رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'نیروگاه هسته ای'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. نیروگاه گازی نیروگاه گازی به نیروگاهی می گویند که برمبنای سیکل گاز( سیکل برایتون) کارمی کند. وازسیکل های حرارتی می باشد، یعنی سیال عامل کاریک گاز است. عامل انتقال وتبدیل انرژی گازی است ،( مثلا هوا) درنیروگاه های بخارعامل انتقال : بخارمایع می باشد. نیروگاه گازی دارای توربین گازی است ،یعنی باسیکل رایتون کارمی کند.ساختمان آن درمجموع ساده است : -1 کمپرسور: وظیفه فشردن کردن هوا . 2 - اتاق احتراق : وظیفه سوزاندن سوخت درمحفظه . -3 توربین : وظیفه گرداندن ژنراتور . کمپرسور به کاررفته درنیروگاه های گازی شبیه توربین است ، دارای رتوری است که برروی این رتور پره متحرک است ، هوا به حرکت درآمده وبه پره های ساکنی برخوردکرده ، درنتیجه جهت حرکت هوا عوض شده واین هوا بازبه پره های متحرک برخورد کرده واین سیکل ادامه دارد ودرهرعمل هوا فشرده ترمی شود. کمپرسور مصرف کننده عظیم انرژی است . هوای فشرده گرم است . هوای فشرده کمپرسور وارد اتاق احتراق که دارای سوخت گازوئیل است می شود . چون هوای فشرده شده گرم است ودراتاق احتراق سوخت آتش گرفته وهوافشرده وداغ می شود. هوای داغ فشرده کارهمان بخارداغ فشرده توربین های بخار راانجام می دهد . هوای داغ فشرده رابه توربین می دهیم ؛ توربین دارای پره های متحرک وساکن است . پره های ثابت چسبیده به استاتور می باشد ؛ پره های متحرک چسبیده به رتور می باشد. حال ژنراتور رامی توان به محور وصل کرده واز ترمینال های ژنراتور می توان برق گرفت. طول نیروگاه ممکن است به m 20 است. ژنراتور را می توان به محل B ویا A متصل نمود, اما محل A بهتراست . قدرت نیروگاه های گازی از 1 M w وتا بالای 100Mw نیز ساخته می شود . نحوه راه اندازی واستارت نیروگاه چگونه است ؟ درابتدا نیاز به یک عامل خارجی است تا توربین رابه سرعت 3000 دوربرساند. حسن نیروگاه : -1 سادگی آن است –تمام آن روی یک شافت سواراست . 2 - ارزان است – چون تجهیزات آن کم است . یکی از عواملی که برروی راندمان تأثیرمی گذارداین است که هوای ورودی چه دمایی دارد. -3 سریع النصب است . -4 کوچک است . درسکوهای نفتی که نیاز به برق زیادی می باشد بایدازنیروگاه گازی استفاده کرد، تاجای کمتری بگیرد. -5 احتیاج به آب ندارد. ( درسیکل اصلی نیروگاه نیاز به آب نیست ) اما درتجهیزات جنبی نیازبه آب است برای خنک کردن هیدروژن به کاررفته جهت سردکردن ژنراتور درسرعت های بالا . -6 راه اندازی این نیروگاه سریع است . 7 - پرسنل کم . زمانی نیروگاه گازی خاموش است که دراتاق احتراق سوخت نباشد . یک نیروگاه بخار رابعد از راه اندازی نباید خاموش کرد . اما نیروگاه گازی بدین صورت است که صبح می توان روشن کردوآخرشب خاموش نمود . نیروگاه گازی بسیارمناسب برای بارپیک است ونیروگاه بخاربرای بارپیک نامناسب است . معایب : :1 آلودگی محیط زیست زیاد است . 2 : عمرآن کم است .( فرسودن توربین وکمرسور) سوخت مازوت به علت آلودگی بیشتری که نسبت به سوخت گازوئیل دارد، کمتربه کارمی رود. :3 استهلاک زیاداست . ( پره توربین ، پره کمپرسور) :4 راندمان کم است . ( مصرف سوخت آن زیاد است ) ؛ این نقیصه ای است که کشورهای اروپایی با آن مواجه اند . دلایل راندمان پایین : الف ) خروج دود بادمای زیاد ب ) حدود 3/1 توان توربین صرف کمپرسور می شود . بنابراین درنیروگاه گازی برای استفاده درازمدت اصلا جایزنیست چراکه هزینه مصرف سوخت گران است . :5 امکان استفاده ازسوخت جامد فراهم نیست . ( مانند زغال سنگ ) چراکه بلافاصله پره های روتورپرازدود می شود . نیروگاه های گازی را اگربخواهیم برای مدت طولانی استفاده کنیم ، هزینه نیروگاه گازی بالا ست . نیروگاه گازی را ازجایی استفاده کنند که امکان بهره برداری زمان بهره برداری زیر2000 ساعت باشد . اگرزمان بهره برداری بالای 2000 ساعت باشد (رسال) نیروگاه بخار اگرزمان بهره برداری درسال بالای 5000ساعت باشد ، نیروگاه آبی استفاده می شود. درکشورما برق عمده مصرفی برق خانگی است ( 60% ) وحدود 30 % برق صنعتی است . درنتیجه 50 % نیروگاه های کشورباید هرشب روشن شود ؛ بنابراین قسمت عمده برق تولیدی ماباید ازنوع نیروگاه گازی باشد. نیروگاه گازی رابه دلیل ارزانی درکارخانجات نیز می توان به کاربرد .نیروگاه گازی را درنیروگاه اتمی نیزاستفاده می شود جهت سردکردن رآکتور به کارمی رود که درنتیجه هواداغ وفشرده می شود ودرنتیجه به نیروگاه گازی داده وبرق مصرفی نیروگاه اتمی راتأمین می کنند. درنیروگاه های گازی جهت افزایش راندمان روش هایی رااتخاذ می کنند. -1 دود خروجی هوای ورودی به اتاق را گرم می کند .( سیکل پیچیده ترشده اما راندمان بالا می رود.) حالت اول : دودباهواب ورودی کمپرسورکناریکدیگرقرارداده دراین صورت راندمان تجهیزات به شدت افت می کند. حالت دوم : باروش ذیل راندمان 1 الی 2 درصدقابل افزایش است ؛ ( هوای ورودی به اتاق احتراق گرم می شود) -2 استفاده از توربین های دو مرحله ای : زیاد شدن راندمان مستلزم مخارج وصرف هزینه نیز می باشد . -2 استفاده از کمپرسور دومرحله ای هر چه دمای ورودی کمپرسور پایین ترباشد ؛ راندمان بیشتراست . بااین روش دمای ورودی کمپرسور به طورمصنوعی پایین نگه داشته می شود درمرحله L p به دلیل بالارفتن فشارهواگرم می شود که ازکولراستفاده می کنند ؛ آب سرد برروی لوله فشارهوا ریخته وهواخنک کرده آب گرم می شود وخارج می شود . بالاترین راندمان چیزیث درحدود 35% است که نیروگاه دارای کمپرسور دومرحله ای توربین دومرحله ای وپیش گرم کن می باشد. نیروگاه گازی به این معنا نیست که سوخت ان گازاست ، بلکه توربین آن گازی است وسوخت آن مایع است یا گازوئیل است که اکثرا گازوئیل است . درکشورما به دلیل زیادبودن سوخت گازوئیل ، نیروگاه گازی باسوخت گازوئیل نیروگاه گازی باسوخت گازوئیل به کار میرودومرسوم است اما درکشورهای اروپایی به دلیل زیادبودن سوخت جامد ، نیروگاه گازی به نحو دیگری طراحی شده که باسوخت جامد کارمی کند ، به این نیروگاه ها ،نیروگاه گازی سیکل بسته می گویند. هوای داغ ناشی ازاحتراق راداخل گرم کن می چرخانیم وبعد هوارابیرون می فرستیم . ملاحظه می شودکه هوای داغ ناشی از احتراق داخل توربین می شود .لذامی توان ازسوخت جامد استفاده کردکه این نوع ساده ترین نوع نیروگاه گازی سیکل بسته می باشد. می توان سیکل فوق راکامل ترکرد. اگرهوای ورودی به کمپرسورتصفیه شده باشد ، پره های توربین دارای عمرزیادی خحواهدبود. مشکل ایجاد این است که هوای خارج شده ازتوربین به دلیل تصفیه بودن بایداستفاده شود ، پس هواس خروجی ازتوربین رااستفاده می کنیم ، اما این هوا داغ است وگاز وارد کمپرسور شود راندمان افت می کند ؛ لذااز کولراستفاده می کنیم وهواراسرد می کنند . در نیروگاه گازی هرچه هوای ورودی به کمپرسور سردتر باشد، راندمان افزایش م یابد. لذا نیروگاه های گازی درزمستان راندمان بهتری دارند. محاسن نیروگاه های گازی سیکل بسته : -1 امکان استفاده ازسوخت جامد فراهم می شود. -2 عمرزیاد ( خوردگی پره ها کم است ) -3 چون سیکل بسته است ، لذاضرورت نداردکه فشارهوای خروجی توربین 1 Atm باشد، پس می توان سطح کارفشار هوارابالا برد، به جای 1 Atm از 10 Atm که چون هوای فشرده ترشده ، جای کمتری گرفته وحجم کمپرسور وتوربین درنهایت کوچک ترمی شود. معایب : -1 راندمان درمقایسه باسیکل بازکمتر است . 4 الی 5 درصد راندمان کاهش می یابد. -2 هزینه زیاداست . درسوخت مایع نیروگاه های گازی سیکل بسته ، اجازه داریم توربین رادوقسمتی بسازیم . کمپرسورهواراگرفته وداخل اتاق احتراق می سوزاند ، هوای خروجی آن راوارد گرم کن می کنیم که خود گرم کن یک سیکل بسته راتشکیل می دهد. توربین کمکی قدرت لازم ازژنراتور کوچک درقسمت توربین کمکی به کاربرد . درنیروگاه گازی سیکل بازدارای معایب زیراست : قدرت کمپرسور خیلی ازانرژی توربین رامی گیرد وهمچنین دود خروجی داغ است 3 00 C درنتیجه سوخت ایجاد شده به هدرمی رود ؛ لذا راندمان کاهش می یابد. استفاده از نیروگاه سیکل ترکیبی ( نیروگاه گازی درکنار نیروگاه بخار( هوای گرم خروجی ازتوربین رابال اضافه کردن اکسیژن به آن به طرف بویل نیروگاه بخار برده می شود . راندمان این قبیل نیروگاه ها50 % می باشد.
  2. استفاده از انرژي هسته‌اي براي توليد برق روشي پيچيده اما كارامد براي تامين انرژي مورد نياز بشر است. به طور كلي براي بهره‌برداري از انرژي هسته‌اي در نيروگاه‌هاي هسته‌اي، از عنصر اورانيوم غني شده به عنوان سوخت در راكتورهاي هسته‌اي استفاده مي‌شود كه ماحصل عملكرد نيروگاه، انرژي الكتريسته است. عنصر اورانيوم كه از معادن استخراج مي‌شود به صورت طبيعي در راكتورهاي نيروگاه‌ها قابل استفاده نيست و به همين منظور بايد آن را به روشهاي مختلف به شرايط ايده عال براي قرار گرفتن درون راكتور آماده كرد. ◄ اورانيوم: اورانيوم يكي از عناصر شيميايي جدول تناوبي است كه نماد آن ‪u‬و عدد اتمي آن ‪۹۲‬است. اين عنصر داراي دماي ذوب هزار و ‪۴۵۰‬درجه سانتيگراد بوده و به رنگ سفيد مايل به نقره‌اي، سنگين، فلزي و راديواكتيو است و به رغم تصور عام، فراواني آن در طبيعت حتي از عناصري از قبيل جيوه، طلا و نقره نيز بيشتر است. عنصر اورانيوم در طبيعت داراي ايزوتوپهاي مختلف از جمله دو ايزوتوپ مهم و پايدار اورانيوم ‪۲۳۵‬و اورانيوم ‪۲۳۸‬است. براي درك مفهوم ايزوتوپهاي مختلف از هر عنصر بايد بدانيم كه اتم تمامي عناصر از سه ذره اصلي پروتون، الكترون و نوترون ساخته مي‌شوند كه در تمامي ايزوتوپهاي مختلف يك عنصر، تعداد پروتونهاي هسته اتمها با هم برابر است و تفاوتي كه سبب بوجود آمدن ايزوتوپهاي مختلف از يك عنصر مي‌شود، اختلاف تعداد نوترونهاي موجود در هسته اتم است. به طور مثال تمامي ايزوتوپهاي عنصر اورانيوم در هسته خود داراي ‪۹۲‬ پروتون هستند اما ايزوتوپ اورانيوم ‪۲۳۸‬در هسته خود داراي ‪۱۴۶‬نوترون (‪ (۹۲+۱۴۶=۲۳۸‬و ايزوتوپ اورانيوم ‪۲۳۵‬داراي ‪۱۴۳‬نوترون(‪ (۹۲+۱۴۳=۲۳۵‬در هسته خود است. اورانيوم ‪۲۳۵‬مهمترين ماده مورد نياز راكتورهاي هسته‌اي(براي شكافته شدن و توليد انرژي) است اما مشكل كار اينجاست كه اورانيوم استخراج شده از معدن تركيبي از ايزوتوپهاي ‪۲۳۸‬و ‪۲۳۵‬بوده كه در اين ميان سهم ايزوتوپ ‪۲۳۵‬بسيار اندك(حدود ‪۰/۷‬درصد) است و به همين علت بايد براي تهيه سوخت راكتورهاي هسته‌اي به روشهاي مختلف درصد اوانيوم ‪۲۳۵‬را در مقايسه با اورانيوم ‪۲۳۸‬بالا برده و بسته به نوع راكتور هسته‌اي به ‪۲‬تا ‪۵‬درصد رساند و به اصطلاح اورانيوم را غني‌سازي كرد. کانسارهاي اورانيوم مقدمه اورانيوم (u) عنصري است راهبردي و مصارف عمده آن در نيروگاههاي اتمي و سلاحهاي هسته‌اي و به مقدار جزئي، مصارف دارويي و پژوهشي دارد. در فرايند تشکيل کانيهاي مختلف از ماگما، به دليل بزرگ بودن شعاع يوني اورانيوم، اين عنصر در مراحل اوليه تبلور ماگما، نمي‌تواند وارد شبکه هيچ يک از کانيها شود و تا مراحل آخر ماگما باقي مي‌ماند، بنابراين اورانيوم بيشتر در سنگهاي اسيدي متمرکز مي‌شود، ميزان فراواني اوراينوم در کانيهايي مثل زيرکون،مونازيت،زينوتيومحداکثر و دراليوين حداقل ممکن است. اورانينيت و پيچ بلند، مهمترين کانيهاي محيط احيايي هستند. کارنوتيت، مهمترين کاني محيط اکسيدان است.
  3. am in

    انرژی هسته ای

    مقدمه از مهمترین منابع استفاده صلح آمیز ازانرژی اتمی، ساخت راکتورهای هسته‌ای جهت تولید برق می‌باشد. راکتور هسته‌ای وسیله‌ای است که در آن فرآیندشکافت هسته‌ای بصورتکنترل شدهانجام می‌گیرد. در طی این فرآیندانرژی زیاد آزاد می‌گردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از 1500 تن زغال سنگ بدست می‌آید. هم اکنون در سراسر جهان ،راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و بهمنظور تبدیل آن به انرژی الکتریکی ، پاره‌ای برای راندنکشتیهاوزیردریائیها، برخی برایتولید رادیو ایزوتوپوپهاو تحقیقات علمی وگونه‌هایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار می‌گیرند. درراکتورهای هسته‌ای که برای نیروگاههای اتمی طراحی شده‌اند (راکتورهای قدرت) ، اتمهای اورانیوم وپلوتونیم توسط نوترونها شکافته می‌شوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخارحاصله برای چرخاندن توربینهای مولد برق بکار گرفته می‌شوند. انواع راکتور اتمی راکتورهای اتمیرا معمولا برحسب خنک کننده ،کند کننده ، نوع و درجه غنای سوخت در آن طبقه بندی می‌کنند. معروفترین راکتورهایاتمی ، راکتورهایی هستند که ازآب سبکبه عنوان خنک کننده و کند کننده واورانیوم غنی شده (2 تا 4 درصد235U) به عنوان سوخت استفاده می‌کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک (LWR) شناخته می‌شوند. راکتورهای PWR، BWRو WWERاز این دسته‌اند. نوع دیگر ،راکتورهایی هستند که از گاز به عنوان خنک کننده ، گرافیت به عنوان کند کننده واورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می‌کنند. این راکتورها به گاز- گرافیت معروفند. راکتورهای GCR، AGRو HTGRاز این نوعمی‌باشند. راکتور PHWRراکتوری است که ازآب سنگینبه عنوان کند کننده و خنک کننده واز اورانیوم طبیعی به عنوان سوخت استفاده می‌کند. نوع کانادایی این راکتور به CANDUموسوم بوده و از کارایی خوبی برخوردار می‌باشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایعبه عنوان خنک کننده استفاده کرده و فاقد کند کننده می‌باشد) LWGR (راکتوریکه از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می‌کند) از فراوانی کمتری برخوردار می‌باشند. در حال حاضر ، راکتورهای PWRو پس ازآن به ترتیب PHWR، WWER، BWRفراوانترین راکتورهای قدرت درحال کار جهان می‌باشند.
  4. soheiiil

    نیروگاه هسته ای

    نیروگاه هسته‌ای نیروگاه هسته‌ای قسمتی از تأسیسات هسته‌ای است که بر مبنای تکنولوژی هسته‌ای با کنترل فرآیند شکافت هسته‌ای و گرمای تولیدی از آن اقدام به تولید انرژی الکتریکی می‌کند. کنترل انرژی هسته‌ای با حفظ تعادل در فرآیند شکافت هسته‌ای همراه است که با استفاده از گرمای تولیدی و جوش آوردن آب (مانند بیشتر نیروگاه‌های گرمایی) اقدام به چرخاندن توربین‌های بخار می‌کند. منشا انرژی هسته‌ای در ابتدا به وسیله یک دانشمند با نام انریکو فرمی (Enrico Fermi) در سال ۱۹۳۴ در یک آزمایشگاه شناخته شد. این اتفاق زمانی رخ داد که تیم او مشغول بمباران کردن هسته اورانیوم با نوترون بودند. در ۱۹۳۸ زمانیکه دو شیمیدان آلمانی و دو فیزیکدان اتریشی در حال آزمایش بر روی اورانیوم بمباران شده بودند متوجه شدند که نوترون شلیک شده می‌تواند یک نتیجه باورنکردنی داشته باشد و هسته اورانیوم را به دو یا چند قسمت تقسیم کند. بعدها دانشمندان زیادی (که لیو زیلارد «Leo Szilard» اولین آنها بود) متوجه شدند که از آنجایی که در یک شکافت هسته‌ای تعدادی نوترون در فضا پخش می‌شوند می‌تواند یک واکنش زنجیره‌ای را از این قابلیت به وجود آورد. این کشف دانشمندان را در برخی کشورها (از جمله ایالات متحده, انگلستان, فرانسه, آلمان و اتحاد جماهیر شوروی) بر آن داشت تا از دولت‌های خود برای ادامه تحقیقات در این زمینه درخواست پشتیبانی مالی کنند. در ایالات متحده فرمی و زیلارد که هر دو به این کشور مهاجرت کرده بودند, تلاش‌هایی را برای ساخت اولین راکتور هسته‌ای ساخته دست بشر آغاز کردند (که با نام Chicago Pile-۱ شناخته شده‌است) که با فوریت تمام در ۲ دسامبر ۱۹۴۲ به بهره‌برداری رسید. این کار بعدها به بخشی از پروژه منهتن (Manhattan Project - اولین پروژه سری برای دستیابی به بمب هسته‌ای) تبدیل شد. در این پروژه راکتورهای بزرگی را برای دستیابی به پلوتونیم و استفاده از آن در سلاح هسته‌ای در هانفورد واشنگتون راه‌اندازی کردند. پس از جنگ جهانی دوم ترس از اینکه تحقیقات هسته‌ای می‌تواند باعث اتشار دانش هسته‌ای و در نتیجه سلاح هسته‌ای شود باعث شد تا دولت ایلات متحده کنترل‌های سخت‌گیرانه‌ای در مورد تحقیقات هسته‌ای اعمال کند و بطور کلی بیشتر تحقیقات هسته‌ای بر روی اهداف نظامی متمرکز شوند. در ۲۰ دسامبر ۱۹۵۱ برای اولین بار در یک پایگاه آزمایشگاهی با نام EBR-I از راکتور هسته‌ای برای تولید انرژی الکتریکی (در حدود ۱۰۰ کیلووات) استفاده شد. سال‌های آغازین در ۱۹۵۴ لویس اسراوس (Lewis Strauss) و پس از آن چیرمن رییس کمسیون انرژی اتمی ایالات متحده درباره تولید انرژی الکتریکی به وسیله انرژی هسته‌ای گفتگوهایی را انجام دادند و در رابطه با تولید انرژی الکتریکی ارزان‌تر مطالبی را شرح دادند. اما مسئولین آن زمان ایالات متحده بدلیل بد گمانی درباره انرژی هسته‌ای بیشتر تمایل داشتند تا از همجوشی هسته‌ای برای این کار استفاده کنند و بنابراین فرصت را از دست دادند. سرانجام در ۲۷ ژوئن ۱۹۵۴ اولین نیروگاه هسته‌ای جهان در اتحاد جماهیر شوروی به بهره‌برداری رسید. این نیروگاه توانی در حدود ۵ مگاوات تولید می‌کرد. در ۱۹۵۶ اولین نیروگاه بزرگ هسته‌ای جهان در انگلستان به بهره‌برداری رسید که توانی در حدود ۵۰ مگاوات تولید می‌کرد. اولین سازمانی که شروع به توسعه دانش هسته‌ای کرد نیروی دریایی ایالات متحده بود که در نظر داشت از انرژی هسته‌ای به عنوان سوخت زیردریایی‌ها و ناوهای هواپیمابر استفاده کند. عملکرد مناسب این سازمان و پافشاری دریاسالار هیمن ریکاور باعث شد تا سر انجام اولین زیردریایی اتمی جهان با نام ناتیلوس (USS Nautilus) در دسامبر ۱۹۵۴ به آب انداخته شود. --------------------------- پیشرفت با راه‌اندازی اولین نیروگاه‌های هسته‌ای استفاده از این نیروگاه‌ها شتاب گرفت به طوری که استفاده از برق هسته‌ای از کمتر از ۱ گیگاوات در دهه ۱۹۶۰ به بیش از ۱۰۰ گیگاوات در دهه ۱۹۷۰ و نزدیک به ۳۰۰ گیگاوات در اواخر دهه ۱۹۸۰ رسید. البته در اواخر دهه ۱۹۸۰ از شتاب رشد استفاده از برق هسته‌ای به شدت کاسته شد و به این ترتیب به حدود ۳۶۶ گیگاوات در سال ۲۰۰۵ رسید که بیشترین گسترش پس از دهه ۱۹۸۰ مربوط به جمهوری خلق چین است. باید به این نکته نیز اشاره کرد که بیش از دو سوم از طرح‌های مربوط به احداث نیروگاه هسته‌ای که شروع اجرای آنها پس از ۱۹۷۰ بود, لغو شدند. در طول دهه‌های ۱۹۷۰ و ۱۹۸۰ کاهش قیمت سوخت‌های فسیلی و افزایش قیمت ساخت یک نیروگاه هسته‌ای از تمایل دولت‌ها برای ساخت نیروگاه هسته‌ای به شدت کاست. البته بحران سوخت ۱۹۷۳ باعث شد تا کشورهایی مانند فرانسه و ژاپن که از منابع نفت زیادی برخوردار نیستند به فکر ساخت نیروگاه‌های هسته‌ای بیشتری بیفتند به طوری که این دو کشور به ترتیب ۸۰٪ و ۳۰٪ از انرژی الکتریکی حال حاضر خود را از این منابع تامین می‌کنند. در سی سال انتهایی قرن بیستم ترس از حوادث هسته‌ای مانند فاجعه چرنوبیل در ۱۹۸۶, مشکلات مربوط به دفع زباله‌های هسته‌ای, بیماری‌های ناشی از تششع هسته‌ای و... باعث به وجود آمدن جنبش‌هایی برای مقابله با توسعه نیروگاه‌های هسته‌ای شد و این خود از دلایل کاهش توسعه نیروگاه‌های هسته‌ای در بسیاری از کشورها بود. آیندهتا سال ۲۰۰۷ آخرین راکتور هسته‌ای مورد بهره‌برداری قرار گرفته در ایالات متحده Watts Bar ۱ بود که در ۱۹۹۵ به شبکه متصل شد و این مدرک محکمی بر موفقیت تلاش‌های زد گسترش نیروگاه‌های هسته‌ای است. با این حال تلاش‌ها در برابر گسترش نیروگاه‌های هسته‌ای تنها در برخی کشورهای اروپایی, فیلیپین, نیوزیلند و ایالات متحده موفق بوده‌است و در عین حال در این کشورها نیز این جنبش‌ها نتوانستند تحقیقات هسته‌ای را متوقف کنند و در این کشورها نیز تحقیقات مربوط به انرژی هسته‌ای ادامه دارد. برخی کارشناسان پیش‌بینی می‌کنند که نیاز روز افزون به منابع انرژی, افزایش قیمت سوخت و بحران افزایش دمای زمین در اثر استفاده از سوخت‌های فسیلی باعث شود که بقیه کشورها نیز به سوی استفاده از نیروگاه‌های هسته‌ای روی آورند و همچنین باید یادآوری کرد که با پیشرفت تکنولوژی هسته‌ای, امروزه امکان بروز فجایج هسته‌ای بسیار کمتر شده. با تمام مخالفت‌ها, بسیاری از کشورها در گسترش نیروگاه‌های هسته‌ای ثابت قدم بوده‌اند از جمله این کشورها می‌توان به ژاپن, چین و هند اشاره کرد. در بسیاری از کشورهای دیگر جهان نیز طرح‌های وسیعی برای گسترش استفاده از انرژی هسته‌ای در حال تدوین است. تکنولوژی راکتور هسته‌ای ا بتدا سخنی چند در مورد راکتور هسته ای """"" واکنشگاه هسته‌ای یا رآکتور اتمی دستگاهی برای انجام واکنشهای هسته‌ای بصورت تنظیم شده و تحت کنترل است. این دستگاه در اندازه‌های آزمایشگاهی، برای تولید ایزوتوپهای ویژه مواد پرتوزا (رادیواکتیو) و همینطور پرتو-داروها برای مصارف پزشکی و آزمایشگاهی، و در اندازه‌های صنعتی برای تولید برق ساخته می‌شوند. واکنشهای هسته‌ای به دو صورت شکافت و همجوشی، بسته به نوع مواد پرتوزا استفاده شده انجام میگیرند. واکنشگاه‌ها بسته به اینکه چه نوع کاربردی داشته باشند از یکی از این دو نوع واکنش بهره می‌گیرند. در واکنشگاه دو میله ماده پرتوزا یکی به‌عنوان سوخت و دیگری به‌عنوان آغازگر بکار می‌رود. میزان این دو ماده بسته به نوع واکنش، اندازه واکنشگاه و نوع فراورده نهایی بدقت محاسبه و کنترل می‌شود. در واکنشگاه هسته‌ای همیشه دو عنصر پرتوزا به یک یا چند عنصر پرتوزا دیگر تبدیل می‌شوند که این عناصر بدست آمده یا مورد مصرف صنعتی یا پزشکی دارند و یا بصورت پسماند هسته‌ای نابود می‌شوند. حاصل این فرایند مقادیر زیادی انرژی است که بصورت امواج اتمی والکترومغناطیس آزاد می‌گردد. این امواج شامل ذرات نوترینو، آلفا، بتا، پرتو گاما، امواج نوری و فروسرخ است که باید بطور کامل کنترل شوند. امواج آلفا، بتا و گامای تولیدی توسط واکنش هسته‌ای به‌عنوان محرک برای ایجاد واکنشهای هسته‌ای دیگر در رآکتورهای مجاور برای تولید ایزوتوپهای ویژه بکار میروند. انرژی گرمایشی حاصل از این واکنش و تبدیل این عناصر پرتوزا در واکنشگاه‌های صنعتی برای تولید بخار آب و تولید برق بکار می‌رود. برای نمونه انرژی حاصل از واکنش یک گرم اورانیوم معادل انرژی گرمایشی یک میلیون لیتر نفت خام است. قابل تصور است که این میزان انرژی با توجه به سطح پایداری ماده پرتوزا در واکنشهای هسته‌ای تا چه میزان مقرون به صرفه خواهد بود. با این حال مشکلات استخراج، آماده سازی، نگهداری و ترابری مواد پرتوزای بکار رفته در واکنشگاه‌های تولید برق و دشواری‌های زیستبومی که این واکنشگاه‌ها ایجاد می‌کنند باعث عدم افزایش گرایش بشر به تولید برق از طریق این انرژی شده است. باید توجه داشت که میزان تابش در اطراف واکنشگاه‌های هسته‌ای به اندازه‌ای بالاست که امکان زیست برای موجودات زنده در پیرامون واکنشگاه‌ها وجود ندارد. به همین دلیل برای هریک از رآکتورهای هسته‌ای پوششهای بسیار ضخیمی از بتن همراه با فلزات سنگین برای جلوگیری از نشت امواج الکترومغناطیس به بیرون ساخته می‌شود. بدون این پوششها تا کیلومترها پیرامون واکنشگاه، سکونت‌پذیر برای موجودات زنده نخواهد بود. مشکلاتی که نشت مواد پرتوزا از واکنشگاه نیروگاه اتمی چرنوبیل در دهه ۸۰ میلادی بوجود آورد خود گواهی بر این مدعاست. کاربرد تابش‌های پرتوزا بسیاری از محصولات تولیدی واکنش شکافت هسته‌ای شدیدا ناپایدارند و در نتیجه، قلب راکتور محتوی مقادیر زیادی نوترون پر انرژی، پرتوهای گاما، ذرات بتا وهمچنین ذرات دیگر است. هر جسمی که در راکتور گذاشته شود، تحت بمباران این همه تابشهای متنوع قرار می‌گیرد. یکی از موارد استعمال تابش راکتور تولید پلوتaaونیوم ۲۳۹ است .این ایزوتوپ که نیمه عمری در حدود ۲۴۰۰۰ سال دارد به مقدار کمی در زمین یافت می‌شود. پلوتونیوم ۲۳۹ از لحاظ قابلیت شکافت خاصیتی مشابه اورانیوم دارد. برای تولید پلوتونیوم ۲۳۹، ابتدا اورانیوم ۲۳۸ را در قلب راکتور قرار می‌‌دهند که در نتیجه واکنش‌هایی که صورت می‌‌گیرد اورانیوم ۲۳۹ بوجود می‌‌آید. اورانیوم ۲۳۹ ایزوتوپی ناپایدار است که با نیمه عمری در حدود ۲۴ دقیقه، از طریق گسیل ذره بتا، به نپتونیوم ۲۳۹ تبدیل می‌شود. نپتونیوم ۲۳۹ نیز با نیمه عمر ۲/۴ روز و گسیل ذره بتا واپاشیده و به محصول نهایی یعنی پلوتونیوم ۲۳۹ تبدیل می‌شود. در این حالت پلوتونیوم ۲۳۹ همچنان با مقادیری اورانیوم ۲۳۸ آمیخته است اما این آمیزه چون از دو عنصر مختلف تشکیل شده است، بروش شیمیایی قابل جدا سازی است. امروزه با استفاده از تابش راکتور صدها ایزوتوپ مفید می‌توان تولید کرد که بسیاری از این ایزوتوپ‌های مصنوعی را در پزشکی بکار میبریم. آثار زیانبار انفجارهای اتمی و تشعشعات ناشی از آن باعث آلودگی آبهای زیرزمینی، زمین‌های کشاورزی و حتی محصولات کشاورزی می‌شود ولی با همه این مضرات اورانیوم عنصری است ارزشمند، زیرا در کنار همه سواستفاده‌ها می‌‌توان از آن به نحوی احسن و مطابق با معیارهای بشر دوستانه استفاده نمود. فراموش نکنید از اورانیوم و پلوتونیوم می‌‌توان استفاده‌های صلح آمیز نیز داشت چرا که از انرژی یک کیلوگرم اورانیوم ۲۳۵ می‌‌توان چهل هزار کیلو وات ساعت الکتریسیته تولید کرد که معادل مصرف ده تن ذغال سنگ یا ۵۰۰۰۰ گالن نفت است. برگرفته از «[Hidden Content]% D8%AA%D9%87%E2%80%8C%D8%A7%DB%8C»""""""""""""""""""" ---------------------------- و اکنون در مورد نیروگاه هسته ای تمامی نیروگاه‌های گرمایی متداول از نوعی سوخت برای تولید گرما استفاده می‌کنند برای مثال گاز طبیعی, زغال سنگ یا نفت. در یک نیروگاه هسته‌ای این گرما از شکافت هسته‌ای که در داخل راکتور صورت می‌گیرد تامین می‌شود. هنگامی که یک هسته نسبتاً بزرگ قابل شکافت مورد برخورد نوترون قرار می‌گیرد به دو یا چند قسمت کوچک‌تر تقسیم می‌شود و در این فرآیند که به آن شکافت هسته‌ای می‌گویند تعدادی نوترون و مقدار نسبتاً زیادی انرژی آزاد می‌شود. نوترون‌های آزاد شده از یک شکافت هسته‌ای در مرحله بعد خود با برخورد به دیگر هسته‌ها موجب شکافت‌های دیگری می‌شوند و به این ترتیب یک فرآیند زنجیره‌ای به وجود می‌آید. زمانی که این فرآیند زنجیره‌ای کنترل شود می‌توان از انرژی آزاد شده در هر شکافت (که بیشتر آن به صورت گرماست) برای تبخیر آب و چرخاندن توربین‌های بخار و در نهایت تولید انرژی الکتریکی استفاده کرد. در صورتی که در یک راکتور از سوختی یکنواخت اورانیوم-۲۳۵ یا پلوتونیوم-۲۳۹ استفاده شود بر اثر افزایش غیرقابل کنترل تعداد شکافت‌های هسته‌ای بر اثر فرآیند زنجیره‌ای, انفجار هسته‌ای ایجاد می‌شود. اما فرآیند زنجیره‌ای موجب ایجاد انفجار هسته‌ای در یک راکتور نخواهد شد چراکه تعداد شکافت‌های راکتور به اندازه‌ای زیاد نخواهد بود که موجب انفجار شوند و این به دلیل درجه غنی سازی پایین سوخت راکتورهای هسته‌ای است. اورانیوم طبیعی دارای درصد اندکی (کمتر از ۱٪) از اورانیوم-۲۳۵ است و بقیه آن اورانیوم-۲۳۸ است. اکثر راکتورها نیروگاه‌های هسته‌ای از اورانیوم با درصد غنی‌سازی بین ۳٪ تا ۴٪ استفاده می‌کنند اما برخی از آنها طوری طراحی شده‌اند که با اورانیوم طبیعی کار کنند و برخی از آنها نیز به سوخت‌های با درصد غنی‌سازی بالاتر نیاز دارند. راکتورهای موجود در زیردریایی‌های هسته‌ای و کشتی‌های بزرگ مانند ناوهای هواپمابر معمولاً از اورانیوم با درصد غنی‌سازی بالا استفاده می‌کنند. با اینکه قیمت اورانیوم با غنی‌سازی بالاتر بیشتر است اما استفاده از این نوع سوخت‌ها دفعات سوختگیری را کاهش می‌دهد و این قابلیت برای کشتی‌های نظامی بسیار پر اهمیت است. راکتورهای CANDU قابلیت دارند تا از اورانیوم غنی‌نشده استفاده کنند و دلیل این قابلیت استفاده آب سنگین به جای آب سبک برای تعدیل سازی و خنک کنندگی است چراکه آب سنگین مانند آب سبک نترون‌ها را جذب نمی‌کند. کنترل فرآیند شکافت زنجیره‌ای با استفاده از موادی که می‌توانند نوترون‌ها را جذب کنند (در اکثر موارد کادمیوم) ممکن می‌شود. سرعت نوترون‌ها در راکتور باید کاهش یابد چراکه احتمال اینکه یک نوترون با سرعت کمتر در لحظه تصادم با هسته اورانیوم-۲۳۵ موجب شکافت هسته‌ای گردد بیشتر است. در راکتورهای آب سبک از آب معمولی برای کم کردن سرعت نوترون‌ها و همچنین خنک کردن راکتور استفاده می‌شود.‍ اما زمانی که دمای آب افزایش می‌یابد چگالی آب کاهش می‌یابد و تعداد سرعت کمتری نوترون به اندازه کافی کم می‌شود و به این ترتیب تعداد شکافت‌های کاهش می‌یابند بنابراین یک بازخور (فیدبک) منفی همیشه ثبات سیستم را تثبیت می‌کند. در این حالت برای آنکه بتوان دوباره تعداد شکافت‌های صورت گرفته را افزایش داد باید دمای آب را کاهش داد --------------------------------------------------- چرخه سوخت هسته‌ای شکافت هسته‌ای صورت گرفته در یک راکتور فقط بخشی از یک چرخه هسته‌ای است. این چرخه از معادن شروع می‌شود. اورانیوم استخراج شده از معدن معمولاً فرمی پایدار و فشرده مانند کیک زرد دارد. این اورانیوم معدنی به تأسیسات فرآوری فرستاده می‌شود و در آنجا کیک زرد به هگزافلوراید اورانیوم (که پس از غنی سازی به عنوان سوخت راکتورها مورد استفاده قرار می‌گیرد) تبدیل می‌گردد. در این مرحله درجه غنی‌سازی اورانیوم یعنی درصد اورانیوم-۲۳۵ در حدود ۰٫۷٪ است. در صورت نیاز بسته به نوع سوخت نیروگاه (درصد غنی سازی لازم برای سوخت نیروگاه) اورانیوم غنی سازی شده و سپس از آن برای تولید میل‌های سوختی مورد استفاده در نیروگاه (شکل میله‌ها در نیروگاه‌های مختلف متفاوت است) استفاده می‌کنند. عمر هر میل تقریباً سه سال است به طوری که حدود ۳٪ از اورانیوم موجود در آن مورد مصرف قرار گیرد. پس از گذشت امر اورانیوم, آن را به حوضچه سوخت مصرف شده می‌برند. اورانیوم باید حداقل ۵ سال در این حوضچه‌ها باقی بماند تا ایزوتوپ‌های به وجود آمده در اثر شکافت هسته‌ای از آن جدا شوند. پس از گذشت این زمان اورانیوم را در بشکه‌های خشک انبار می‌کنند و یا اینکه دوباره آن را به چرخه سوخت باز می‌گردانند. چرخه سوخت هسته‌ای شکافت هسته‌ای صورت گرفته در یک راکتور فقط بخشی از یک چرخه هسته‌ای است. این چرخه از معادن شروع می‌شود. اورانیوم استخراج شده از معدن معمولاً فرمی پایدار و فشرده مانند کیک زرد دارد. این اورانیوم معدنی به تأسیسات فرآوری فرستاده می‌شود و در آنجا کیک زرد به هگزافلوراید اورانیوم (که پس از غنی سازی به عنوان سوخت راکتورها مورد استفاده قرار می‌گیرد) تبدیل می‌گردد. در این مرحله درجه غنی‌سازی اورانیوم یعنی درصد اورانیوم-۲۳۵ در حدود ۰٫۷٪ است. در صورت نیاز بسته به نوع سوخت نیروگاه (درصد غنی سازی لازم برای سوخت نیروگاه) اورانیوم غنی سازی شده و سپس از آن برای تولید میل‌های سوختی مورد استفاده در نیروگاه (شکل میله‌ها در نیروگاه‌های مختلف متفاوت است) استفاده می‌کنند. عمر هر میل تقریباً سه سال است به طوری که حدود ۳٪ از اورانیوم موجود در آن مورد مصرف قرار گیرد. پس از گذشت امر اورانیوم, آن را به حوضچه سوخت مصرف شده می‌برند. اورانیوم باید حداقل ۵ سال در این حوضچه‌ها باقی بماند تا ایزوتوپ‌های به وجود آمده در اثر شکافت هسته‌ای از آن جدا شوند. پس از گذشت این زمان اورانیوم را در بشکه‌های خشک انبار می‌کنند و یا اینکه دوباره آن را به چرخه سوخت باز می‌گردانند. منابع سوخت میزان اورانیوم موجود در پوسته زمین نسبتاً‌ زیاد است به طوری که با منابع فلزاتی همچون قلع و ژرمانیوم برابری می‌کند و تقریباً ۳۵ برابر میزان نقره موجود در پوسته زمین است. اورانیوم ماده تشکیل دهنده بسیاری از اجسام اطراف ما مانند سنگ‌ها و خاک است. طبق آمارگیری جهانی معادن شناخته شده جهان در حال حاضر برای تامین بیش از ۷۰ سال انرژی الکتریکی جهان کافی هستند. بهای متوسط اورانیوم در حال حاضر ۱۳۰ دلار به ازای هر کیلوگرم است. به این ترتیب ثبات تامین سوخت هسته‌ای از بسیاری از دیگر مواد معدنی بیشتر است. به تناسب دیگر مواد معدنی با افزایش دو برابری هزینه تامین سوخت, می‌توان به ده برابر منابع کنونی اورانیوم دست یافت. باید توجه داشت که قیمت تامین سوخت در یک نیروگاه هسته‌ای نسبت به دیگر تجهیزات موجود نسبتاً اندک است و بنابراین چند برابر شدن قیمت اورانیوم تأثیر چندانی بر روی قیمت انرژی الکتریکی تولیدی نخواهد داشت. برای مثال افزایش دو برابری در قیمت سوخت مصرفی یک نیروگاه هسته‌ای آب سبک هزینه راکتورها را در حدود ۲۶٪ و هزینه برق تولیدی را در حدود ۷٪ افزایش می‌دهد در حالی که افزایش دوبرابری قیمت سوخت در یک نیروگاه گازی قیمت برق تولیدی را تا ۷۰٪ افزایش می‌دهد. نیروگاه‌های آب سبک موجود در استفاده از سوخت هسته‌ای بهره‌وری پایینی دارند چراکه تنها قابلیت ایجاد شکافت هسته‌ای در ایزوتوپ‌های اورانیوم-۲۳۵ (حدود ۰٫۷٪ از اورانیوم معدنی) را دارند. در مقابل راکتورهای متداول آب سبک برخی راکتورهای هسته‌ای می‌توانند از اورانیوم-۲۳۸ استفاده نیز استفاده کنند که حدود ۹۹٫۳٪ از اورانیوم معدنی معدنی را تشکیل می‌دهد. قبل از استفاده از اورانیوم-۲۳۸ در طی فرآیندی از آن برای تولید پلوتونیم-۲۳۸ استفاده می‌کنند و سپس از پلوتونیم در راکتورهای هسته‌ای مورد استفاده قرار می‌گیرد. طبق برآیند گرفته شده با مصرف کنونی نیروگاه‌های جهان اورانیوم-۲۳۸ می‌تواند برای ۵ میلیون سال انرژی مورد نیاز این نیروگاه‌ها را تامین کند. این تکنولوژی در بسیاری از راکتورهای هسته‌ای مورد استفاده قرار گرفته, اما هزینه بالای فرابری سوخت این نیروگاه‌ها (۲۰۰ دلار به ازای هر کیلو) استفاده از آنها را با مشکل مواجه کرده. تا سال ۲۰۰۵ تنها در راکتور نیروگاه BN-۶۰۰ در «بلویارسک» روسیه از این تکنولوژی برای تولید برق استفاده شده بود, که البته روسیه برنامه‌ریزی‌های مربوط به ساخت نیروگاه دیگری از این نوع با نام BN-۸۰۰ را انجام داده‌است. ژاپن نیز قصد دارد تا پروژه راکتور Monju را مجدداً شروع کند (این پروژه از سال ۱۹۹۵ تعطیل شده‌است) و همچنین چین و هند نیز قصد دارند تا از این تکنولوژی برای سوخت‌رسانی به راکتورها استفاده کنند. راه حل دیگری که در این زمینه وجود دارد استفاده از اورانیوم-۲۳۳ است که از توریم به دست می‌آید. توریم حدوداً ۳٫۵ برابر بیشتر از اورانیوم در پوسته زمین وجود دارد و پراکندگی جغرافیایی متفاوتی نسبت به اورانیوم دارد. استفاده از این ماده می‌تواند میزان منابع سوخت‌های شکافت یافتنی را تا ۴۵۰٪ افزایش دهد. برعکس اورانیوم-۲۳۸ که برای مصرف آن را باید به صورت پلوتنیوم-۲۳۸ درآورد, اورانیوم-۲۳۳ نیازی به تبدیل ندارد. در حال حاضر کشور هند علاقه زیادی برای استفاده از این روش دارد چراکه این کشور دارای معادن بسیار زیاد توریم است درحالی که معادن اورانیوم این کشور اندک هستند میزان اورانیوم موجود در پوسته زمین نسبتاً‌ زیاد است به طوری که با منابع فلزاتی همچون قلع و ژرمانیوم برابری می‌کند و تقریباً ۳۵ برابر میزان نقره موجود در پوسته زمین است. اورانیوم ماده تشکیل دهنده بسیاری از اجسام اطراف ما مانند سنگ‌ها و خاک است. طبق آمارگیری جهانی معادن شناخته شده جهان در حال حاضر برای تامین بیش از ۷۰ سال انرژی الکتریکی جهان کافی هستند. بهای متوسط اورانیوم در حال حاضر ۱۳۰ دلار به ازای هر کیلوگرم است. به این ترتیب ثبات تامین سوخت هسته‌ای از بسیاری از دیگر مواد معدنی بیشتر است. به تناسب دیگر مواد معدنی با افزایش دو برابری هزینه تامین سوخت, می‌توان به ده برابر منابع کنونی اورانیوم دست یافت. باید توجه داشت که قیمت تامین سوخت در یک نیروگاه هسته‌ای نسبت به دیگر تجهیزات موجود نسبتاً اندک است و بنابراین چند برابر شدن قیمت اورانیوم تأثیر چندانی بر روی قیمت انرژی الکتریکی تولیدی نخواهد داشت. برای مثال افزایش دو برابری در قیمت سوخت مصرفی یک نیروگاه هسته‌ای آب سبک هزینه راکتورها را در حدود ۲۶٪ و هزینه برق تولیدی را در حدود ۷٪ افزایش می‌دهد در حالی که افزایش دوبرابری قیمت سوخت در یک نیروگاه گازی قیمت برق تولیدی را تا ۷۰٪ افزایش می‌دهد. نیروگاه‌های آب سبک موجود در استفاده از سوخت هسته‌ای بهره‌وری پایینی دارند چراکه تنها قابلیت ایجاد شکافت هسته‌ای در ایزوتوپ‌های اورانیوم-۲۳۵ (حدود ۰٫۷٪ از اورانیوم معدنی) را دارند. در مقابل راکتورهای متداول آب سبک برخی راکتورهای هسته‌ای می‌توانند از اورانیوم-۲۳۸ استفاده نیز استفاده کنند که حدود ۹۹٫۳٪ از اورانیوم معدنی معدنی را تشکیل می‌دهد. قبل از استفاده از اورانیوم-۲۳۸ در طی فرآیندی از آن برای تولید پلوتونیم-۲۳۸ استفاده می‌کنند و سپس از پلوتونیم در راکتورهای هسته‌ای مورد استفاده قرار می‌گیرد. طبق برآیند گرفته شده با مصرف کنونی نیروگاه‌های جهان اورانیوم-۲۳۸ می‌تواند برای ۵ میلیون سال انرژی مورد نیاز این نیروگاه‌ها را تامین کند. این تکنولوژی در بسیاری از راکتورهای هسته‌ای مورد استفاده قرار گرفته, اما هزینه بالای فرابری سوخت این نیروگاه‌ها (۲۰۰ دلار به ازای هر کیلو) استفاده از آنها را با مشکل مواجه کرده. تا سال ۲۰۰۵ تنها در راکتور نیروگاه BN-۶۰۰ در «بلویارسک» روسیه از این تکنولوژی برای تولید برق استفاده شده بود, که البته روسیه برنامه‌ریزی‌های مربوط به ساخت نیروگاه دیگری از این نوع با نام BN-۸۰۰ را انجام داده‌است. ژاپن نیز قصد دارد تا پروژه راکتور Monju را مجدداً شروع کند (این پروژه از سال ۱۹۹۵ تعطیل شده‌است) و همچنین چین و هند نیز قصد دارند تا از این تکنولوژی برای سوخت‌رسانی به راکتورها استفاده کنند. راه حل دیگری که در این زمینه وجود دارد استفاده از اورانیوم-۲۳۳ است که از توریم به دست می‌آید. توریم حدوداً ۳٫۵ برابر بیشتر از اورانیوم در پوسته زمین وجود دارد و پراکندگی جغرافیایی متفاوتی نسبت به اورانیوم دارد. استفاده از این ماده می‌تواند میزان منابع سوخت‌های شکافت یافتنی را تا ۴۵۰٪ افزایش دهد. برعکس اورانیوم-۲۳۸ که برای مصرف آن را باید به صورت پلوتنیوم-۲۳۸ درآورد, اورانیوم-۲۳۳ نیازی به تبدیل ندارد. در حال حاضر کشور هند علاقه زیادی برای استفاده از این روش دارد چراکه این کشور دارای معادن بسیار زیاد توریم است درحالی که معادن اورانیوم این کشور اندک هستند نمودار چرخه سوخت هسته‌ای (1)این چرخه با استخراج سوخت از معادن آغاز می‌شود(2)سوخت به نیروگاه‌های هسته‌ای فرستاده می‌شود, پس از پایان عمر سوخت, سوخت به تأسیسات بازفراوری فرستاده می‌شود(3)یا انکه برای انبار شدن به انبار ضایعات اتمی فرستاده می‌شود(4)در فرایند باز فراوری تا 95٪ از سوخت مصرف شده دوباره به چرخه باز می‌گردد. اورانیوم تهی شده فرآیند غنی‌سازی اورانیوم چندین تن اورانیوم تهی شده نیز به وجود می‌آورد که شامل اورانیومی می‌شود که بیشتر ایزوتپ‌های ۲۳۵ آن گرفته شده‌است. اورانیوم-۲۳۸ نوعی فلز سخت است که استفاده‌های تجاری به خصوصی دارد برای مثال در صنایع هواپیما سازی, ساخت حفاظ‌های ضد تششع و ساخت تجهیزات نظامی. استفاده از این فلز به دلیل چگالی بالای آن است. با تمام کاربردهای این فلز نگرانی‌هایی درباره آثار زیانبار تششعات بر روی افرادی که زیاد در معرض آنها قرار دارند مانند سرنشینان تانک یا افراد غیر نظامی که در نزدیکی مناطق انباشت این فلز زندگی می‌کنند وجود دارد. زباله‌های هسته‌ای یافتن راهی ارزان و ایمن برای انبار کردن زباله‌های هسته‌ای چالشی پر اهمیت در زمینه چرخه سوخت هسته‌ای است. در میان مواد باقی مانده در یک چرخه هسته‌ای اورانیوم مصرف شده از همه مهم‌تر است. یک راکتور هسته‌ای بزرگ هر سال در حدود سه متر مکعب (۲۵ تا ۳۰ تن) اورانیوم مصرف شده تولید می‌کند. این مواد مصرف شده از مقداری اورانیوم و همچنین مقداری پلوتونیم و کوریوم تشکیل شده‌است و به طور کلی حدود سه درصد از آن از مواد باقی مانده از شکافت تشکیل شده. اکتینیدها (اورانیوم, پلونیوم و کریوم) موجود در این ترکیب موجب به وجود آمدن تششعات بلند مدت و کوتاه مدت رادیواکتیویته می‌شوند. سوخت مصرف شده دارای خاصیت رادیواکتیو بالایی است و برای حمل آنها باید تمام جوانب احتیاط را رعایت کرد. البته خاصیت رادیواکتیو این مواد در طول زمان کاهش می‌یابد. پس از ۴۰ سال تششعات رادیواکتیو این مواد تا ۹۹٪ کاهش می‌یابند ولی با این حال هنوز هم خطرناک هستند. میل‌های سوخت مصرف شده به طور حفاظت شده در حوضچه‌های مخصوص (spent fuel pools) نگه داری می‌شوند. آب داخل حوضچه گذشته از خنک کردن اورانیوم از خروج تششعات رادیواکتیو جلوگیری می‌کند. پس از گذشت چند ده سال سوخت‌ها را که حالا از خاصیت تششع پراکنی آنها در حد قابل توجهی کم شده از حوضچه‌ها خارج کرده و به انبارهای خشک انتقال می‌دهند. در این انبارها سوخت‌ها را در داخل محفظه‌های فلزی یا بتنی نگه می‌دارند, در این مرحله نیز تششعات ایجاد شده توسط سوخت‌ها هنوز خطرناک است. مدت نگه‌داری سوخت‌ها در این مرحله بسته به نوع سوخت می‌تواند از چند سال تا دهها سال متغیر باشد, ولی به هر ترتیب سوخت‌ها باید آنقدر در این مرحله بمانند تا میزان تششعات آنها به حد استاندارد برسد. تا سال ۲۰۰۳ ایالات متحده بیش از ۴۹۰۰۰ تن از انواع سوخت‌های مصرف شده در راکتورهای خود را انبار کرده بود. یکی از پیشنهاداتی که درباره انبار کردن سوخت در ایالات متحده مطرح شده انبار کردن سوخت‌های مصرف شده در انبارهای زیرزمینی در کوه‌های یوکای است. به عقیده «آژانس حفاظت محیط زیست ایالات متحده» پس از گذشت ۱۰۰۰۰ سال, سوخت‌های مصرف شده هسته‌ای دیگر هیچ تهدید زیست‌محیطی برای انسان‌ها و دیگر موجودات زنده نخواهند داشت. البته راه‌هایی برای کاهش میزان زباله‌های هسته‌ای نیز وجود دارد, یکی از بهترین روش‌ها باز فرآوری سوخت هسته‌ای است. در واقع زباله‌های هسته‌ای حتی اگر اکتینیدهای آنها را جداکنیم, حداقل برای مدت ۳۰۰ سال فعالیت رادیواکتیوی دارند البته مدت تششعات در صورتی که اکتینیدها وجود داشته باشند به هزاران سال می‌رسد. عده‌ای عقیده دارند بهترین راه‌حل ممکن در حال حاضر انباشتن زباله‌های هسته‌ای در انبارهاست چراکه احتمالاً در آینده با پیشرفت تکنولوژی راهی برای استفاده از این مواد پیدا خواهد شد به این ترتیب این مواد می‌توانند خیلی با ارزش‌تر از آن باشند که دفن شوند. همچنین صنایع هسته‌ای حجمی از مواد کم تششع را نیز تولید می‌کنند. این مواد معمولاً در اثر سرایت مواد تششع‌زا به وجود می‌آیند که می‌توانند شامل لباس‌ها یا پوشش‌ها, ابزارآلات, تجهیزات پالاینده آب و دیگر موادی که به گونه‌ای با راکتور و مواد تششع‌زا ارتباط دارند, باشند. در ایالات متحده «کمیسیون تنظیم فعالیت‌های هسته‌ای» مکرراً اعلام کرده که این مواد می‌توانند جزیی از زباله‌های عادی باشند و در زباله‌دان‌ها با زباله‌های عادی دفع شوند و یا حتی بازیافت شوند. سطح تششع در بیشتر مواد کم تششع بسیار پایین است و تنها به دلیل استفاده شدن در فعالیت‌های هسته‌ای جزو زباله‌های هسته‌ای محسوب می‌شوند و نه برای سطح تششعشان. برای مثال براساس استاندارد NRC از نظر سطح تششع یک لیوان قهوه نیز به اندازه زباله‌های کم تششع تششع‌زاست. در کشورهایی که دارای نیروگاه هسته‌ای هستند زباله‌های تششع‌زا کمتر از ۱٪ از کل زباله‌های سمی تولیدی را تشکیل می‌دهند. همچنین بسیاری از زباله‌های سمی با گذشت زمان خاصیت خود را از دست نمی‌دهند و به هیچ وجه تجزیه پذیر نیستند. به طور کلی مواد تولیدی در اثر سوختن سوخت‌های فسیلی می‌توانند از زباله‌های تولید شده در یک نیروگاه هسته‌ای خطرناک‌تر باشند. برای مثال یک نیروگاه زغال سنگی می‌تواند آثار عمیقی برروی طبیعت بگذارد و حجم زیادی از مواد سمی و پرتوزا را تولید می‌کنند. برخلاف عقیده عموم حجم مواد پرتوزای منتشر شده توسط یک نیروگاه زغال سنگی از یک نیروگاه هسته‌ای بیشتر است. زباله‌های تولید شده بر اثر همجوشی هسته‌ای با انبار شدن پس از صد سال دوباره قابل استفاده هستند, در مقابل زباله‌های تولیدی از شکافت هسته‌ای تا ۱۰۰۰۰ می‌توانند آثار رادیواکتیوی داشته باشند.
×
×
  • اضافه کردن...