spow 44197 اشتراک گذاری ارسال شده در 10 تیر، ۱۳۸۹ تاريخچه پيل سوختي اگر چه پيلسوختي به تازگي به عنوان يكي از راهكارهاي توليد انرژي الكتريكي مطرح شده است ولي تاريخچه آن به قرن نوزدهم و كار دانشمند انگليسي سرويليام گرو بر ميگردد. او اولين پيلسوختي را در سال 1839 با سرمشق گرفتن از واکنش الکتروليز آب، طي واکنش معکوس و در حضور کاتاليست پلاتين ساخت. واژه "پيلسوختي" در سال 1889 توسط لودويک مند و چارلز لنجر به كار گرفته شد. آنها نوعي پيلسوختي که هوا و سوخت ذغالسنگ را مصرف ميکرد، ساختند. تلاشهاي متعددي در اوايل قرن بيستم در جهت توسعه پيلسوختي انجام شد که به دليل عدم درک علمي مسئله هيچ يک موفقيت آميز نبود. علاقه به استفاده از پيل سوختي با کشف سوختهاي فسيلي ارزان و رواج موتورهاي بخار کمرنگ گرديد. فصلي ديگر از تاريخچه تحقيقات پيلسوختي توسط فرانسيس بيكن از دانشگاه كمبريج انجام شد. او در سال 1932 بر روي ماشين ساخته شده توسط مند و لنجر اصلاحات بسياري انجام داد. اين اصلاحات شامل جايگزيني كاتاليست گرانقيمت پلاتين با نيكل و همچنين استفاده از هيدروكسيدپتاسيم قليايي به جاي اسيد سولفوريك به دليل مزيت عدم خورندگي آن ميباشد. اين اختراع كه اولين پيلسوختي قليايي بود، “Bacon Cell” ناميده شد. او 27 سال تحقيقات خود را ادامه داد تا توانست يك پيلسوختي كامل وكارا ارائه نمايد. بيكون در سال 1959 پيلسوختي با توان 5 كيلووات را توليد نمود كه ميتوانست نيروي محركه يك دستگاه جوشكاري را تامين نمايد. تحقيقات جديد در اين عرصه از اوايل دهه 60 ميلادي با اوج گيري فعاليتهاي مربوط به تسخير فضا توسط انسان آغاز شد. مركز تحقيقات ناسا در پي تامين نيرو جهت پروازهاي فضايي با سرنشين بود. ناسا پس از رد گزينههاي موجود نظير باتري (به علت سنگيني)، انرژي خورشيدي(به علت گران بودن) و انرژي هستهاي (به علت ريسك بالا) پيلسوختي را انتخاب نمود. تحقيقات در اين زمينه به ساخت پيلسوختي پليمري توسط شركت جنرال الكتريك منجر شد. ايالات متحده فنآوري پيل سوختي را در برنامه فضايي Gemini استفاده نمود كه اولين كاربرد تجاري پيلسوختي بود. پرت و ويتني دو سازنده موتور هواپيما پيلسوختي قليايي بيكن را به منظور كاهش وزن و افزايش طول عمر اصلاح نموده و آن را در برنامه فضايي آپولو به كار بردند. در هر دو پروژه پيلسوختي بعنوان منبع انرژي الكتريكي براي فضاپيما استفاده شدند. اما در پروژه آپولو پيلهاي سوختي براي فضانوردان آب آشاميدني نيز توليد ميكرد. پس از کاربرد پيلهاي سوختي در اين پروژهها، دولتها و شركتها به اين فنآوري جديد به عنوان منبع مناسبي براي توليد انرژي پاك در آينده توجه روزافزوني نشان دادند. از سال 1970 فنآوري پيلسوختي براي سيستمهاي زميني توسعه يافت. تحريم نفتي از سال1973-1979 موجب تشديد تلاش دولتمردان امريكا و محققين در توسعه اين فنآوري به جهت قطع وابستگي به واردات نفتي گشت. در طول دهه 80 تلاش محققين بر تهيه مواد مورد نياز، انتخاب سوخت مناسب و كاهش هزينه استوار بود. همچنين اولين محصول تجاري جهت تامين نيرو محركه خودرو در سال1993 توسط شركت بلارد ارائه شد. كاربردهاي پيل سوختي نيروگاهي بازار مولدهاي نيروگاهي پيلسوختي بسيار گسترده است و کاربردهاي دولتي، نظامي و صنعتي را شامل ميشود. همچنين به عنوان نيروي پشتيبان در مواقع اضطراري در مخابرات، صنايع پزشکي، ادارات، بيمارستانها، هتلهاي بزرگ و سيستمهاي کامپيوتري به کار ميرود. پيلهاي سوختي نسبتاً آرام و بيصدا هستند لذا جهت توليد برق محلي مناسبند. علاوه بر کاهش نياز به گسترش شبکه توزيع برق، از گرماي توليدي از اين نيروگاهها ميتوان جهت گرمايش و توليد بخار آب استفاده نمود. اين نيروگاهها در مصارف کوچک بازدهي الکتريکي بالايي دارند و همچنين در ترکيب با نيروگاههاي گاز طبيعي بازدهي الکتريکي آنها به 70-80% ميرسد. مزيت ديگر اين نيروگاهها عدم آلودگي محيط زيست است. خروجي نيروگاههاي پيلسوختي بخارآب مي باشد. نيروگاههاي پيل سوختي قابليت استفاده از سوختهاي مختلف مانند متانول، اتانول، هيدروژن، گاز طبيعي، پروپان و بنزين را دارند و مانند ساير نيروگاهها محدود به استفاده از يک منبع انرژي خاص نيست. از زمانيکه اولين پيلسوختي نيروگاهي در دهه 60 توليد گشت، تا کنون در مجموع 650 سيستم کامل با توان بيش از 10 کيلووات (ميانگين آن 200 کيلووات است) ساخته شد. تقريباً 90 درصد از اين واحدها با گاز طبيعي تغذيه مي شود. البته استفاده از سوختهاي جايگزين نظير بيوگاز و گاز ذغال نيز پيشرفت قابل ملاحظهاي داشته است. در اين بخش نيروگاه انواع متنوع پيلسوختي به کار رفته است. در ابتدا از پيلسوختي اسيد فسفريک آغاز گرديد و سپس پيلسوختي پليمري و پيلسوختي کربنات مذاب جايگزين آن گشتند. در حاليکه پيلسوختي اکسيد جامد در آينده بازار را به قبضه در خواهد آورد. در بخش پيلهاي سوختي نيروگاهي کوچک (زير 10 کيلووات) نيز رشد قابل ملاحظهاي را شاهد بوديم. تعداد اين واحدها اکنون به 1900 رسيده است. اين سيستم جهت مصارف خانگي و بازارهايي از قبيل UPS ونيروي پشتيبان در اماکن دوردست کاربري دارد. نيمي از محصولات در آمريکاي شمالي توسعه يافته است. در بخش سيستمهاي نيروگاهي کوچک 20 درصد سهم بازار را پيلسوختي اکسيدجامد و مابقي را پيلسوختي پليمري تشکيل ميدهد. بازار پيلسوختي کوچک در ژاپن که به مصارف خانگي اختصاص دارد، منحصراً با پيلسوختي پليمري است و اميد است تا انتهاي سال 2005 محصولات به بازار عرضه گردند. فروش تعدادي از واحدهاي نيروگاهي کوچک آغاز شده است که از جمله آنها سيستم GenCore شرکت Plug Power مي باشد(توان 5 کيلووات، 15000 دلار) دولت ژاپن حمايت خود از توسعه پيلهاي سوختي نيروگاهي در ابعاد بزرگ را از سال 1980 آغاز نموده است و شرکت هاي ژاپني گاز توکيو و Osaca از بزرگترين شرکت هاي توسعه دهنده اين فنآوري ميباشند. انواع پيلهاي سوختي پيلهاي سوختي در انواع زير موجود ميباشند: پيلهاي سوختي اسيدفسفريكي پيلهاي سوختي پليمري پيلهاي سوختي اكسيد جامد پيلهاي سوختي قليايي پيلهاي سوختي متانولي مزاياي پيل سوختي چيست؟ راندمان بالا، حداقل نشر آلايندههاي زيست محيطي،امكان استفاده از سوختهاي فسيلي و پاك، مدولار بودن و قابليت توليد همزمان حرارت و الكتريسيته و استفاده در كاربردهاي توليد غيرمتمركز انرژي از جمله مزاياي پيل سوختي ميباشند. روشهاي توليد پيل سوختي جديدترين راه توليد پيل سوختي لوى تامپسون، پرفسور مهندسى شيمى و رئيس تيم تحقيقاتى پيل سوختى جديد در اين مورد چنين مى گويد: «ما به سامانه اى رسيده ايم كه بسيار مشابه سامانه هايى است كه براى توليد ابزارهاى ميكرو الكترونيك مورد استفاده قرار مى گيرد.» روشى كه پرفسور تامپسون و تيم همكار او به آن رسيده اند، استفاده از ميكروفابريكيشن است. ميكروفابريكيشن خلق ساختارهاى فيزيكي، ابزار و مواد مركبى است كه اجزاى تشكل دهنده آنها در حدود يك ميكرومتر هستند. ميكروالكترونيك ها منبع انرژى كالاهاى بسيار زيادى هستند از كارت تبريك صوتى گرفته تا كامپيوترهاى قابل حمل. تامپسون يكى از بزرگترين موانع استفاده تجارى و گسترده از پيل هاى سوختى را هزينه بالاى ساخت آن مى داند. براى اينكه از اين منبع در مصارف روزمره استفاده كرد، بايد هزينه توليد آن پايين تر بيايد تا مثلا در يك كامپيوتر قابل حمل مورد استفاده قرار گيرد. در شيوه معمول كنوني، پيل هاى سوختي، مشابه خودروها توليد مى شوند يعنى قطعات مختلف آنها به صورت جداگانه ساخته مى شوند و سپس روى هم سوار مى شوند تا يك پيل سوختى توليد شود. اين كار گستره بسيار زيادى دارد و علاوه بر هزينه بالاى آن، كه به آن اشاره شد نياز به زمان بسيار زيادى دارد. اما گروه تحقيقاتى تامپسون با استفاده از فرآيند پيشرفته ميكروفابريكيشن، نسل جديد پيل هاى سوختى را مى سازد. اين بار به جاى توليد جداگانه پيل سوختي، آنها به صورت لايه لايه ساخته مى شوند، روشى كه در حال حاضر براى ساخت ابزارهاى ميكروالكترونيك مورد استفاده قرار مى گيرد. محققان دانشگاه ميشيگان اميدوارند با استفاده از اين فن آورى ارزان قيمت و همچنين استفاده از مواد ارزانتر، قيمت پيل هاى سوختى را از 10هزار دلار براى هر كيلو وات به 1000 دلار برسانند. با اين قيمت، پيل هاى سوختى مى توانند با باترى هاى يون لتييوم كه در سطح وسيع مورد استفاده قرار مى گيرند رقابت كنند. دانشگاه ميشيگان استفاده از ميكروفابريكيشن براى توليد پيل سوختى را دو سال و نيم پيش آغاز كرد. اولين بازار آنها وسايل برقى است، ولى آنها در گام بعدى مى خواهند از پيل هاى سوختى در اتومبيل ها استفاده كنند. سوخت تازه براي پيل هاي سوختي با استفاده از اسيدفرميك به عنوان سوخت غيرقابل اشتعال در پيل هاي سوختي محصولات الكترونيكي قابل حمل بدون اتصال به شبكه برق كار مي كنند. شركت هاي BASE و Tekion توسعه دهنده پيل هاي سوختي مينياتوري براي محصولات قابل حمل به منظور توسعه اسيدفرميك به عنوان سوخت براي فناوري پيل سوختي Tekion تفاهم نامه اي امضا كردند.BASE بزرگترين توليد كننده اسيدفرميك در دنيا محسوب مي شود و قصد دارد با همكاري Tekion، فرمولاسيون مناسبي را براي اسيدفرميك تهيه و آزمايش كند. اين دو شركت همچنين در زمينه توسعه كدها و استانداردهاي مرتبط با اين موضوع نيز فعاليت خواهند داشت و تجربه هايشان را در زمينه سازگاري اين مواد براي پيل هاي سوختي به اشتراك مي گذارند. بر اساس اين گزارش، اولين كاربرد تجاري محصولات Tekion، يك نمونه «بسته انرژي» است كه درون دستگاه هاي الكترونيكي قابل حمل جاي گرفته يا به آنها متصل مي شود تا اين دستگاه ها بتوانند بدون اتصال به شبكه برق كار كنند. اين بسته يك سيستم هيبريدي باتري پيل سوختي مينياتوري است كه با نام تجاري بسته انرژي Formira در بازار موجود است و سوخت گيري آن با تعويض كارتريج اسيدفرميك صورت مي گيرد. اين فناوري براي استفاده در محصولات الكترونيكي قابل حمل در محدوده تواني كمتر از 50 وات با انرژي كمتر از 100 وات ساعت طراحي شده و از مزاياي قابل توجهي برخوردار است. ساخت پيل سوختي با نيروي باكتري تيمي متشكيل از ميكروبيولوژيستها، مهندسين و متخصصان شيمي زمين از دانشگاههاي كاليفرنياي جنوبي و رايس به منظور ساخت پيلهاي سوختي ( به اندازه يك كف دست) با نيروي محركه باكتري براي تامين انرژي هواپيماهاي جاسوسي همكاري مشترك خود را آغاز كردند. نيروي هوايي آمريكا از مدتها قبل در پي توليد وسايل نقليه هوايي در مقياس مينياتوري (به اندازه حشرات) بود، اما تاكنون اين خواسته به دليل نداشتن منبع انرژي فشرده مناسب ناكام مانده است. اين گروه تحقيقاتي اميدوار است با سرمايهگذاري 4/4 ميليون دلاري مركز تحقيقات دانشگاهي در وزارت دفاع (MURI) بتواند با توليد نخستين نمونه بدون سرنشين، طي پنج سال آينده اين انديشه را محقق سازد. بر اساس اين گزارش، در دانشگاه رايس به منظور درك چگونگي اتصال و اثر متقابل باكتري Sewanella بر سطوح آند در پيل سوختي، تحقيقاتي در حال انجام است. آند در پيل سوختي و باتريها، وظيفه جمعآوري الكترون اضافي را بر عهده دارد و اين تيم قصد دارد شرايط بهينه انتقال الكترونها در سطح آند در شرايط مختلف را تعيين كند. اجزاي اصلي اين سيستم باكتري، سطح و محلول هضم كننده باكتري است كه تغيير هر يك از اين عوامل روي دو عامل ديگر مؤثر بوده و هدف، يافتن شرايط بهينه عملكرد سيستم كلي است. دانشگاه كاليفرنياي جنوبي در زمينه روشهاي ژنتيكي، حفظ متابوليسم تنفسي ميكروبها در محيطهاي با اكسيژن كم، تحقيقاتي انجام داده است. Sewanella يكي از اين باكتريها براي متابوليسم كامل غذا به جاي اكسيژن از فلز استفاده ميكند و از آنجا كه اين ارگانيسم قادر است مستقيما الكترونها را به اكسيد فلزي جامد انتقال دهد، مي توان آن را در آند پيل سوختي مورد استفاده قرار داد. در مطالعه پيل سوختي به منظور ارزيابي رفتار باكتري در شرايط مختلف از مدلهاي رايانهاي استفاده شده است كه انجام اين آزمايشها توسط رايانه، موجب تمركز آزمايشهاي تجربي روي روشهاي مناسبتر و صرفهجويي در زمان و هزينه خواهد شد. يکي ديگر از انگيزه هاي وسوه برانگيز بکارگيري پيل سوختي شركت جنرال موتورز قصد دارد با برنامه اي بلند مدت، سوخت هيدروژن را به صورت همه گير در خودروها مورد استفاده قرار دهد. در حال حاضر شش ميليارد و 400 ميليون انسان بر روي كره زمين زندگي ميكنند و اين آمار تا سال 2020 به هفت ميليارد و 500 ميليون نفر خواهد رسيد. در همين حال پيشبيني ميشود، در مدت زمان فوق شمار افرادي كه صاحب خودرو ميشوند 12 تا 15 درصد رشد داشته باشد و اين بدان معني است كه تعداد خودروها كه در حال حاضر در حدود 775 ميليون دستگاه برآورد شده است، تا سال 2020 به بيش از يك ميليارد و 100 ميليون دستگاه خواهد رسيد. بنابراين كاهش مصرف سوخت و آلايندههاي محيط زيست اهميت بسيار زيادي پيدا ميكند كه در اين ميان شركت خودروسازي جنرال موتورز آمريكا با معرفي تكنولوژي پيل سوختي هيدروژني توانسته است اميد به جابجايي بدون آلودگي رادر آينده افزايش دهد. لذا توسعه خودروهاي پيل سوختي به سرعت در جهان در حال رشد است، به طوري كه در حال حاضر شركتهاي خودروسازي جنرال موتورز و اوپل بيش از يك ميليارد دلار صرف تحقيقات در اين تكنولوژي كردهاند. "هيدروژن 3 اوپل" ثابت كرده است كه رانندگي با خودروهاي متفاوت، مسير خود را از آزمايشگاه به جاده هموار كرده است و نمونه اوليه آن در حال حاضر با همكاري شركت سازنده مبلمان ايكيا (IKEA) در حال گذراندن آزمايشهاي متفاوت است و سكوئل (Seqel) جنرال موتورز به توليد خودروهاي با پيل سوختي نزديكتر شده است. "هيدروژن 3 اوپل"؛ دونده دو ماراتن، قهرمان مسابقات رالي "هيدروژن 3 اوپل" جانشين نمونه اوليه هيدروژني است كه در بهار سال 2000 معرفي شد و از روي طرح خودرو زافيرا اوپل ساخته شده بود. نيروي برق اين خودرو توسط 200 قطعه پيل سوختي كه به صورت سري به يكديگر متصل شدهاند، توليد ميشود. اين پيلها نيروي موتور برقي 82 اسب بخار بر 60 كيلووات هيدروژن 3 را تامين ميكند. اين نيروگاه كه حداكثر 215NM گشتاور توسعه ميدهد، حداكثر سرعتي برابر با 160 كيلومتر بر ساعت توليد ميكند و در كمتر از 16 ثانيه از صفر تا 100 كيلومتر در ساعت شتاب ميگيرد كه در حالتي كاملا بيصداست. در مسابقات ماراتن تابستان سال 2004، هيدروژن 3 اوپل توانست بدون هيچ مشكلي 9 هزار و 696 كيلومتر را در 14 كشور مختلف اروپايي طي كند. در آوريل سال 2005 نيز اين خودرو توانست جايزه مسابقات رالي مونت كارلو را براي وسايل نقليه داراي پيل سوختي از آن خود كند. شركت خودروسازي اوپل اكنون در حال گسترش تكنولوژي آزمايشهاي پيل سوختي با همكاري شركت سوئدي ايكيا ميباشد. وسايل نقليه پيل سوختي هيدروژن 3 كه عاري از آلايندههاي زيست محيطي ميباشد از اوايل تابستان سال گذشته تحويل كالاها به مشتريان ايكيا را در برلين آغاز كرده است. سوخت اين وسايل نقليه با هيدروژن مايع تامين ميشود. آزمايشهاي اين خودروها تحت نظارت پروژه همكاري انرژي پاك دولت آلمان انجام ميشود كه عملكرد انرژي 17 خودرو با سوخت هيدروژني را تحت شرايط خاص آزمايش ميكند. بزرگترين جايگاه سوخت گاز هيدروژني جهان در پاييز سال 2004 در پايتخت آلمان آغاز به كار كرد و قرار است علاوه بر گاز هيدروژن و هيدروژن مايع، بنزين و گازوئيل نيز به مردم ارايه كند. سكوئل جنرال موتورز خودروي سكوئل جنرال موتورز محصولي است كه تمامي نتايج تحقيقات فشرده كه طي چند سال اخير از سوي بزرگترين خودروساز جهان انجام شده است را در بر دارد؛ پروژهاي كه جنرال موتورز بيش از يك ميليارد دلار در آن سرمايهگذاري كرده است. اين خودرو جادار به گونهاي طراحي شده است كه كمترين آلايندگي محيط زيست را دارد. در اين خودرو سه منبع با فشار بالا تعبيه شده است كه موقعيت آنها در ميانه شاسي باعث بهبود مركز ثقل خودرو ميشود. اين خودروها كه از اصلاحات فني بسيار زيادي نيز بهرهمند ميباشند منحصر به فرد هستند. خودروي سكوئل جنرال موتورز به دليل افزايش 25 درصدي نيرو توسط تكنولوژي جديد ميتواند سرعت صفر تا 100 كيلومتر را در كمتر از 10 ثانيه به دست آورد. اجزاي پيل سوختي شامل توده پيل سوختي، دستگاه فرعي هيدروژن و فرآوري هوا، سيستم خنك كننده و سيستم توزيع ولتاژ بالا ميباشد 2 لینک به دیدگاه
samyar 3407 اشتراک گذاری ارسال شده در 9 آذر، ۱۳۸۹ انرژی هیدروژن و پیل سوختی مجموعهای از عوامل مختلف از جمله محدودیت منابع فسیلی، تأثیرات منفی زیست محیطی، بهرهگیری از منابع هیدروکربنی، افزایش قیمت سوختهای فسیلی، منازعات سیاسی و تأثیرات آن بر روی ارائه انرژی پایدار از جمله دلایلی هستند که بسیاری از سیاستمداران و متخصصین مباحث انرژی و محیط زیست را در حرکت به سوی ایجاد ساختاری نوین مبتنی بر امنیت ارائه انرژی، حفظ محیط زیست، ارتقاء کارایی سیستم انرژی وادار نموده است. بر این اساس هیدروژن یکی از بهترین گزینهها جهت ایفای نقش حامل انرژی در این سیستم جدید ارائه انرژی میباشد. هیدروژن بعنوان فراوانترین عنصر موجود در سطح زمین به روش های مختلف قابل تولید میباشد. در یک سیستم ایده آل انرژی بر پایه هیدروژن با هدف تأمین امنیت ارائه انرژی، حفظ محیط زیست و ارتقاء کارایی سیستم انرژی، هیدروژن از الکتریسیته تولیدی از منابع تجدیدپذیر نظیر باد، خورشید، زمین گرمایی و نظایر آن تولید شده و پس از ذخیره سازی و انتقال به محلهای مصرف، در کاربردهای مختلف از جمله تجهیزات الکترونیکی کوچک (میلی وات) ، صنعت حمل و نقل و صنایع نیروگاهی قابل بکارگیری است. با این رویکرد بسیاری بر این باورند که سوخت نهایی بشر هیدروژن بوده و بشر درآیندهای نه چندان دور عصر هیدروژن را تجربه خواهد نمود. از جمله ویژگیهایی که هیدروژن را از سایر گزینههای مطرح سوختی متمایز مینماید، میتوان به فراوانی، مصرف تقریباً منحصر به فرد، انتشار بسیار ناچیز آلایندهها، برگشتپذیر بودن چرخه تولید آن و کاهش اثرات گلخانهای اشاره نمود. سیستم انرژی هیدروژنی بدلیل استقلال از منابع اولیه انرژی، سیستمی دایمی، پایدار، فناناپذیر، فراگیر و تجدیدپذیر میباشد و پیش بینی میشود که در آیندهای نه چندان دور تولید و مصرف آن بعنوان حامل انرژی به سراسر اقتصاد جهانی سرایت نموده و اقتصاد هیدروژنی تثبیت شود؛ با این وجود نباید انتظار داشت که هیدروژن در بدو ورود از نظر قیمتی بتواند با سایر حاملهای انرژی رقابت نماید. در آینده هیدروژن و پیل های سوختی میتوانند نقش محوری و کنترل کنندگی در آلودگی شهرها داشته باشند.عمل تبدیل انرژی شیمیایی موجود در هیدروژن به انرژی الکتریکی توسط پیل سوختی انجام میپذیرد که متناسب با کاربرد و خواص ساختاری آنها، پیل های سوختی خود به انواع مختلف تقسیم میشوند. در واقع اهمیت فناوری پیل سوختی در یک سیستم انرژی بر پایه هیدروژن (عصر هیدروژن)به گونهای است که بسیاری آنرا به لوکوموتیو قطار توسعه عصر هیدروژن تشبیه نمودهاند. علاوه بر فناوری پیل سوختی به عنوان مصرف کننده هیدروژن در عصر هیدروژن، فناوریهای تولید، ذخیره سازی، عرضه و انتقال هیدروژن نیز از اجزاء اصلی ساختار انرژی این عصر خواهند بود. پیل سوختی سری پیل سوختی جهت تولید انرژی با راندمان بهینه ، نیازمند تجهیزات جانبی بنام سیستم پیل سوختی است که شرایط بهینه عملکرد برای پیل سوختی ، شامل خلوص سوخت ، مقدار هوا و سوخت ورودی به سری پیل سوختی ، رطوبت گازها و مدیریت آب ، کنترل دما و نهایتا فشار گازها در سیستم و سری پیل سوختی را کنترل نمایند. یک سیستم پیل سوختی را میتوان به سه قسمت عمده شامل بخش سوخت رسانی (مبدل سوخت و سیستم ذخیره هیدروژن) ، بخش تولید انرژی شامل سری پیل سوختی و سیستم کنترل رطوبت ، فشار ، دما و دبی گازها و نهایتا بخش تبدیل انرژی که مربوط به فصل مشترک بین پیل سوختی و مصرف کننده برق جهت تبدیل جریان و ولتاژ برق به ولتاژ و جریان مناسب میباشد، تقسیم نمود. متناسب با نوع پیل سوختی و کاربرد آن ، این سیستمها ساده و یا پیچیده میباشند، به عنوان نمونه در پیل های سوختی نیروگاهی ، بخش مبدل سوخت که سوختهای فسیلی ، بیومس و یا ... را تبدیل به هیدروژن خالص مینماید، بخش پیچیده و اصلی سیستم سوخت رسانی را تشکیل میدهد. در مصارف خودرویی سیستم سوخت رسانی بنا به نوع زیر ساخت سوخت موجود میتواند دو شکل زیر را به خود بگیرد: تولید هیدروژن در خودرو با استفاده از مبدل سوخت تولید هیدروژن در خارج از خودرو و ذخیره هیدروژن در خودرو در صورتی که هیدروژن در جایگاه سوخت گیری تولید شود، سیستم ذخیره سوخت خودرو میتواند روش های مختلفی از قبیل ذخیره هیدروژن در مخازن تحت فشار ، بکار گیری نانوتیوبها ، بکارگیری جاذبهای هیدرید فلزی ، بکارگیری هیدریدهای شیمیایی و ... را شامل شود. در صورت تولید هیدروژن در خودرو ، مبدل سوخت (بالاخص مبدل بنزین و متانول) قابل نصب بر روی خودرو بخش اصلی و پیچیده سیستم سوخت در خودرو را شامل میگردد. 1 لینک به دیدگاه
samyar 3407 اشتراک گذاری ارسال شده در 9 آذر، ۱۳۸۹ بخش سوخت رسانی بخش سوخت رسانی در مولدهای نیرو گاهی پیل سوختی خود از قسمت های مختلفی از جمله راکتور مبدل سوخت، سیستم هوادهی، کمپرسور، مخازن تحت فشار و ... تشکیل شده است. راکتور مبدل سوخت که جزء اصلی در بخش سوخت رسانی نیرو گاهی می باشد، سوخت های هیدرو کربنی موجود را به گاز غنی از هیدروژن که خوراک پیل سوختی است تبدیل می کند. مبدل سوخت در سیستم پیل سوختی خودروها، سیستم را کمی پیچیده می کند اما دارای این مزیت است که از سوخت هایی استفاده می کند که در زیر ساخت ها و شبکه های توزیع فعلی وجود دارند. همانگونه که اشاره شد، هنگامی که سوخت هیدروژن خالص در خارج از خودرو تولید و در خودروها بار گیری شود، سیستم پیل سوختی بسیار ساده تر خواهد گردید. مبدل سوخت دانسیته کم انرژی هیدروژن در حالت گاز، کاربرد هیدروژن را به عنوان حامل انرژی با مشکل روبرو می سازد. بدین معنی که نسبت به سوختهای مایع همچون بنزین یا متانول از انرژی کمی به ازای هر واحد حجم برخوردار است. بنابراین بارگیری هیدروژن گازی (تحت فشار متوسط و پایین) به مقداری که برد حرکتی قابل قبولی را برای خودروی پیل سوختی تأمین نماید، کاری مشکل به نظر میرسد. هیدروژن مایع از دانسیته انرژی خوبی برخوردار است (حدود 120.7 کیلو ژ ول به ازاء هر کیلوگرم) اما باید در دمای بسیار پایین ( 253 درجه سانتیگراد زیر صفر ) و فشارهای بالا ذخیره شود که این مسئله ، ذخیره سازی و حمل و نقل آن را مشکل میسازد. سوختهای متداول همچون گاز طبیعی ، پروپان و بنزین و سوختهایی مانند متانول و اتانول ، همگی در ساختار مولکولی خود هیدروژن دارند. با بکارگیری مبدل نصب شده بر روی خودرو (onboard) یا مبدلهایی که در محلهای سوخت گیری نصب میشوند، میتوان هیدروژن موجود در این سوختها را جدا کرده و به عنوان سوخت در پیل سوختی مورد استفاده قرار داد. بدین ترتیب مشکل ذخیره سازی هیدروژن و توزیع آن تقریبا بطور کامل رفع میشود. کار مبدل سوخت فراهم آوردن هیدروژن مورد نیاز پیل سوختی با استفاده از سوختهایی است که در دسترس بوده و حمل و نقل آن آسان میباشد. مبدلهای سوخت باید توانایی انجام این کار را با حداقل آلودگی و بالاترین راندمان داشته باشند. عملکرد مبدلهای سوخت به زبان ساده عبارت است از اینکه یک سوخت سرشار از هیدروژن را به هیدروژن و محصولات فرعی دیگر تبدیل نماید. یکی از مشکلات مهم در زمینه ساخت مبدلها اندازه و وزن مبدل میباشد. برای ارتقاء سطح بازده ، لازم است وزن و حجم مبدلها به ازای هر واحد انرژی الکتریکی حاصل از سیستم تا حد ممکن کاهش یابد. به همین ترتیب ، هزینه ساخت مبدلها نیز باید پایین نگاه داشته شود تا گران بودن این فناوری مانع از تولید انبوه خودرو نشود. دومین مشکل مهم در این زمینه میزان خلوص هیدروژن تولید شده از مبدلها است. آلایندههایی همچون مونوکسید کربن (و در بعضی از انواع سوخت ، سولفیدها) از محصولات فرعی فرآیند تبدیل هستند. در این میان ، مقدار زیاد مونوکسید کربن میتواند موجب سمی شدن کاتالیست پیل سوختی شود. از این رو لازم است قبل از ورود سوخت به درون پیل سوختی ، مونوکسید کربن آن حذف شود. اگر چه انواع مختلفی از مبدلهای سوخت وجود دارند که اغلب از ترکیب فناوریهای مختلف حاصل گردیدهاند، اما انواع اصلی مبدل هایی که در زمینه متداول هستند عبارتند از: 1. مبدلهای با سیستم بخار (Steam Reformer) 2. مبدلهای اکسیداسیون جزئی (Partial Oxidation Reformer) 3. مبدلهای اتو ترمال (Auto thermal Reformer) اصول اولیه عملکرد هر یک از این فناوریها و فرآیندهای شیمیایی مربوط به آنها بطور مجزا به قرار ذیل میباشد: مبدل با سیستم بخار فرآیند تبدیل به کمک بخار یک فرآیند دو مرحلهای به صورت زیر است: در واکنش اول از اکسیژن موجود در بخار آب داغ (معمولا بیش از 500 درجه سانتیگراد) برای جدا سازی کربن از هیدروژن و تولید مولکولهای هیدروژن و اکسیدهای کربن استفاده میشود. همزمان با این واکنش (بسته به دمای بخار) ، در واکنش دوم مونوکسید کربن به دی اکسید کربن تبدیل شده و بدین ترتیب هیدروژن بیشتری آزاد میشود. مرحله تصفیه گاز خروجی از مبدل سیستم بخار بسیار اهمیت دارد، چرا که معمولا گاز خروجی از مبدلها خالص و عاری از مواد زائد نبوده و نمیتوان آن را مستقیما به عنوان سوخت به درون پیل سوختی فرستاد. این ناخالصیها عبارتند از: مونوکسید کربن و دی اکسید کربن ناشی از واکنشهای درون مبدل ، باقیمانده سوخت (مانند متانول یا بنزین) ، اکسیدهای نیتروژن ، اکسیدهای سولفور ، و ترکیبات آلی فرار که همه این ناخالصیها در حقیقت از سوخت اولیه ناشی میشوند. از این رو ضروری است که جدا سازی این ناخالصیها از گاز خروجی نهایی مبدل ، صورت پذیرد. بویژه در مورد جدا سازی مونوکسید کربن که سطح استاندارد برای پیل های سوختی که در دمای پایین کار میکنند، کمتر از 10 ppm در نظر گرفته شده است تا بدین ترتیب از سمی شدن کاتالیست موجود در پیل سوختی بخصوص پیل سوختی پلیمری جلوگیری به عمل آید. یک پیل سوختی جهت تولید انرژی با بازدهی بهینه ، نیاز به تغذیه مداوم سوخت و اکسید کننده ، خروج آب تولیدی از واکنش الکتروشیمیایی درون پیل ، مرطوب نگهداری غشاء توسط مرطوب نگه داشتن گازهای ورودی ، کنترل درجه حرارت و فشار دارد. تجهیزات و امکانات جانبی که این شرایط بهینه را برای پیل سوختی فراهم میآورند، سیستم پیل سوختی نام دارند. یک سیستم پیل سوختی را بطور کلی میتوان به اجزای اصلی زیر تقسیم کرد: 1. سیستم سوخت رسان که شامل مبدل سوخت و یا سیستم ذخیره هیدروژن میباشد. 2. سیستم تأمین هوا یا اکسید کننده که اکسیژن مورد نیاز پیل سوختی را فراهم می آورد. 3. سیستم مدیریت آب و حرارت که شامل سیستم مرطوب کننده گازهای ورودی ، سیستم خنک کننده ، سیستم و یا شیرهای کنترل فشار و نماگرها است. 4. الکترونیک – قدرت (Power Electronic) که مربوط به فصل مشترک بین پیل سوختی و مصرف کننده برق جهت تبدیل جریان و ولتاژ برق به ولتاژ و جریان مناسب می باشد. 5. سیستم کنترل الکترونیکی که کنترل دما ، فشار ، برق خروجی از پیل ، شارژ باتریهای ذخیره ، هماهنگی بین سیستم سوخت رسان و پیل سوختی و بخش Power Electronic را بر عهده دارد. هر یک از این سیستمها میتوانند بر عملکرد یکدیگر و بر سری پیل سوختی تأثیر متقابل داشته باشند. همچنین متناسب با نوع پیل سوختی و کاربرد آن ، این سیستمها میتوانند متفاوت باشند که در اینجا بطور مشروح به بررسی هر یک از آنها خواهیم پرداخت. پیل های سوختی برای وسایل قابل حمل الکترونیکی باتریها برای بسیاری از وسایل قابل حمل مانند کامپیوترهای کیفی و تلفنهای همراه وصله ناجورند. آنها پر هزینه ، سنگین و مزاحم هستند و اغلب در بدترین مواقع به شارژ نیاز دارند. پیشرفتهالی اخیر در فن آوری پیل سوختی ممکن است به حل این مشکل بینجامد. چند گروه پژوهشی در حال ابداع "ریز پیل های سوختی" هستند که به تلفنهای همراه امکان میدهد در حالت آماده برای هفتهها کار کنند. پیل های سوختی وسایل سادهای هستند که اساسا از رساناهای نافلزی به نام الکترولیت که میان دو الکترود قرار میگیرند تشکیل شدهاند. هیدروژن از سوختی ، مانند متانول ، از درون الکترولیت جریان مییابد و با یک عامل اکسنده ، مانند اکسیژن هوا ، مخلوط میشود و از واکنش شیمیایی جریان الکتریکی بین دو الکترود برقرار میشود. پیلها را میتوان به سهولت و به سرعت با افزودن سوخت بیشتر دوباره پر کرد. پیل های سوختی به لحاظ محیطی نیز تمیزند، زیرا اصلیترین فرآورده جنبی آنها ، آب حاصل از ترکیب هیدروژن و اکسیژن است، در حالی که باتریهایی که نهایتا از شارژ کردن مکرر فرسوده میشود، مسئله دفع دارند. اکنون یکی از پژوهشگران آزمایشگاه ملی آلاموس یک ریز پیل سوختی اختراع کرده است و پیش بینی میکند که توان پیل او در اندازه و قیمت یکسان ولی از نصف وزن باتریهای نیکل - کادمیوم مرسوم 50 برابر بیشتر باشد. این پژوهشگر پیش بینی میکند که تلفنهای همراه به این طریق با مصرف کمتر از 60 گرم متانول در حال آماده بطور پیوسته به مدت 40 روز کار کنند. این اختراع بیشتر یک پیروزی مهندسی است تا یک اعجاب علمی. در ساخت این پیل وی از روش های جدید برای ساخت مدار الکترونی بهره جسته و آنها را در فن اوری پیل های سوختی بکار گرفته است. عامل کلیدی در بسته بندی است. در حالی که غالب پژوهشگران با طراحی الکترولیت و الکترودها آغاز کردند، این پژوهشگر دریافت که بهترین راه رسیدن به کوچک سازی و تولید انبوه ، استفاده از یک فیلم نازک پلاستیکی به عنوان ظرف پایه برای پیل های سوختی میکروسکوپی است. غشای پلاستیکی به ضخامت تنها 25 میکرون با ذرات هستهای بمباران میشود، به این ترتیب حکاکی شیمیایی سبب ایجاد منافذ ریزی میشود که محل ریختن الکترولیت مایع است. صفحات فلزی الکترود ، کاتالیزگر و یک شبکه رسانش که پیل های مجزا به هم متصل میکند با استفاده از روش های عملی تراشه سازی مانند رسوب گذاری در خلا روی ساختار پلاستیکی ، لایه گذاری و حکاکی میشوند. طبق نظر پژوهشگران "پیل های سوختی اساسا مثل مدارهای چاپی ساخته میشوند". 1 لینک به دیدگاه
samyar 3407 اشتراک گذاری ارسال شده در 9 آذر، ۱۳۸۹ کاربردهای پیل سوختی نیروگاهی بازار مولدهای نیروگاهی پیلسوختی بسیار گسترده است و کاربردهای دولتی، نظامی و صنعتی را شامل میشود. همچنین به عنوان نیروی پشتیبان در مواقع اضطراری در مخابرات، صنایع پزشکی، ادارات، بیمارستانها، هتلهای بزرگ و سیستمهای کامپیوتری به کار میرود. پیل های سوختی نسبتاً آرام و بیصدا هستند لذا جهت تولید برق محلی مناسبند. علاوه بر کاهش نیاز به گسترش شبکه توزیع برق، از گرمای تولیدی از این نیروگاهها میتوان جهت گرمایش و تولید بخار آب استفاده نمود. این نیروگاهها در مصارف کوچک بازدهی الکتریکی بالایی دارند و همچنین در ترکیب با نیروگاههای گاز طبیعی بازدهی الکتریکی آنها به 70-80% میرسد. مزیت دیگر این نیروگاهها عدم آلودگی محیط زیست است. خروجی نیروگاههای پیلسوختی بخارآب می باشد. نیروگاههای پیل سوختی قابلیت استفاده از سوختهای مختلف مانند متانول، اتانول، هیدروژن، گاز طبیعی، پروپان و بنزین را دارند و مانند سایر نیروگاهها محدود به استفاده از یک منبع انرژی خاص نیست. از زمانیکه اولین پیلسوختی نیروگاهی در دهه 60 تولید گشت، تا کنون در مجموع 650 سیستم کامل با توان بیش از 10 کیلووات (میانگین آن 200 کیلووات است) ساخته شد. تقریباً 90 درصد از این واحدها با گاز طبیعی تغذیه می شود. البته استفاده از سوختهای جایگزین نظیر بیوگاز و گاز ذغال نیز پیشرفت قابل ملاحظهای داشته است. در این بخش نیروگاه انواع متنوع پیلسوختی به کار رفته است. در ابتدا از پیلسوختی اسید فسفریک آغاز گردید و سپس پیلسوختی پلیمری و پیلسوختی کربنات مذاب جایگزین آن گشتند. در حالیکه پیلسوختی اکسید جامد در آینده بازار را به قبضه در خواهد آورد. در بخش پیل های سوختی نیروگاهی کوچک (زیر 10 کیلووات) نیز رشد قابل ملاحظهای را شاهد بودیم. تعداد این واحدها اکنون به 1900 رسیده است. این سیستم جهت مصارف خانگی و بازارهایی از قبیل UPS ونیروی پشتیبان در اماکن دوردست کاربری دارد. نیمی از محصولات در آمریکای شمالی توسعه یافته است. در بخش سیستمهای نیروگاهی کوچک 20 درصد سهم بازار را پیلسوختی اکسیدجامد و مابقی را پیلسوختی پلیمری تشکیل میدهد. بازار پیلسوختی کوچک در ژاپن که به مصارف خانگی اختصاص دارد، منحصراً با پیلسوختی پلیمری است و امید است تا انتهای سال 2005 محصولات به بازار عرضه گردند. فروش تعدادی از واحدهای نیروگاهی کوچک آغاز شده است که از جمله آنها سیستم GenCore شرکت PlugPower می باشد(توان 5 کیلووات، 15000 دلار) دولت ژاپن حمایت خود از توسعه پیل های سوختی نیروگاهی در ابعاد بزرگ را از سال 1980 آغاز نموده است و شرکت های ژاپنی گاز توکیو و Osaca از بزرگترین شرکت های توسعه دهنده این فنآوری میباشند. اساس کار پیل های سوخت پیل های سوختی از یک واکنش الکتروشیمیایی ساده که درآن از ترکیب اکسیژن و هیدروژن آب تشکیل میشود تولید انرژی الکتریکی میکنند انواع مختلف و متعدد پیل سوختی وجود دارد اما همه آنها بر اساس یک طراحی اصلی تشکیل شده از دو الکترود یک آند منفی و یک کاتد مثبت بنا نهاده شدهاند. این دو الکترود بوسیله یک الکترولیت جامد و یا مایع که ذرات باردار الکتریکی را جابجا میکند از هم جدا شدهاند. معمولاً از یک کاتالیزور مانند پلاتین جهت افزایش سرعت واکنش الکترونها استفاده میشود. پیل های سوختی بر اساس طبیعت الکترولیت مورد استفاده در آنها تقسیم بندی میشوند .هر یک از آنها مواد و سوخت خاص مناسب با کاربردهای مختلف نیاز دارند. پیل های سوختی با غشاء تبادل پروتون: (Proton Exchange Membrane Fuel Cells (PEMFC این تکنولوژی در دهه 1950 بوسیله شرکت جنرال الکتریک ابداع شد و بوسیله سازمان ناسا جهت تولید انرژی برای پروژه فضائی Gemini استفاده شد. در حال حاضر این نوع پیل سوختی است که اکثراً در شرکتهای اتومبیل سازی بعنوان جایگزین در موتورهای درونسوز بکار برده میشود.پیل های سوختی با غشاء تبادل پروتون بنام غشاء الکترولیت پلیمری، الکترولیت پلیمری جامد، پیل های سوختی الکترولیت پلیمری نیز شناخته شدهاند. در پیل سوختی PEM الکترولیت از یک غشاء نازک پلیمری (مانند پلی پرفلور و سولفوریک اسید) نافیون (Nafim TM ) که نفوذپذیر در پروتونهاست، اما هادی الکتریسیته نمیباشد و الکترودها از کاربن درست شدهاند .هیدروژن در درون پیل سوختی به روی آند جاری شده و به پروتونها و الکترونها تقسیم میشود. یونهای هیدروژن از طریق الکترولیت به کاتود نفوذ میکنند، درحالیکه الکترونها از طریق یک مدار خارجی جریان کرده و تولید انرژی مینمایند. اکسیژن به صورت هوا به کاتد ارسال شده و با الکترونها و یونهای هیدروژن ترکیب گردیده و تولید آب میکند.این واکنشهای روی الکترودها مطابق زیر میباشند. 2 H2O ===> 4H + 4e: آند O2+4H ===> 2H2O :کاتد انرژی 2H2 +O2 ===> 2H2O +: نتیجه پیل های PEM در دمای حدود 80 سانتیگراد کار میکنند. در این دمای پایین واکنشهای الکتروشیمیائی معمولاً خیلی کند صورت میگیرد بنابراین از یک لایه نازک پلاتین روی هر یک از الکترودها بعنوان کاتالیزور استفاده میشود. این دستگاه الکترولیت/ الکترود بنام مجموعه الکترود غشاء (MEA ) خوانده شده و بین دو صفحه ی جریان، میدان ساندویج گردیده تا یک پیل سوختی را بوجود آورد. این دو صفحه شامل شیارهایی جهت کانال هدایت سوخت به الکترودها و همچنین هدایت الکترونها به خارج از مجموعه MEA میباشد. هر پیل حدود 7/0ولت برق تولید می کند.برای تولید ولتاژ های بالاتر تعدادی از این پیلها بطور سری بهم وصل گردیده و تشکیل ساختاری بنام مجموعه پیل سوختی می دهند.پیل های سوختی PEM دارای یک سری مزایا هستندکه باعث شده از آنها در اتومبیل و کاربردهای کوچک خانگی مانند جایگزین باطریهای قابل شارژ استفاده شود. پیلها در دمای نسبتاً پایین کار می کنند و لذا باعث استارت سریع از حالت سرد بوده و به دلیل داشتن دانسیته بالای انرژی دارای قابلیت ساخت با حجم کم و فشرده می باشند .بعلاوه پیل های PEM با راندمان بالا حدود (40-50) درصد حداکثر ولتاژ تعریف شده در تئوری کار میکنند و میتوانند خروجی خود را بسرعت تغییر داده تا با تغییر در انرژی مورد نیاز سازگاری داشته باشند. در حال حاضر دستگاههایی با نمایش قدرت تولید 50 کیلو وات مورد بهرهبرداری و عملیات قراردارد و دستگاههایی با قدرت تا 250 کیلو وات درحال توسعه است. بهرحال هنوز یک سری محدودیتها وجود دارد که باید قبل از اینکه این تکنولوژی گسترده تر شود بر انها غلبه کرد. مشکل اصلی قیمت بالا، مثل گرانی جنس غشاء وکاتالیزورمی باشد. اما نتیجه پژوهشها و طرحهای توسعهای دردست اقدام بتدریج از قیمتکاسته و همچنین به هنگام تولید اندوده درمقیاس بالا جهشی بزرگ در کاهش قیمت و اقتصادی شدن آن خواهد نمود. مانع دیگر بر سر راه پیل های PEM نیاز آنها به هیدروژن خاص جهت کارکردن میباشد. زیرا آنها خیلی حساس به مسمومیت با منواکسیدکربن وناخالص های دیگر هستند و این عمدتا بدلیل دمای پایین عملیاتی پیل ضرورت استفاده ازکاتالیزورحساس در پیل را موجب میشود.بهرحال کارهایی در دست اقدام است تا یک سیستم کاتالیزور توام با غشاء با قدرت مانور بهتر تولید گردد که قادر به کارکرد با دمای عملیاتی بالاتر باشد. 1 لینک به دیدگاه
samyar 3407 اشتراک گذاری ارسال شده در 9 آذر، ۱۳۸۹ پیل های سوختی بازی :(Alkaline Fuel Cell(AFC پیل های سوختی بازی یکی از توسعه یافته ترین تکنولوژیها هستند و برای تهیه انرژی وآب آشامیدنی در ماموریت ها ی فضائی از جمله سفینه فضائی شاتل ایلات متحده آمریکا بکار برده شده اند. واکنش الکتروشیمیائی در آن قدری متفاوت است، بدین صورت که یونهای هیدرواکسیل (OH ) از کاتدبه طرف آند حرکت میکنند؛ تا در اثر واکنش با هیدروژن تشکیل آب و الکترون بدهند.این الکترونها جهت اعمال انرژی به مدار خارجی بکار میروند، سپس دوباره به کاتد برگشته و در واکنش با اکسیژن و آب تولید مقادیر بیشتری از یونهای هیدرواکسیل (OH) می نمایند. 2H2 + 4OH ===> 4H2O + 4e: آند O2 + 2H2O + 4e ===> 4OH :کاتد پیل های بازی در همان دمای عملیاتی مشابه پیل های PEM ( حدود 80 سانتیگراد )کار میکنندو لذا سریع استارت هستند. اما دانسیته انرژی آنها حدود ده برابر کمتر PEM میباشد و بنابراین برای استفاده درموتور اتومبیل بسیار پرحجم اند.آنها بهر حال ارزان ترین نوع پیل سوختی هستند و بدین جهت میتوانند برای دستگاههای تولید برق کوچک و ثابت بکار برده شوند. پیل های بازی مشابه پیل های PEM شدیداً به منواکسیدکربن و ناخالصیهای دیگرکه موجب مسمومیت کاتالیزور میشوند حساس هستند.بعلاوه منابع تغذیه آنها باید عاری از دی اکسید کربن باشند، زیرا واکنش دی اکسیدکربن با الکترولیت هیدروکسید پتاسیم تشکیل کربنات پتاسیم میدهدکه باعث محدودیت در راندمان پیل میگردد. پیل سوختی اسید فسفریک Phosphoric Acid Fuel) Cell(PAFC پیل سوختی اسید فسفریک در حال حاضر پیشرفتهترین پیل سوختی تجاری است همانگونه که از نام آن استنباط میگردد در این پیلها از اسید فسفریک مایع بعنوان الکترولیت استفاده میشود معمولاً در یک قالب سیلیکون کارباید جا داده میشود. پیل های سوختی اسید فسفریک در دمای کمی بالاتر از پیل های PEM و بازی کار میکنند.(حدود 150 الی 200 درجه سلسیوس). با وجود این جهت ارتقاء واکنش ، نیاز به کاتالیزور پلاتین روی الکترودها دارند. واکنش آند وکاتد مشابه PEMمیباشد.ولی به علت دمای عملیاتی بالاتر، سرعت واکنش آن بیشتر است . این افزایش دما موجب انعطاف پذیری بیشتر در مقابل ناخالصی ها می گردد. پیل های اسید فسفریک با یکی دو درصد منواکسیدکربن و مقدار کمی (چند جزء در ملیون ppm) گوگرد موجود در جریان واکنش هنوز عملکرد درستی دارند. راندمان پیل های اسید فسفریک کمتر از سیستمهای دیگر است. حدود چهل درصد و همچنین زمان بیشتری جهت گرم شدن نسبت به پیل های PEM صرف می کنند علیرغم آن موانع و کاستیها یک سری مزایا در این تکنولوژی از قبیل سادگی ساخت، ثبات و تبخیر پذیری کمتر الکترولیت وجود دارد. پیل های اسید فسفریک برای تامین انرژی الکتریکی در اتوبوسها بکار برده شدهاند و تعدادی از آنها در سرویس عملیاتی میباشند، اما اینکه زمانی در اتومبیلهای شخصی بکار روند غیر متحمل است. پژوهش قابل ملاحظهای در طول 20 سال نتیجه داده است که پیل های اسید فسفریک کاربرد موفقیت آمیزی در دستگاههای غیر سیار داشتهاند. در حال حاضر تعداد زیادی از این دستگاهها با قدرت خروجی بین 2/0 تا 20 مگا وات در سراسر دنیا جهت تهیه انرژی برق در بیمارستانها، مدارس و نیروگاههای کوچک نصب شدهاند و در سرویس عملیاتی قراردارند. پیل های سوختی کربنات ذوب شده :(Molten Carbonate Fuel Cells(MCFC نحوه کار پیل های سوختی کربنات ذوب شده نسبت به پیل های دیگر تا کنون بحث شده کاملاً متفاوت است. در این پیلها از نمک کربنات لیتیوم پتاسیم ذوب شده و یا لیتیوم سدیم ذوب شده بعنوان الکترولیت استفاده میگردد. وقتی که نمک تا دمای 650 درجه سانتیگراد گرم شود، نمک ذوب شده و یونهای کربنات تولید میکند که از کاتد به آند جریان کرده و در آنجا با هیدروژن ترکیب شده و تولید آب و دی اکسیدکربن و الکترون مینماید. الکترونها از طریق یک مدار خارجی دوباره به کاتد برگشته و در سر راه خود تولید انرژی می کنند. CO3 + H2 ===> H2O +CO2 + 2e: آند CO2 +1/2 O2 + 2e ===> CO3 :کاتد دمای بالائی که این پیلها در آن کار می کنند به این معناست که آنها قادرند بطور داخلی تشکیل هیدروکر مانند گاز طبیعی و نفت جهت تولید هیدروژن در درون ساختار پیل بدهند. در چنین دمای بالائی هیچگونه مشکل مسمومیت منواکسید وجود ندارد، گرچه مشکل گوگرد سر جای خود باقی است و بجای کاتالیزور پلاتین گران قیمت میتوان از نوع نیکل ارزانتر استفاده نمود. حرارت اضافی ایجاد شده میتواند در سیکل ترکیبی نیروگاها بکار رود. راندمان این نوع پیلها تا حدود 60 درصد است و در صورتی از گرمای تلف شده استفاده گردد میتواند تا 80 درصد افزایش یابد. دمای بالای کارکرد، بهر حال پاره ای مشکلات را بوجود می آورد. زمان قابل ملاحظهای طول میکشد تا پیل به دمای عملیاتی برسد و این باعث میشود که پیل برای کاربردهای حمل و نقل نامناسب باشد و دمای بالا و طبیعت خورنده الکترولیت احتمالاً به این معناست که پیل برای تولید برق خانگی غیر ایمن است .راندمان بالای تولید انرژی پیل باعث جذابیت آن در استفاده در فرآیندهای صنعتی در مقیاس بالا و در توربین های تولید برق باشد. در حال حاظر پیل سوختی کربنات ذوب شده با ظرفیتهای تا 2 مگا وات به نمایش گذارده شده ولی ظرفیتهای 50 الی 100 مگا وات در دست طراحی است. پیل های سوختی اکسید جامد (Solid oxide Fuel cells (SOFC پیل های سوختی اکسید جامد در دمای حتی بالاتر از پیل های کربنات ذوب شده کار می کنند. آنها از الکترولیت سرامیک بخار مانند اکسید زیر کونیوم تثبیت شده در اکسید yttrium بجای الکترولیت مایع استفاده مینمایند و در دمای بین 800 الی 1000 سانتگراد کار می کنند. در این پیلها انرژی از مهاجرت آنیونهای اکسیژن از طرف کاتد به آند جهت اکسیداسیون گاز سوخت، که بطور نمونه مخلوطی از هیدروژن و منواکسیدکربن میباشد تولید میگردد. الکترونهای ایجاد شده در آند بوسیله یک مدار خارجی دوباره به کاتد در جائی که اکسیژن ورودی را کاهش می دهد برگشته و بنابراین سیکل واکنش را تکیمل می کند. H2 + O ===> H2O + 2e: آند O2 +4e ===> 2O :کاتد CO + O ===> CO2 +2e همانند پیل های سوختی ذوب شده در این پیلها نیز دمای عملیاتی بالا به معنای مقاومت در برابر مسمومیت منواکسیدکربن میباشد زیرا همانگونه که در بالا مشاهده میشود منواکسیدکربن سریعاً به دی اکسید کربن تبدیل میگردد. این خود باعث عدم نیاز به استفاده از رفرمینگ خارجی جهت استخراج هیدروژن از ماده سوختی میباشد و این نوع پیلها میتوانند دوباره از نفت و یا گاز طبیعی استفاده کنند.پیل های سوختی اکسید جامد همچنین بالاترین انعطاف را در برابر آلودگی با گوگرد نسبت به سایر تکنولوژیهای بحث شده و تا کنون از خود نشان میدهند. این پیلها بعلت استفاده از الکترولیت جامد نسبت به پیل های سوختی کربنات ذوب شده پایدارترند اما مواد ساختمانی آنها به جهت نیاز به مقاومت در برابر دمای عملیاتی بالا گرانتر است.این پیلها میتوانند به راندمان حدود 60 درصد برسند و انتظار میرود که برای تولید برق و حرارت در صنعت و برای تهیه نیروی کمکی در اتومبیل بکار برده شوند. پیل های سوختی متانول مستقیم (Direct Methanol Fuel Cells(DMFC پیل های سوختی متانول مستقیم تبدیلی از پیل سوختی با غشاء پروتون است که به طور مستقیم و بدون استفاده از رفرمینگ قبلی از متانول استفاده میکند. متانول به اکسیدکربن و هیدروژن در آند تبدیل میشود. پس از آن مشابه پیل سوختی PEM استاندارد هیدورژن جهت واکنش با اکسیژن بکار میرود. CO2 + 6H + 6e CH3OH+H2O ===>: واکنش آند 3/2 O2 + 6H +6e ===>3 H2O: واکنش کاتد CH3OH +3/2 O2 ===> CO2 + 2H2O : واکنش پیل انتظار میرود که این پیلها در دمای حدود 120 درجه سانتیگراد قدری بالاتر از دمای عملیاتی پیل استاندارد PEM کار کنند و راندمان حدود چهل درصد داشته باشند. یکی از عیوب پیل متانول مستقیم دمای عملیاتی پایین و در نتیجه تبدیل متانول به هیدورژن و دی اکسید کربن است که نیاز به استفاده از مقادیر بیشتر کاتالیزور پلاتین نسبت به پیل استاندارد PEM دارد. بهرحال این افزایش هزینه نسبت به استفاده راحت از پیل سوختی مایع و عدم استفاده از کاتالیزور می چربد. تکنولوژی در پیش روی پیل سوختی متانول مستقیم هنوز در مراحل اولیه توسعه خود میباشد؛ ولی بهرحال کاربرد آن دز گوشیهای تلفن همراه و رایانههای کیفی (LABTOP ) با موفقیت نشان داده شده و توانائی و کارآئی و هدف نهائی استفاده از آن در سالهای آتی بروز داده خواهد شد. پیل های سوختی اصلاح شده : Regenerative Fuel Cells این پیل سوختی اصلاح شده نسبتاً تازه است؛ اما توسط گروههایی در نقاط مختلف دنیا در دست مطالعه و پژوهش میباشد. تکنولوژی آن بر پایه همان پیل های سوختی متفاوت است که در آن هیدروژن و اکسیژن جهت تولید انرژی، برق، گرما و آب بکار برده میشود.تفاوت در این است که پیل سوختی اصلاح شده واکنش معکوس را نیز انجام میدهد؛ یعنی الکترولیز میکند. آب تولید شده در پیل سوختی به الکترولیز کنندهای که با باطری خورشیدی کار میکند تقریباً و در آنجا به اجزاء تشکیل دهنده آن یعنی هیدروژن و اکسیژن تفکیک و سپس مجدّداً به پیل سوختی تغذیه میگردد. به این طریق یک سیستم بسته تشکیل شده که نیاز به تولید هیدروژن خارجی ندارد، توسعه یک سیستم تجاری آن بعید به نظر میرسد و مواردی مانند هزینه تمام شده آن که بیش از متعارف است و همچنین راههای مطمئن آماده سازی و استفاده از نیروی برق خورشیدی باید مورد بررسی دقیقتر قرار گیرد 1 لینک به دیدگاه
samyar 3407 اشتراک گذاری ارسال شده در 9 آذر، ۱۳۸۹ اهداف كميته راهبري پیل سوختی اهميت فنآوري پيل سوختي، حجم بالاي برنامهريزيها، سرمايه گذاريهاي بین المللی و تجربيات حاصل در داخل کشور از جمله در وزارت نيرو همگي مؤيد اين نکته هستند که توسعه فنآوري پيلسوختي در داخل کشور، نيازمند عزمي ملي با حضور تمام ذينفعان تاثيرگذار بر توسعه اين فنآوري میباشد؛ کمیته راهبری پیلسوختی در دیماه 1380 با ابتکار و پیگیری وزارت نیرو و دفتر همکاریهای فنآوری ریاستجمهوری و با هدف جهتدار شدن مسیر حرکت کشور در این زمینه و تعیین اولویتهای تحقیقاتی، پژوهشی و اجرایی و همچنین جلوگیری از فعالیتهای موازی تشکیل شد. وزارت نیرو در تشکیل این کمیته، ترکیبی از نهادها و ارگانهای مرتبط نظیر دفتر همکاریهای فنآوری، وزارت نفت، صنایع و معادن، علوم، تحقیقات و فنآوری، سازمانهاي مدیریت و برنامهریزی، حفاظت محیطزیست، نمایندگان بخشهای خصوصی مرتبط و مشاوران و خبرگانی از این زمینه را با خود همراه ساخت تا وفاق و همدلی ذینفعان پیلسوختی را ایجاد و حرکت در این زمینه را تسریع و هدفمند سازد. آنچه در خلال نخستين جلسات اين کميته مورد اتفاق نظر عموم قرار گرفت، ضرورت انجام مطالعات علمي در خصوص ميزان ضرورت فناوري پيل سوختي براي کشور و نحوه مواجه جمهوري اسلامي ايران با آن بود. از اينرو پروژه" مطالعات امکان سنجي – تحليل جذابيت پيلسوختي و تدوين استراتژي آن در توسعه کشور " از سوي کميته راهبري تعريف شده و اجراي آن برعهده "مرکز گسترش فنآوري اطلاعات" (مگفا) قرار گرفت. ضمناً به منظور بررسي و ارزيابي نتايج" مطالعات امكان سنجي – تحليل جذابيت پيل سوختي و تدوين استراتژي توسعه آن در كشور" جلسهای در تاريخ 9/11/83 توسط دبيرخانه كميته راهبري پيل سوختي در محل معاونت امور انرژي با حضور صاحبنظران و علاقمندان پيل سوختي برگزار گرديد. با توجه به نتایج مطالعات اعضاء کمیته راهبری پیل سوختی و با طی چندین جلسه بحث و بررسی سرانجام پیش نویس سند راهبرد توسعه فناوری پیل سوختی در کشور توسط کمیته راهبری پیل سوختی در کشور توسط کمیته راهبری پیل سوختی تهیه و به هیات محترم دولت ارسال گردید و با اتفاق نظر اعضاء، سند راهبرد ملی توسعه فناوری پیل سوختی در کشور تهیه گردید كه در مورخ3/4/86 به تصويب هيئت محترم دولت رسيد. این سند در راستاي تحقق چشمانداز 20 ساله كشور و با تلاش نظاممند ذينفعان اين فنآوری در يك بازه 15ساله، تدوین گردید. " برنامهریزی عملیاتی" بهمنظور اجرای سند و نیل به چشماندازهای ترسیم شده نیز در وزارت نیرو تدوین شده است. در صورت تحقق چشمانداز مندرج در این سند، منافع و دستاوردهاي متنوعی براي كشور به بار خواهد آمد که به برخی از آنها اشاره میشود: • كمك به توسعه پايدار بخش انرژي از طريق كاهش مخاطرات اجتماعي و زيستمحيطي ناشي از رشد روزافزون مصرف انرژيهاي فسيلي در كشور • افزايش پايداري، امنيت، پيكسايي و تنوعبخشي شبكه انرژي كشور از طريق كاربرد گسترده فنآوری پيلسوختي در توليد غيرمتمركز انرژي الكتريكي • امكان بهرهگيري مستمر و مؤثرتر از منابع تجديدپذير انرژي با استفاده از مولدهاي پيلسوختي، صيانت از منابع انرژي فسيلي كشور و بهرهبرداري از اين منابع با راندمان بالاتر • كمك به ايجاد و توسعه بازارهاي جديد داخلي و خارجي منابع گاز طبيعي كشور حركت بهسوي اقتصاد دانايي محور با حضور در زنجيره تأمين و بازار جهاني فنآوری پيلهاي سوختي راهبردي فنآوریهاي كليدي آن با تأكيد بر مزيتهاي رقابتي و شايستگيهاي محوري بنگاههاي اقتصادي كشور پس از تصويب "سند راهبرد ملي توسعه فناوري پيل سوختي در کشور" در تيرماه سال 86 و ابلاغ اين مصوبه توسط معاون اول محترم رياست جمهور، جلسه اي با حضور فعالان کميته راهبري تشکيل گرديد که بر لزوم شروع فعاليت هاي مرتبط و جديت در پيگيري انجام ترتيبات اجرايي سند و اقدامات آن تاکيد گرديد. همچنين وزارت نيرو مسئول تشکيل دبيرخانه ستاد توسعه فناوري پيل سوختي مي باشد كه جلسات کميته راهبري پيل سوختي را با دعوت از کليه وزارت خانه ها و ارگان هاي عضو تشکيل مي دهد. منابع : برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام 1 لینک به دیدگاه
ارسال های توصیه شده