جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'خواص فيزيکي'.
3 نتیجه پیدا شد
-
چندسازه های چوب- پلاستیك بسیاری از تولیدكنندگان اسباب بازی و لوازم خانگی مواد سازگار با محیط زیست ایجاد كردند كه موافق CPSIA بوده و با چند سازه های چوب- پلاستیك باعث كاهش وابستگی این مواد به پلاستیك های پتروشیمیایی میشود. یك گروه جدید از مواد كه در تولید اسباب بازی كاربرد پیدا كرده اند زیست چندسازه های گرمانرمی هستند كه توسط شركت كانادائی JER به همراه انجمن علمی محققان كانادا (NRC) برای اولین بار ایجاد شده است. این اختراع از مواد زاید و یا محصولات جانبی صنایع مانند لیف های چوب یا پوش برنج برای تولید گروهی از مواد سازگار با محیط زیست استفاده می كند و دوام پلاستیك را با كارایی و ظاهر چوب دارا است. فناوری زیست چندسازه های JER موادی با عمر طولانی و مقاوم در برابر پوسیدن، قالب گیری، حشرات و آب دارا میباشد. درحالیكه چندسازه های چوب پلاستیك (WPC) یكی از شاخه های در حال رشد در صنایع پلاستیك امروزی میباشد، اغلب محصولات رایج WPC (ازآنجایی كه این مواد قابلیت قالب گیری تزریقی ندارند) در مواردی مانند عرشه كشتی و یا نرده به كار میروند. برعكس، تركیبات مهندسی شده زیست چندسازه گرمانرم JER میتواند با تزریق به شكل های موردنظر قالب گیری شوند. فناوری ثبت شده JER و فرآیندهای خاص تولید به آن این اجازه را می دهد كه برای قالب گیری تزریقی فرمول هایی با 30 تا 50 درصد الیاف و یا فرمول های با مقدار 60 درصد الیاف مستربچ تهیه شود. وابسته به نیازهای كاربری نهایی ضایعات یا مواد جانبی، یا مواد الیافی پوست بلوط، كاج یا برنج با گرمانرم اولیه یا گرمانرم بازیافت شده شامل پلی پروپیلن (PP)، پلی اتیلن پرچگالی (HPE)، پلی استایرن (PS)، یا الفین گرمانرم (TPO) تركیب میشوند. برای قالب گیری این محصولات، دمای قالب گیری كمتری موردنیاز میباشد كه امكان ذخیره انرژی تا 30 درصد را برای مشتری فراهم می كند. راه حل های پایدار و سازگار با محیط زیست دیگر تولیدكنندگان اسباب بازی و لوازم خانگی نیز به سوی استفاده از مواد پلاستیكی بازیافت شده سازگار با محیط زیست متمایل هستند. برای یاری كردن مشتری ها، PolyOne Corporation ماده ای تهیه كرده كه محصولات را از نظر رسیدن به استانداردهای قابلیت نوسازی، بازیافت، كار مجدد و تركیبات تعیین می كند. رسیدن به رنگهای مختلف كه معمولاً در اسباب بازیها یا لوازم خانگی به كار می روند، میتواند یك نكته قابل رقابت در كاربرد پلاستیك های بازیافتی باشد. رنگ های رایج طراحی شده توسط PolyOne به مشتریان كمك می كند كه به رنگ های موردنظر خود برسند. اسباب بازی ها و لوازم خانگی زیست چندسازه قطعات بازی زیست چندسازه Rolco تولیدكننده قطعات بازی خاص Rolco اخیراً یك خط تولید قطعات بازی تخته تشكیل شده از تركیبات زیست چندسازه گرمانرم فناوری JER راه اندازی كرده است. Rolco بخش تحقیق و توسعه را در ارتباط با مواد و خصوصاً رنگ و قالب گیری تزریقی چندگانه، برای ایجاد قابلیت های بیشتر در تولید با مواد جدید هدایت می كند. Rolco به دنبال رسیدن به تعدادی از مزایای استفاده از زیست چندسازه های گرمانرم JER بعنوان جایگزین بسپارهای خالص میباشد. زیست چند سازه ها نسبت به بسپارهای خالص بسیار در قیمت مؤثرند و ضربه پذیری تولیدكننده را با بی ثباتی شدید قیمت نفت خام كاهش می دهد. قطعات بازی می توانند در دماهای كمتری قالب گیری شوند كه منجر به كاهش مصرف انرژی تا 30 درصد میشود. این قطعات سازگار با محیط زیست همچنین محصولاتی با ویژگی هایی یكنواخت ارائه می دهند كه میتواند قطعات بازی Rolco را از بقیه رقیبان متمایز سازد. مشابه دیگر تولیدكنندگان اسباب بازی صنعت بازی صفحات تخت نیز از طرف مشتریان و فروشندگان برای سازگاری بیشتر با محیط زیست تحت فشار میباشد. توجه به مسائل زیست محیطی توسط انجمن صنایع اسباب بازی به عنوان یكی از پنج نكته كلیدی رقابت در زمینه فروش اسباب بازی در آمریكای شمالی میباشد. اسباب بازی های سازگار با محیط زیست Sprig شركت اسباب بازی Sprig از ابتدا بر تولید اسباب بازی های بدون باتری، سازگار با محیط زیست و بدون رنگ برای بچه ها متمركز بود. انرژی درصورت لزوم با حركت خود كودك یا پمپ اسباب بازی تولید میشود. علاوه بر این، كمپانی میخواست از یك زیست چندسازه پلی پروپیلن قابل قالب گیری تزریقی استفاده كند كه آنها چوب Sprig را برای تولید اسباب بازی های سازگار با محیط زیست و بدون رنگ ابداع كردند. آنها برای ایجاد مواد موردنیاز براساس فناوری محیطی JER و برای قالب گیری انواع اسباب بازی به سمت فنآوری Bay متمایل شدند. محصولات محیط زیستی Sprig از سری پیشرفته با بهترین فروش اسباب بازی و كامیون های اسباب بازی جدید سازگار با محیط زیست از چندسازه های چوبی Sprig ساخته شده است كه خود چندسازه متشكل از ضایعات محصولات چوبی و پلاستیك های بازیافتی میباشد كه از رزانه ها (dyes) برای حذف استفاده از پوشرنگ های تزئینی كمك می گیرد. برای محصولات سازگار با محیط زیست حداقل بسته بندی استفاده میشود كه آن هم از كاغذ و مقوای بازیافتی میباشد. JER فرمول بندی مواد برای خطوط جدید تولید اسباب بازی توسط Sprig را ادامه داد و جایگزین هایی براساس بسپارهای مختلف را به منظور تولید ماده ای برای Sprig كه بیشترین محتوای مواد بازیافتی را داشته باشد، امتحان كرد. اسباب بازی های اخیر Sprig مربوط به بازی با شن، آب و باغچه قادر به استفاده از 10 تا 20 درصد چوب بیشتر نسبت به سری های قبلی میباشند. لوازم خانگی مبتنی بر پلاستیك های زیست محیطی شركت Coza شركت Coza از برزیل خطی از محصولات آشپزخانه و حمام را از مخلوط پلی پروپیلن و 40 تا 50 درصد از چوب یا الیاف نارگیل به ترتیب با عنوان Bios و Native ایجاد كرده است. تمام محصولات در گروه محصولات Bios كه هم زیستی بین چوب و پلاستیك میباشد شامل lignin نیز میباشند. محصولات گروه Native از 40 درصد الیاف نارگیل تهیه شده است و توجه Coza به آنها جلب شده است. این لوازم خانگی زیست پایه كه در برزیل به خوبی فروش رفتند، توجه دیگران را نیز به خود جلب كردند. اسباب بازی های با پلاستیك بازیافتی و لوازم خانگی "سبز" اسباب بازی های سبز محصولات HDPE بازیافت شده موفق را ارائه می دهد. شركت اسباب بازی های سبز، اسباب بازی های سازگار با محیط زیست (برای مثال وسایل بچه، وسایل پخت، ظروف غذاخوری و چای خوری، وسایل بازی با شن و ماشین های اسباب بازی)تولید می كند كه در ایالات متحده آمریكا از HDPE بازیافتی از پاكت های شیر و بسته های غذای ساخته شده از مقوا بدون استفاده از مواد سلفون قالب گیری میشود. هیچگونه BPA فتالات یا رنگ مصوبه در این اسباب بازی های مطابق CPSIA استفاده نمی شود، همچنین استانداردهای غذایی FDA نیز در آنها رعایت شده است. لوازم خانگی سبز در نمایشگاه بین المللی اخیر لوازم خانگی در شیكاگو ظروف پلاستیك زیست و بر پایه غلات از طرف طراح لوازم خانگی نیویورك كازابلا به نمایش گذاشته شد و به خرده فروشان معرفی شد. طراحی لوازم خانگی كازابلا از نظر ظاهری بسیار مدرن میباشد. منبع : بسپار
- 9 پاسخ
-
- 1
-
- قالب
- قالب گیری تزریقی
-
(و 35 مورد دیگر)
برچسب زده شده با :
- قالب
- قالب گیری تزریقی
- قالبگیری
- قالبگیری تزریقی
- لاستیک
- مواد زبست سازگار
- چوب پلاستیک
- نانو کامپوزیت
- نانو،کامپوزیت،زیست،تخریب
- کامپوزيت
- کامپوزیت
- کامپوزیت پلیمری
- کامپوزیت زیستی
- کامپوزیت،زیستی
- کاربرد پلیمر
- پلي اتيلن سنگين
- پلیمر
- پلیمر تخریب پذیر
- پلیمر دوست دار محیط زیست
- پلیمر دوستدار محیط زیست
- پلیمر زیست تخریب پذیر
- پلیمر زیستی
- پلیمر سبز
- پلیمرهای تخریب پذیر
- پلیمرهای زیستی
- پلاستیک
- پلاستیک زیست تخریب پذیر
- پلاستیک زیستی
- الياف خرما
- اسباب بازی
- بیو پلیمر
- بیوپلیمر
- تخریب پلیمر
- تخریب پلیمرها
- تخریب پلاستیک
- خواص فيزيکي
- خواص مکانيکي
-
خوردگي معمولاً در سطح مواد رخ داده و به واسطه واکنش با محيط، سبب تخريب آنها ميگردد. راههاي مختلفي جهت کاهش نرخ خوردگي و بهبود طول عمر مواد و وسايل وجود دارد؛ برخي روشهايي که امروزه بهکار گرفته شدهاند، شامل استفاده از موادي ميشوند که با استفاده از فناورينانو ساخته شدهاند. اين روشها شامل پوششهاي لايه نازک کامپوزيتي، پوششهاي لايه رويي (Top layer) و پوششهاي عايق حرارتي است. نتايج تحقيقات نشان ميدهند که کارايي اينگونه مواد در مقابل خوردگي، از موادي که با استفاده از روشهاي تجاري ساخته شدهاند بهتر است. پديده خوردگي طي ساليان متمادي يکي از مهمترين مشکلات صنعتي بوده و تحقيقات زيادي جهت کنترل آن صورت گرفته است. اين پديده بيشتر روي فلزات و آلياژها و همچنين مواد پليمري بهواسطه برهمكنش با آب دريا، محيط تر، بارانهاي اسيدي، پرتوهاي مختلف، آلودگيها، محصولات شيميايي و قراضههاي صنعتي رخ ميدهد. فصل مشترک بين مرزدانهها و ترکهاي دوطرفه و مواد غير همجنس، مکانهاي مستعد جهت خوردگي هستند، ضمن اين که وجود ناخالصيها، مورفولوژي سطح و مطابقت نداشتن شبکه ساختاري مواد ميتواند نرخ خوردگي را افزايش دهد. خوردگي معمولاً در سطح مواد شروع شده و طول عمر مواد مورد استفاده را مرتباً کاهش ميدهد. اين مواد ميتوانند در بخشهاي مختلفي از جمله هواپيماها، فضاپيماها، وسايل حمل و نقل دريايي و زميني، تجهيزات زيربنايي و قطعات الکترونيکي و رايانهاي استفاده شوند. بهواسطه خوردگي سطح ماده، علاوه بر زيبايي، خواص فيزيکي، مکانيکي، و شيميايي مواد نيز کاهش مييابد. تخمين زده ميشود که بيش از پنج درصد از توليد ناخالص ملي کشورهاي صنعتي صرف جلوگيري از خوردگي، جابهجايي قطعات خورده شده، تعميرات و نگهداري و حفاظتهاي محيطي گردد. اين مقدار معادل 280 ميليارد دلار هزينه براي کشوري مانند آمريکا در سال 2001 بوده است. شايد پوششهاي محافظت کننده عمدهترين روش پذيرفته شده براي مقاومت به خوردگي باشد؛ بهگونهاي که با استفاده ازيک پوشش لايه نازک که روي سطح اعمال ميشود فلز اصلي از خوردگي محافظت ميشود. اين پوششها با توجه به نوع فلز اصلي و محيط خورنده ميتوانند از مواد مختلفي باشند؛ از آن جمله ميتوان به پلي اورتان، پليآميد، پلياستر، پوششهاي PVC، اکريليک، آلکيدها و اپوکسيها اشاره کرد. اين مواد نقش تعيينکنندهاي به عنوان لايه حفاظتي اعمال ميکنند؛ زيرا اين پوششها از انتقال عوامل خورنده ماننديونهاي هيدروکسيل و کلر، آب، اکسيژن، آلودگيها و رنگدانهها که بهطور مؤثر با سطح مواد واکنش ميدهند، جلوگيري ميکنند. به عبارت ديگر پوششهاي حفاظتي با ممانعت از نفوذ الکتروليت به سطح فلز، از اندرکنش بين مناطق کاتدي و آندي در فصل مشترک فلز و پوشش جلوگيري ميکنند. در غير اين صورت موادي که زير اين پوششها قرار دارند، ميتوانند در نتيجه واکنشهاي شيميايي و الکتروشيميايي، حليا اکسيد شده، از بين بروند. همچنين نشان داده شده است که کاهش نرخ خوردگي بهطوري مؤثر با مقاومت خوب و پلاريزاسيون بالاي پوشش، ظرفيت کم و امپدانس واربرگ بالا مرتبط است که دليل مقاومت به خوردگي پوششهاي پليمري نيز همين است. مواد پوششي، در نتيجه تأثيرات محيطي، خواص شيميايي، فيزيکي و شيمي فيزيکي خود را از دست ميدهند؛ اين گونه صدمات در مواد پليمري بهصورت تاولهايي ناشي از جذب آب، انحلال، اکسيداسيون و تغيير رنگ ناشي از حرارت، تشعشع، بارانهاي اسيدي، مواد شيميايي اکسيدکننده و ساير عوامل به وجود ميآيند. اثرات ترکيبي اين قبيل صدمات روي پوششهاي آلي نيز قابل مشاهده است. اخيراً چندين تحقيق راجع به مقاومت به خوردگي مواد نانوساختاري (نانوکامپوزيتها، پوششهاي نازک در مقياس نانو، نانوذرات و. . .)، صورت گرفته است. مواد در مقياس نانو، خواص فيزيکي، شيميايي و شيمي فيزيکي بي نظيري از خود نشان ميدهند و اين ميتواند سبب بهبود مقاومت به خوردگي در مقايسه با همين مواد در حالت توده گردد. همچنين روشن شده است که نانوذرات به علت سطح ويژه بالايشان، توزيع يکنواختي روي ماده زمينه داشته و با استفاده از حداقل ماده مصرفي ميتوان به حداکثر بازده پوششي رسيد. بسياري از تحقيقات مقاومت به خوردگي ، روي پوششهاي لايه نازک کامپوزيتي، كه پايداري حرارتي، خواص مکانيکي و سدکنندگي مولکولي خيلي خوبي دارند، صورت گرفته است. اين مواد شامل نانوذرات آلي سيليکا ژل، بنزوفنونها، و اسيد آمينوبنزوئيک و ذرات غير آلي خاک رس، زيرکونيوم، سيليکا و کربن، درون زمينههاي پليمري (رزين اپوکسي، پليآميد، پلياستايرن، نايلون و. . .) با کسر حجمي خيلي کم حدود 0.5 تا 5 درصد ميشدند. دريک محصول نانوکامپوزيتي، پليمرها و نانوذرات با استفاده از انحلال، پليمريزاسيون درجا و اندرکنش مذاب ويا تشکيل درجا، سنتز ميشوند. لايههاي نانوساختاري با استفاده از اسپري تشکيل ميشود، و سپس با استفاده از برس و فرايند تشکيل خودبهخودي الکترواستاتيک به حداکثر چگالي و پيوستگي رسيده، ميتوانند به عنوانيک لايه محکم جهت محافظت از ماده زمينه به کار روند. براي مثال نتايج آزمايش خوردگي حاصل از نانوکامپوزيت پلي (اتوکسي آنيلين) خاک رس، نشان داد که پتانسيل خوردگي، جريان خوردگي و نرخ خوردگي بهصورت نمايي کاهشيافتهاند، در صورتي که مقاومت پلاريزاسيون به عنوان تابعي از ميزان خاک رس افزايش مييابد.پوششهاي عايق حرارتي پوششهاي تک لايه و چند لايه عايق حرارتي بهطور ويژهاي مقاومت به خوردگي دما بالا و فرسايش مواد مورد استفاده در توربينهاي گازي، موتورهاي جت، تجهيزات حملونقل و نيروگاهها را افزايش ميدهند. اين لايههاي پوششي از جنس الماس شبهکربن (DLC) ، TiO2، ZrO2 TiN Al2O3، V2O5، TiB2، SiC، اکسيد هافنيم و ساير اکسيدهاي محافظ هستند که با استفاده از روشهاي پاشش پلاسما، اشعه ليزر، CVD و PVD روي سطح زمينه اعمال ميشوند. گزارش شده است که با استفاده از پوششهاي عايق حرارتي به عنوان لايه رويي، مقاومت به خوردگي و رفتگي سطح ماده در مقايسه با حالت بدون پوشش بهبود مييابد. همچنين مشخص شده است که تخلخلهاي نانومتري روي مواد پوششي ميتواند منجر به افزايش نرخ خوردگي شود. اين تخلخلها ميتوانند با استفاده از الماس شبهکربنيا ساير مواد پوششدهنده با چگالي بالا بسته شوند. پوششهاي تبديلي لايههاي غير فعال سطحي (پوششهاي تبديلي)، حدوديک قرن جهت محافظت سطوح مواد از خوردگي مورد استفاده قرار گرفتهاند. اين لايهها نوعاً شامل کروم، زيرکونيوم، فسفات، آلومينيوم، پتاسيم، نيکل، طلا، نقره و لايههاي غني از نقره بودند که تا حدي مقاومت پلاريزاسيون سطح مواد را زياد کرده، در نتيجه سبب کاهش جريان، پتانسيل و نرخ خوردگي ميشدند. اگر چه پوششهاي تبديلي کروم شش ظرفيتي (پوششهاي غير فعال) تأثيرات محيطي به همراه دارند، امروزه در بسياري از بخشها از جمله بدنه هواپيماها مورد استفاده قرار ميگيرند. نشاندن اين لايهها معمولاً با استفاده از فرايندهاي شيمي تر صورت ميگيرد که هميشه مشکلات مربوط به کنترل آلودگي در آنها وجود دارد. اخيراً برنامههاي تحقيقاتي جديد روي موليبدن، زيرکونيوم (ZrO2 متخلخل و فسفات با سه کاتيون (Fe,Zn,Mn) متمرکز شدهاند، تا اينکه اين پوششها جايگزين پوششهاي تبديلي تجاري شوند. ضخامت اين لايهها ميتواند در محدوده 0.5 تا 20 ميکرومتر باشد. پوششهاي لايه رويي مواد پلياورتان جزو مواد پوششي مطلوب داراي محدوده وسيعي از خواص مانند عايق اسمزي، شيميايي، هيدروليتي و پايداري اکسايشي هستند که ميتوانند براي جلوگيري از خوردگي مزايايي داشته باشند. اگر چه بسياري از مواد پوششي مانند مواد بر پايه اپوکسي و اکريليک، در دسترس و ارزانند، قابليتهاي محافظتي آنها به شرايط محيطي وابستگي شديدي دارد. به همين دليل پوششهاي رويي پلياورتان نه تنها براي لايههاي آلي اوليه، بلکه براي محافظت سطوح مواد از خوردگي مورد استفاده قرار ميگيرند. اخيراً پلياورتانهاي حاوي فلوئور که انرژي سطحي بسيار کمي دارند (6mN/m )، بهشدت از نفوذيونها و مولکولهاي خورنده، رطوبت، دما و تشعشع ماوراء بنفش جلوگيري ميکنند. همچنين گزارش شده است که پوششهاي بين لايهاي و تکنيکهاي عمليات سطحي (مانند حککاري پلاسما و شيميايي، ميتوانند بهطور مؤثري چسبندگي بين لايههاي محافظ و سطوح مواد را افزايش داده، سبب افزايش مقاومت به خوردگي گردند. تغييرات ساختار در مقياس نانو ساختار مواد از جمله اندازه و شکل دانهها، آنيل، تبلور مجدد و ساير عوامل مؤثر در ساختار در مقياس نانو، بر مقاومت به خوردگي تأثير شديدي ميگذارد. مواد با دانههاي ريز و ذرات کروي و توزيع ساختاريکنواخت، مقاومت به خوردگي و خواص مکانيکي بالايي، از جمله استحکام و داکتيليته بالا و ضريب اصطکاک پايين خواهند داشت. براي مثال اخيراً تحقيقي نشان داده است که مقاومت به خوردگي پوشش آلياژي ZnNi که به روش رسوب الکتريکي تشکيل شده است، هفت برابر بيش از مقاومت به خوردگي پوشش Zn خالص است . روشهاي اندازهگيري در مقياس نانو جديداً دانشمندان فناوري نانو براي آناليز خواص نانومكانيكي پوششهاي لايه نازك و مواد نانوساختاري كه سبب كاهش صدمات ناشي از خوردگي ميشوند، بهطور وسيعي از روشهاي آزمايش فروروندگي در مقياس نانو، نانوخراش و از پروب استفاده ميكنند. در روش نانو فروروندگي، نوک فرورونده با استفاده از نيروي خارجي به داخل زمينه وارد ميشود. در حين اعمال بار، جابهجايي (نفوذ به داخل سطح ماده) فرورونده ثبت ميشود. منحنيها بر حسب اعمال بار و جابهجايي ميتوانند خواص مکانيکي پوشش زمينه مانند سختي، مدوليانگ، رفتار تنش کرنش، زمان خزش، تافنس شکست و انرژي الاستيک پلاستيک را ثبت کنند. آزمايش نانوخراش براساس اصول فيزيکي مشابهي مانند آزمايش فروروندگي انجام ميشود. تفاوت آنها در اين است که در تست نانوخراشييک لبه برش روي پوشش زمينه با استفاده از نيروي خارجي ده ميکرونيوتن تايک نيوتن، خراشي در حد نانو اعمال ميکند. آزمايش پروب نيز که به وسيله هولت پاکارد ابداع شد، نوع ديگري از آزمايش فروروندگي است که ميزان چسبندگي پوشش به زمينه را به صورت دادههاي کمّي اعلام ميکند. در اين روشيک پروب از جنس تنگستن با شعاع نوک ده ميکرومتر داخليک لبه پليمري (با ضخامت ده تا صد ميکرومتر) حرکت ميکند. همينطور که اين پروب زير فيلم پليمري ميلغزد، لايه پليمري پيوندهاي خود را دريک نقطه خاص از اعمال بار از دست ميدهد و به شکل ترکهاي نيمدايرهاي، گسترده ميشود. براساس اندازه انرژي شکست سطحي که پيوندهاي خود را از دست داده، نرخ کاهش انرژي، انرژي چسبندگي بين پوشش و زمينه محاسبه ميشود نتيجهگيري اخيراً مطالعاتي روي نانومواد براي استفاده از آنها در كاهش خوردگي صورت گرفته است. اين مواد شامل لايههاي غير فعال سطحي، فيلمهاي نازک نانوکامپوزيتي، فيلمهاي عايق حرارتي، پوششهاي لايه رويي و موادي در مقياس نانو مي باشد. جهت آناليز و تعيين مشخصات اين سري از نانومواد نيز روشهايي ابداع شده است. کليه اين تحقيقات روند نويدبخشي را نسبت به محافظت از خوردگي مواد ارائه ميدهند و جهتگيري آينده مبارزه با خوردگي را تبيين ميکنند. منبع
-
- 3
-
- فناوري نانو
- مقاومت به خوردگي مواد نانوساختاري
- (و 8 مورد دیگر)
-
تحلیلی در مورد سراميك هاي پيشرفته سراميک هاي پيشرفته نسل جديدي از سراميک ها هستند که داراي خواص بهتري نسبت به سراميک هاي سنتي بوده و کاربردهاي زيادي را به خود اختصاص دادهاند. متن زير خلاصة گزارش موسسة SCUP درمورد سراميکهاي پيشرفته است: سراميک ها موادي غيرآلي و غيرفلزي هستند که مقاومت خوبي در دماي بالا از خود نشان ميدهند. در ابتدا مواد اولية سراميکي بصورت پودر هستند سپس در شکلهاي مختلف به اجسام صلب تبديل مي شوند. سراميک ها ميتوانند بصورت آمورف (بيشکل)، تکفاز، چندفاز، تککريستال و پليکريستال وجود داشته باشند و خواص اين مواد بستگي به ساختار اتمي آنها دارد. محصولاتي مثل آجرها، کاشي، چيني (بصورت ظروف غذا و چيني بهداشتي)، نسوزها، سايندهها، شيشهآلات (شيشههاي تخت، ظروف شيشهاي) و لعابهاي چيني جزو سراميک هاي سنتي هستند و در گروه سراميک هاي پيشرفته قرار نميگيرند. سراميک هاي پيشرفته داراي خواص فيزيکي، الکترونيکي و مکانيکي خاصي هستند که آنها را نسبت به سراميک هاي سنتي برتري بخشيده است. سراميک هاي پيشرفته در پنجاه سال گذشته توسعة خوبي يافتهاند. بازار سراميک هاي پيشرفته که قسمت عمدة آن در آمريکا، اروپاي غربي و ژاپن قرار دارد، در سال 2000 بالغ بر 20.2 ميليارد دلار بوده است. البته خلق کاربردهاي جديدي براي اين مواد باعث ايجاد يک رشد 4 درصدي براي بازار اين مواد تا سال 2005 خواهد شد. سراميکهاي الکترونيکي عمدهترين استفادة سراميک هاي پيشرفته در صنايع الکترونيک است که حدود 66 درصد کل مصرف سراميک هاي پيشرفته را به خود اختصاص مي دهند. مهمترين مواد سراميکي براي کاربردهاي الکترونيکي، اکسيدهاي خالص يا مخلوطي از اکسيدها هستند که شامل آلومينا، زيرکونيا، سيليسيا، فريت ها، تيتانات باريم اصلاحشده و تيتانات و زيرکونات سرب ميباشند. فيبرها، محافظها در مدارهاي الکتريکي و الکترونيکي، خازن ها، تبديلکنندهها، القاگرها، ابزارهاي پيزوالکتريکي و سنسورهاي فيزيکي و شيميايي عمدهترين موارد استفادة سراميک هاي الکترونيکي هستند. ميزان بازار جهاني سراميک هاي الکترونيکي در نيمة پاياني سال 2000، حدود 13.3 ميليارد دلار بوده است. مواد مورد مصرف در مدارهاي IC مجتمع، محافظهاي الکترونيکي و خازن ها تقريباً 67 درصد بازار سراميک هاي الکترونيکي را بخود اختصاص دادهاند. بازار محصولات سراميکي الکترونيکي اگر چه نسبتاً بزرگ است ولي نرخ رشد آنها از نرخ رشد دو رقمي که در چند دهة گذشته از خود نشان دادهاند بيشتر نيست. سراميک هاي ساختاري استفاده از سراميکها در کاربردهاي ساختاري کمتر از 19 درصد کل بازار است. سراميک هاي ساختاري بعنوان اجزاء تحملکنندة تنش يا پوشش قسمت هايي که تحت تنش هستند شناخته ميشوند. علاوه بر اين، مقاومت سراميک ها در برابر خوردگي، سايش و دماي بالا، اين مواد را براي کاربرد در تجهيزات صنعتي زيادي مناسب ساخته است. افزايش بازده و کاهش مصرف انرژي، محرک تحقيقات بر روي سراميک هاي ساختاري پيشرفته است. در سال 2005 شاهد بازار جهاني 4.5 ميليارد دلاري براي سراميک هاي ساختاري خواهيم بود و رشد خوبي در بازار اجزاي مقاوم به سايش، ياطاقانها، درزگيرها، تجهيزات فرآيندها و پوشش هاي سراميکي محقق ميشود. بيشترين مواد اوليه مورد استفاده در سراميک هاي ساختاري انواع گوناگون اکسيدآلومينيوم، زيرکونيا، کاربيد سيليسيم و نيتريد سيليسيم ميباشد. پودرها و افزودنيها در حوزة سراميکهاي سنتي، پودرها مواد غيرآلي هستند که در فرآيندهاي مختلف بصورت بلوک يا قطعة نهايي شکل ميگيرند و افزودنيها مواد غيرآلي هستند که استفاده از پودرها را در فرآيندهاي مختلف آسان ميکنند و در قطعة نهايي باقي نميمانند. اين تعريفها صحت خود را تا حد زيادي در مورد سراميکهاي پيشرفته که از تکنولوژيهاي پيچيدة شيميايي بهره ميبرند، از دست دادهاند. پودرهاي سراميکي پيشرفته و افزودنيها بعنوان مواد خام براي سراميک هاي ساختاري و سراميک هاي الکترونيکي مورد استفاده قرار ميگيرند. پودرهاي سراميکي پيشرفته بازاري بالغ بر 2.7 ميليارد دلار را به خود اختصاص دادهاند که رشد متوسطي معادل 2 درصد براي آنها تا سال 2005 پيشبيني شده است. پوردهاي اکسيدي 85 درصد از اين بازار را از نظر ارزش و 95 درصد را از نظر وزن به خود اختصاص دادهاند. بقية بازار مربوط به غيراکسيديهايي نظير کاربيد سيليسيم، نيتريد سيليسيم، نيتريد آلومينيوم و تيتانيوم ديبرايد است. پودرهاي آلومينيومي با کارايي بالا، پودرهاي زيرکونيا که در بيوسراميک ها استفاده ميشوند و کاربردهاي مربوط به سيستمهاي مخلوط چند اکسيدي مثل شيشهسراميک ها و سراميک هاي با ضريب انبساطي پايين، رشد متوسط بالاتري را از خود نشان خواهند داد. رشد بازار افزودنيها کمي بيشتر از پودرها خواهد بود که علت آن رواج افزودنيهاي با کارايي بالا و افزودنيهاي قوي در روشهاي توليد از قبيل شکل دادن گرم و سرد و قالبگيري تزريقي است. منبع
-
- 1
-
- لعابهاي چيني
- مقاومت در دماي بالا
-
(و 20 مورد دیگر)
برچسب زده شده با :