رفتن به مطلب

مدل سازی و حل مسئله 8 وزیر


ارسال های توصیه شده

مسئله 8 وزیر و در حالت پیشرفته n وزیر یکی از مسائل مهم در مبحث OR محسوب می شود ، در این مسئله به دنبال الگوریتم هایی هستیم که راه حلی برای قرار گرفتن 8 وزیر در صفحه شطرنج بدون اینکه یکدیگر را تهدید نمایند به ما ارائه دهد .

 

یکی از مقالات مربوط در این زمینه که به مدل سازی و حل این مسئله با لینگو و VBA پرداخته است در فایل پیوست مشاهده نمایید

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

  • Like 7
لینک به دیدگاه

برای آشنایی بیشتر با مسئله فوق مطالب زیر خدمت دوستان ارائه میگردد و در ادامه به ارائه حل با VBA خواهیم پرداخت:

 

مسئله چند وزیر یک معمای شطرنجی و ریاضیاتی است که بر اساس آن باید n وزیر شطرنج در یک صفحه n×n شطرنج به‌گونه‌ای قرار داده شوند که هیچ‌یک زیر ضرب دیگری نباشند. با توجه به اینکه وزیر به‌صورت افقی، عمودی و اُریب حرکت می‌کند، باید هر وزیر را در طول، عرض و قطر متفاوتی قرار داد.

اولین و مشهورترین شکل این مسئله معمای هشت وزیر است که برای حل آن باید ۸ وزیر را در یک صفحهً معمولی (۸×۸) شطرنج قرار داد. این مسئله ۹۲ جواب دارد که ۱۲ جواب آن منحصر به‌فرد است یعنی بقیه جواب‌ها از تقارن جواب‌های اصلی به‌دست می‌آید.

مسئله n وزیر در صورتی جواب دارد که n مساوی ۱ یا بیشتر از ۳ باشد. یعنی مسئله دو وزیر و سه وزیر راه حلی ندارند.

 

این مسئله در سال ۱۸۴۸ توسط شطرنج بازی به نام Max Bezzel عنوان شد و ریاضی دانان بسیاری ازجمله Gauss و Georg Cantor بر روی این مسئله کار کرده و در نهایت آنرا به n وزیر تعمیم دادند. اولین راه حل توسط Franz Nauck در سال ۱۸۵۰ ارائه شد که به همان مسئله n وزیر تعمیم داده شد. پس از آن Gunther راه حلی با استفاده از دترمینان ارائه داد که J.W.L. Glaisher آنرا کامل نمود. در سال ۱۹۷۹، Edsger Dijkstra Nauck با استفاده از الگوریتم عقب گرد اول عمق، این مسئله را حل کرد.

  • Like 5
لینک به دیدگاه

[h=3]الگوریتم عقبگرد[/h]

از تکنیک عقبگرد Backtracking برای حل مسائلی استفاده می‌شود که در آن‌ها دنباله‌ای از اشیاء از یک مجموعه مشخص انتخاب می‌شود، به طوری که این دنباله، ملاکی را در بر می‌گیرد. عقبگرد حالت اصلاح شدهٔ جست و جوی عمقی یک درخت است. این الگوریتم همانند جست و جوی عمقی است، با این تفاوت که فرزندان یک گره فقط هنگامی ملاقات می‌شوند که گره امید بخش باشدو در آن گره حلی وجود نداشته باشد. با توجه به اینکه هیچ ۲ وزیری نباید همدیگر را گارد کنند و در یک سطر نمی‌توانند باشند، تعداد کل حالت‌ها برای n=۴ برابر ۴*۴*۴*۴=۲۵۶ است. در شطرنج یک وزیر می‌تواند به مهره‌هایی که در خانه‌های عمود یا مورب به وی قرار دارند حمله کند. یا به عبارت ریاضی، اگر ردیفها و ستونهای شطرنج را از یک تا هشت شماره گذاری کنیم و وزیر در خانه (i، j) قرار داشته باشد، مهره‌هایی که در خانه‌های (i، m) یا (m، j) یا (i ± m، j ± m) قرار دارند توسط وزیر تهدید می‌شوند.

 

برای سادگی تشریح این مسئله با استفاده از روش بازگشت به عقب، فرض می‌کنیم که خانه‌های شطرنج ۴x۴ و تعداد وزیرها نیز ۴ باشد. سپس بعد از یافتن راه حل برای این مسئله ساده شده، اقدام به نوشتن الگوریتم برای مسئله اصلی می‌کنیم.

مراحل جستجو برای یافتن جواب را به این صورت دنبال می‌کنیم که: وزیر اول را در ردیف اول و ستون اول قرار می‌دهیم.

در ردیف دوم از اولین ستون به جلو رفته و به دنبال خانه‌ای می‌گردیم که مورد تهدید وزیر اول نباشد و وزیر دوم را در این خانه قرار می‌دهیم.

همانند قبل، در ردیف سوم از اولین ستون به جلو رفته و به دنبال خانه‌ای می‌گردیم که مورد تهدید وزیران اول و دوم نباشد. می‌بینیم که چنین خانه‌ای موجود نیست. پس به عقب یعنی ردیف دوم برگشته و وزیر دوم را به خانه‌ای دیگر از ردیف دوم منتقل می‌کنیم که مورد تهدید وزیر اول نباشد.

دوباره در ردیف سوم اولین خانه‌ای را میابیم که مورد تهدید دو وزیر قبلی نباشد. این بار خانه را می‌یابیم و وزیر سوم را در آن قرار می‌دهیم.

همانند قبل، در ردیف چهارم به دنبال اولین خانه‌ای می‌گردیم که مورد تهدید وزیران پیشین نباشد. چنین خانه‌ای موجود نیست. به ردیف قبل یعنی ردیف سوم باز می‌گردیم تا خانه‌ای دیگر برای وزیر سوم بیابیم. خانه دیگری وجود ندارد. به ردیف قبل یعنی ردیف دوم بر می‌گردیم تا خانه دیگری برای وزیر دوم پیدا کنیم. به آخرین ستون رسیده‌ایم و خانه دیگری نیست. به ردیف قبل یعنی ردیف اول بر می‌گردیم و وزیر اول را یک ستون به جلو می‌بریم.

در ردیف دوم اولین خانه‌ای را میابیم که مورد تهدید وزیر اول نباشد و وزیر دوم را در آن خانه قرار می‌دهیم.

در ردیف سوم اولین خانه‌ای را میابیم که مورد تهدید وزیران اول و دوم نباشد و وزیر سوم را در آن خانه می‌گذاریم.

در ردیف چهارم اولین خانه‌ای را میابیم که مورد تهدید وزیران پیشین نباشد. این بار خانه را می‌یابیم و وزیر چهارم را در آن خانه قرار می‌دهیم.

به یک جواب می‌رسیم. حال اگر فرض کنیم که این خانه جواب نیست و به مسیر خود ادامه دهیم، احتمالا" می‌توانیم جوابهای دیگری نیز بیابیم.

  • Like 2
لینک به دیدگاه

[h=4]شبه کد پیاده سازی الگوریتم عقبگرد برای مسئله n وزیر[/h]

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

 

.mayjp2y87ep6u4j4ldf.gif

  • Like 4
لینک به دیدگاه

در ادامه مبحث فوق کد مسئله 8 وزیر برای n=8 رو قرار میدم البته به کیفیت تصویر فوق نیست ، در آینده فایل مربوط به حالت n وزیر و با گرافیک تصویر بالا قرار داده خواهد شد.

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

  • Like 2
لینک به دیدگاه

فایل طراحی شده مسئله n وزیر در اکسل به پیوست تقدیم دوستان:a030:

 

(با عرض پوزش مجددا آپ شد)

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

  • Like 1
لینک به دیدگاه
×
×
  • اضافه کردن...