رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'سرباره'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. مقدمه آلومينيم و آلياژهاي آن، به دليل نقطه ذوب كم و داشتن سياليت خوب و همچنين دارار بودن قابلیت عمليات‌ هاي حرارتي و مكانيكي براي افزايش خواص مكانيكي در صنايع مختلف بخصوص در صنعت خودرو، كاربرد زیادی داشته و موارد مصرف اين آلياژها روز‌ به‌ روز توسعه مي‌ يابد. معمولاً براي توليد قطعات آلومينيمي، مواد اوليه شامل شمش، برگشتي و آميژان‌هاي مورد نياز با درصدهاي مناسب در كوره ذوب شارژ شده و در حين عمليات ذوب، به دليل تاثير اكسيژن هواي محيط و وجود يك‌ سري ناخالصي‌ها نظير اكسيدها، نيتريدها و كاربيدها در مواد شارژ شده و يا جداره نسوز كوره، يك‌ سري ناخالصي و تركيبات بين فلزي نامطلوب در داخل مذاب ايجاد مي‌شوند كه با توجه به وزن و ماهيت اين تركيبات و استفاده از فلاكس مناسب، آنها از مذاب جدا شده و به شكل سرباره در سطح مذاب، و يا به‌ صورت لجن در ته كوره انباشته مي‌شوند. سرباره را قبل از تخليه مذاب و لجن ته‌ كوره را بعد از تخليه مذاب از كوره خارج مي‌ كنند. در حالت كلي، نوع كوره، اندازه قطعات، نوع آلياژ و عوامل فرايند نظير دما و زمان، در ميزان اتلافات مذاب موثر است. براي اينكه فرايند عمليات ذوب اقتصادي باشد، بايد ميزان اكسيداسيون مذاب به حداقل برسد. تمركز اين مقاله بر تكنيك‌ها و تكنولوژي‌هايي است كه مي‌توانند به كاهش تشكيل سرباره و نحوه مديريت و بازيافت آن كمك كنند. عوامل موثر در كاهش تشكيل سرباره 1. قراضه قانوني قديمي در صنعت آلومينيم وجود دارد كه به ازاي هر يك درصد آلودگي شارژ شده به كوره مذاب، حداقل يك‌ درصد پرت مذاب وجود خواهد داشت. نوع قراضه‌ها و آماده‌ سازي آنها قبل از شارژ، تفاوت قابل ملاحظه‌ اي در ميزان تشكيل سرباره ايجاد خواهد كرد. البته هميشه انتخاب نوع قراضه مناسب براي شارژ امكان‌پذير نمي‌باشد. آلودگي قراضه (نظير آب، روغن، رنگ، پلاستيك و آلودگي‌ هاي ديگر) فرايند ذوب را مختل كرده و ميزان بازيافت آلومينيم موجود را كاهش خواهد داد. روش‌هاي مختلفي براي كاهش آلودگي قراضه‌ها وجود دارد. اصلي‌ترين روش جداسازي و مرتب‌كردن قراضه‌ ها، «روش دستي» است، به‌طوري‌ كه مواد زائد از آنها با دست جدا و حذف شوند. از اين فرايند، بيشتر در كشورهاي پيشرفته مخصوصاً در نقاطي كه نيروي انساني ارزان است، استفاده مي‌شود. در حالت پيشرفته، قراضه‌ها به صورت اتوماتيك در خطوطي مخصوص جداسازي مي‌شوند. در اين روش، قراضه‌ها به اندازه‌هاي مناسب برش داده شده و مواد زائد، از طريق جداسازهاي مغناطيسي و يا «ادي‌كارنت» حذف مي‌شوند. در شركت‌ هايي كه به‌ طور وسيع و در مقادير زياد از قراضه‌ هاي پوشش‌دار و رنگي استفاده مي‌ كنند، سيستم‌ هاي پوشش‌ زدايي اغلب براي حذف پوشش‌ هاي آلي به‌ كار مي‌روند. پوشش‌ زدايي، فرايندي حرارتي است كه در آن مواد آلي نظير پلاستيك‌ ها و رنگ‌ها تحت شرايط كنترل شده، بخار مي‌ شوند. بسته به تيراژ توليد ميزان صرفه‌جويي حاصل از كاهش 1 تا 2 درصد پرت مذاب مي‌ تواند بيشتر از هزينه تجهيزات پوشش‌ زدايي باشد. علاوه بر بحث‌ هاي اقتصادي، اين سيستم‌ ها در كنترل مواد مضر و حفظ محيط زيست، موثر هستند.
  2. spow

    جوشکاری MAG

    جوشکاری MAG دانلود تحقیق در زمینه جوشکاری MAG یا جوشکاری با گاز فعال جوشکاری MAG این عبارت مخفف Metal Active Gas است . MAG دقیقا همان دستگاه و همان روش قبلیMIG است، با این تفاوت که بجای Inert Gas یا گاز خنثی ازActive Gas یا گاز فعال استفاده شده است و لذا به نام MAG تبدیل شده است. گاز فعال گازی است که در واکنش حوضچه مذاب شرکت خواهد کرد. گاز جوشکاریMAG همان گاز CO2 است که غالبا جهت جوشکاری فولاد ساده یا کم آلیاژ مورد استفاده قرار می گیرد. گازCO2 در قوس الکتریکی به گازهایCO وO2 تجزیه شده که گازCO گاز خنثی و بی اثر بوده و نقش حفاظت از حوضچه جوش را به عهده می گیرد وO2 با عناصر اکسید شونده قو ی مانندMn وSi که در سیم جوش پایه قرار دارند ترکیب شده و بصورت سرباره ای بسیار نازک روی سطح جوش قرار می گیرد . در صنایع جوشکاری فعلی در سطح جهان ، ترکیب گازهای خنثی و فعال بیشتر مورد استفاده واقع میشود .یکی از دیگر خواص گاز CO2 آن است که در مسیر حرکت خود شدیدا حرارت را جذب نمود ه و محیط را سرد می نماید . لذا گان و یا تورچ در جوشکاری MAG حتی تا 400 آمپر به شکل سیستم خنک کننده با هوا مورد استفاده قرار می گیرد . در جوش آرگون یا تیگ (TIG) برای ایجاد قوس جوشکاری از الکترود تنگستن استفاده می شود که این الکترود برخلاف دیگر فرایندهای جوشکاری حین عملیات جوشکاری مصرف نمی شود. حین جوشکاری گاز خنثی هوا را از ناحیه جوشکاری بیرون رانده و از اکسیده شدن الکترود جلوگیری می کند. در جوشکاری تیگ الکترود فقط برای ایجاد قوس بکار برده می شود و خود الکترود در جوش مصرف نمی شود در حالیکه در جوش قوس فلزی الکترود در جوش مصرف می شود. در این نوع جوشکاری از سیم جوش (Filler metal)بعنوان فلزپرکننده استفاده می شود. و سیم جوش شبیه جوشکاری با اشعه اکسی استیلن(MIG/MAG) در جوش تغذیه می شود. در بین صنعتکاران ایرانی این جوش بانام جوش آلومینیوم شناخته می شود. نامهای تجارتی هلی آرک یا هلی ولد نیز به دلیل معروفیت نام این سازندگان در خصوص ماشینهای جوش تیگ باعث شده بعضا این نوع جوشکاری با نام سازندگان هم شناخته شود. نام جدید این فرایند G.T.A.W و نام آلمانی آن WIG می باشد. همانطور که از نام این فرایند پیداست گازمحافظ آرگون می باشد که ترکیب این گاز با هلیم بیشتر کاربرد دارد. علت استفاده ازهلیم این است که هلیم باعث افزایش توان قوس می شود و به همین دلیل سرعت جوشکاری را می توان بالا برد وهمینطور باعث خروج بهتر گازها ازمحدوده جوش می شود. کاربرد این جوش عموما در جوشکاری موارد زیر است: برای دانلود تحقیق جوشکاری MAG به لینک زیر مراجعه فرمایید: دانلود کنید. پسورد : [Hidden Content]
  3. پروژه طراحی و ساخت قالب های دایکاست مقدمه آشنایی با ماشینهای دایکاست: ماشینهای دایکاست با سیستم تزریق محفظه گرم ماشینهای دایکاست با سیستم تزریق محفظه سرد عمودی ماشینهای دایکاست با سیستم خلأ یا مکش قالبهای دایکاست پینهای پران ماهیچه ها یا نرگی قالب راهای خروج هوای داخل حفره سرباره گیرها انواع مختلف قالب قابلهای تک حفره ای قالبهای چند حفره ای قالبهای ترکیبی قالب با یک کفشک وحفرههای قابل تعویض طراحی قالب: انقباض مواد شیب دیواره ها شکل و محل خط جدایش قالب کشوییها ماهیچه گذاری سیستم راهگاهی راهگاهها شیارهای هواکش خنک سازی قالب تأثیر نوع فلز ریخته گری در طرح قالب پرداخت سطح حفرۀ قالب فرسایش قالب درجه حرارت قالب درجه حرارت قالب برای آلیاژهای روی درجه حرارت قالب برای آلیاژهای آلومینیوم درجه حرارت قالب برای آلیاژهای منیزیم درجه حرارت قالب برای آلیاژهای مس روانسازی قالب پرداخت سطح قطعات تولید شده وروشهای پیشگیری از عیوب قطعات پروژه طراحی و ساخت قالب های دایکاست را ازلینک زیر دریافت نمایید: دانلود کنید.
  4. AUTHOR: Saman Mostafaee; Kth.; [2011] KEYWORDS: TEKNIKVETENSKAP; TECHNOLOGY; High-chromium stainless steel; EAF; Slag; Microstructural characterization; Microstructural Evolution; Computational thermodynamics; Solid particles; Viscosity; Foamability; Basicity; ABSTRACT: A good slag practice is essential for production of a high-quality stainless steel. In addition, the electrical and material efficiency of the electric arc furnace (EAF) can considerably be improved by a good slag practice. The metallurgical properties of the slag are strongly influenced by its high-temperature microstructure. Thus, characterization of the phases within the EAF slag as well as the determination of the amount of these phases is of high importance.In addition, the knowledge about the chemical composition of the liquid slag and solid phases at the process temperatures is instrumental in developing a good slag practice.In order to study the slag in EAF high-chromium stainless steelmaking, slag samples were collected from 14 heats of AISI 304L steel (two samples per heat) and 7 heats of duplex steel (three samples per heat).The selected slag samples were petrographically studied both using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS) and light optical microscopy (LOM). In some cases, X-ray diffraction (XRD) analyses were also performed. Moreover, computational thermodynamics was used to determine the equilibrium phases in the EAF steelmaking slags at the process temperatures. In addition, parameter studies were performed on the factors influencing the equilibria.More specifically, a petrographical and thermodynamic characterization was performed on the EAF austenitic steelmaking slags. Thereafter, the microstructural evolution of the slag during the EAF duplex steelmaking process was investigated. Moreover, an investigation with focus on the total amount of precipitates within the high-chromium stainless steelmaking slags was done. Finally, the foamability of these slags was quantified and evaluated.The petrographic investigations showed that, during the refining stage, in both austenitic and duplex cases, the main constituent of the EAF slag is a melt consisting of liquid oxides. In addition, the slag samples contain solid spinel particles. However, before ferrosilicon-addition (FeSi), the slag may also contain solid stoichiometric calcium chromite. Moreover, depending on the slag basicity, the slag may contain solid dicalcium silicate at the process temperatures.The evolution of the slag during the refining stage of the EAF was graphically illustrated in the calculated isothermal phase diagrams for the slag system Al2O3-Cr2O3-CaO-MgO-SiO2-TiO2.It was found that the only critical parameter affecting the amount of solid spinel particles in the slag is the chromium-oxide content. More specifically, it was shown that the amount of the spinel particles in the slag increases with an increased chromium-oxide content of the slag. It wasvialso shown that a higher basicity and a lower temperature of the slag contribute to the dicalcium silicate precipitation.In order to evaluate and quantify the foamability of the slags, the slag’s physical properties influencing its foaming index were determined. Computational thermodynamics was used as a tool to calculate the weight fractions of the solid phases within the slag at different EAF process stages. The computational thermophysics was used to estimate the viscosity of the liquid part of the slag samples at the process temperatures. The apparent viscosity of the samples was calculated by combining the above results. By estimating the density, surface tension and the foaming-gas bubble size, the foaming index of the slag samples were quantified. It could be shown that the foaming index of the EAF high-chromium stainless steelmaking slag may be on its minimum as the slag’s basicity takes a value in the range of 1.2 – 1.5. A basicity value of around 1.50 – 1.60 can be suitable for enhancing the foaming index of the slag, during the refining period in EAF high-chromium stainless steelmaking.
×
×
  • اضافه کردن...