mim-shimi 25686 اشتراک گذاری ارسال شده در 20 دی، ۱۳۸۸ کاربردهای مکانیکی نانولولههای کربنی با توجه به گسترش روز افزون فناوری نانو و ایجاد تحولات بزرگ در صنایع مختلف توسط این فناوری لازم است که هر کسی بسته به تخصص خود اطلاعی هر چند کلی از کاربردها و قابلیتهای فناوری نانو داشته باشد. در این مقاله ابتدا توضیحی کلی راجع به فناوری نانو داده شده است و با توجه به اهمیت و نقش گسترده نانولولهکربنی در فناوری نانو این ماده معرفی و خواص آن ذکر شدهاست، در ادامه به توضیح برخی از کاربردهای نانولولهها در صنایع مرتبط با مهندسی مکانیک چون کامپوزیتها، محرکها و فیلترها پرداخته شده است. مقدمه یک نانومتر يک ميليونيوم يک متر است بنابراین علم نانو آن بخش از است که ماده را در مقياسی بسيار کوچک بررسی میکند؛ و فناوری نانو به تولید و ساخت در مقیاس مولکولی و اتمی میپردازد، یا به عیارت دیگر با اجسام و ساختارها و سیستمهایی سر و کار دارد که حداقل در یک بعد اندازهای کمتر از100 نانومتر دارند. با پیشرفت و گسترشی که علم و فناوری نانو طی چند سال اخیر داشته است انتظار میرود که به زودی تمامی زمینههای علم و فناوری را تحت تاثیر خود قرار دهد. نانوفناوری صنایع مرتبط به مهندسی مکانیک را نیز بی بهره نگذاشته است و تحولات زیادی را از تولید کامپوزیتها با استفاده از نانومواد تا تولید شتابسنج هایی در اندازه نانو، ایجاد نموده است. در صنایع خودروسازی در قسمتهای مختلف ماشین کاربردهای نانوفناوری را میبینیم، از شیشههای خود تمیز شو و بدنههای ضدخش گرفته تا باتریهایی با طول عمر بیشتر و وزن کمتر. در این میان نانولولههاي کربني[1] یکی از مواد اولیهای هستند که به علت ویژگی ساختمانی، دارای کاربردهای مکانیکی مختلف و ویژهای هستند. نانولولههای کربنی نانولولههاي کربني يکي ازمهم ترين ساختارها در مقياس نانو هستند.این مواد اولین بار در سال 1991 توسط دانشمندي ژاپني به نام ايجما[2] در درون دودههاي حاصل از تخليه الکتريکي کربن در يک محيط حاوي گاز نئون کشف شد.[] اين ترکيبات شيميايي ، با ساختار اتمي شبيه صفحات گرافیت، از استوانههايي با قطر چند نانومتر و طولي تا صدها ميکرومتر تشکيل شدهاند. نانولولهها داراي مدول يانگي تقريباً 6 برابر فولاد ( 1TPa) و چگالي برابر 1.4 g/cm3 هستند. [[ii]] اين مواد در جهت محوري مقاومت کششي بسيار زيادي دارند و اين مزيت بسيار خوبي براي ساخت سازههايي با مقاومت بالا در جهت خاص است. دليل اين مقاومت بالا از يک طرف استحکام پيوند كربن-كربن در ساختار نانولولهکربنی و از طرف ديگر شکل شش ضلعی اين ساختار است که به خوبي بار را در میان پیوندها توزيع ميکند. از طرف دیگر پایداری حرارتی نانولولهها نیز بسیار بالا است. این خواص منحصربه فرد مکانیکی در نانولولهها امکان استفاده از آنها را در کاربردهای مختلف فراهم میکند. از جمله این کاربردها می توان از الکترونیک در مقیاس نانو، استفاده در کامپوزیتها و نیز به عنوان وسایل ذخیره کننده گازها نام برد. مقاومت نانولولهها رفتار مکانیکی نانولولههای کربنی به عنوان یکی از بهترین فیبرهای کربنیای که تا کنون ساخته شده اند، بسیار شگفت انگیز است. فیبرهای کربنی معمول دارای مقاومتی تا 50 برابر مقاومت مخصوص (نسبت مقاومت به چگالی) فولاد هستند و از طرف دیگر تقویت کنندههای خوبی در برابر بار در کامپوزیتها هستند. بنابراین نانولولهها یکی از گزینههای ایدهآل در کاربرد ساختمانی[3] هستند. در نانولولههای کربنی چندلایه مقاومت حقیقی در حالات واقعی بیشتر تحت تاثیر لغزیدن استوانههای گرافیتی نسبت به هم قرار دارد. در واقع آزمایشاتی که به تازگی با استفاده از میکروسکوپ الکترونی[4] جهت اندازه گیری تنشهای نانویی صورت گرفته است مقاومت کششی نانولولههای کربنی چندلایه مجزا را اندازه گیری کرده اند.[[iii]] نانولولهها بر اثر شکست sword-in-sheath میشکنند. این نوع شکست مربوط به لغزش لایهها در استوانههای هم محور نانولوله چندلایه ونیز شکست استوانهها به طور مجزا است. مقاومت کششی دیده شده در نانولولههای چندلایه حدود اندازهگیری مقاومت یک نانولوله تکلایه مجزا مشکلات زیادی دارد. به تازگی روشی جهت این اندازهگیری پیشنهاد شده است: در این روش از یک میکروسکوپ نیروی اتمی استفاده می کنند تا خمشی را در نانولوله ایجاد کنند سپس با اندازهگیری مقدار جابجایی می توان ویژگیهای مکانیکی آن را با مقادیر عددی بیان کرد.[[iv]] اکثریت آزمایشاتی که تاکنون صورت گرفته مقدار تئوری پیشبینی شده برای مدول یانگ نانولوله(1TPa) را تایید میکنند؛ ولی در حالی که پیشبینی مقاومت کششی در تئوری حدود 300GPa بوده است، بهترین مقادیر تجربی نزدیک به 50GPa می باشد. که اگرچه با تئوری فاصله دارد اما هنوز هم تا ده برابر بیشتر از فیبرهای کربنی است. شبیه سازیها در نانولوله های تک لایه نشان میدهد که رفتار شکست و تغییر شکلی بسیار جالبی در آنها وجود دارد. نانولولهها در تغییر شکلهای بسیار بالا با آزاد کردن ناگهانی انرژی به ساختار دیگری تبدیل می شوند. نانولولهها تحت بار دچار کمانش و پیچش می شوند و به شکل مسطح تبدیل میگردند. آنها بدون نشانی از کوچکترین شکست و خرابی دچار کرنشهای خیلی بزرگی (تا 40%) می شوند. بازگشت پذیریِ تغییر شکلها، مثلا کمانش، مستقیما در نانولوله های چندلایه با استفاده از میکروسکوپ عبور الکترون[5] ثبت شده است.[[v]] به تازگی نظریه جالبی برای رفتار پلاستیکی نانوتیوبها ارائه شده است.[[vi]] طبق این نظر بستههای 5و7 تایی کربن( پنتاگون-هپتاگون) تحت کرنش زیاد دچار عیب در شبکه مولکولی می شوند و این ساختار ناقص در طول جسم حرکت میکند و این حرکت باعث کاهش قطر مقطعی خواهد شد. جدایش این نقصانها گلویی شدن در نانولوله را به همراه خواهد داشت. علاوه بر گلویی شدن مقطعی، در آن مقطع آرایش شبکه کربنی نیز تغییر خواهد کرد. این تغییرات در آرایش باعث می شود که میزان رسانش نانولوله کربنی تغییر یابد، این ویژگی میتواند منجر به کاربردی منحصر به فرد از نانولوله شود: نوع جدیدی از پروب، که با تغییرات در ویژگیهای الکتریکی اش به تنشهای مکانیکی پاسخ میدهد.[[vii]] نانولولههای کربنی و کامپوزیتهای پلیمری مهمترین کاربرد نانولولههای کربنی، که بر اساس ویژگیهای مکانیکی آنها باشد، استفاده از آنها به عنوان تقویت کننده در مواد کامپوزیتی است. اگرچه استفاده از کامپوزیتهای پلیمری پرشده با نانولوله یک محدوده کاربردی مشخص از این مواد است، اما آزمایشات موفقیت آمیز زیادی در تایید مفیدتر بودن نانولولههای کربنی نسبت به فیبرهای معمول کربنی، وجود ندارد؛ مشکل اصلی برقرار نمودن یک ارتباط خوب بین نانولوله و شبکه پلیمری و رسیدن به انتقال بار مناسب از شبکه به نانولولهها در حین بارگذاری است. دلایل آن دو جنبه اساسی دارد: اول نانولولهها صاف بوده و نسبت طولیای[6] (طول به قطر) برابر با رشتههای پلیمری دارند. دوما نانولولهها تقریبا همیشه به صورت تودههای به هم پیوسته تشکیل میشوند که رفتار آنها در مقابل بار، نسبت به نانولولههای مجزا، کاملا متفاوت است. گزارشات متناقضی از مقاومت اتصال در کامپوزیتهای پلیمر-نانولوله وجود دارد.[[viii],[ix]] نسبت به پلیمر استفاده شده و شرایط عملکرد، مقاومت اندازهگیری شده متفاوت است. گاه گسست در لولهها دیده شده است که نشانهای از پیوند قوی در اتصال نانولوله-پلیمر است، و گاه لغزش لایههای نانولولههای چند لایه و جدایش آسان آنها دیده شده که دلیلی بر پیوند اتصال ضعیف است. در نانولولههای تک لایه سر خوردن لولهها بر روی یکدیگر را عامل کاهش مقاومت ماده میدانند. برای ماکزیمم کردن اثر تقویت کنندگی نانولولهها در کامپوزیتهای با مقاومت بالا، بایستی که توده های نانولوله در هم شکسته شده و پخش شوند و یا اینکه به صورت شبکه مربعی[7] درآیند تا از سرخوردن جلوگیری کنیم. علاوه برآن بایستی سطح نانولولهها تغییر داده شود، ضابطهمند[8] گردند، تا اتصال محکمی بین آنها و رشتههای پلیمری اطرافشان ایجاد شود. استفاده از نانولولههای کربنی در کامپوزیتهایی با ساختار پلیمری فواید مشخص و روشنی دارد. تقویت کنندگی با نانولوله به خاطر جذب بالای انرژی طی رفتار انعطافپذیر الاستیک آنها میزان سفتی[9] کامپوزیت را افزایش می دهد؛ این ویژگی مخصوصا در شبکههای سرامیکی کامپوزیتی برپایه نانو اهمیت مییابد. چگالی کم نانولولهها ، در مقایسه با استفاده از فیبرهای کوچک کربنی، یک ویژگی بسیار خوب دیگری در این کامپوزیتها میباشد.نانولولهها در مقایسه با فیبرهای کربنی معمول، تحت نیروهای فشاری کارایی بهتری ازخود نشان میدهند، که به خاطر انعطافپذیری و عدم تمایل به شکست آنها تحت نیروی فشاری است.تحقیقات تازه نشان داده اند که استفاده از کامپوزیت نانولولهکربنی چندلایه و پلیمر کاهنده زیستی[10] (مانند PLA[11]) در رشد سلولهای استخوانی[12]، بخصوص در تحریک الکتریکی کامپوزیت، بسیار کارآمدتر ازفیبرهای کربنی هستند. 1 لینک به دیدگاه
mim-shimi 25686 مالک اشتراک گذاری ارسال شده در 3 خرداد، ۱۳۸۹ نانوحسگر شرکت در آزمون نانوحسگر وسیلهای است بسیار ظریف و در عین حال دقیق و حساس که قادر به شناسایی و ارائه پاسخ به محرکهای فیزیکی است. نانوحسگرها کاربردهای متعددی در علوم مختلف ازجمله محیط زیست یافتهاند. گستره عملکرد این حسگرها در ابعاد نانومتر است، به همین دلیل از دقت و واکنش پذیری بسیار بالایی برخوردارند؛ به طوری که حتی نسبت به حضور چند اتم از یک گاز هم عکسالعمل نشان می دهند. از نانولوله ها، نانوذرات فلزی و نانو ذرات مغناطیستی بیشتر برای ساخت حسگر استفاده می شود. نانوحسگرها و حسگرهای توانمند شده با فناوری نانو کاربردهای مختلفی در صنایع گوناگون مانند حمل و نقل، ارتباطات، ساخت و ساز و تسهیلات رفاهی، پزشکی، سلامتی، و دفاعی دارند. 1 مقدمه حسگرها ابزارهایی هستند که تحت شرایط خاص، از خود واکنشهای پیشبینی شده و مورد انتظار نشان میدهند. شاید دماسنج را بتوان جزء اولین حسگرهای که بشر ساخت به حساب آورد. با توجه به وجود آمدن وسایل الکترونیکی و تحولات عظیمی که در چند دهه اخیر و در خلال قرن بیستم به وقوع پیوسته است، امروزه نیاز به ساخت حسگرهای دقیقتر، کوچک تر و با قابلیتهای بیشتر احساس میشود. اندازه گیری دقیق پارامترها در مقیاس بسیار ریز (نانو)، از قبیل تغییرات فیزیکی یا حضور گونه های شیمیایی مستلزم استفاده از حسگرهایی در مقیاس نانو است. نانو حسگرهای از عناصر حسگری در مقیاس نانو استفاده می کنند که حساسیت این نوع از نانو مواد به حد کافی بالا می باشند. همچنین موادی که از نانو حسگرها ساخته می-شوند بایستی دوام و استحکام بالا و خواص الکتریکی خوبی داشته باشند. با پیشرفت علم در دنیا و پیدایش تجهیزات الکترونیکی و تحولات عظیمی که در چند دهه ی اخیر و درخلال قرن بیستم به وقوع پیوست، نیاز به ساخت حسگرهای دقیق تر، کوچکتر و دارای قابلیتهای بیشتر احساس شد. حسگرهایی که امروزه مورد استفاده قرار میگیرند، دارای حساسیت بالایی هستند به طوری که به مقادیر ناچیزی از هر گاز، گرما یا تشعشع حساسند. بالا بردن درجه حساسیت، بهره و دقت این حسگرها نیاز به کشف مواد و ابزارهای جدید دارد. با آغاز عصر نانوفناوری، حسگرها نیز تغییرات شگرفی داشته اند. یکی از نامزدهای ساخت حسگرها، نانو لولهها می باشد. علاوه بر نانولوله های از نانو ذرات فلزی و نانوذرات مغناطیستی نیز استفاده می شود. تحقیقات نشان میدهد که نانو لولهها به نوع گازی که جذب آن ها میشود حساس می باشند؛ همچنین میدان الکتریکی خارجی، قدرت تغییر دادن ساختارهای گروهی از نانو لولهها را دارد؛ و نیزمعلوم شده است که نانو لولههای کربنی به تغییر شکل مکانیکی از قبیل کشش حساس هستند. گاف انرژی نانو لولههای کربنی به طور چشمگیری در پاسخ به این تغییر شکلها میتواند تغییر کند. همچنین میتوان با استفاده از مواد واسط، مانند پلیمرها، نانو لولههای کربنی را برای ساخت زیست حسگرها نیز توسعه داد. تحقیق در زمینه کاربرد نانو لولهها در حسگرها در حال توسعه و پیشرفت است و مطمئناً در آیندهای نه چندان دور شاهد بکارگیری آن ها در انواع مختلف حسگرها (مکانیکی، شیمیایی، تشعشی، حرارتی و ..) خواهیم بود. 2 روش های تهیه نانوحسگر در حال حاضر چند راه برای تولید نانوحسگرها وجود دارد. از این دست لیتوگرافی به عنوان شیوه ای بالا به پایین در اکثر مدارهای مجتمع بهکار میرود. این روش شامل شروع از یک بلوک بزرگتر از برخی مواد و کنده کاری کردن و ایجاد فرم مورد نظر است. راه دیگر برای تولید نانوحسگر روشهای از پایین به بالاست که شامل سامان یافتن (Montage) حسگر از اجزای کوچکتر، به احتمال زیاد اتم ها و مولکول ها است. این امر شامل حرکت اتم های یک ماده خاص به موقعیت خاص است که توسط بررسی های آزمایشگاهی بااستفاده از ابزارهایی مانند میکروسکوپ اتمی بدست می آید. راه سوم شامل استفاده از نانوساختارهای خاص است که بتوان به عنوان حسگر استفاده کرد. یکی از مواد مورد استفاده در ساخت حسگرها، نانو لولهها خواهند بود. با نانو لولهها میتوان، هم حسگر شیمیایی و هم حسگر مکانیکی ساخت. به خاطر کوچک و نانومتری بودن ابعاد این حسگرها، دقت و واکنش آن ها بسیار زیاد خواهد بود، به گونهای که حتی به چند اتم از یک گاز نیز واکنش نشان خواهند داد. جهت ساخت حسگر گاز با پایه ی نانو لوله ی کربنی می توان نانو لوله ها را روی زیر پایه رشد داد یا با استفاده از نانو لوله های آماده و بکار گیری روش هایی مانند اعمال جریان الکتریکی آنها را روی زیر پایه قرار داد. در سال 2002، ویکتور وهمکارانش سه نوع الکترود میکرونی با شکل های مختلف، توسط فرآیندهای متفاوت روی زیر پایه شیشه ای ساختند و با اعمال جریان سعی کردند نانو لوله های کربنی را بین الکترودها بنشانند. از آنجا که چسبندگی طلا به شیشه کم است از نیکل برای زیرطلا استفاده شد. مقدار 10 میلی گرم نانو لوله های کربن چند دیواره در 500 میلی لیتر اتانول پخش شده و10میکرولیتر با روش تعلیق به روی شیشه منتقل می گردد. در اثر اعمال جریان Ac با فرکانس 1 مگاهرتز، اتانول در 20 ثانیه تبخیر می شود. نانو لوله های کربن چند دیواره بین دو الکترود قرار گرفته و مقاومت 6.12 کیلواهم را نشان دادند (شکل 1) شکل 1- استفاده از نانولوله¬ها در تولید نانوحسگرها [1] قرار گرفتن نانو لوله های کربنی چند جداره بین الکترودهای طلا تشکیل اتصال به فاصله ی بین دو الکترود بستگی دارد. طبق مشاهدات، در فاصله ی بیشتر از 25میکرومتر با فرکانس بین 100 هرتز تا 1 مگاهرتز هیچ اتصالی تشکیل نمی شود. برای فاصله ی بین 10 تا 15 میکرومتر، اتصال نانو لوله های کربن چند دیواره در همین محدوده¬ی فرکانس ایجاد شده است. مقاومت های حاصل نیز 158، 60 و 78 کیلواهم می باشند. شکل الکترودها نیز در تشکیل اتصال مؤثر است. حالت مربعی ایده آل است زیرا فاصله ی بین الکترودها در سرتاسر آن ثابت بوده و میدان الکتریکی یکنواختی اعمال می شود. 2-1 انواع نانو حسگرها نانوحسگرها انواع مختلفی دارند که شامل حسگرهای شیمیایی و سنتزی می باشد. 2-2-1 حسگرهای شیمیایی این حسگرها می توانند دردمای اتاق غلظتهای بسیارکوچکی از مولکولهای گازی را با حساسیت بسیاربالا آشکارسازی کنند. حسگرهای شیمیایی گازی برای مثال شامل مجموعه ای از نانولولههای تک دیواره هستند و می توانند مواد شیمیایی مانند دی اکسید نیتروژن وآمونیاک را آشکارکنند. هدایت الکتریکی یک نانولوله نیمه هادی تک دیواره که درمجاورت200ppm از دی اکسید نیتروژن قرارداده می شود، می تواند در مدت چند ثانیه تا سه برابر افزایش یابد و به ازای اضافه کردن فقط 2% آمونیاک هدایت دو برابر خواهد شد. حسگرهای تهیه شده ازنانولولههای تک دیواره دارای حساسیت بالایی بوده ودردمای اتاق هم زمان واکنش سریعی دارند. این خصوصیات نتایج مهمی درکاربردهای تشخیصی دارند. در مقاله ای دیگر به تفصیل در خصوص حسگرهای شیمیایی بحث خواهد شد. 2-2-2 حسگرهای سنتزی این نانوحسگرها از طریق اتصال ذرات خاص به انتهای نانولوله های کربنی و محاسبه فرکانس ارتعاشی در حضور یا بدون حضور ذرات تهیه می شوند. این نانوحسگرها اغلب برای شناسایی و کنترل واکنش های شیمیایی توسط ذرات نانو استفاده می شوند. 3 کاربرد نانوحسگرها در زیر مثالهایی از کاربرد نانوحسگرها جهت آشنایی بیشتر آورده شده است: 3-1 حسگرها با استفاده از نانوسیم های نیمه هادی برای تعیین عناصر این حسگرها قادر به تعیین یک گستره وسیع از بخارهای شیمیایی هستند. وقتی که پیوند مولکولی بین گاز مورد تجزیه و نانوسیم های ساخته شده از مواد نیمه رسانا برای مثال اکسید روی (ZnO) ایجاد می شود، هدایت سیم تغییر می کند. مقدار تغییر هدایت نانو سیم به میزان اتصال مولکول به سطح نانوسیم بستگی دارد. برای مثال، گاز دی اکسید نیتروژن هدایت نانو سیم را کاهش می دهد و منواکسید کربن هدایت را افزایش می دهد. 3-2 نانولولههای کربنی و نانوسیم ها برای شناسایی باکتری و ویروس این مواد اغلب می توانند برای شناسایی باکتری یا ویروس استفاده شوند. ابتدا نانولوله کربنی با اتصالات آنتی بادی (Antibody) عامل دار می شود. وقتی که باکتری یا ویروس با آنتی بادی پیوند برقرار می کند هدایت نانولوله تغییر می¬یابد. در روش دیگر نانولوله به فلز متصل می شود و یک ولتاژ از آن عبور می کند. وقتی یک باکتری یا ویروس با نانولوله پیوند برقرار می کند، جریان تغییر می یابد و یک سیگنال تولید می شود. دانشمندان معتقدند که این روش، یک روش سریع برای تشخیص باکتری می باشد. 3-3 نانوحسگرهای مولکولی مکانیکی این وسیله جهت توسعه حسگرهایی که قادر به تعیین یک مولکول هستند استفاده می-شوند. در این حسگرها وقتی که مولکول مورد تجزیه بر نوسانگر کانتیور قرار می گیرد، در فرکانس رزونانسی کانتیلیور تغییر ایجاد می شود. پوشش دادن کانتیور با مولکولهای پذیرندهای مانند آنتی بادیها (که میتوانند به صورت اختصاصی با باکتری، ویروس یا برخی زیستمولکولها پیوند برقرار کنند) ،کارآیی سامانه را افزایش میدهد (شکل 2). جهت مطالعه بیشتر این مبحث می توانید به مقالات "حسگرهای زیستی نانومکانیکی" مراجعه فرمایید. شکل 2 - نانوحسگر مکانیکی شامل آرایهای از کانتیلیورها برای شناسایی مولکولی [2] در شکل 3 نیز مثالی از نانوحسگر برای شناسایی مولکول هیدروژن ارائه شده است. در حضور گاز هیدروژن تغییر ولتاژ مشاهده می شود. شکل 3 - نانوحسگر پالادیم برای شناسایی مولکول هیدروژن [2] 3-4 کاربرد نانوحسگرها در پارچه های هوشمند نانو لوله های کربنی جهت تهیه حسگرها در پارچه¬ها استفاده می شوند. از آنجا که ماهیت نانولوله ها توخالی می باشد، تحت فشار خارجی قطر نانولوله ها تغییر می کند. با سنجش این فشار شعاعی، فشار وارد شده برروی نانو لوله ها قابل اندازهگیری است. همچنین از نانولوله های کربنی جهت ساخت حسگر حرارتی جهت استفاده در پارچه-های هوشمند استفاده شده است. با تغییرات دمایی قطر و طول لوله تغییر می کند. همچنین ضریب انبساط حرارتی نانو لوله های کربنی تک دیواره در جهت محوری و شعاعی متفاوت هستند و وابسته به دما می باشد. 3-5 استفاده در کشاورزی با استفاده از این حسگرها شناسایی مقادیر بسیار کم آلودگی شیمیایی یا ویروس و باکتری در سامانه های کشاورزی وغذایی ممکن است. تحقیقات درزمینه ی نانوابزارها جزء پژوهشهای علمی به روز دنیاست. 3-6 استفاده در پزشکی معروف ترین مثال از نانوحسگرها که در پزشکی استفاده می شود کادمیم سلنید (CdSe) می باشد. این ترکیب برای تشخیص تومورهای سرطانی با استفاده از ویژگی هی فلورسانس عمل میکند. همچنین از میان این حسگرها میتوان به حسگر برپایه نانوسیمها اشاره کرد که آسیبهای ناشی از تشعشع را در فضانوردان تشخیص میدهد. این نانوحسگرها در سلولهای خونی قرار داده میشوند. 3-7 نانو لوله های کربنی به عنوان حسگر گاز برای تشخیص گازهای شیمیایی ابتدا نانولوله کربنی را با پیوند دادن به یک فلز برای مثال طلا عامل دار می کنند. ملکول گاز با با فلز پیوند برقرار کرده و این باعث تغییر در هدایت نانولوله کربنی می گردد. این نوع از حسگرها به صورت تجاری قابل دسترس می باشند. 3-8 نانوحسگرهای زیستی نانوحسگرهای زیستی معمولا الکترودهای بسیار کوچکی در اندازة نانومتری و ابعاد سلولی هستند که از طریق تثبیت آنزیمهای خاصی روی سطح آنها، نسبت به تشخیص گونههای شیمیایی یا زیستی مورد نظر در سلولها حساس شدهاند. از این حسگرها برای آشکارسازی و تعیین مقدار گونهها در سیستمهای زیستی استفاده میشود. این تکنیک، روش بسیار مفیدی در تشخیص عبور بعضی ملکولها از دیواره یا غشای سلولی است. 3-9 نانو حسگرها در تصفیة آب و پساب از آنجایی که بسیاری از خواصی که انتظار میرود توسط حسگرها اندازهگیری شود در سطح مولکولی یا اتمی هستند، از نانوتکنولوژی در کاربردهای حسگری یا شناسایی استفاده زیادی میشود. حسگرهایی که در ابعاد نانومتری ساخته شدهاند از حساسیت فوقالعادهای برخوردارند و معمولا عملکرد انتخابی دارند میباشند. بنابراین تأثیر نانو تکنولوژی بر حسگرها فوقالعاده عمیق و گسترده است. به طور کلی به منظور کنترل بوی ناخوشایند، لازم است تا اندازهگیریهایی مبنی بر میزان بوی منتشر شده انجام شود. ترکیبات بسیاری در بوهای ناشی از تصفیة پساب شناسایی شدهاند. به طور نمونه این ترکیبات عبارتند از: ترکیبات کاهش یافتة گوگرد یا نیتروژن، اسیدهای آلی، آلدئیدها یا کتونها. در سالهای اخیر حسگرهای تجاری تحت مجموعهای که بینی (Nose) الکترونیکی نامیده میشوند ارائه شده است. از این حسگرها برای شناسایی میکروارگانیسمها و فلزات سنگین در آب آشامیدنی (مانند کادمیوم، سرب و روی) استفاده میشود. همچنین به منظور شناسایی و تعیین مشخصات بوهای ناشی از مخلوط بخار جمع شده در بالای یک جامد یا مایع موجود در یک محفظة دربسته نیز چنین تجهیزاتی تولید شدهاند. این حسگرها روش سریعتر و نسبتاً سادهای را برای پیگیری (Monitoring) تغییرات در کیفیت آب و فاضلاب صنعتی فراهم میآورند. 4 نتیجه گیری نانوحسگر وسیلهای است بسیار ریز که قادر به شناسایی و ارائه پاسخ به محرکهای فیزیکی در مقیاس نانومتر است. نانو مواد استفاده شده در ساخت نانو حسگرها اغلب نانو لولهها، نانو ذرات فلزی و نانوذرات مغناطیستی می باشد. در این مقاله انواع نانو حسگرها توضیح داده شده است و همچنین کاربردهایی برای آنها در زمینه پزشکی، کشاورزی، تصفیه آب و نساجی و.....آورده شده است. 2 لینک به دیدگاه
*mishi* 11920 اشتراک گذاری ارسال شده در 4 اردیبهشت، ۱۳۹۰ برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام ***** 2 لینک به دیدگاه
mim-shimi 25686 مالک اشتراک گذاری ارسال شده در 18 مرداد، ۱۳۹۱ نرم افزار برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام ابزار خوبی برای شبیه سازی و درک ساختار فولرن ها و نانو لوله هاست. این نرم افزار را به طور رایگان از بانک نرم افزارهای ایران سیتی دریافت کنید . برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام رمز فایل : برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام منبع : برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام لینک به دیدگاه
mim-shimi 25686 مالک اشتراک گذاری ارسال شده در 5 اسفند، ۱۳۹۱ برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام منبع: دانشنامه مرجع مهندسی ایران 1 لینک به دیدگاه
unstoppable 5989 اشتراک گذاری ارسال شده در 5 اسفند، ۱۳۹۱ مطلب جالبی بود ، ممنون من هنوز به طور واضح نمیدونم "نانو لوله کربنی" چیه...!!! اگه میشه در این باره هم مطلب بزارید...مرسی 1 لینک به دیدگاه
mim-shimi 25686 مالک اشتراک گذاری ارسال شده در 5 اسفند، ۱۳۹۱ مطلب جالبی بود ، ممنونمن هنوز به طور واضح نمیدونم "نانو لوله کربنی" چیه...!!! اگه میشه در این باره هم مطلب بزارید...مرسی نانولولههای کربنی که از صفحات برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام به ضخامت یک برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام و به شکل استوانهای توخالی ساخته شدهاست در سال برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام توسط سامیو ایجیما (از شرکت NEC ژاپن) کشف شد. خواص ویژه و منحصر به فرد آن از جمله برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام بالا و استحکام کششی خوب از یک طرف و طبیعت کربنی بودن نانولولهها (به خاطر این که کربن مادهای است کم وزن، بسیار پایدار و ساده جهت انجام فرایندها که نسبت به فلزات برای تولید ارزانتر میباشد) باعث شده که در دهه گذشته شاهد تحقیقات مهمی در کارایی و پرباری روشهای رشد نانولولهها باشد. کارهای نظری و عملی زیادی نیز بر روی ساختار اتمی و ساختارهای الکترونی نانولوله متمرکز شدهاست. کوششهای گستردهای نیز برای رسیدگی به خواص مکانیکی شامل مدول یانگ و استحکام کششی و ساز وکار عیوب و اثر تغییر شکل نانولولهها بر خواص الکتریکی صورت گرفتهاست. میتوان گفت این علاقه ویژه به برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام از ساختار و ویژگیهای بینظیر آنها سرچشمه میگیرد. ویژگیهای نانولولههای کربنی انواع نانولولههای کربنی روشهای تولید نانو لولههای کربنی کاربردهای نانولولههای کربنی چالشهای فراوری بعد از ساخت اولین نانولوله، دانشمندان بر روی روشهای سنتز این نانولوله فعالیت زیادی انجام داده و توانستند به روشهای مختلفی دست یابند و سپس سعی کردند با ارائه روشهای متنوع بر مشکلات موجود نیز فائق بیایند که بعضی از مشکلات تا حدی مرتفع و بعضی نیز همچنان پابرجاست. با این وجود امروزه سنتز نانولولهها یک مسأله کاملاً حل شدهاست لذا کمتر محققی به دنبال سنتز نانولوله با روشهای خاص میباشد. میتوان گفت امروزه بعد از گذر از مرحله سنتز به مرحله تجاریسازی نانولولهها رسیدهایم، مرحلهای که میتواند توان رقابتی بالای شرکتها را نمایان سازد. بعضی اوقات تجارت به جهان داروینی شبیه میشود، جهانی که شرکتها برای تسلط بر یکدیگر در آن با هم به رقابت میپردازند. در این فرایند شرکتهای ضعیفتر مجبور به ترک صحنه سرمایهگذاری تجاری میشوند. به نظر میرسد این ماجرا در مورد یکی از شاخههای اصلی فناوری نانو یعنی نانولولههای کربنی نیز صادق میباشد. شرکتهایی از سراسر جهان، از جزیره کوچک قبرس گرفته تا جمهوری خلق چین، ادعای ریسک و سرمایهگذاری بر روی نانولولههای کربنی را دارند. محصولاتی که از برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام سختتر، از برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام سبکتر و از برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام ضریب هدایت بیشتری داشته و برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام خوبی نیز هستند. تولید کنندگان در حال سرمایهگذاری جهت پیشبرد این بخش و کاهش قیمتهای این فرآورده هستند. اما در واقع بقای این شرکتها وابسته به نوع نانولولههایی است که ارائه میدهند، چه از لحاظ کیفی و چه از لحاظ ثبت اختراعات در این زمینه. درست است که هنوز سوددهی اقتصادی نانولولهها کاملاً روشن نیست، اما دانشمندان معتقدند چیزی قویتر از فولاد به خوبی میتواند جای خود را در بازار باز کند. لذا در آینده نه چندان دور شرکتهایی که از نانولوله جهت بهتر کردن کیفیت محصولات خود استفاده میکنند بازار آینده را در اختیار خواهند گرفت. ویکی پدیا 2 لینک به دیدگاه
mim-shimi 25686 مالک اشتراک گذاری ارسال شده در 15 اسفند، ۱۳۹۱ برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام حسگر چیست؟ حسگر یک وسیله ی الکتریکی است که تغییرات فیزیکی یا شیمیایی را اندازه گیری می کند وآنها را به سیگنالهای الکتریکی تبدیل می نماید. حسگرها درواقع ابزار ارتباط ربات با دنیای خارج وکسب اطلاعات محیطی ونیز داخلی می باشند، ویا به طور کلی ابزارهایی هستند که تحت شرایط خاص ازخود واکنشهای پیش بینی شده ومورد انتظار نشان می دهند. شاید بتوان دماسنج را جزء اولین حسگرهایی دانست که بشرساخت. ساختار کلی یک حسگر: درطراحی یک حسگر دانشمندان علوم مختلف مانند بیوشیمی، بیولوژی، الکترونیک، شاخه های مختلف شیمی و فیزیک حضوردارند. قسمت اصلی یک حسگرشیمیایی یا زیستی عنصرحسگر آن می باشد. عنصرحسگر در تماس با یک آشکارساز است. این عنصرمسئول شناسایی و پیوند شدن با گونه ی مورد نظر در یک نمونه ی پیچیده است. سپس آشکارساز سیگنالهای شیمیایی را که در نتیجه ی پیوند شدن عنصرحسگر با گونه ی موردنظر تولید شده است را به یک سیگنال خروجی قابل اندازه گیری تبدیل می کند. حسگرهای زیستی بر اجزای بیولوژیکی نظیرآنتی بادی ها تکیه دارند. آنزیمها ، گیرنده ها یا کل سلولها می توانند به عنوان عنصر حسگرمورد استفاده قرار گیرند. خصوصیات حسگرها: یک حسگرایده آل باید خصوصیات زیررا داشته باشد: 1. سیگنال خروجی باید متناسب با نوع و میزان گونه ی هدف باشد. 2. بسیار اختصاصی نسبت به گونه مورد نظر عمل کند. 3. قدرت تفکیک و گزینش پذیری بالایی داشته باشد. 4. تکرارپذیری و صحت بالایی داشته باشد. 5. سرعت پاسخ دهی بالایی داشته باشد. (درحد میلی ثانیه) 6. عدم پاسخ دهی به عوامل مزاحم محیطی مانند دما ، قدرت یونی محیط و … نانوحسگرها با پیشرفت علم در دنیا و پیدایش تجهیزات الکترونیکی و تحولات عظیمی که در چند دهه ی اخیر و درخلال قرن بیستم به وقوع پیوست نیاز به ساخت حسگرهای دقیق تر،کوچکتر و دارای قابلیتهای بیشتر احساس شد. امروزه از حسگرهایی با حساسیت بالا استفاده می شود به طوریکه در برابر مقادیر ناچیزی از گاز، گرما و یا تشعشع حساس اند. بالا بردن درجه ی حساسیت، بهره و دقت این حسگرها به کشف مواد و ابزارهای جدید نیاز دارد. نانو حسگرها، حسگرهایی در ابعاد نانومتری هستند که به خاطرکوچکی و نانومتری بودن ابعادشان از دقت و واکنش پذیری بسیار بالایی برخوردارند به طوری که حتی نسبت به حضور چند اتم از یک گاز هم عکسالعمل نشان می دهند. انواع نانو حسگرها: نانوحسگرها براساس نوع ساختارشان به سه دسته ی نقاط کوانتومی ، نانولوله های کربنی و نانوابزارها تقسیم بندی می شوند: 1.استفاده از نقاط کوانتومی درتولید نانو حسگرها: نقاط کوانتومی به عنوان بلورهای نیمه هادی کوچک تعریف می شوند برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام با کنترل ابعاد نقاط کوانتومی، میدان الکترومغناطیسی نور را دررنگها و طول موجهای مختلف، منتشرمی کند. به عنوان مثال، نقاط کوانتومی از جنس آرسنیدکادمیوم با ابعاد 3 نانومتر نور سبز منتشر می کند؛ درحالی که ذراتی به بزرگی 5/5 نانومتر از همان ماده نور قرمز منتشرمی کند. به دلیل قابلیت تولید نور در طول موجهای خاص نقاط کوانتومی ، این بلورهای ریز در ادوات نوری به کارمی روند. دراین عرصه از نقاط کوانتومی در ساخت آشکارسازهای مادون قرمز، دیودهای انتشار دهنده ی نورمی توان استفاده نمود. آشکارسازهای مادون قرمز از اهمیت فوق العاده ای برخوردارند. مشکل اصلی این آشکارسازها مسئله ی خنک سازی آنهاست. برای خنک سازی این آشکارسازها از اکسیژن مایع وخنک سازی الکترونیکی استفاده می شود. این آشکارسازها برای عملکرد صحیح باید دردماهای بسیار پائین، نزدیک به 80 درجه کلوین کارکنند، بنابراین قابل استفاده در دمای اتاق نیستند، درصورتی که از آشکارسازهای ساخ برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام ه شده با استفاده از نقاط کوانتومی می توان به راحتی در دمای اتاق استفاده کرد. 2. استفاده ازنانولوله ها درتولید نانوحسگرها: نانو لوله های کربنی تک دیواره و چند دیواره به علت داشتن خواص مکانیکی و الکترونیکی منحصر به فردشان کاربردهای متنوعی پیدا کردند که از جمله می توان به استفاده از آنها به عنوان حسگرهایی با دقت بسیار بالا برای تشخیص مواد در غلظتهای بسیار پائین و با سرعت بالا اشاره کرد. به طورکلی کاربرد نانو لوله ها در حسگرها را می توان به دو دسته تقسیم کرد: الف ) نانولوله های کربنی به عنوان حسگرهای شیمیایی: این حسگرها می توانند دردمای اتاق غلظتهای بسیارکوچکی از مولکولهای گازی با حساسیت بسیاربالا را آشکارسازی کنند. حسگرهای شیمیایی شامل مجموعه ای از نانولوله های تک دیواره هستند و میتوانند مواد شیمیایی مانند دی اکسید نیتروژن ( NO2 ) وآمونیاک ( NH3 ) را آشکارکنند. هدایت الکتریکی یک نانولوله نیمه هادی تک دیواره که درمجاورت ppm200 از NO2 قرارداده می شود، می تواند در مدت چند ثانیه تا سه برابر افزایش یابد و به ازای اضافه کردن فقط 2% NH3 هدایت دو برابر خواهد شد. حسگرهای تهیه شده ازنانولوله های تک دیواره دارای حساسیت بالایی بوده ودردمای اتاق هم زمان واکنش سریعی دارند. این خصوصیات نتایج مهمی درکاربردهای تشخیصی دارند. ب) نانولوله های کربنی به عنوان حسگرهای مکانیکی: هنگامی که یک نانولوله توسط جسمی به سمت بالا یا پائین حرکت می کند، هدایت الکتریکی آن تغییر می یابد. این تغییر در هدایت الکتریکی، با تغییر شکل مکانیکی نانولوله کاملا ً متناسب است برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام این اندازه گیری به وضوح امکان استفاده از نانولوله ها را به عنوان حسگرهای مکانیکی نشان می دهد. یا می توان با استفاده از مواد واسط مانند پلیمرها در فاصله ی میان نانولوله های کربنی وسیستم، نانولوله های کربنی را برای ساخت بیوحسگرها توسعه داد. شبیه سازی های دینامیکی نشان می دهد که برخی پلیمرها مانند پلی اتیلن می توانند به صورت شیمیایی با نانولوله کربنی پیوند یابند. همچنین مولکول بنزن نیز می تواند به وسیله ی پیوندهای واندروالس روی نانولوله ی کربنی جذب شود. این تحقیقات کاربردهای بسیار متنوع و وسیع نانولوله ها ی کربنی را نشان می دهد. تحقیق دراین زمینه هنوزدرحال توسعه وپیشرفت است ومطمئنا ً درآینده برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام نه چندان دور شاهد به کارگیری آنها درابزارها و صنایع مختلف خواهیم بود. 3.استفاده ازنانو ابزارها درتولید نانوحسگرها: با استفاده از این حسگرها شناسایی مقادیر بسیار کم آلودگی شیمیایی یا ویروس و باکتری در سامانه ی کشاورزی وغذایی ممکن است. تحقیقات درزمینه ی نانوابزارها جزء پژوهشهای علمی به روز دنیاست. نانو حسگرها و کنترل آلودگی هوا: یکی از نیازهای مهم و اساسی در ارتباط با کنترل آلودگی محیط زیست، پایش مستمرآلودگی هواست. با استفاده از نانوحسگرها پیشرفت مؤثری در زمینه ی کنترل آلودگی هوا صورت گرفته است. یکی از این راهکارها اختراع غبارهای هوشمند می باشد. غبارهای هوشمند مجموعه ای از حسگرهای پیشرفته به صورت نانو رایانه های بسیارسبک هستند که به راحتی ساعتها درهوا معلق باقی می مانند. این ذرات بسیار ریز از سیلیکون ساخته می شوند و می توانند ازطریق بی سیم موجود درخود اطلاعات موجود در خود را به یک پایگاه مرکزی منتقل کنند. سرعت این انتقال حدود یک کیلوبایت در ثانیه است. هم چنین حسگرهایی از جنس نانولوله های تک لایه ساخته شده اند که می توانند مولکولهای گازهای سمی را جذب کنند و همچنین آنها قادر به شناسایی تعداد معدودی از گازهای مهلک موجود درمحیط هستند. محققان معتقدند این نانوحسگرها برای شناسایی گازهای بیوشیمیایی جنگی و آلاینده های هوا کاربرد خواهند داشت. مبارزه با انتشار گازهای سمی: انتشار و پخش گازهای مهلک و سمی یکی از خطرات روزمره زندگی صنعتی است. متأسفانه هشدار دهندههای موجود در صنعت اغلب بسیار دیر موفق به شناسائی اینگونه گازهای نشتی میشوند. نانوحسگرها که از نانوتیوبها برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام تک لایه به ضخامت حدود یک نانومتر ساخته شدهاند و میتوانند مولکولهای گازهای سمی را جذب کنند. آنها همچنین قادر به شناسائی تعداد معدودی از مولکولهای گازهای مهلک در محیط هستند. محققان مدعیاند که این حسگرها برای شناسائی به هنگام گازهای بیوشیمیائی جنگی، آلایندههای هوا و حتی مولکولهای آلی موجود در فضا کاربرد خواهند داشت. جذابیتهای نانوحسگرها به طور صریح این قبیل مزایای نانوحسگرها باعث شده است که به عنوان فرصتی وسوسهانگیز برای بازار تلقی شوند. نانوحسگرها به طور ذاتی کوچکتر و حساستر از سایر حسگرها میباشند. همچنین این ظرفیت را دارند که قیمت تمام شدة آنها کمتر از قیمت تمامشده حسگرهای موجود در بازار باشد. برای مثال اگر قیمت حسگرهای صنعتی متداول امروزی، چند 10 هزار دلار باشند برای نانوحسگرهایی که بتوانند همان کار را انجام دهند به صورت نظری چند 10 دلار برآورد میشود. نانوحسگرها همچنین هزینه جاری را نیز کاهش میدهند؛ زیرا به طور ذاتی برق کمتری مصرف میکنند. درنهایت از آنجایی که نانوحسگرها هزینههای خرید و اجرا را کاهش میدهند؛ ممکن است بهکارگیری آنها به صورت آرایهها و تودهها مقرون به صرفه باشد و همچنین بتوانند به شکل فراگیر و حتی اضافی در قطعات کاربرد پیدا کنند؛ به طوریکه اگر یک نانوحسگر از کار بیفتد و از مدار خارج شود بتوان از آن صرف نظر کرد و ضریب امنیت در حد مطلوبی باقی بماند، زیرا تعداد زیادی نانوحسگر دیگر در سیستم میتوانند کار آن را به عهده بگیرند. در بخش نظامی و امنیت ملی نیز احتیاج به حسگرهای بسیار حساسی است که بتوانند به صورت گسترده توزیع شوند تا به کمک آنها بتوان تشعشعات و بیوسمهای زیستی را مورد بررسی قرار داد برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام در زمینه پزشکی نیاز به حسگرهای بسیار حساسی به صورت آزمایشگاههایی بر روی تراشه است كه بتوانند کوچکترین علائم نشاندهندة سرطان را شناسایی کنند. در صنایع هوافضا احتیاج به نانوحسگرهایی است که در بدنة هواپیماها به عنوان سیستم هشداردهنده ثابت قرار بگیرند و مشخص کنند که چه زمانی هواپیما احتیاج به تعمیرات دارد. در صنایع اتومبیل میتوان از نانوحسگرها برای مصرف بهینه سوخت استفاده کرد. همچنین در اتومبیلهای گرانقیمت میتوان برای بهبود وضعیت صندلی و وضعیت کنترلهای موجود به تناسب حالتهای مختلف بدن، این نانوحسگرها را مورد استفاده قرار داد. آینده نگری: می توان انتظار داشت که در آینده با ترکیب محرک ها و نانوحسگرها بتوان مواد هوشمندی ساخت که در فرآیندهای تولید سیستم های پیچیده نقش های مهمی ایفا کرده و فناوری جدید دیگری را پایه ریزی کنند. گرچه موانعی مانند افزایش قیمت، اطمینان پذیری از تاثیر آنها و نیز اطمینان از کاربرد آنها در زمینه های صلح آمیز نیز باید از سر راه برداشته شوند. بخش دانش وفناوری سایت تبیان 1 لینک به دیدگاه
ارسال های توصیه شده