جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'گیاهی'.
11 نتیجه پیدا شد
-
بانک اطلاعاتی پوشش گیاهی ایران...........
amir.d پاسخی ارسال کرد برای یک موضوع در مهندسی منابع طبيعي
بانک اطلاعاتی پوشش گیاهی ایران........... -
فيزيولوژي گیاهی...... فيزيولوژي دانشي است که وظيفه*اش بررسي عملکرد (Function) موجودات زنده است. ماهيت بررسي در اين علم ، وظيفه و کارکرد اندامهاست. نام قديمي فيزيولوژي وظايف*الاعضا بوده است. فيزيولوژي گياهي ، مطالعه اعمال حياتي گياه ، فرايندهاي رشد و نمو ، متابوليزم و توليد مثل گياهان است ديد کلي کشف قوانيني که بر تغذيه گياه و رشد و نمو آن حکومت مي*کند، شناخت توانايي واقعي سلولها در انجام فعاليتهاي بيولوژيک و همچنين ارائه روشهايي که ظهور يکي از توانائيهاي سلولي را امکان*پذير مي*سازد، هدف اساسي فيزيولوژي گياهي محسوب مي*شود. همانطور که مسير روشن بسياري از اکتشافات نظري ، منشا پيشرفتهايي در يکي از شاخه*هاي تجربي علوم است، نتايج حاصل از مطالعاتي که در همه شئون علمي بالاخص در فيزيولوژي گياهي صورت گرفته، باعث توسعه و پيشرفت واقعي کشاورزي شده و آن را از صورت ابتدايي خود در نخستين روزهاي ظهور انسان به صورت کاملا پيشرفته امروزي ، مبدل ساخته است. از طرف ديگر ، ترقيات سريع فيزيولوژي گياهي نيز خود مديون ترقيات علوم ديگري مانند فيزيک و شيمي است، زيرا عملا کليه اعمال متابوليزم سلولها بر اساس قوانيني تفسير مي*شوند که در مورد عالم بيجان شناخته شده*اند. شک نيست که علم فيزيولوژي گياهي ، علمي است تجربي و همه کوششهايي که در اين زمينه صورت مي*گيرند، به شناسايي بيش از پيش ماده زنده منجر مي*شوند. به علاوه فيزيولوژي گياهي ، علم پايه مستقلي است که داراي مفاهيم خاصي بوده، شيوه مخصوصي در تجربيات آن مشاهده مي*شود. موضوعات مطرح شده در فيزيولوژي گياهي فيزيولوژي گياهي را مي*توان مطالعه اعمال حياتي گياه ، فرايندهاي چرخه*اي متحرک رشد ، متابوليزم و توليد مثل دانست. مباحث زيادي در فيزيولوژي گياهي بحث مي*شود و در هيچ علمي ، نحوه پيشرفت واضح*تر از زمينه فيزيولوژي گياهي نيست. از مباحثي که در فيزيولوژي گياهي بحث مي*شود، مي*توان به موارد زير اشاره کرد. تغذيه و جذب در گياهان انجام صحيح فرايندهاي متابوليزمي مستلزم وجود عناصري است که بايد به صورت اکسيد شده يا احيا شده ، معدني و يا آلي جذب سلولها شده، احتياجات آنها را از نظر ماده و انرژي تامين کنند. مقدار و نوع اين احتياجات تابعي از شدت و نوع واکنشهاي متابوليزمي بوده و به همين مناسبت هر موجودي از نظر قدرت سنتز و طريقه تحصيل انرژي با موجود ديگر متفاوت است. موجودات زنده را از نظر قدرت سنتز و همانند سازي به دو دسته اتوتروف و هتروتروف تقسيم مي کنند. موجودات اتوتروف موجوداتي را گويند که از ترکيبات ساده*اي نظير دي*اکسيد کربن و ترکيبات معدني مختلف مانند نيتروژن معدني ، مي*توانند کليه احتياجات خود را برطرف سازند که گياهان در اين گروه قرار مي*گيرند. احتياجات گياهان نسبت به انرژي سلولهاي گياهي انرژي موجود در مواد تشکيل دهنده خود را به صور مختلف زير از دست مي*دهند. • به صورت انرژي حرارتي که در بعضي موارد مانند گل آذين گل شيپوري کاملا آشکار است. • به صورت انرژي نوراني مانند فلورسانس کلروفيل • به صورت انرژي مکانيکي مانند سيکلوز در سيتوپلاسم • به صورت انرژي الکتريکي که نتيجه آن برقراري اختلاف پتانسيل بين اعضاي مختلف گياهان است. احتياجات گياهان نسبت به مواد ميزان اين احتياجات در نمونه*هاي مختلف گياهي ، متفاوت است. رفع احتياجات يک گياه بالغ در درجه اول به منظور جبران موادي است که اين گياه در طول حيات از دست مي*دهد. در درجه دوم ، رشد و نمو يک گياه احتياجات احتمالي ديگري بوجود مي*آورد. کليه اين احتياجات بوسيله منابع طبيعي مختلفي تامين مي*شوند که عبارتند از: خاک ، هوا ، آب و محيطهاي آلي. بطور کلي در بخش تغذيه و جذب مباحث مختلفي بحث مي*شود: احتياجات گياهان ، نقش عمومي و اختصاصي عناصر و علائم کمبودهاي آنها ، محلولهاي غذايي و کودهاي شيميايي ، تغذيه نيتروژن معدني و آلي ، چرخه متابوليزمي نيتروژن ، گوگرد و فسفر ، رابطه آب و خاک ، گردش مواد در گياه ، جذب مواد معدني ، مکانيزم جذب مواد و.... . فتوسنتز فتوسنتز (photosynthesis) از نظر لغوي به معناي توليد با استفاده از نور خورشيد است. فتوسنتز شامل دو دسته واکنش است که هردو در کلروپلاستها صورت مي*گيرند. طي فتوسنتز انرژي و آب و اکسيژن توليد مي*شود. زندگي در روي کره زمين به انرژي حاصل از خورشيد وابسته است. فتوسنتز (photosynthesis) از نظر لغوي به معناي توليد با استفاده از نور خورشيد است. فتوسنتز شامل دو دسته واکنش است که هردو در کلروپلاستها صورت مي*گيرند. طي فتوسنتز انرژي و آب و اکسيژن توليد مي*شود. در فتوسنتز ، انرژي خورشيدي براي اکسيد کردن آب ، آزاد شدن اکسيژن و نيز احيا کردن به ترکيبات آلي و در نهايت قند بکار مي*رود. فتوسنتز شامل دو دسته از واکنشهاست: واکنشهاي نوري و واکنشهاي تاريکي. بطور کلي در بخش فتوسنتز مباحث مختلفي بحث مي شود: مفاهيم کلي در مورد فتوسنتز ، عملکرد کوانتومي نور ، ساختمان دستگاه فتوسنتزي ، ساختار تيلاکوئيدها در کلروپلاست ، گيرنده*هاي نوري ، فتوسيستم*هاي I و II ، مکانيزم انتقال الکترون و پروتون در کلروپلاستها ، ژنوم کلروپلاست ، چرخه احياي فتوسنتزي ، تنفس نوري ، چرخه احياي فتوسنتزي ، چرخه احياي کربن در گياهان CAM(کراسولاسه) ، سنتز نشاسته و ساکارز در گياهان و ... . رنگدانه*هاي فتوسنتزي انرژي نور خورشيد ابتدا بوسيله رنگدانه*هاي نوري گياهان جذب مي*شود. همه رنگدانه*هايي که در فتوسنتز فعاليت دارند در کلروپلاست يافت مي*شوند. کلروفيلها و باکترو کلروفيلها که در بعضي از باکتريها يافت مي*شوند رنگدانه*هاي رايج موجودات فتوسنتز کننده هستند. البته همه موجودات فتوسنتز کننده داراي مخلوطي از بيش از يک رنگدانه هستند که هر کدام عمل خاصي را انجام مي*دهند. از ديگر رنگدانه*ها مي*توان به کاروتنوئيدها و گرانتوفيل اشاره کرد. کلروپلاست محلي است که در آن فتوسنتز صورت مي*گيرد برجسته*ترين خصوصيت ساختماني کلروپلاست ، سيستم فشرده غشاهاي دروني است که به تيلاکوئيد معروف است. کل کلروفيل در اين سيستم غشايي که محل واکنش نوري فتوسنتز است قرار گرفته است. واکنشهاي احياي کربن يا واکنشهاي تاريکي در استروما (ناحيه*اي از کلروپلاست که بيرون تيلاکوئيد قرار گرفته است) صورت مي*گيرند. تيلاکوئيدها خيلي نزديک به يکديگر قرار دارند که به تيغه*هاي گرانا موسومند. مکانيزم جذب نور در گيرنده*هاي نوري موجودات فتوسنتز کننده داراي دو مرکز نوري متفاوت هستند که پشت سر هم آرايش يافته*اند و سيستمهاي نوري 1 و 2 ناميده مي*شوند. سيستمهاي گيرنده در رده*هاي مختلف موجودات فتوسنتز کننده تفاوت قابل ملاحظه*اي دارند. در صورتي که مراکز واکنش حتي در موجوداتي که نسبتا اختلاف دارند يکسان است. مکانيزمي که از آن طريق انرژي تحريک کننده از کلروفيل به مرکز واکنش مي*رسد، اخيرا به صورت انتقال رزونانس از آن ياد شده است. در اين فرايند فوتونها به سادگي از يک مولکول کلروفيل دفع و توسط مولکول ديگر جذب نمي*شوند. بيشتر انرژي تحريک کننده از طريق فرايند غير تشعشعي از يک مولکول به مولکول ديگر منتقل مي*شود. يک مثال مناسب براي درک فرايند انتقال رزونانس ، انتقال انرژي بين دو رشته سيم تنظيم شده (کوک) است. اگر يکي از رشته*ها ضربه بخورد و درست نزديک ديگري قرار گيرد رشته تنظيم شده ديگر مقداري انرژي از اولي دريافت نموده و شروع به ارتعاش مي*کند. کار آيي انتقال انرژي بين دو رشته تنظيم شده به فاصله آنها از يکديگر ، جهت*گيري نسبي آنها و نيز تواترهاي ارتعاشي بستگي دارد که مشابه انتقال انرژي در ترکيبات گيرنده است. واکنشهاي نوري فتوسنتز موجودات فتوسنتز کننده از طريق اکسيد کردن آب به مولکول اکسيژن و احياي نيکوتين آميد آدنين دي نوکلئوتيد فسفات ،* الکترون را به صورت غير چرخه*اي منتقل مي*کنند. بخشي از انرژي فوتون از طريق اختلاف PH و اختلاف پتانسيل الکتريکي در دو طرف غشاي فتوسنتزي به صورت انرژي پتانسيل شيميايي آدنوزين تري فسفات ذخيره مي*شود. اين ترکيبات پر انرژي انرژي لازم براي احياي کربن در واکنشهاي تاريکي فتوسنتز را تامين مي*کنند. آدنوزين تري فسفات آدنوزين تري فسفات (ATP) اطلاعات اوليه فقدان اکسيژن يکي از خواص مهم جو اوليه به شمار مي آيد. چنانچه در آن آميزش برق آساي عناصر اکيسژني وجود مي داشت، مولکولهاي ناپايدار حاصل ، به سادگي بر اثر احتراق نابود مي شدند. اگر حيات بدون استعانت از اکسيژن حادث شده باشد، بايد تخمير آن را تامين کرد و باشد، که لولي پاستور ، شيميدان فرانسوي نيز آن را حيات بدون آزمايش*هاي مربوط به هوا توصيف کرد. عمل تخمير بر اثر شکستن مولکولهاي آلي)ترکيبات حاوي کربن) انرژي لازم را در اختيار ياخته قرار مي دهد، فسفاتهاي پر انرژي از قبيل آدنوزين تري فسفات را رها مي کند. برخي از اشکال تخمير ، مانند تخمير هاي مواد الکل ، به عنوان فرآورده فرعي ، دي اکسيد کربن توليد مي کنند. رها شدن اين گاز در جو به وسيله اشکال بي هوازي حيات ، که به اکسيژن نياز دارند، در تکامل فرايند هاي سوخت و ساز بعدي ، از جمله عمل تنفس سهيم اند. آدنوزين تري فسفات در مرحله دوم سوخت و ساز بعد از عمل تخمير ، پيشرفت بعدي سوخت و ساز عبارت بود از چرخه مونوفسفات ششگانه (HMP). اين عمل اساسا فرايندي بي هوازي است که به کمک انرژي حاصل از آدنوزين تري فسفات ، هيدروژن را از قند آزاد مي کند. دي اکسيد کربن نيز به عنوان فراورده فرعي به دست مي آيد. نيمي هيدروژن مربوط به چرخه HMP از آب به دست مي آيد. اين چرخه معرف مرحله*اي نسبتا پيشرفته (طي ميليونها سال) است، زيرا ، از دشوارترين راه به هيدروژن مي رسد، نمايشگر دو رواي است که عملا تمامي هيدروژن آزاد از سياره ها فرار کرده است. منبع خورشيدي آدنوزين تري فسفات سومين مرحله در اين جريان تکاملي (سوخت و ساز) ، احتمالا تغيير ماده آلي به فسفات آلي به کمک نور (فرايندي که طي آن گياهان سبز انرژي نوراني را به انرژي شيميايي تبديل مي کنند) ، يعني استفاده مستقيم در توليد ATP است. انجام اين عمل مستلزم وجود ماده رنگي کلروفيل(پوروفيرين منيزيم) براي جذب نور ، حضور مواد رنگين ياخته)پروتئينهاي آهن دار) براي تبديل انرژي خارجي ، يعني نور خورشيد ، به انرژي ذخيره اي موسوم به (ATP) است. جذب انرژي خورشيدي همه موجودات زنده انرژي خود را از نور خورشيد کسب مي کنند، اما فقط گياهان سبز مي توانند نور خورشيد را مستقيما به کار گيرند و با کمک مواد اوليه ساده اي،مانند دي اکسيد کربن ، آب و آمونياک ترکيبات ياخته اي بوجود آورند. اين فرايند نور ساخت ناميده مي شود. قسمت اعظم موجودات ديگر بايد محصولات حاصل ار نور ساخت را به صورت غذا مورد استفاده قرار دهند، يعني گياهان استفاده کنند، يا موجوداتي را بخورند که خود با گياهان تغذيه مي شوند. دلايل واکنشهاي شيميايي ترکيبات غذايي واکنش هاي شيميايي مربوط به ترکيبات غذايي ، شامل پروتئينها ، قندها ، چربيها ، به دو منظور صورت مي گيرد، يعني اينکه مواد پيچيده را به ترکيبات ساده تر تبديل مي کند و ضمن اين عمل انرژي مورد نياز براي انجام فعاليتهاي موجودات زنده را فراهم مي آورند. موجودات زنده نيز با جذب يا ذخيره انرژي ، مواد پيچيده تري توليد مي کنند. فرايند اضمحلال مواد را کاتابوليسم و فرايند ساخت آنها را آنابوليسم مي گويند. مجموعه اين دو فرايند را متابوليسم مي گويند. نقش موجودات زنده در فرايند توليد انرژي موجودات زنده نه مي توانند انرژي را مصرف کنند نه مي توانند آن را به وجود آورند، فقط قادرند انرژي را از حالتي به حالت ديگر تبديل کنند. انرژي قابل استفاده ، به صورت گرما به طبيعت باز گرداننده مي شود. آزمايش*هاي مربوط به گرما نمي تواند در سيستم هاي زيستي)هيدروژيکي) کار انرژي را انجام دهد، زيرا همه قسمتهاي ياخته اساسا دما و فشار يکنواختي دارند. نقش آدنوزين تري فسفات در تبديل انرژي آدنوزين فسفات که ترکيب شيميايي خواصي است، در تمام موجودات زنده براي تبديل انرژي به کار مي رود. اين ترکيب ، تنها در حالت قابل انرژي در ياخته است. هر ياخته اي را از هر نوع که باشد، مي*توان همچون يک لامپ برق دانست. انرژي لازم براي روشن کردن اين لامپ مي تواند از نفت يا زغال سنگ ، يا هسته اتم ، يا آبشار تامين شود، اما اين انرژي چه به حالت گرمايي ، هسته*اي يا جنبشي باشد، ناگزير بايد به انرژي الکتريکي تبديل شود. به همين صورت ، آدنوزين تري فسفات نيز شبکه تامين انرژي شيميايي تشکيل مي دهد و با اتنقال انرژيش به مولکولهاي ديگر ، گروه انتهايي فسفات خود ( Psub>1 ) را از دست داده و به آدنوزين دي فسفات ( ADP ) تبديل شده است؛يا اينکه با از دست دادن دو گروه فسفات ( PP1 ) ، به آدنوزين مونو فسفات ( AMP ) تغيير مي يابد، که اين فراورده ها نيز مجدا مي توانند با کسب فسفات به ( ATP ) تبديل شوند. واکنشهاي تاريکي فتوسنتز واکنشهايي که باعث احياي دي*اکسيد کربن به کربوهيدرات مي*شوند موجب مصرف نيکوتين آميد آدنين دي نوکلئوتيد فسفات و آدنوزين تري فسفات مي*گردند. اين واکنشها به واکنشهاي تاريکي فتوسنتز معروف هستند زيرا مستقيما به نور نياز ندارند. مکانيزم انجام اين واکنشها در گروههاي مختلف گياهي متفاوت است و ميزان بازده حاصل هم متفاوت خواهد بود. تنفس تنفس فرايندي است که انرژي ذخيره شده در مواد انرژي*زا مانند کربوهيدراتها را به شيوه*اي کنترل شده ، آزاد مي*کند. در طي تنفس انرژي آزاد ، رها شده و به شکل ATP در مي*آيد که اين شکل از انرژي مي*تواند به سهولت براي نگهداري و رشد گياه مورد استفاده قرار گيرد. مباحثي که در مورد تنفس در فيزيولوژي گياهي ، بحث مي*شود، به صورت زير است: تنفس هوازي و بي*هوازي ، ساختمان ميتوکندري*ها ، گليکوليز و چرخه کربس ، زنجيره انتقال الکترون در ميتوکندري ، مسير پنتوز فسفات و ... . ميتوکندري نام ميتوکندري ترکيبي است از دو کلمه يوناني Mito به معناي رشته و Chandrion به معني دانه. چون اين اندامک اغلب رشته*اي يا به صورت دانه*هاي کوچک در سيتوپلاسم همه سلولهاي يوکاريوتي وجود دارد. نگاه کلي ميتوکندريها در تمام سلولها داراي تنفس هوازي به جز در باکتريها که آنزيمهاي تنفسي آنها در غشاي سيتوپلاسمي جايگزين شده*اند وجود دارند. اين اندامکها ، نوعي دستگاه انتقال انرژي هستند که موجب مي*شوند انرژي شيميايي موجود در مواد غذايي با عمل فسفوريلاسيون اکسيداتيو ، به صورت پيوندهاي پرانرژي فسفات ATP ذخيره شود. تاريخچه اولين بررسيهاي انجام شده بر روي ميتوکندريها ، در سال 1894 بوسيله آلتمن صورت گرفت که آنها را بيوپلاست يا جايگاههاي زنده ناميد. و نظر داد که بين واکنشهاي اکسايش و کاهش سلول و ميتوکندري وابستگي وجود دارد. در سال 1897بتدا با بررسيهاي بيشتر آنها را ميتوکندري ناميد و در 1900 ، ميکائيليس به کمک معرف رنگي سبز ژانوس ميتوکندري را در سلولهاي زنده مشاهده کرد. واربورگ در سال 1913 آنزيمهاي تنفسي را در اين اندامک نشان داد. سرانجام براي اولين بار ، در سال 1934 ، بنسلي و هر ، توانستند آنها را از سلولهاي کبدي جدا کرده و بعد آن بررسيهاي بيشتر و عملي*تر روي آن صورت گرفت. شکل و اندازه ميتوکندري و تغييرات آنها شکل شکل ميتوکندريها متغير اما اغلب رشته*اي يا دانه*اي مي*باشند. ميتوکندريها در برخي مراحل عمل خود مي*توانند به شکلهاي ديگري درآيند. مثلا ، يک ميتوکندري طويل ممکن است در يک انتهاي خود متورم شده و يه صورتي شبيه گرز درآيد.مثلا در سلولهاي کبدي چند ساعت بعد ورود غذا يا ممکن است ميان تهي شده و شکلي شبيه راکت تنيس به خود بگيرد. گاهي ميتوکندريها حفره مانند شده و داراي بخش مرکزي روشني مي*شود. اما بعد از مدتي ، تمام اين تغييرات به حالت اول برمي*گردد. اندازه ابعاد ميتوکندريها نيز متغير است و در بيشتر سلولها ضخامت آنها 50µm و طول تا 7µm مي*رسد. اما متناسب با شرايط محيطي و نيز مرحله عمل سلول ، فرق خواهد کرد. در سلولهايي که هم نوع هستند يا داراي عمل مشترک مي*باشند داراي اندازه ثابت مي*باشند. ساختمان ميتوکندري غشاي خارجي حدود 75 - 60 آنگستروم ضخامت دارد و از نوع غشاهاي زيستي با ساختمان سه لايه*اي مي*باشد. اين غشا صاف و فاقد چين خوردگي است و هيچ ريبوزومي به آن نچسبيده، گاهي توسط شبکه آندوپلاسمي احاطه مي*شود اما هيچگاه پيوستگي بين اين دو ديده نشده است. اطاق خارجي زير غشاي خارجي ، فضايي در حدود 200- 100 آنگستروم وجود دارد که به آن اطاق خارجي گفته مي*شود. که شامل دو بخش است: فضاي بين دو غشا و فضاي درون تاجها يا کريستاها يا کرتها. اما در برخي جاها غشاي داخلي و خارجي بهم چسبيده و اندازه اين فضا تقريبا صفر مي*شود. در اين مناطق در مجاورت دو غشا ، تراکمي از ريبوزومهاي سيتوپلاسمي ديده مي*شود. به خاطر همين در نظر گرفته شده که اين مناطق ، محل عبور پروتئينهاي مورد نياز از سيتوزول به ميتوکندري مي*باشند. در اين اطاق ، ترکيباتي مثل آب ، نمکهاي کاني و يونها ، پروتئينها ، قندها ، و چربيها SO2 ، O2 ، ATP و ADP وجود دارند. مقدار آب ، بر اندازه کريستاها و در نتيجه بر ساخت ATP تاثير گذار است. غشاي داخلي ضخامتش مثل غشاي خارجي است اما ترکيب شيمياي آن فرق مي*کند. داراي چين*خوردگيهاي فراواني است که به چينها ، تاج يا کريستا گفته مي*شود. اين چينها برخلاف سلولهاي گياهي ، در سلولهاي جانوري منظم قرار گرفته*اند. اطاق داخلي فضاي دروني ميتوکندري که بوسيله غشاي داخلي دربرگرفته شده، اطاق داخلي گويند. که از ماده زمينه*اي با بستره دربر گرفته شده است که ترکيب و ويژگيهاي کلي آن ، شبيه سيتوزول مي*باشد و داراي آنزيمهاي خاص و ريبوزوم خاص خود (70S شبيه سلولهاي پروکاريوتي) مي*باشد. تعداد DNA ، بر حسب نوع و سن سلول فرق مي*کند و مثل پروکاريوتها ، داراي سيتوزين و گوانين زيادي است در نتيجه در مقابل گرما مقاوم مي*باشد. نقش زيستي ميتوکندري تنفس هوازي سلولها تمام مواد انرژي*زا ، ضمن تغييرات متابوليکي درون سيتوپلاسمي با واسطه ناقلين اختصاصي به بستره ميتوکندري مي*رسد. گلوکز بعد از تبديل به استيل کو آنزيم A طي گليکوليز به ميتوکندري وارد مي*شود تا در چرخه کربس استفاده شود و اسيدهاي چرب بوسيله کارني تين به داخل ميتوکندري حمل شده که اينها هم سرانجام به استيل کو آنزيم A تبديل مي*شوند. اسيدهاي آمينه بعد از ورود به بستره به استيل کو آنزيم A تبديل مي*شوند. با انجام هر چرخه کربس که با استفاده از يک استيل کوآنزيم A در بستره ميتوکندري آغاز مي*شود، علاوه بر CO2 و H2O سه مولکول نيکوتين آميد آدنين دي نوکلئوتيد و يک مولکول FADH2 و يک مولکول GTP توليد مي*شود. اين ناقلين انرژي در زنجيره انتقال الکترون استفاده شده و موجب توليد ATP مي*شوند. سنتز اسيدهاي چرب يکي از راههاي توليد اسيد چرب ، سيستم ميتوکندريايي مي*باشد که عکس اکسيداسيون يا تجزيه آنها مي*باشد. دخالت ميتوکندري در گوارش چربيها در هنگام گرسنگي ، ميتوکندريها به طرف ذرات چربي حرکت کرده و روي ذرات چرب خم شده و آنزيمهاي ميتوکندريايي شروع به هضم چربي و آزادسازي انرژي مي*کنند. ذخيره و تجمع مواد در ميتوکندريها ميتوکندريها مي*توانند در اطاق داخلي خود مواد مختلف را انباشته کنند که اين مواد عبارتند از: ترکيبات آهن*دار ، چربيها ، پروتئينها ، کاتيونها و آب. در اثر ذخيره اين مواد ، ميتوکندريها اغلب به حالت يک غشايي و شبيه باکتريهاي کوچک ديده مي*شوند و به تدريج ، کريستاها محو مي*شوند اما بعد از حذف اين مواد ، دوباره همه به حالت اول برمي*گردد. محل ميتوکندريها در سلول اغلب در اطراف هسته ديده مي*شوند اما در شرايط مرضي در حواشي سيتوپلاسم ظاهر مي*شوند. اين پراکنش ، تحت تاثير مقدار گليکوژن و اسيد چرب مي*تواند قرار بگيرد. در طول ميتوز ميتوکندريها در مجاورت دوک جمع مي*شوند و وقتي تقسيم پايان مي*يابد، در دو سلول دختر ، پراکنش تقريبا يکساني پيدا مي*کند. پراکنش ميتوکندريها را مي*توان بر حسب عمل آنها از نظر تامين انرژي ، مطرح کرد که ميتوکندريها در داخل سلولها جابجا شده و خود را به جايي که نياز به ATP بيشتر است مي*رسانند. تعداد ميتوکندريها در سلول تشخيص ارزش ميتوکندريايي يک سلول دشوار است. اما اغلب بر حسب نوع سلول مرحله عمل سلول متفاوت مي*باشد. در يک سلول معمولي کبد بيشترين تعداد و در حدود 1000 تا 1600 عدد وجود دارد که در اثر تحليل رفتن سلول و نيز سرطاني شدن آن کاهش مي*يابد. و در مقابل ، تعداد ميتوکندري در بافت لنفي ، خيلي کمتر است. در سلولهاي گياهي ، کمتر از جانوري مي*باشد چون بسياري از اعمال ميتوکندريها ، بوسيله کلروپلاست انجام مي*شود. منشا ميتوکندري دو نظريه بيان شده است: يکي اينکه ميتوکندريها ممکن است از قالبهاي ساده*تري ساخته شوند تشکيل Denovo و ديگر اينکه ميتوکندريهاي جديد از تقسيم ميتوکندريهاي قبلي بوجود مي*آيند. به اين صورت که تعداد آنها ، در طول ميتوز و نيز در اينترفاز افزايش يافته و بعد بين دو سلول دختر ، پراکنش مي يابند. خاستگاه پروکاريوتي ميتوکندري فرضيه*اي در اين صدد مطرح شده است که: در گذشته بسيار دو ر، جو زمين فاقد اکسيژن بوده و جانداراني که در آن زمان مي*زيسته*اند بيهوازي بودند. با گذشت زمان و ضمن واکنشهاي شيميايي ، جو زمين داراي اکسيژن شده و به تدريج جانداران آن زمان و بويژه پروکاريوتها به علت ساختمان ساده خود ، هوازي شده*اند. بعدها اين پروکاريوتها هوازي شده ، توسط سلولهاي يوکاريوتي بلعيده شدند و از اين همزيستي سلولهاي يوکاريوتي هوازي ايجاد شدند. پس اجداد ميتوکندري براساس اين فرضيه ، باکتريها مي*باشند. رشد و نمو گياهي رشد و نمو اساسا از پديده*هاي مهم در طي انتوژني گياه است. رشد و نمو تحت تاثير عوامل متعدد محيطي و ژنتيکي قرار دارد. البته عامل مهم تعيين کننده الگوهاي رشد و نمو ، عمدتا پايگاه ژنتيکي دارد. رشد عبارت است تغييرات کمي و افزايش غير قابل برگشت در ابعاد يک موجود يا يک اندام. به مجموعه تغييراتي که ماهيت کيفي دارند، به اضافه تغييرات کمي رشد ، نمو اطلاق مي*شود. مباحثي که در رشد و نمو گياهي بحث مي*شود، به صورت زير است. سينتيک رشد ، تروپيسمها يا گرايشها در گياهان ، جنبشهاي گياهان ، تنظيم کننده*ها يا هورمونهاي رشد در گياه مانند اکسين ، جيبرلين و ... ، مکانيزم تشکيل گل و فتوپريوديسم ، فيتوکرومها و ديگر پذيرنده*هاي نوري و ... . ارتباط فيزيولوژي گياهي با ساير علوم فيزيولوژي گياهي با بسياري از علوم ، ارتباط دارد. مانند بيوشيمي ، بيوفيزيک و بيولوژي مولکولي. البته فيزيولوژيستها مکررا از نتايج تحقيقات بيوشيميستها و متخصصان بيوفيزيک و بيولوژي مولکولي استفاده مي*کنند و متقابلا دانشمندان رشته*هاي ديگر نيز از نتايج آزمايشات فيزيولوژي گياهي ، بهره*مند مي*شوند. در حقيقت اين رشته*هاي مرتبط ، با هم يک مجموعه ايجاد مي*کنند و مرزهاي تعريف شده عمدتا مصنوعي هستند. بنابراين آشنايي با مباني بيوفيزيک ، بيوشيمي و بيولوژي مولکولي ، غيرقابل تفکيک با فيزيولوژي گياهي هستند. چگونگي تمايز فيزيولوژي گياهي از رشته*هاي نزديک چگونه فيزيولوژي گياهي از رشته*هاي نزديک به خود مانند بيوشيمي ، بيوفيزيک و ... متمايز مي*شود؟ مثال فتوسنتز را به عنوان مثال کلاسيک در نظر بگيريد. بيوشيميستها آنزيمها را خالص سازي کرده و خصوصيات آنها را در لوله آزمايش مطالعه مي*کنند. متخصصان بيوفيزيک ، غشاها را جداسازي نموده و خصوصيات اسپکتروسکوپي آنها را در لوله آزمايش ، بررسي مي*کنند. دانشمندان بيولوژي مولکولي ، ژنهاي کد کننده پروتئين*هاي فتوسنتزي را شناسايي کرده و تنظيم آنها را در طول نمو ، مطالعه مي*کنند. در عوض متخصص فيزيولوژي گياهي ، فتوسنتز را در عمل ، در سطوح مختلف ارگاني ، از جمله کلروپلاست ، سلول ، برگ و گل گياه مطالعه مي*کند. صاحبنظران فيزيولوژي گياهي ، راههاي برخورد متقابل اجزا با يکديگر براي انجام فرايندها و اعمال حياتي را مورد مطالعه قرار مي*دهند. چشم انداز طي دهه گذشته ، علوم زيستي پيشرفت چشمگير و غير قابل انتظاري داشته*اند و در هيچ جا ، اين نحوه پيشرفت ، بيشتر از زمينه فيزيولوژي گياهي نيست. اکتشافاتي نيز ، قفل جادويي انتقال در غشاها را باز کردند. روشهاي استخراج DNA ، ابزار جديدي را براي فهم چگونگي تنظيم بروز و نمو ژن بوسيله نور و هومورنها فراهم کردند. تجزيه پروتئين*هاي کليدي و کمپلکس*هاي رنگيزه ، پروتئين*هايي مانند روبيسکو (Rubisco) و مرکز واکنش فتوسنتزي با استفاده از کريستالوگرافي اشعه ايکس ، اولين طليعه فهم مکانيزمهاي مولکولي تثبيت کربن و واکنشهاي نوري در فتوسنتز را فراهم کرد. منابع 1. فيزيولوژي گياهي، جلد اول، تاليف تايز وزايگر، ترجمه دکتر محمد کافي، لاهوتي، زند، شريفي، گلداني، انتشارات جهاد دانشگاهي مشهد، 1378. 2. فيزيولوژي گياهي، جلد دوم، تاليف تايز وزايگر، ترجمه دکتر محمد کافي، لاهوتي، زند، شريفي، گلداني، انتشارات جهاد دانشگاهي مشهد، 1378.
-
محققان کشف کرده اند که رشد انسولین در گیاهان می تواند بیماری دیابت در موش ها را برطرف کند. به گزارش روز پنجشنبه گروه علمی فرهنگی باشگاه خبرنگاران دانشجویی ایران "ایسکانیوز"، این یافت جدید امید بهبودی در بیماران مبتلا به دیابت را افزایش داده است. دانشمندان دانشگاه فلوریدا به سرپرستی پروفسور "هنری دانیل" کشف کردند که ممکن است روزی انسولین در گیاهان تغییر یافته ژنتیکی رشد کند و سپس برای پیشگیری از ابتلا به بیماری دیافت قبل از ظاهر شدن علایم یا درمان بیماری در مراحل آخر این بیماری استفاده شود. تیم تحقیق "دانیل" با استفاده از روش مهندس ژنتیک گیاهان تنباکو را که با ژن انسولین رشد کرده بوند به موش های دیابتی به مدت پنج هفته به بیمارانی که مبتلا شده بودند به عنوان یک گروه برای هشت هفته به آنها دادند. در پایان تحقیق دانشمندان کشف کردند که موش های دیابتی سطح قند ادرار و خون طبیعی دارند و سلول های آنها سطح طبیعی انسولین را تولید می کند.
-
طبقه بندی هورمونهای گیاهی....... مقدمه عوامل بیرونی و درونی در رشد گیاهان موثرند از مهمترین عوامل درونی ، هورمونها و از مهمترین عوامل بیرونی نور و دما را می*توان نام برد. هورمونها عهده*دار تنظیم و هماهنگی فرآیندهایی هستند که در نقاط مختلف پیکر گیاهان صورت می*گیرند. این مواد از ترکیبات آلی هستند که در بافتهای ویژه*ای ساخته می*شوند و مستقیما از یاخته*ای به یاخته دیگر و یا از طریق آوندها در سراسر گیاه انتقال می*یابند و در محل هدف تاثیر می*گذارند. بعضی از هورمونها نیز اثر بازدارندگی دارند. بطور کلی رشد و نمو طبیعی یک گیاه ، بیشتر توسط اعمال متقابل هورمونهای تحریک کننده و بازدارنده تنظیم می*شود. بعضی از هورمونهای گیاهی محرک رشد هستند، در حالی که هورمونهای دیگری همین فرآیندها را کند می*کنند یا به تاخیر می*اندازند.
-
شکر استویا (یک پیشنهاد شیرین) استویا صد در صد طبیعی است استویا مرکب از مواد مصنوعی نیست. استویا کالری ندارد ودر نتیجه جای هیچ نگرانی برای رژیم درمانی و بیماران دیابتیک نیست. استویا 250 تا 300 مرتبه از شکر شیرین تراست. استویا طعم. رنگ ومزه غذا را افزایش می دهد. استویا دلچسبی و دلپذیری طعم وعطر غذا را بهبود می بخشد. استویا شناخته شده و مورد تایید سازمان غذا و داروی آمریکا و سازمان جهانی بهداشت و سلامت میباشد. استویا چیست؟ ا محصولیست کاملا طبیعی که به طور مستقیم از طبیعت و گیاهان گرفته شده و امروزه بطور وسیعی، در صنایعی که سالها از محصولات قندی (شیرینی و شکلات، نوشابه های گازدار) وسایر صنایعی که در پروسه خود به مقادیر زیاد از این مواد استفاده میکرده اند، کاربرد وسیعی داشته و جایگزین شکر و قند بعنوان عوامل کالری زا شده است. این گیاه ده ها سال است که در آسیا و جنوب آمریکا ( آمریکای جنوبی) مورد استفاده قرار گرفته و میگیرد ، ضمن اینکه مصنوعی نیست ، سمی نیست و هیچ گونه عوارض جانبی نگران کننده نیز ندارد . استویا مورد تایید "سازمان جهانی سلامت" است و اخیرا به عنوان یک محصول رژیمی مورد تایید "سازمان غذا و داروی آمریکا" قرار گرفته است. استویا یک پیشنهاد و یک راهکار بزرگ و باور نکردنی در جایگزین کردن شیرینی ها برای کسانی که روزانه به مقدار کالری مصرفی خود توجه دارند این محصول به هیچ میزان کالری ندارد و جای هیچ نگرانی برای استفاده از آن وجود ندارد. استویا PH مقاوم در برابر حرارت بالا بطوریکه در پخت و پز آن ثابت است. ماهیت آن تحت هیچ شرایطی تغییر نمی کند. رنگ استویا بر اثر پخت و پز تیره نمی شود. استویا در حال حاضر به عنوان قند (شیرین کننده) شناخته شده است. آن را در نوشابه ها ونوشیدنیها، شیرینی جات و شکلات ها، مربا، آدامس، سس ها، کچاپ و ماست می توان استفاده کرد. استویا بر خلاف شکرهای شیمیایی تولید شده که اکثرا اثرات کوتاه مدت و بلند مدت سوء ای برای سلامت انسان دارند، نه تنها یک ماده کاملا طبیعی و مفید به لحاظ عاری بودن از انرژی، کالری میباشد بلکه به جهت تاثیر مثبتش بر افزایش طعم و بهتر کردن مزه غذا شناخته شده است. با استویا غذاهاهمچنان طعم و رنگ و بوی عالی خود را حفظ خواهند کرد تحقیقات و مطالعات گسترده ای درباره استویا و اثرات مفید و فواید آن بر بیماران دیابتی از نوع دوم و بیمارانی که دارای فشار خون بالا هستند انجام شده است و این گیاه طبیعی بهترین جایگزین شیرین کننده هائی چون قند یا شکر بر اینگونه بیماران است. و در نهایت طبیعت بهترین پاسخ را برای شیرین تر نمودن زندگی به ما داد! شرکت "استویاپک" سنگاپور، تولید کننده و توزیع کننده انواع ترکیبات مورد استفاده در صنایع غذائی و همچنین کلیه فرآورده های مختلف محصول استویا میباشد. این شرکت، هم اکنون توزیع کننده این محصول در سطح وسیعی از کشور های اروپائی ، آمریکائی و خاور دور است. این محصول عبارتست از : "استویول گلیکوزید" که عصاره گیاه "استویا ریبادیانا برتونی" است. این گیاه، بوته کوچکی متعلق به خانواده "ایتراسی" است، گیاهی بومی که در مرزهای برزیل و پاراگوئه می روید. استویا حدودا" 200 تا 300 برابر شیرین تر از شکر است. شامل هیچ مقدار کالری نمی باشد و برای صدها سال برای شیرین نمودن غذا و نوشیدنی ها در آمریکای جنوبی استفاده می شده است و برای دهه های متمادی هم در آسیا مورد استفاده قرار گرفته است. شرکت استویا پک عصاره گیاه استویا را در سه شکل متفاوت و متناسب با نیازهای شما تولید می کند: SU200 یک عصاره و محصول کامل و تمام عیار از گیاه استویاست. تقریبا" 200 مرتبه شیرین تر از شکر است. (مناسب در صنایع با مصرف قند متوسط) SU A350 عصاره ای متشکل از ترکیبات عالی ارزشمند عرضه می کند. ریبادیوساید( آ ) برای دادن طعمی شبیه به شکر و با 350 برابر شیرینی آن است. (مناسب در صنایع با مصرف قند بالا) Sweetvia ترکیبات عصاره استویا برای مصرف روزانه تولید شده است. یک شروع شیرین برای زندگی سالم همراه با رژیم است. هیچ مقدار کالری ندارد و جای هیچ نگرانی نیست! شرکت تابش اردهال با دارا بودن نمایندگی انحصاری از شرکت استویا پک آمادگی خود را جهت پاسخگوئی به درخواست متقاضیان محترم وهمچنین ارائه لیست قیمت و شرائط فروش اعلام میدارد.
-
از دیدگاه حفاظت محیط زیست، فضای سبز شهری، بخش جاندار ساخت کالبدی شهر را تشکیل می دهد. در این مبحث همچنین این موارد نیز پرداخته شده است. انواع فضاهای سبز، نقش و اهمیت فضاهای سبز در زندگی شهری، عملکردهای فضای سبز و نقش عمده فضای سبز. این مقاله در مورد گونه شناسی کاربری و گیاهی فضاهای سبز شهری، عناصر و عوامل فضاهای سبز عمومی و معیارهای منظرسازی فضاهای سبز و باز شهری می باشد. دانلود مقاله
-
- 4
-
- فضای سبز
- فضای سبز شهر
-
(و 6 مورد دیگر)
برچسب زده شده با :
-
اکولوژی گیاهی از نظر انواع موجودات زنده مورد مطالعه ، دانش بوم شناسی به بوم شناسی گیاهی ، جانوری و انسانی تقسیم می*شود. موضوع بوم شناسی گیاهی بررسی روابط بین گیاهان مختلف با خود و با محیط پیرامون آنهاست. مقدمه هر موجود زنده*ای برای برخی از فرآورده*ها و فرایندهای زیستی اساسی بطور انکارناپذیری به محیط زیست خود و بویژه به موجودات زنده دیگر وابسته است. لازمه بقا ، همبستگی گروهی است و بررسی چگونگی این همبستگیها مورد توجه دانش اکولوژی است. دانش اکولوژی مجموعه شناختهایی است که انسان درباره اثرات محیط بر روی موجودات زنده ، اثرات موجود زنده بر روی محیط و ارتباطات متقابل بین موجودات زنده دارد. وقتی موجود زنده*ای از لحاظ بوم شناسی مورد مطالعه قرار می*گیرد، هدف این است که معلوم شود، چرا موجود مورد نظر در محیطهای خاص و تحت شرایط معینی زندگی می*کند؟ شرایط محیطی چه اثراتی بر موجود زنده دارند؟ و موجود زنده به نوبه خود چه تحولاتی در محیط پدید می*آورد؟ طبیعی است که خود انسان به عنوان یک موجود زنده ، متاثر از عوامل محیط و موثر بر روی عوامل طبیعت در چارچوپ مطالعات اکولوژی از توجه و اهمیت ویژه*ای برخوردار است. تعریف جامعه گیاهی کوچکترین واحد اجتماعات گیاهی را جامعه گیاهی می*نامند. یک جامعه گیاهی مانند سایر جامعه*ها از افراد متعددی تشکیل یافته است که در بعضی صفات با یکدیگر شباهت دارند و همین اشتراک منافع و وجود صفات مشترک سبب شده است که در شرایط واحد برویند و به طریق همزیستی معنوی با یکدیگر زندگانی کنند. بنابراین دو اجتماع گیاهی که از لحاظ سیمای ظاهری و ترکیب و صفات بوم شناختی (فراوانی ، بارز بودن یا غلبه ، تراکم ، اهلیت ، توانایی زیستی ، طبقه بندی ، وابستگی و ...) با یکدیگر مشابه باشند، جامعه گیاهی واحدی را تشکیل می*دهند. تعریف جامعه شناسی گیاهی دانشی که اجتماعات گیاهی را مورد بررسی قرار می*دهد و درباره صفات مختلف آنها ، تغییرات حاصل از نفوذ شرایط محیط در اجتماعات مذکور و همچنین تکامل این اجتماعات بحث و گفتگو می*کند، جامعه شناسی گیاهی نامیده می*شود. دانش جامعه شناسی اعم از اینکه جامعه مورد نظر انسانی یا جانوری یا گیاهی باشد، هیچ گاه با یک فرد از آن اجتماع سروکار ندارد، بلکه با گروه و توده افراد در ارتباط است. صفات بوم شناسی صفات بوم شناسی عبارتند از: فراوانی ، بارز بودن ، تراکم ، اهلیت ، توانایی زیستی ، طبقه بندی ، وابستگی و غیره. صفات مختلف بوم شناختی ، جامعه*های گیاهی را از یکدیگر مشخص می*کند و سبب تمایز آنها از یکدیگر می*شود. مثلا فراوانی ، تعداد افراد یک گیاه در واحد سطح است و غلبه معرف پوشش و سطحی است که گیاه اشغال کرده است. بنابراین فراوانی و غلبه یک گونه گیاهی ، در جامعه*های مختلف متفاوت است و یک گیاه ممکن است فراوان باشد، ولی پوشش زیاد نداشته باشد. بالعکس گیاه دیگر هر چند به فراوانی نوع اول نباشد، ولی ممکن است پوشش زیادی داشته باشد و از لحاظ غلبه بر او پیشی بگیرد. بطور کلی در یک جامعه گیاهی یک یا دو گیاه غالب وجود دارد. گیاهان غالب ممکن است یک ساله ، چند ساله ، درختچه و یا درخت باشند که به نسبت بیشتری از محیط خود بهره*مند می*شوند. نامی که به یک جامعه گیاهی داده می*شود، از گیاهان غالب آن جامعه گرفته شده است. مانند جامعه راشستان و بیدستان. وابستگی گیاهان به جامعه*های مختلف یکسان نیست. مثلا بعضی از گیاهان در جامعه*های مختلف دیده می*شوند و گیاه هر منطقه*ای محسوب می*گردند. در حالی که بعضی دیگر در جامعه*های محدودتری ظاهر می*شوند، لذا نمی*توانند خود را با محیطهای مختلف و عوامل گوناگون سازش دهند و ناچار در همه جوامع دیده نمی*شوند. بعضی دیگر فقط به جامعه خاصی بستگی دارند و در شرایط محدودی که در آن جامعه برایشان فراهم است، ظاهر می*گردند. در چنین حالتی این گیاهان معرف آن جامعه محسوب می*شوند. عوامل پراکنش گیاهان شرایط مختلف محیط در همه نقاط سطح زمین به یک میزان فراهم نیست و از این رو در نقاط مختلف ، گیاهان متفاوتی دیده می*شوند. بطور کلی عوامل اکولوژی عبارتند از : عوامل آب و هوایی یا اقلیمی ، عوامل خاکی ، عوامل زیستی. این است که ترکیب و سیمای رستنیهای مختلف در هر گوشه جهان مشخص است و با نقاط دیگر تفاوت فاحش دارد. به عنوان مثال اختلاف تابش نور خورشید در عرضهای جغرافیایی مختلف در ترکیب و سیمای مدارات مختلف تغییراتی ایجاد می*کند. بطوری که سیمای جنگلهای استوایی کاملا با سیمای جنگلهای معتدل فرق می*کند. با این حال اگر شرایط محیط در دو نقطه مساوی و یکنواخت باشد، نیز ممکن است در ترکیب رستنیهای آن دو نقطه اختلاف شدید مشهود گردد، زیرا موانع طبیعی بسیاری می*توانند از پراکنش گیاهان در نقاط مناسب جلوگیری کنند. عوامل طبیعی مانند اقیانوسها ، کوهها و بیابانها مانع کلی پراکندگی گیاهان در دو محیط مشابه*اند و اگر این سدهای طبیعی ، قاره*ها و خشکیها را از یکدیگر جدا نمی*ساخت، شاید پراکنش بسیاری از گیاهان مختلف جهان سریع*تر صورت می*گرفت. عوامل آب و هوایی گیاهان تحت تاثیر آب و هوا قرار گرفته و شکل زیستی خاصی می*یابند، یعنی شکل و سیمای ظاهری آنها تا حدی تابع آب و هوای محیطشان می*شود و در این صورت می*توانند کم و بیش از تقسیمات کلی آب و هوایی موثر واقع شوند. بدیهی است درختان و جنگلها همواره بر اثر تعریق ، مقدار متنابهی بخار آب دفع می*کنند و بر مقدار بخار آب جو به میزان قابل ملاحظه*ای می*افزایند. در این صورت مناطق جنگلی همواره در اثر باران مشروب می*شوند و دارای آب و هوای مرطوب*اند. هر قدر تعداد درخت در محیطی کمتر باشد و به جای آن بوته*های گیاه و چمنزار سطح خاک را بپوشاند، به همان نسبت از بارندگی محیط و رطوبت زمین کاسته می*شود. دما و بارندگی از عوامل اقلیمی مهمی هستند که ظهور گونه*های مختلف گیاهی و رویش آنها را تعیین می*کنند. دما بر فعالیتهای تعرق ، تنفس ، رویش ، رشد و تولید مثل تاثیر می*گذارد. بارندگی سالیانه عامل اصلی در تعیین انتشار گیاهان است. بطور کلی جنگلها ، نواحی پرباران را اشغال می*کنند. صحراها در نواحی کم باران دیده می*شوند و علفزارها در نواحی دارای بارندگی متوسط وجود دارند. نور سومین عامل اقلیمی مهمی است که در رشد گیاه ، گل دادن و فتوسنتز آن تاثیر بسزایی دارد. بسیاری از گونه*ها نیازهای نوری نسبتا معینی دارند. برخی از آنها مانند رستنیهای کف جنگل ، برای رشد به نور کم و بعضی دیگر مانند درختان به نور زیاد دارند. عوامل خاکی عواملی که در پراکنش ، رشد و بقای گیاه تاثیر می*گذارند، عبارتند از: دمای خاک ، مقدار آب ، اکسیژن ، مواد آلی ، مواد کانی و درجه اسیدی خاک. دمای خاک در رشد گیاه بویژه از لحاظ تاثیر در جذب آب و مواد کانی ، عامل موثری به شمار می*آید. در دماهای پایین ، دراز شدن ریشه متوقف گشته، سبب کندی نفوذ آن به طبقات واجد آب و مواد کانی می*شود، لذا میزان جذب آب و مواد کانی کاهش می*یابد. باکتریها نیز در خاک سرد غیر فعال*اند. بنابراین مواد کانی به اندازه کافی در دسترس ریشه قرار نمی*گیرد. در این صورت کشتکاران ناگزیرند از کودهای نیتروژن*دار استفاده کنند. دمای پایین خاک و هوا ، همراه با بادهای شدید ، سبب کوتاه ماندن گیاهان نواحی کوهستانی می*شوند. عوامل زیستی گیاهان در طبیعت همراه با سایر موجودات زنده ، اعم از جانور و گیاه ، زندگی می*کنند و از این رو هر یک از آنها کم و بیش در زندگی موجودات دیگر تاثیر دارد. بطور کلی طبیعت میدان تنازع بقاست و ضعیف همواره مغلوب قویتر از خود می*شود. جانوران و پستانداران گوشتخوار ، پستانداران علفخوار را طعمه خود می*سازند و علفخواران از رستنیها و گیاهان وحشی تغذیه می*کنند و کمک آنها به جامعه گیاهی فقط ریختن فضولات و تقویت جزئی خاک است. خرگوش و موش و مورچه خسارات زیادی به جامعه*های گیاهی وارد می*سازند، ولی در اثر احداث راهروهای زیر زمینی خاک را تهویه می*کنند و یا آنکه در پراکندگی دانه*ها و سایر فعالیتها بوم شناسی موثرند. بنابراین جانورانی که در جامعه گیاهی زیست می*کنند، هر در وضع محیط زیستی خود موثرند و اثرات سودمند یا زیانبخش بر روی آن جامعه باقی می*گذارند و حالت تعادل را برقرار می*سازند، بطوری که از بین رفتن یکی از آنها موازنه طبیعی آن جامعه را بر هم می*زند و دگرگون می*سازد. تنازع بقا یکی از مسائل مهم زیستی جهان گیاهی و از خواص عمومی جوامع گیاهی به شمار می*رود و در بین افراد یک گونه و یا گونه*های مختلفی که در مجاورت یکدیگر می*رویند و دارای نیازهای مشترک*اند و به وجود دیگری نیاز ندارند، حکمفرماست. بنابراین تنازع بقا از مشخصات جامعه*های گیاهی است.هنگامی که گیاه در شرایط مناسب می*روید و در معرفی کمبود مواد غذایی و عواملی مانند نور و هوا واقع نشده است، یعنی ریشه آن به راحتی از آب و مواد غذایی استفاده می*کند و ساقه و برگ آن نیز از نور و هوا بهره*مند می*گردد و بطور کلی مزاحمتی برای گیاه مجاورش فراهم نمی*سازد، مسئله تنازع بقا مفهومی ندارد. ولی پس از آنکه تعداد افراد رو به افزایش گذاشت و گیاهان مختلف با یکدیگر تماس نزدیک حاصل کردند و به عبارت دیگر ، اصطکاک منافع بین آنها ایجاد شد، گیاه قویتر ، گیاه ضعیفتر را حتی اگر از افراد همان گونه باشد، در مضیقه می*گذارد و از شرایط زندگی و حق حیات محروم می*سازد تا حدی که باعث از بین رفتن آن می*شود. بنابراین تنازع بقا معرف کمبود مواد و عوامل مورد نیاز برای زندگی گیاه است و نشانگر آن است که آب و نور و مواد غذایی به حد کافی در اختیار کلیه گیاهان دیگر قرار ندارد. توالی گیاهی بطور کلی مراحل تغییر تدریجی یک اکوسیستم را که در مدتی طولانی و در طول قرنها رخ می*دهد، توالی گویند. در توالی بوم شناختی ، اجتماعات مختلف بطور متوالی و منظم در محل معینی پدید می*آیند. ترتیب اجتماعات که از روی سنگ برهنه آغاز می*شود و مثلا تا تشکیل یک جنگل بلوط و گردو ادامه می*یابد، توالی اولیه نام دارد، یعنی قبلا اجتماعی در این محل وجود نداشته است. در موارد دیگر اجتماعاتی که در گذشته بوده و از بین رفته*اند، همچنان بر ویژگیهای محیط فیزیکی اثر خواهند داشت. به عنوان مثال این اثر وقتی رخ می*دهد که جنگلی با آتش سوزی ویران شود. توالی در این محل یعنی روی خاکی آغاز می*شود که با فعالیتهای اجتماعات پیشین تعدیل شده است. بنابراین ترتیب اجتماعات در مناطقی که قبلا در آنها اجتماع زیستی وجود داشته، نمونه*های توالی ثانویه هستند.
- 1 پاسخ
-
- فرآوردهها و فرایندهای زیستی
- گیاهی
- (و 6 مورد دیگر)
-
در این تاپیک اصطلاحات مربوط به علوم گیاهی رو بیان میکنیم............
-
در اغلب موقعیتهای طراحی سایت، جوامع گیاهان بیشترین اثر را در نحوه ادراک آن مکان دارند. در اکثر موارد، گیاهان مهمترین متغیر محیطی هستند که در ذهن بیننده تصویر ایجاد میکنند. درک حسی یک مکان تا حد بسیار زیادی به شکل بصری صورت میگیرد. همچنین در اکثر مواقع، گیاهان بهتر از هر ماده دیگر مورد استفاده طراح سایت میتوانند ویژگی بصری مکانی را تعیین نمایند. فرم گیاه از بین تمام ویژگیهای آن بیشترین اثر را بر احساس بصری ناظر از محیط دارد. فرم گیاه ترکیبی از نمای کلی گیاه و نحوه رشد آن است. هر فرمی ویژگیها و امکانات طراحی خاص خود را به شرح زیر داراست - گیاهان مخروطی شکل بر جهت عمودی تاکید دارند. این گیاهان معمولا در طراحی به عنوان نقاط کانونی مطرح میشوند. - گیاهان ستونی شکل، شبیه گیاهان مخروطی شکل هستند با این تفاوت که نوک آنها مدور است، در طراحی نیز به همین منظور به کار میروند. - گیاهان مدور که معمولترین نوع گیاهان هستند، اغلب در مجموعه طراحی، بخش عمده گیاهان را تشکیل میدهند. آنان فاقد جهت بوده و به عنوان زمینهای برای فرمهای جهت دارتر کارایی داشته و غالبا برای مجموعه گیاهان نقش پیوند دهنده دارند. - گیاهان چتری بر جهت افقی تاکید میکنند، این گیاهان برای امتداد دادن فرمهای معماری به درون سایت کاربرد دارند. - گیاهان هرمی شکل ویژگی رسمی و معمارانه دارند. آنها به مجموعه استحکام و دوام میبخشند. - درختان مجنون غالبا در نواحی مرطوب میرویند، اگر به صورت نیمرخ در مقابل فرمهای معماری قرار گیرند یا به شکل آبشار بر آنها بریزند شکل موثری پیدا خواهند کرد. - گیاهانی که به اشکال بدیع و برجسته دیده میشوند نامنظم و خمیده هستند. فرم آنها معمولا در اثر عوامل طبیعی ایجاد شده است که از این طریق به بیان آن عوامل میپردازند. این گیاهان در محیط و منظرهای گیاه کاری شده نمونههای جالبی هستند. فرمهای ترکیبی متمرکز، از رابطه متقابل تعدادی از گیاهان حکایت دارد و با توالی گیاهان تغییر میکند. توده گیاهان با شکل طبیعی با توجه به معیارهای محیطی آزادانه سازمان مییابند، اما نوع معمارانه آن. روی خطوط شبکهای سازمان میگیرند. این توده از فاصله دور به شکل خط مستقیم و صحنهای با تراکم یکسان به نظر میرسد و از نزدیک فضایی رسمی را میسازد که با شبکه ستونی تنه درختان تقسیم شده و بسیار معمارانه مینماید.
-
سیستماتیک گیاهی سیستماتیک گیاهی پهنای وسیعی از علوم است که اطلاعات و مشخصات گیاهان را که به نوبه خود از طریق مطالعات اولین ، از قبیل توصیف و نامگذاری شناخته شده*اند با تاکید بر کلیه صفات و وابستگیهای آنها و با توجه به اطلاعات بدست آمده از سایر شاخه*های علوم مورد بررسی قرار می*دهد. مقدمه سیستماتیک یکی از شاخه*های بسیار قدیمی و مهم علم گیاه شناسی است. انسانهای اولیه به گیاهان خوراکی و دارویی اطراف خود توجه خاصی داشتند و صدها نوع از آنها را می*شناختند و به این ترتیب نخستین گروههای تاکسونومیک گیاهی بر اساس چنین شناختی شکل گرفت. سیستماتیک گیاهی اختلافات بارز و برجسته گروههای گیاهی را تصویر می*کند. نام هرگیاه در واقع کلیدی است که با آن دریچه*ای بر زیست شناسی آن گیاه گشوده می*شود. سیستماتیک گیاهی باشناخت و نامگذاری گیاهان و به نظم کشیدن آنها در گروههای خویشاوند و بسیار نزدیکی همچون جنس ، خانواده و ... سروکار دارد. بطور کلی این علم شامل مجموعه فعالیتهایی است که به منظور سازماندهی و ثبت تنوع گیاهان انجام می*شود.
-
بیوشیمی گیاهی بیوشیمی گیاهی شاخه*ای از بیوشیمی است. دانشی است تجربی که هدف آن بررسی طبیعت و مکانیسم واکنشهای شیمیای ویژه*ای است که در گیاهان روی می*دهند. این شاخه از علوم ، دانشی نو*ظهور است که در حال تکامل می*باشد. دید کلی گیاهان که منبع غذاها ، داروها و تعداد بیشماری از مواد آلی گوناگون هستند، در حقیقت گنجینه*ای عظیم از ثروت پنهانی بشمار می*روند که پیوسته تجدید می*شوند. گیاهان علاوه بر آنکه نقش تلمبه آب بی*اندازه پرتوانی را میان خاک و جو ایفا می*کنند. با بقایای فسیلی خود منشا منابع لازم برای تمدن کنونی هستند. سلول گیاهی آزمایشگاه بنیادی این کارخانه شگرف ترکیبات آلی است. مهم آن است که تعیین شود گیاه با چه فرآیندهایی (فتوسنتز ، تعرق و (واکنشهای متابولیسمی|متابولیسم))) دگرگونی*های متعددی را باعث می*شود که از چند ماده ساده آغاز می*شوند و به تعداد بیشماری از پیچیده*ترین مواد آلی حاصل از متابولیسم گیاهی می*رسند. برخی از فرآیندها مانند فتوسنتز یا چرخه*های تحولات نیتروژن و گوگرد ، خصلتی عام دارند که به مولکولهای ساده متابولیسم اولیه مانند قندها و آمینو اسیدها و ... که در همه گیاهان مشترک هستند منجر می*شوند. فرایندهای دیگر ، برعکس ، اختصاصی*تر هستند و به فرآورده*های متابولیسم ثانویه حاصل از استفاده مواد متابولیسم اولیه ، می*انجامد. چنین است قلمرو بیکران و هیجان *انگیز بیوشیمی گیاهی که هدف آن پاسخ به این پرسش معقول است که پدیده*ها چگونه روی می*دهند، بی*آنکه بخواهد به پرسش غایت*گرانه چرا پاسخ دهد. مباحثی که در بیوشیمی گیاهی بحث می*شوند، در زیر شرح داده می*شوند. نقش آب در گیاهان آب لازمه زندگی است. زندگی در دریاها تولد *یافته و واکنشهای متابولیسمی ، مانند ساختارهایی که پایه و اساس این واکنشها هستند فقط در محیط آبکی انجام *پذیر هستند. آب در گیاهان علفی و اندامهای جوان در نگهداری حالت تورژسانس دخالت دارد. آب به عنوان متابولیت در تهیه هیدروژن لازم برای ساختن زنجیره*های هیدروکربنی دخالت دارد. آب در پدیده فتوسنتز نقش کلیدی دارد. آب از طریق تارهای کشنده ریشه جذب شده و از طریق آوندهای چوبی به تمام قسمت*های گیاه منتقل شده و اعمال خود را انجام می*دهد. فتوسنتز فتوسنتز که در کلروپلاست*ها صورت می*گیرد عبارت است از تشکیل قندها از h2o و co2 به کمک انرژی نوری جذب شده بوسیله کلروفیل و رنگیزه*های فرعی. مباحثی که در مورد فتوسنتز در بیوشیمی گیاهی بحث می*شود به صورت زیر است. شرایط فتوسنتز ، مراحل مختلف اخذ انرژی نوری و تبدیل آن به انرژی شیمیایی ، احیای co2 به قند سه کربنی و در نهایت تشکیل قندهای مختلف از قند اولیه است. بازده فتوسنتز چه از ساخت قندها و چه از نظر میزان انرژی تولیدی در گیاهان مختلف ، متفاوت است. تنفس در گیاهان پدیده*های تنفس با مصرف اکسیژن و دفع دی*اکسید کربن همراه هستند، این پدیده*ها شامل تجزیه متابولیت*های کربن*دار است که سرانجام پس از اکسایش به h2o و co2 تبدیل می*شوند. این اکسایش همراه با آزاد کردن انرژی است که به صورت atp ذخیره می*شود. در گیاهان دو نوع تنفس دیده می*شود: تنفس در همه موجودات زنده مشترک است و در تاریکی و روشنایی انجام می*شود و تنفس نوری که فقط در روشنایی انجام می*شود. تغذیه نیتروژنی گیاهان در گیاهان ، ترکیبات نیتروژن*دار که از مواد اساسی سازنده موجودات زنده هستند، از مولکولهای کانی ساده ساخته می*شوند. مشتقات نیتروژندار از دو نظر حائز اهمیت هستند، از نظر کمی که ترکیبات نیتروژندار 30 - 6 درصد وزن خشک گیاهان را تشکیل می*دهند و از نظر کیفی که نیتروژن در ساخت بسیاری از ترکیبات اساسی متابولیسم مانند آنزیمها ، اسیدهای نوکلئیک و ... شرکت دارد. مباحثی که در این مورد در بیوشیمی گیاهی وجود دارد شامل منابع نیتروژن ، استفاده گیاهان از نیتروژن هوا ، شکلهای مختلف ازت و ... است. تغذیه گوگردی گیاهان ترکیبات گوگردی بسیار فراوان هستند و در همه موجودات زنده یافت می*شوند، ولی تنها گیاهان و میکروارگانیزم*ها می*توانند از یونهای سولفات خاک استفاده کرده و آنها را احیا کنند. مباحثی که در بیوشیمی گیاهی درباره این تغذیه مطرح می*شود شامل منابع گوگرد ، استفاده از سولفات*ها ، احیای سولفات فعال ، ورود سولفورها در ترکیبات آلی و ... می*باشد. بیومولکولها تمام بیومولکولها از جمله کربوهیدراتها ، پروتئینها ، لیپیدها و اسیدهای نوکلئیک در بیوشیمی گیاهی بحث می*شوند. که شامل شکل و ساختمان این ترکیبات و مشتقات مختلف آنها ، وظایف و نقش آنها در گیاه و متابولیسم این مواد می*باشد. ترکیبات معطر بیوسنتز حلقه معطر یکی از فرایندهای اساسی در بیوشیمی گیاهی است. از مهمترین ترکیبات معطر می*توان لیگنین (ماده سازنده چوب) و همچنین بسیاری از اسانسها ، فلاونها ، آنتوسیانها و اسیدهای آمینه واجد حلقه*های معطر (فنیل آلانین و ترپیتوفان) و ... اشاره کرد. مواردی مانند تشکیل حلقه معطر ، انواع حلقه معطر ، نقش و متابولیسم آنها در بیوشیمی گیاهی بحث می*شوند. ترپنها و آلکالوئیدها تنوع قابل توجه انواع که در گیاهان دیده می*شود، نمونه تازه*ای از امکانات شیمیایی کارخانه گیاهی است. ترپنوئیدها با آلکالوئیدها و افلانوئیدها جزو مواد ثانویه متابولیسم قرار داده می*شوند. بعضی از ترپنوئیدها در پدیده فتوسنتز شرکت می*کنند و چند هورمون گیاهی ، ساختار ترپنی دارند. در حال حاضر بیش از 2000 آلکالوئید شناخته شده*اند و به علت خواصشان مورد توجه داروسازان قرار گرفته*اند. مواردی مانند ساختمان این ترکیبات ، چگونگی سنتز و متابولیسم این مواد در بیوشیمی گیاهی بحث می*شوند. بیوشیمی رشد و نمو گیاهی مجموعه پدیده*هایی که با افزایش طول گیاه همراه است نمو نامیده می*شود. نمو اندامهای گیاهی مانند نمو گیاه کامل با افزایش نمایی مشخص می*گردد و بعد هر چه گیاه به حد بلوغ نزدیک می*شود به همان نسبت نمو اندامهای کاهش می یابد. مواردی مانند سنتیتک رشد ، تروپسیم*ها ، انواع هورمونهای گیاهی و ساختار و نقش فیزیولوژیک آنها در گیاهان ، تشکیل گل و مکانیسمهای موثر بر آن و ... در بیوشیمی گیاهی بحث می*شوند. ارتباط بیوشیمی گیاهی با سایر علوم بیوشیمی گیاهی با بسیاری از علوم از جمله فیزیولوژی گیاهی ، زیست شناسی سلولی و مولکولی ، ژنتیک و بیوشیمی ارتباط دارد.