و مرتب کردن شیشه ها با رنگهای مختلف وابسته است. اگر رنگهای مختلف شیشه قابل جدا کردن باشند می توان از آنها جهت .......

بیشتر شیشه های تولیدی بصورت بطری هستند و مقدرا زیادی از شیشه های جمع آوری شده دوباره برای تولید بطری به کار می روند. اثر این پروسه به شیوه جمع آوری و مرتب کردن شیشه ها با رنگهای مختلف وابسته است. اگر رنگهای مختلف شیشه قابل جدا کردن باشند می توان از آنها جهت تولید شیشه با رنگهای مشابه استفاده کرد. ولی وقتی که شیشه با رنگهای متفاوت با هم مخلوط شدند، برای تولید بطری نامناسب می شوند و باید آنها را در مصارف دیگری به کار برد و یا دفن کرد. آقای ریندل (Rindl) به چند مورد از استفاده های غیر بطری شیشه اشاره می کند که شامل : سنگدانه روسازی راه ،پوشش آسفالت ، سنگدانه بتن ، مصارف ساختمانی ( کاشی شیشه ای ، پانلهای دیوار و ...) ، فایبر گلاس ،شیشه های هنری ،کودهای شیمیایی ،محوطه سازی ،سیمان هیدرولیکی و بسیاری دیگر. استفاده از بتن در سنگدانه های بتن در این مقاله مورد بررسیقرار می گیرد. نگرانی بزرگی که در استفاده از شیشه در بتن وجود دارد واکنش شیمیایی مابین ذرات سیلیس اشباع شیشه و قلیاییهای مخلوط بتن است که به واکنش سیلیسی – قلیایی(Alkali Silica Reaction ASR) معروف است. این واکنش می تواند برای پایداری بتن بسیار خطرناک باشد. به همین منظور باید پیشگیری مناسبی در جهت کمتر کردن اثر این واکنش انجام شود. پیشگیری مناسب می تواند با استفاده از یک ماده پوزولانی مناسب مانند :خاکستر هوایی ،سرباره کوره آهن گدازی و یا میکرو سیلیس (Silica Fume SF) با نسبت مناسب در مخلوط بتن انجام گیرد. حساسیت شیشه به مواد قلیایی این حدس را بوجود می آورد که شیشه درشت و فیبر شیشه می تواند اثر واکنش ASR را کم و یا محو کند. اگرچه این تصور نیز وجود دارد که پودر شیشه می تواند خواص پوزولانی (مانند مواد ذکر شده در بالا) از خود نشان دهد و از اثرات و انجام واکنش ASR توسط دانه های شیشه جلوگیری کند. ریندل نتایج کارهای انجام شده توسط افراد و ارگانهای مختلف را بیان کرد.

برای مثال او به نقل از شرکت Boral می گوید که: پودر شیشه آهکی سیلیکاتی رد شده از الک 100# در جهت کاهش ASR است. همچنین مرکز زمین پاک واشنگتن بیان می کند که دانه های ریز (پودر) می توانند بتن را بوسیله آزمایش ASR تضعیف کنند. همچنین کارهای انجام شده توسط آقای Samtur بر روی این موضوع بیان می کند که پودر شیشه رد شده از الک 200# می تواند مانند یک ماده پوزولانی و در جهت کاهش اثر واکنش سنگدانه ها (ASR) عمل کند. همچنین آقای Pattengil نیز به همین نتایج دست یافت. اخیرا مرکز تحقیقات انرژی ایالت نیویورک حمایتهای مالی تحقیق بر روی کاربرد شیشه بازیافتی برای بلوکهای بنایی بتنی را انجام داده و نشان داده که شیشه ضایعاتی می تواند هم به جای سنگدانه و هم به عنوان ماده افزودنی (با ایجاد شرایط مشخص) در بتن استفاده شود. آقای Bazant بیان می کند که ذرات شیشه خدود mm1.5 باعث انبساط زیادی می شوند. اگرچه ذرات کوچکتر از mm 0.25 در آزمایشگاه باعث هیچ گونه انبساطی در بتن نگردیدند. آقایان Baxterو Meyer فهمیدند که ذرات شیشه حدود mm 1.2 باعث بیشترین انبساط ملات در بین دانه های با اندازه mm 4.75 تا mm 0.15 می شوند. آنها فهمیدند که بیشترین انبساط وقتی حاصل می شود که 100% ذرات شیشه بصورت سنگدانه باشند و اگر شیشه های سبز بیش از 1% اکسید کرم داشته باشند اثر مثبتی بر واکنش ASR دارند.

آقایان Carpeneter و Cramer گزارش می دهند که پودر شیشه بر کم کردن اثر واکنش ASR در آزمایش تسریع شده ملات مانند اثر خاکستر بادی و میکروسیلیس و سرباره موثر است. این نشان می دهد که پودر شیشه می تواند انبساط ناشی از ASR را در سنگدانه های حساس و شیشه های دانه ای متوقف کند. از مطالب بالا نتیجه گیری می شود که شیشه می تواند به سه صورت در بتن استفاده شود: درشت دانه ریز دانه پودر شیشه درشت دانه و ریز دانه می توانند باعث واکنش ASR در بتن شوند. اما پودر شیشه می تواند اثر ASR آنها را کاهش دهد. در بعد تجاری بسیار به صرفه است که پودر شیشه به جای سیمان مصرف شود تا اینکه شیشه به عنوان سنگدانه در بتن مصرف شود. پودر پودر شیشه یک ماده با ارزش است که از شیشه هایی که برای بازیافت مناسب نیستند به دست می آید. در قسمتهای بعدی اطلاعاتی در مورد استفاده از شیشه در بتن در سه خالت ذکر شده ارائه می گردد. کارهای آزمایشگاهی سه مورد از کاربردهای شیشه در بتن در برنامه تحقیق ARRB مشخص شده است. اینها شامل : شیشه های درشت دانه شیشه های ریزدانه و پودر شیشه است. حدود ذرات برای هر شاخه در زیر ذکر شده است. شیشه درشت دانه mm 12-4.75 CGA شیشه ریز دانه mm4.7-0.15 FGA پودر شیشه کوچکتر از mm0.01 GLP ترکیب شیمیایی تولیدات یک تیپ شیشه مشابه هستند. همچنین در جدول زیر ترکیب شیمیایی شیشه ها با رنگهای مختلف ارائه شده است.

شیشه های درشت دانه و ریز دانه جهت جایگزینی حدود اندازه های مشابه سنگدانه های طبیعی به کار می روند. پودر شیشه به عنوان یک ماده پوزولانی مورد مطالعه قرار می گیرد(مانند کاربرد خاکستر هوایی و میکروسیلیس). مقایسه ای بین مواد مخلوط در شیشه شکسته و پودر شیشه و میکروسیلیس در جدول زیر نشان داده شده است. مواد طبیعی استفاده شده در این کار شامل ماسه طبیعی بتن ویکتوریا و سنگ شکسته طبیعی بازالتی بود. یکسری سنگدانه فعال خاکستری از NSW برای تشخیص اثر پودر شیشه بر توقف انبساط AAR (Alkali Aggregate Reaction) مصرف شد. 3- سنگدانه های درشت و ریز شیشه در بتن تاثیر خصوصیات فیزیکی سنگدانه های شیشه ای مانند اندازه آنها در مخلوط بتن مشخص است.

شیشه بنابر طبیعت اشباع از سیلیس و شکل بی ریخت ملکولی آن به حمله شیمیایی مخیط قلیایی که در بتن هیدراته شده ایجاد می شود حساس است. این حمله شیمیایی می تواند تولید تغییر شکلهای وسیعی بر ژل AAR بتن داشته باشد که توسعه پیدا می کند و اگر پیشگیریهای مناسب در فرمولاسیون طرح اختلاط لحاظ نشود باعث ترک خوردن زودرس بتن می شود. طبیعت واکنش شیشه در کاربرد آن در بتن بسیار اهمیت دارد. برای مثال بعضی از سنگدانه های طبیعی می توانند وقتی که به مقدار کمی در بتن استفاده می شوند باعث انبساط بیش از اندازه بتن شوند و بعضی دیگر به صورت 100% در بتن استفاده می شوند. واکنش سنگدانه ها بوسیله آزمایش تسریع شده استوانه ملات (AMBT) مشخص می شود (ASTM C1260). نتایج آزمایش AMBT نشان می دهد که مخلوط با شیشه بیشتر در ملات انبساط بیشتری نیز داشته است. شکل 2 این اثر را نشان می دهد. شرط برای این آزمایش این است که انبساط کمتر از 0.1% در عمر 21 روزه نشان دهنده سنگدانه غیر فعال و بیش از 0.1% در عمر 10 روزه نشان دهنده سنگدانه فعال است. انبساط کمتر از 0.1% در 10 روز ولی بیش از 0.1% در 21 روز نشان دهنده سنگدانه با واکنش آهسته است. بر اساس این شرط شکل 2 نشان می دهد که استفاده از بیش از 30% شیشه در بتن ممکن نیست اثرات زیانباری داشته باشد. (مخصوصا اگر قلیاییهای بتن کمتر از kg3 Na2O در یک متر مکعب باشد). بتنهای با قلیایی بیشتر ممکن است انبساطهای بیشتری را بوجود بیاورند. این موضوع در شکل 3 برای چهار اندازه از ذرات شامل پودر (کمتر از mm0.01) ماسه خیلی ریز (mm0.3-0.5) و دو قسمت سنگدانه بزرگتر نشان داده شده است. نتیجه نشان داده شده در شکل 3 نشان می دهد که اندازه های شیشه زیر mm0.3 اختمال کمی برای انبساط خطرناک دارند ولی اندازه های بزرگتر از mm0.6 ممکن است باعث انبساطهای قابل ملاخظه ای شوند. بنابراین اندازه انبساط وابسته به میزان شیشه موجود، اندازه ذرات و میزان قلیاییهای مخلوط است.این نتایج نشان می دهد که شیشه می تواند ژلAAR تولید کند و اگر اندازه ذرات به اندازه کافی کوچک شود می تواند به عنوان یک ماده پوزولانی عمل کند.

مشخص شده است که فعالیت سنگدانه ها و انبساط حاصله می تواند با بکار بردن میزان مناسب از مواد با خاصیت سیمانی شدن مانند میکرو سیلیس و خاکستر هوایی کنترل شود. همچنین پودر شیشه ریز می تواند بصورت مشابه عمل کند. با توجه به کاربرد سنگدانه های ریز و درشت که مورد بررسی قرار گرفتند مخلوطهای آزمایشی با توجه به میزان سنگدانه های ریز و درشت مناسب در مخلوط بتن گسترش یافته اند. آزمایشات به سمت تولید بتن با حدود Mpa32 تحمل پیش رفتند. مخلوط محتوی Kg/m3255 سیمان و Kg/m3 85 خاکستر هوایی بود. میزان شن و ماسه به ترتیب Kg/m3 1080 و Kg/m3780 مناسب به نظر می رسید.

بعد از تعدادی سعی و خطا فرمولی رضایتبخش به سمت ویژگیهای مناسب بتن تازه جهت این مخلوط پیدا شد که به صورت زیر است: این موضوع از مقاومت بتنها آشکار است که این مخلوطها به راحتی به مقاومت Mpa32 رسیده و ختی از آن عبور می کنند( در حالی که از مقدار زیادی شیشه بازیافتی استفاده شده است). برای مصارف غیر سازه ای که مقاومت کمتری مورد نیاز است از همین مخلوط بدون کاهش دهنده (روان کننده) آب می توان استفاده کرد. دو مخلوط بتن با 50% شیشه درشت دانه و با یا بدون 50% شیشه ریز دانه در جدول 4 تشریح شده است. با توجه به وجود 25% خاکستر هوایی در مخلوط ،بتن از واکنش ASR نیز محفوظ است. جمع شدگی ناشی از خشک شدن این مخلوطها خوب و زیر مرز 0.075% که توسط استاندارد استرالیا معین شده ، بود. شکل 4 منحنی جمع شدگی خشک شدن متوسط را برای نمونه های با میزان شیشه متفاوت نشان می دهد. با توجه به مطالب بالا به این نتیجه می رسیم که مقدرا حتی بیش از 50% از هر کدام از درشت دانه یا ریز دانه می توانند در مخلوط بتن سازه ای یا غیرر سازه ای مصرف شوند. اگرچه دیگر پارامترهای مهندسی این مخلوطها نیاز به تحقیق و بررسی بیشتری دارند. 4- اثرات پودر شیشه بر مقاومت ملات تقسیم اندازه ذرات پودر شیشه (GLP) بصورت زیر است: اندازه ذرات کوچکتر از 5 میکرون 5-10 میکرون 10-15 میکرون بزرگتر از 15 میکرون درصد 39 49 4.4 7.6 سطح مخصوص پودر شیشه m2/Kg 800بود که تقریبا دو برابر بیشتر سیمانهای موجود است. اثرات جایگزینی پودر شیشه با سیمین یا ماسه بر مقاومت مکعبهای ملات ( نسبت سنگدانه به سیمان 2.25 و نسبت آب به سیمان 0.47) در شکلهای 5 و 6 نشان داده شده است. در مورد جایگزینی سیمان ممکن است کاهش مقاومت 28 روزه پیش بیاید که یک اثر کوتاه مدت است و خواص پوزولانی را آشکار می کند. همچنین خاکستر هوایی نیز وقتی که با میزان مشابه سیمان جایگزین می شود اثری مشابه تولید می کند. مقاومتهای طولانی تر با میکرو سیلیس مورد مطالعه قرار گرفتند. این سری از نمونه ها تشکیل شده بود از : نمونه کنترلی که ریزدانه فعال خاکستری داشت ، نمونه با 10% میکروسیلیس ، با 20% پودر شیشه ، با 30% پودر شیشه که با سیمان مساوی جایگزین شده بودندو در یک نمونه نیز 30% پودر شیشه جایگزین سنگدانه ها شده بود. شکل 7 مقاومت این نمونه ها را در عمر 270 روزه نشان می دهد. سه نتیجه نشان می دهد که جایگزینی 10% بخار سیلیس مقاومت بیشتری از جایگزینی GLP دارد. ولی همچنین نشان می دهد نمونه ملاتی که حاوی GLP باشد برای مدت طولانی تری رشد مقاومت خواهد داشت (به خاطر واکنش پوزولانی). باید توجه شود که وقتی 30% ماسه با پودر شیشه جایگزین می شود مقاومت 90 روزه برابر مقاومت مخلوط حاوی میکروسیلیس است. برای بررسی اثر مثبت جایگزینی پودر شیشه به جای سنگدانه ها دو آزمایش اضافی بر روی مکعبهای ملات انجام شد (270 روز عمل آوری شده).

در یک سری از نمونه ها 20% از سیمان با پودر شیشه جایگزین شد و در سری بعدی به علاوه 20% سیمان 10% از سنگدانه ها نیز جایگزین شدند. شکل 8 نشان می دهد که این جایگزینی به صرفه است (احتمالا به خاطر بهبود دانه بندی و واکنش پوزولانی). همچنین باید توجه شود که مقاومت مخلوط با 20% شیشه به جای سیمان و 10% به جای سنگدانه ها به مقاومت مخلوط محتوی میکرو سیلیس رسیده و از آن تجاوز می کند. ظاهرا اثرات سود آور مقایسه شده میکرو سیلیس بر مقاومت نسبت به پودر شیشه بصورتی زیاد در این آزمایش افزایش یافته اند. زیرا مخلوط با میکروسیلیس حاوی 90% سیمان است ولی مخلوطهای با پودر شیشه حاوی 80 و 70% سیمان هستند. برای مقایسه مبتنی بر میزان سیمان مساوی ، آزمایش مقاومت ملات بر روی دو سری از نمونه ها که حاوی شیشه دانه بندی شده به جای ریزدانه (80% شیشه و 20% ماسه طبیعی) که 30% از سیمان نیز با مواد دیگر جایگزین شده بود انجام شد. در یک نمونه 30% از سیمان با پودر شیشه جایگزین شد و در دیگری با مخلوطی از 10% میکروسیلیس و 20% سنگ بازالتی غیر پوزولانی نرم و ساییده شده. در این روش میزان سیمان هردو نمونه مساوی است. شکل 9 نشان می دهد که نتایج مقاومت برای هر دونمونه تقریبا یکسان است. باید به این نکته توجه شود که مقاومتهای نشان داده شده در شکلهای 7 و 9 به علت تفاوت کلی در سنگدانه های ملات اساسا قابل مقایسه نیستند. 5- اثر پودر شیشه بر انبساط ملات همانطور که در شکلهای 2 و 3 نشان داده شده دانه های در حد ماسه شیشه می توانند باعث واکنش قلیایی سنگدانه ها بصورت خطرناکی باشند ( مخصوصا در میزان بالای شیشه در آزمایش تسریع شده ملات). بنابر این 6 سری نمونه های ملات محتوی 80% دانه های شیشه فعال ساخته شد. نمونه کنترلی که حاوی سنگدانه و سیمان معمولی بود، و در 5 نمونه دیگر سیمان با 5% و 10% میکروسیلیس و 10 و20 و 30% پودر شیشه جایگزین شده بودند.

شکلهای 10 و 11 نشان می دهند که این ترکیبات (هردو حالت GLPو میکروسیلیس) در کاهش انبساط واکنش AAR موثر هستند به شرط اینکه به اندازه مناسب مصرف شوند (10%میکروسیلیس و

یکسری سنگدانه خیلی فعال در منشور بتن (بر اساس ASTM C1293) استفاده شد.انبساط خطرناک در این آزمایش 0.03% تا 0.04% در یک سال است. شکل 14 نشان می دهد که 40% GLP که پتانسیل رها سازی قلیایی بیشتری از 30%GLP دارد می تواند تا 80% از انبساط ناشی از سنگدانه های فعال جلوگیری کند. برای سنگدانه های کمتر فعال نیز انبساط متوقف می شود. این امر نشان دهنده اثر مثبت GLP در بهبود دوام بتن است. وقتی که نسبتهای متفاوتی از GLP با سنگدانه های غیر فعال در بتن با قلیایی بالاتر (Na2O/m3 5.8) استفاده می شوند خود شیشه نیز باعث انبساط خطرناکی در مخلوط نمی شود. نتیجه آخر اینکه GLP اثر زیان آوری بر مخلوط بتن ندارد. 1-6- اثر پودر شیشه بر خزش و مقاومت بتن به تعداد نمونه های شکل 15 ولی با قلیایی کمتر برای تعیین خزش خشک شدن بتن با مقادیر مختلف GLP و میکروسیلیس استفاده شد. اطلاعات طولانی مدت نشان داده شده در شکل 16 نشان می دهد که خزش خشک شدگی مخلوطهای متفاوت زیاد نیست و به راختی استانداردهای AS3600 را برآورده می کند.(کمتر از 0.075% در 56 روز) مقاومت نمونه های ساخته شده در شکل 17 نمایش داده شده است.

به نظر می رسد که اگرچه مخلوطهای محتوی GLP مقاومت اولیه کمتری دارند (با توجه به سیمان کمتر) ولی به رشد مقاومت خود در محیط نمناک ادامه می دهند و به مقاومت نمونه کنترلی نزدیک می شوند. همچنین وقتی که GLP با ماسه جایگزین می شود مقاومت بصورت چشمگیری از نمونه کنترلی بیشتر است. رشد ممتد مقاومت به وضوح اثر مثبت واکنش پوزولانی GLP را در بتن نشان می دهد. 7-بافت میکروسکوپی ملات محتوی پودر شیشه نمونه های ملات محتوی GLP که 270 روز در محیط نمناک بودند بوسیله میکروسکوپ الکترونی اسکن شدند. این نمونه های ملات نشان دهنده خصوصیات بتنهای با عمر مشابه نیز بودند. شکل 18 نشان دهنده بافت میکروسکوپی متراکم در ملات با 30% GLP است و اثر واکنش پوزولانی شیشه را در بتن نشان می دهد. در هر دو مورد شکست سطح نمونه ملات حاکی از بافت میکروسکوپی متراکم بود. 8- نتیجه اطلاعات موجود در این مقاله نشان می دهد که پتانسیل زیادی در بازیافت شیشه و مصرف آن در حالتهای پودر ،ریزدانه و درشت دانه وجود دارد. این نتیجه نهایی می تواند حاصل شود که می توان با جایگزینی شیشه با مواد گرانقیمت تری مانند میکروسیلیس یا خاکستر هوایی و یا حتی سیمان در هزینه ها صرفه جویی کرد.

مصرف پودر شیشه در بتن می تواند از انبساط ASR در حضور سنگدانه های فعال جلوگیری کند. همچنین بهبود مقاومت پودر شیشه در ملات و بتن چشمگیر است. آزمایشات بافت میکروسکوپی نشان دهنده این است که پودر شیشه می تواند یک مخلوط متراکم تر تولید کند و خصوصیات دوام بتن را بهبود ببخشد. این نتیجه که 30% پودر شیشه می تواند به جای سیمان یا سنگدانه در بتن (بدون نگرانی از اثرات زیانبار طولانی مدت) جایگزین شود حاصل شد. بیشتر از 50% از هر دو (پودر شیشه یا سنگدانه شیشه ای) می تواند در بتن با رده مقاومت Mpa 32 باعث بهبود قابل قبول مقاومت بتن شود.

لینک به دیدگاه

چكيده :

هدف مقاله حاضر , بيان تاثير تاخير بتن ريزى بر مقاومت فشارى بتن است . مسافتهاى طولانى حمل بتن موجب می شود كه بتن مدتى پس از ساخت و اختلاط , در قالب ريخته شود . (اين مساله در مورد بتنى كه قبلا در كارگاه ساخته شده و بدليل صرف جويي از ......

هدف مقاله حاضر , بيان تاثير تاخير بتن ريزى بر مقاومت فشارى بتن است . مسافتهاى طولانى حمل بتن موجب می شود كه بتن مدتى پس از ساخت و اختلاط , در قالب ريخته شود . (اين مساله در مورد بتنى كه قبلا در كارگاه ساخته شده و بدليل صرف جويي از آن استفاده می شود , نيز صادق است .) در اين مطالعه آزمايشى تعيين مقاومت فشارى براى نمونه هايىكه با 5/0 , 1 , 2 و 3 ساعت تاخير زمانى بتن ريزى مى شوند انجام میگردد .

در پايان نتايج آزمايش با مقاومت طراحى و نيز مقاومت نمونه مبنا كه با تاخير زمانى صفر در قالب ريخته میشود مقايسه میگردد و چينن نتيجه گيرى میشود كه ميزان تاثير ديركرد زمانى , به مقاومت بتن وميزان ديركرد بستگى دارد و بيشترين ديركرد مجاز , متناسب با مقاومت بتن , بين يك تا دو ساعت است .مقدمه :

يكى از مشكلات حمل و نقل بتن فاصله زياد كارخانه هاى بتن سازى ازكارگاههاى ساختمانى است . اين مساله در شهرهايی كه به دليل فقدان يا كمبود كارخانه هاى بتن سازى مجبورند بتن را از كارخانه هاى واقع در شهرهاى مجاور وارد نمايند باعث میشود كه بتن ساخته شده در هنگام حمل و نقل , زمان زيادى را در راه باشد.

در مسافتهاى طولانى حمل بتن , هيدراسيون سيمان و در نتيجه گيرش بتن , ممكن است در داخل بتونير آغاز شود و در هنگام ريختن بتن در محل استفاده , كيفيت و در نتيجه مقاومت و روانى آن در حد مطلوب نباشد.

مشكل ديگر , استفاده از بتنى میباشد كه از روز قبل به جاى مانده است . بتنی كه هر روز ساخته میشود ممكن است تماماً در همان روز مصرف نگردد و مقدارى از ان به عنوان مازاد باقى بماند كه اگر تمهيداتى براى تاخيرگيرش بتن انديشيده شود میتوان از آن در روز بعد نيز استفاده نمود.

استانداردهاي astm c-94 در مورد بتن اماده و astm c-685 براى بتن سازى با اختلاط دائمى , در مورد اثر ديركرد بتن ريزى بر مقاومت آن بحثى نمیكنند. اخيراً در امريكا مطالعات عملى بر روى موادى اغاز شده كه نوعى از ان باعث توقف كيرش بتن میشود وگيرش مجدد بتن پس از افزودن نوع ديگرى از ان مواد اغاز میگردد.

در ايران مواردى از افزودن بى رويه مقادير آب و سيمان به عنوان راه حلهاى براى مقابله با كاهش روانى و مقاومت بتن مثاهده میشود.

در مقاله حاضر , اثر ديركرد بتن ريزى بر مقاومت فشارى بتن , با تاخيرات زمانى نيم تا سه ساعت پس از ساخت بتن , طى آزمايشهاى مورد بررسى قرار میگيرد.مشخصات مصالح

مصالح سنكى ريز دانه شامل ماسه رودخانه اى و درشت دانه شامل سنگ شكسته با حداكثر اندازه دانه 25 ميلى متر مورد استفاده قرار مىگيرند. دانه بندى ريز دانه مطابق جدول 1 استاندارد astm c-33 و درشت دانه مطابق جدول 2 استاندارد فوق انتخاب مىشود.

سيمان مصرفى از نوع 1 سيمان پرتلند و آب مصرفى , آب آشاميدنى شهر تهران میباشد . مخلوط هاى بتنى به روش وزنى طراحى مي شوند . جدول 1 نتايج طراحى مخلوط هاى بتن را براى مقاومتهاى 200 , 250 و 300 كيلوگرم نيرو بر سانتيمتر مربع نشان میدهد .مشخصات و تعداد نمونه ها

هريك از نمونه ها استوانه اى به قطر 15 سانتيمتر و ارتفاع 30 سانتيمتر میباشد . نمونه گيرى در 5 نوبت انجام مىگيرد. و در هر نوبت 3 نمونه گرفته میشود. نخستين 3 نمونه در نوبت اول يعنى 15 دقيقه پس از مخلوط كردن بتن گرفته میشود. اين 3 نمونه مقاومت فشارى مبنا را به دست مىدهد و كاهش مقاومتهاى فشارى نمونه هاى ديگر نسبت به آن سنجيده میشود. در پروژه حاضر , اين زمان , زمان صفر تعريف میشود.

نمونه هاى ديگر در نوبتهاى بعدى به ترتيب در ساعتهاى 5/0 , 1 , 2 ,3 ساعت پس از ساعت صفر گرفته مىشوند. پس براى هر مقاومت فشاری كلاً 15 نمونه در 5 نوبت زمانى تحت آزمايش قرار میگيرد.نحوه ساخت بتن و انجام آزمايش

استاندارد astm c-39 براى ساخت نمونه ها مورد استفاده قرار مىگيرد. 15 دقيقه پس از افزودن اب به مخلوط مصالح سنكى و سيمان , نخستين نمونه گيرى انجام می شود . مخلوط كن از آغاز اختلاط مصالح تا پايان نمونه گيرى بدون توقف می چرخد . نمونه گيرى در هر نوبت با برگردانيدن مخلوط كن در حال چرخش انجام می شود.

تراكم نمونه ها با كوبيدن ميله انجام می گيرد. 24 ساعت پس از نمونه گيرى قالبها را باز كرده نمونه ها را بيرون می آوريم و در تشت هاى پر از آب می گذاريم . آب تشت نيمى از ارتفاع نمونه ها را در برمی گيرد. روى نمونه ها را باگونى خيس می پوشانيم . براى جلو گيرى از تبخير اب گونی ها در اثر جريان هوا , روى تمام تشت ها را با پوشش نايلونى می پوشانيم . هر 3 تا 4 روز يكبار پوششها را بر می داريم و با غلتانيدن نمونه ها در جاى خود نيمه ديگر نمونه ها را به درون آب می بريم و روى نمونه ها را مجددأ می پوشانيم .

نمونه ما را 28 روز به همين شيوه نگه می داريم و پس از 28 روز آزمايش تعيين مقاومت فشارى نمونه ها انجام مىگيرد. مقاومت فشارى بتن برابر ميانگين مقاومت هاى فشارى سه نمونه مربوط به هرنوبت آزمايش در نظرگرفته می شود.نتايج آزمايش و تحليل آنها

مقاومت فشارى نمونه ها در جدول 2 نشان داده شده است . جدول 3 تغييرات مقاومت فشارى نمونه ها را نسبت به مقاومت طراحى مفروض و جدول 4 تغييرات مقاومت فشارى نمونه ها را نسبت به مقاومت فشارى نمونه مبنا كه از آزمايش نمونه ها با ديركرد زمانى صفر به دست امده است نشان می دهد.

چنانچه از اين جداول پيدا است ميزان اثر ديركرد زمانى بر مقاومت فشارى بتن به مقاومت بتن و ميزان ديركرد زمانى بستگى دارد.

اگر مقاومت طراحي ملاك قرار گيرد. بتن با ديركردهاى زمانى بيش از 2 ساعت براى مقاومتهاى تا 250 كيلوگرم نيرو بر سانتيمتر مربع و بيش از 1 ساعت براى مقاومت 300 كيلوگرم نيرو بر سانتيمتر مربع داراى كاهش مقاومت فشارى مىباشد. براى همه نمونه ها ديركرد زمانى 3 ساعت منجر به كاهش بسيار شديد مقاومت می شود.

چنانچه مقاومت فشارى مبنا در زمان صفر ملاك قرار گيرد , ديركرد زمانى در بتن ريزى مجاز نيست , مگر اينكه روشها و موادى كه از طريق آزمايش مشخص شده باشند , براى مقابله باكاهش مقاومت در اثر ديركرد زمانى به كار روند.

قابل توجه است كه در اين صورت روانى بتن نيز كاهش می يابد. البته نمونه سازى در اين آزمايشها بدون افزودن روان سازها انجام شد. نمونه هاى با 3 ساعت تأخير بسيار خشك و زبر بودند و به نظر می رسد كه در ديركردهاى زمانى بيشتر كاهش روانى به حدى خواهد بود كه استفاده از روان سازها الزامى باشد.نتيجه گيري

1- چنانچه طراحى مخلوط بتن بر پايه روش وزنى انجام گيرد , مقاومت فشارى مبناى بتن بيش از 20 درصد از مقاومت طراحى نمونه بيشتر می باشد.

2- ميزان تأثير ديركرد زمانى , به مقاومت بتن و ميزان ديركرد بستگي دارد.

3- چنانچه طراحى مخلوط بتن بر پايه روش وزنى انجام گيرد و مقاومت طراحى , مبناى مقايسه قرار گيرد بيشترين ديركرد مجاز برابر يك ساعت خواهد بود .

لینک به دیدگاه

بتن به عنوان یك مادة ساختمانی بسیار خوب، در 100 سال گذشته مورد استفاده قرار گرفته است. مقاومت فشاری بسیار خوب بتن و تركیب مناسب آن با فولاد، و نیز شكل‌پذیری مناسب آن به توسط قالب، از عوامل مؤثر در كاربرد بهینة بتن محسوب می‌شده است. با این وجود، دوام و پایایی بتن از مسائلی است كه در كنار سایر مسائل مربوط به بتن، مورد توجه قرار می‌‌گیرد. پایایی بتن در محیط‌های خورنده و به خصوص محیط‌های ساحلی و دریایی (و بالاخص شرایط بسیار خورندة خلیج‌فارس)، از مسائلی است كه كاربرد بتن را در آن شرایط، به صورت جدی مورد تردید قرار داده است. این مسئله تا آنجا جلو رفته است كه بتن‌های ساخته شده در شرایط آب و هوایی خلیج‌فارس، تحت تأثیر یون‌های كلرور و سولفات، گاه عمری كمتر از یك‌سال از خود بروز داده‌اند.

تاكنون تحقیقات مفصلی در دنیا در جهت بهبود پایایی بتن در محیط‌های خورنده صورت گرفته است. این تحقیقات شامل مسائل مختلفی از جمله افزودن مواد پوزولانی نظیر میكروسیلیس، سرباره و ... به بتن به عنوان جایگزین قسمتی از سیمان، و نیز افزودن مواد شیمیایی مضاف مناسب، و حتی انتخاب دانه‌بندی به خصوص می‌باشد. با این حال چنین تحقیقاتی هنوز كامل نشده و هنوز هم زمینة گسترده‌ای جهت تحقیقات مفصل‌تر وجود دارد. بدین ترتیب می‌توان در یك پروژة مستقل، افزایش پایایی و دوام بتن در شرایط محیطی خلیج‌فارس را مورد مطالعه قرار داده و با ساخت نمونه‌هایی در شرایط تشدید شده در آزمایشگاه، قابلیت اعتماد روش‌های پیشنهادی جهت بهبود پایایی بتن در شرایط نامساعد را سنجید.

لینک به دیدگاه

یک شرکت تحقیقاتی بتن توانست بتن غلطکی rccp که جایگزین مناسبی برای آسفالت می باشد را در شهرستان هشتگردبرای اولین بار با موفقیت اجرا کنند.

کارشناسان این مرکز درباره نقش و جایگاه بتن‌های غلطکی rccp معتقدند که با توجه به مسائل زیست محیطی ناشی از آسفالت در کنار دوام اندک آسفالت در برابر تغییرات جوی، ضربه پذیری و سایش، موضوع بتن rccp از دهه های گذشته در کشورهای توسعه یافته مورد توجه قرار گرفت به نحوی که در حال حاضر بیش از 80 درصد معابر سواره رو در اغلب کشورهای توسعه یافته با استفاده از بتن غلطکی اجرا شده است

مدیر این مرکز تحقیقاتی در ادامه افزود،تکنیک ساخت معابر سواره رو در دنیا دستخوش تغییرات وسیعی شده است و بخاطر واکنش‌های مختلفی که در مواد نفتی به مرور زمان بوجود می آید، موضوع تغییر بافت خیابان‌ها و اتوبان‌ها جایگزینی rccp را پیش روی کشور های توسعه یافته قرار داده است و وضعیت امروزی خیابان‌ها در کشورهای در حال توسعه در وضعیتی است که ناشی از بی توجهی به فن آوری های جدید است لذا باید مدیران و صاحبان صنایع برای وارد کردن فناوری های جدید به هماهنگی برسند؛ در غیر اینصورت وضعیت نادرست موجود در بخش‌های مختلف ادامه خواهد داشت....

وی همچنین درباره دلایل توجه به بتن غلطکی میگوید: «همه ساله صدها میلیارد تومان در کشور ما برای تأمین روکش آسفالت خیابان‌ها هزینه می شود که پس از گذشت یک تا 5 سال این آسفالت مجدداً بایستی تعویض شود، این مسئله باعث شکل گیری نارضایتی های وسیعی در بین همه اقشار جامعه شده است.و البته ابعاد فقدان کیفیت آسفالت خیابان ها در همین جا به پایان نمی رسد بلکه باعث آبروریزی ملی و بین المللی برای صنعت و جامعه مهندسی نیز شده است

به گفته این محققان ، پیچیدگی‌های بتن غلطکی به مرحله اجرا و دانش فنی تولید منتهی می شود و به نظر می رسد با تجربیاتی که بدست آمده می توان امروزه گفت که تکنولوژی ساخت خیابان و اتوبان‌های با دوره دوام بالا نیز در کشور ما بومی شده است، لیکن بایستی ببینیم که مسئولین تا چه حد از این دست آورد استقبال می‌کنند.

لینک به دیدگاه

یکی از عوامل تخریب بتن در فلات مرکزی ایران بتن ریزی در هوای گرم می باشد. در محیطهای گرم دمای بتن زیاد بوده و این مسئله موجب تبخیر سریع آب ، گیرش زود رس و کاهش کارای بتن می شود.

برای رسیدن به بتن مناسب و با مشخصات مکانیکی مورد نیاز باید شرایط ویژه ای رعایت شود.

اقلیم شناسی

طبق طبقه بندی اقلیمی بخش بزرگی از ایران دارای اقلیم گرم می باشد در فلات مرکزی اقلیم گرم و خشک و در سواحل و جزایر جنوبی اقلیم گرم و مرطوب وجود دارد . در اقلیم گرم و خشک تبخیر بیشتر از بارندگی و اختلاف دمای شبانه روز به 25 درجه سلسیوس می رسد. متوسط دما در روزهای تابستانی حدود 45 و در زمستان حدود 30 درجه سلسیوس است. رطوب نسبی بسیار کم و به ندرت از 50 درجه افزایش می یابد و عموما در حدود 1020 درجه می باشد تغییرات دما در شبانه روز منجر به وزش باد های گرم و عموما با گردباد و سرعت زیاد می شود. شرایط مزبور برای کارهای بتنی مناسب نمی شود و مقاومت و پایائی (دوام) به طور محسوسی کاهش می یابد و برای دسترسی به بتن بادوام زیاد تهمیدات ویژه ای را باید به کار برد.

 

 

خرابیهای بتن

بتن سالهاست که به عنوان مصالح پایا و بادوام ، ارزان و مقاوم(در حد قابل قبول) به عنوان مصالح سازه ای،ملات،کف سازی،و پرکننده در ساختمانها و ابنیه مختلف به کار گرفته شده است. ولی متاسفانه اگر به طور مناسب، تهیه و عمل آوری نشود در محیط های گرم و خورنده طول عمر مفید آن به طور محسوسی کاهش می یابد. قبل از وارد شدن به مشکلات بتن ریزی در هوای گرم مکانیزم های خرابی بتن را به طور کلی مورد بحث قرار می دهیم.

خرابیهای بتن به طور کلی یا به صورت شیمیائی و یا به صورت فیزیکی می باشند. در ضمن خرابی خطاهای اجرائی را نیز باید به این مجموعه اضافه کرد که عمذتا نقش تسریع در کاهش پایائی خواهند داشت. خلاصه انواع خرابی بتن در زیر ارائه شده است :

خرابی بتن:

شیمیائی:

· حمله سولفات ها

· حمله کلرورها و خوردگی فولاد

· کربناتی شدن

· واکنش قلیاوی سنگدانه ها

فیزیکی:

· یخ زدگی و ذوب متوالی

· فرسایش و سایش

· خلائ زایی

· نفوذ نمک ها در بتن

· حریق

· ضربه

· شرایط محیطی

· حمله باکتریها

خطاهای اجرائی:

· دانه بندی یکنواخت و نامناسب

· خاک دار بودن شن و ماسه

· انبار کردن نامناسب مصالح بتن (شن و ماسه،سیمان،آبّ،مواد افزودنی)

· به کار گیری نوع و مقدار نامناسب سیمان

· تراکم نامناسب

· عمل آوری نامناسب

· به کار گیری آب بیش از حد مورد نیاز در مخلوط بتن

وجود اقلیم گرم به طور مستقیم و غیر مستقیم تمام عوامل خرابیهای شیمائی و فیزیکی بتن را به جز یخ زدگی و ذوب متوالی تشدید می کند. بنابراین و در اینچنین اقلیمی باید شرایط ویژه ای را به کار برد و حتی الامکان خطاهای اجراوی را نیز به حداقل کاهش داد.

تاثیر محیط گرم روی بتن:

هم بتن تازه و هم بتن سخت شده در محیطهای اقلیمی گرم و در درجه حرارت زیاد بخشی از عملکرد مطلوب و پایائی خود را از دست می دهند. نیاز به آب بیشتر ، گیرش سریع و کاهش اسلامپ و کارائی، افزایش امکان ترک خوردگی خمیری ، تبخیر سریع آب سطحی بتن و تغییر در مشخصات مکانیکی این بخش و نیاز به عمل آوری سریع از مشکلات بتن تازه در اقلیم گرم است. این مشکلات با افزایش نفوذ پذیری که خود منجر به کاهش مقاومت ذاتی بتن در مقابله با خرابیهای دیگر می شود از تاثیرات محیط گرم روی بتن سخت شده می باشد . علت تغییرات در بتن سخت شده به طور عمده ناشی از اجبار به مصرف آب بیشتر در طرح اختلاط است.

بزرگترین مشکل اقلیم گرم روی بتن، گیرش سریع و کاهش کارائی بتن تازه می باشد که برای جبران آن تولید کنندگان آب مصرفی طرح اختلاط افزایش می دهند. با افزایش آب مصرفی مقاومت کاهش و نفوذ پذیری افزایش می یابد و در صورتیکه عوامل مخرب دیگر مثل یونهای مضرر هم در محیط وجود داشته باشد و به سرعت عمر مفید و پایائی بتن کاهش خواهد یافت و در مناطق گرم و خشک و تبخیر سریع آب از سطح آزاد بتن فرایند آبگیری ( (Hydrationسیمان متوقف شده و منجر به ترکهای جمع شدگی خمیری (Plastic shrinkage cracks) خواهد شد.

در محیطهای گرم و مرطوب به علت نفوذ رطوبت در بتن سخت شده خرابی های بتن افزایش می یابد البته به جز ترک خوردگی ناشی از جمع شدگی. به هر حال در محیط های گرم و خشک نیز امکان رطوبت در پاره ای از کاربردها به طور محسوس وجود دارد مثل سازه های آبی بتنی ، پی ها که در خاک مدفون هستند و به احتمال کاربرد زمینهای اطراف آب و رطوبت به خاک تزریق خواهد شد.

مشکلات بتن ریزی در مناطق گرمسیر به صورت خلاصه عبارتند از :

نیازبه آب بیشتر در طرح اختلاط

افزایش سرعت گیرش سیمان

کاهش اسلامپ و کارآئی بتن تازه به علت گیرش زود رس

ایجاد ترکهای جمع شدگی خمیری

مقاومت فشاری نهائی کمتر (گرچه مقاومت فشاری اولیه افزایش می یابد)

افزایش نفوذ پذیری و کاهش محسوس پایائی بتن

ظاهر نامطلوب سطح بتن

کاهش زمان اجرائی جهت حم و ریختن بتن و ویبره زدن (در پاره ای از موارد این زمان به 20 دقیقه کاهش می یابد)

تمهیدات بتن ریزی در مناطق گرمسیری

در صورتیکه دمای بتن در لحظه بتن ریزی از 32 درجه بیشتر باشد باید بتن ریزی رامتوقف کرد یا شرایط ویژه ای را جهت کنترل دمای بتن به کار برد. به هر حال در روزهای گرم سال در مناطق گرمسیر موارد زیر باید مورد توجه قرار گیرد.

دمای سیمان در هنگام اختلاط باید کمتر از 50 درجه باشد نگهداری سیمان در محلهای سایه و خنک و با استفاده از سیلو مناسب با رنگ آمیزی مناسب می تواند در پائین نگهداشتن دمای سیمان به کار رود.

میزان مصرف سیمان نباید از 350 کیلوگرم بر متر مکعب کمتر باشد تا بتوان کاراوی و مقاومت لازم را به دست آورد در ضمن نباید از 450 کیلوگرم بر متر مکعب بتن بیشتر باشد چون گرمای آزاد شده ناشی از فعل و انفعالات سیمان منجر به دمای زیاد بتن تازه خواهد شد.

به کار گیری سیمان کند گیر (در حد تیپ دو)به کار گیری سیمان پوزولانی به خصوص استفاده از میکروسیلیس یا به کارگیری مواد افزودنی که موجب کاهش دمای گیرش شود توصیه می شود.

شن و ماسه باید در محل خنک و سایه (زیر سایه بان) نگهداری شوند . در صورت لزوم سنگدانه ها با آبپاشی خنک شوند.

به کارگیری دانه های گرد گوشه (رودخانه ای) به علت ایجاد کارائی بیشتر مناسب تر است.

دانه بندی شن و ماسه باید حتما در محدوده استاندارد باشد و اگر در حد میانی استاندارد باشد که منجر به تولید بتن متراکم شود بهتر است.

به کار گیری شن درشت منجر به نفوذ پذیری بیشتر می شود بنابراین به کارگیری شن ریزتر در طرح اختلاط توصیه می شود.

حتی المکان باید آب خنک استفاده شود به کارگیری عایق حرارتی برای لوله ها و مخازن آب توصیه می شود. در صورت ناتوانی در کنترل بتن می توان از خرده یخ برای خنک کردن آب استفاده نمود.

به هیچ وجه نباید برای کنترل سلامپ و کارائی از آب بیشتر از حد تعیین شده در طرح اختلاط استفاده نمود.

میلگرد در شرایط محیطی فوق العاده شدید باید باید گالوانیزه با آغشته به اپوکسی باشند(در مناطق گرم و خشک به کارگیری این روشها ضروری نمی باشند)

به کارگیری پوشش بتنی در اطراف میلگرد ها جهت تامین پایائی ضروری می باشد باید از به کارگیری مقاطع نازک بتنی با درصد زیاد میلگرد خودداری شود.

به کار گیری قالب چوبی به علت کوچکی ضریب انتقال حرارت نسب به قالب های فلزی مرجع است.

قالب ها باید حتما آب بندی باشند تا شیره و آب از دسترس بتن خارج نشود.

بتن ریزی در ساعات خنک و سایه روز انجام شود.

حتما از تبخیر آب سطحی بتن جلوگیری به خصوص در مقابل وزش باد و تشعشعخورشید با بکارگیری روکشهائی روی سطحی جلوگیری کرد.

تراکم بتن حتی الامکان باید به صورت کامل انجام شود تا پایائی بتن را بتوان تضمین نمود.

عمل آوری بتن باید به طور کامل و در اولین فرصت ممکن انجام شود و به نحوی که آب سطحی بتن از دست نرود. روشهای عمل آوری عبارتند از:

جاری نمودن آب مناسب روی بتن (توجه به تبادل حرارتی و از دست رفتن حرارت بتن لازم است)

· آب پاشی به طور مدوام و با آب مناسب البته توصیه می شود به خصوص دفعات اولیه آب دارای حرارت نزدیک بتن تازه باشد تا امکان تباد حرارتی از بین ببرد.حتی اگر قرار است آبّ روی سطح بتن گرفته شود باید چند ساعت اولیه با آب گرم روی سطح بتن آب پاشی نمود و سپس اقدام به این کار کرد.

· به کارگیری روکش مرطوب نظیر گونی، نمد، حصیر،کاه،ماسه تمیز و خاک اره.

· به کار گیری روکش غیر قابل نفوذ شامل کاغذ نفوذناپذیر،نایلون.

حداقل زمان عمل آوری در مناطق گرمسیری 7 روز می باشد ولی برای سیمانهای تیپ 2و 5 و سیمانهای پوزولانی 14 روز است.

به کار گیری گوشه های پخ شده در قطعات جهت جلوگیری از تبخیر سریع از این نواحی.

نتیجه گیری

فلات مرکزی ایران کویری بوده و دارای اقلیم گرم و خشک می باشد. شرایط آب و هوای اقلیم مزبور جهت بتن ریزی و عمل آوری مناسب نمی باشد. طراحان و مجریان می توانند با به کار گیری مشخصات و روشهای اجرائی مناسب بتن با مقاومت فشاری ،پایائی و کارائی خواسته شده تولید نمایند. افزایش آب به بتن جهت افزایش کارائی نتیجه نامطلوب دارد. تامین رطوبت و جلوگیری از وزش باد از روی سطح بتن در دوره عمل آوری ضروری می باشد و به طور وسیعی از ترک خوردگی جمع شدگی جلوگیری می کند طبق آیین نامه آبا به کارگیری بتن تازه با دمای بیشتر از 32 درجه سلیسوس ممنوع است و باید در شرایط هوای گرم با خنک کردن آب و سنگدانه ها از دمای بتن کاست و سپس استفاده نمود.

لینک به دیدگاه

به گفتگو بپیوندید

هم اکنون می توانید مطلب خود را ارسال نمایید و بعداً ثبت نام کنید. اگر حساب کاربری دارید، برای ارسال با حساب کاربری خود اکنون وارد شوید .

مهمان
ارسال پاسخ به این موضوع ...

×   شما در حال چسباندن محتوایی با قالب بندی هستید.   حذف قالب بندی

  تنها استفاده از 75 اموجی مجاز می باشد.

×   لینک شما به صورت اتوماتیک جای گذاری شد.   نمایش به صورت لینک

×   محتوای قبلی شما بازگردانی شد.   پاک کردن محتوای ویرایشگر

×   شما مستقیما نمی توانید تصویر خود را قرار دهید. یا آن را اینجا بارگذاری کنید یا از یک URL قرار دهید.


×
×
  • اضافه کردن...