Mahnaz.D 61915 اشتراک گذاری ارسال شده در 11 دی، ۱۳۸۹ vنسبت طلایی در ریاضیات و هنر هنگامی است که «نسبت بخش کوچکتر به بخش بزرگتر، برابر با نسبت بخش بزرگتر به کل» باشد.[۱]» تعریف دیگر نسبت طلایی این است که «عددی مثبت است که اگر به آن یک واحد اضافه کنیم به مربع آن خواهیم رسید». تعریف هندسی آن چنین است: طول مستطیلی به مساحت واحد که عرض آن یک واحد کمتر از طولش باشد. بسیاری از مراجع علمی، حرف یونانی φ را برای این عدد انتخاب کردهاند. مقدار عددی عدد طلایی برابر به طور تقریبی برابر است با: تعبیر هندسی دیگر اینگونهاست: پاره خط AB و نقطهٔ M روی آن مفروضند به گونهای که نسبت a به b برابر است با نسبت a+b به a. این نسبت برابر φ است. یعنی: پیشینه توجه به عدد طلایی نه به زمان فیبوناچی بلکه به زمانهای بسیار دورتر میرسد.اقلیدس در جلد ششم از سیزده جلد کتاب مشهور خود که در آنها هندسه اقلیدسی را بنا نهاد، این نسبت را مطرح کردهاست. لوکا پاچیولی در سال ۱۵۰۹ میلادی کتابی با عنوان نسبت الهی (The Divine Proportion) تالیف کرد. وی در آن نقاشیهایی از لئوناردو داوینچی آوردهاست که پنج جسم افلاطونی را نمایش میدهند و در آنها نیز به این نسبت اشاره شدهاست. مصریان، سالها قبل از میلاد از این نسبت آگاه بودهاند و آن را در ساخت اهرام مصر رعایت کردهاند. بسیاری از الگوهای طبیعی در بدن انسان این نسبت را دارا هستند. نسبت طول ضلع پنج پر منتظم به طول ضلع پنج ضلعی منتظم برابر همین عدد است. روانشناسان هم بر این باورند زیباترین مستطیل به دید انسان، مستطیلی است که نسبت طول به عرض آن برابر عدد طلایی باشد. 11 لینک به دیدگاه
Mahnaz.D 61915 مالک اشتراک گذاری ارسال شده در 11 دی، ۱۳۸۹ نسبت طلایی در ایران برج و میدان آزادی :طول بنا 63 و عرض ان 42 است که 5/1=42 : 63 و به عدد طلایی نزدیک می باشدسبک معماری آن نیزطاق بزرگی است که تلفیقی از سبک هخامنشی و ساسانی و اسلامی است که منحنی آن با الهام از طاق کسری معماری ایران باستان را تداعی می نماید. قلعه دالاهو , کرمانشاه :خطی از استحکامات به طول دو و نيم کيلومتر و عرض چهار متر با قلوه و لاشه سنگ به همراه ملاط دیوار گچ را می سازد. سرتاسر نمای خارجی اين ديوار با مجموعه ای از برج های نيم دايره ای شکل تقويت شده است.می دانیم6/1=5/2 : 4 که همان عدد طلایی است. بيستون از دوره هخامنشي , کرمانشاه:به طول 5 کیلومتر و عرض 3 کیلومتراست.اعداد5و3هردوجزودنباله فیبوناتچی هستندو6/1=5:3 و ابعاد برجسته کاری 18 در 10 پاست که قامت "داریوش"5 پا و 8 اینچ (170 سانتیمتر)بلندی داردکه هر دو اعداد فیبوناتچی هستند پل ورسک در مازندران:این پل بر روی رودخانه ورسک در مجاورت سواد کوه بنا شد.بلندی این پل 110 متر است وطول قوس آن 66 متر می باشد(6/1 = 66 : 110 ). مقبره ابن سینا:آرامگاه دروسط تالاری مربع شکل قرارگرفته که پله مدور(مارپیچ فیبوناتچی) و پایه های دوازده گانه برج را احاطه کرده اند .سطح حیاط باسه پله سراسری به ایوان متصل است.ایوان با دری به ارتفاع 2/3 متر و عرض 9/1 متر به سرسرای آرامگاه متصل است (6/1=9/1 : 2/3 )در دو طرف سرسرا دو تالار قرار دارد یکی در جنوب که تالار سخنرانی و اجتماعات است.و یکی در شمال که کتابخانه آرامگاه است.طول تالار کتابخانه 45/9 متر وعرض آن 75/5 متر است(6/1=75/5 : 45/9 ) ارگ بم :این بنا 300 متر طول و 200 متر عرض داشته و از 2 قسمت تشکیل شده است. این دﮋ 5 شیوه ساختاری از خشت خام دارد . (3 و 2 و 5 اعداد دنباله فیبوناتچی هستند) ترسیم مستطیل طلایی برای رسم کردن مستطیل طلایی ابتدا مربع ABCD با استفاده از ضلع کوچک رسم میشود. سپس ضلع AB را نصف کرده، از وسط آن (نقطه G) با پرگار یک قوس به شعاع GC ترسیم کرده و ضلع بزرگ مستطیل (AE) را به دست میآورند. 9 لینک به دیدگاه
bpcom 10070 اشتراک گذاری ارسال شده در 12 دی، ۱۳۸۹ خیلی جالب توجه بود دوست عزیز من اولین بار با نسبت طلایی در کتاب رمز داوینچی آشنا شدم و واقعا برام جذاب و جدید بود اینکه این نسبت ها در معماری ما هم رعایت شده برام خیلی تازگی داشت باید بعد این بیشتر رو جزییات بناها دقت کنم 2 لینک به دیدگاه
.FatiMa 36559 اشتراک گذاری ارسال شده در 12 دی، ۱۳۸۹ هنرمندان قدیمی برای اضافه نمودن حس توازن و شکوه به یک صحنه ، مجسمه یا بنا مدتها از ترکیب تناسب طلایی استفاده کردهاند . ترکیب مزبور یک تناسب ریاضی بر اساس نسبت ۱٫۶۱۸/۱ بوده و در اغلب مواقع در طبیعت ، مثلا در صدفهای دریایی و الگوی دانههای گل آفتابگردان و یا ساختار هندسی بازوهای میلهای کهکشانهای مارپیچی موجود در کیهان یافت میشود . امروزه سرنخهایی از این نسبت طلایی در نانو ذرات ( شاخهی نانو تکنولوژی ) بدست آمده است . در واقع هم در عالم خرد و هم در عالم کلان این تناسب بخوبی قابل شناسایی است . به هر حال به کار بردن این نسبت در طراحیهای دستی و رشتههای هنری کار راحتی نمیباشد ، برای اینکه هرگز نمیتوان به مرکز دوران مارپیچ رسید و این نقطه ، مرکزی نامعلوم و غیر قابل دسترس است و تا بینهایت ادامه مییابد . به علت سهولت در ترسیمها و کارهای عملی ، نسبت ۱٫۶/۱ در نظر گرفته میشود. عکسهای فوق مربوط به صدفهای دریایی ، حلزون شنوایی گوش ، یک گردباد و یک کهکشان است. در گل آفتابگردان ، امتداد مسیر دوران مارپیچ طلایی یا فیبوناچی در هر دو جهت ساعت گرد و پاد ساعت گرد مشاهده میشود . مستطیل طلایی ویژه دنبالهی فیبوناچی و عدد طلایی چیست ؟ لئوناردو فیبوناچی ایتالیایی تبار اهل پیزا حدود سال ۱۲۰۰ میلادی مسالهای طرح کرد : فرض کنید که یک جفت خرگوش نر و ماده در پایان هر ماه یک جفت خرگوش نر و ماده جدید به دنیا بیاورند … اگر هیچ خرگوشی از بین نرود ، در پایان یک سال چند جفت خرگوش وجود خواهد داشت ؟ البته در این مسئله میبایست قواعد و اصول فرضی و قراردادی زیر مراعات شوند ! ” شما یک جفت خرگوش نر و ماده دارید که همین الآن متولد شدهاند . خرگوشها پس از یک ماه بالغ میشوند . دوران بارداری خرگوشها یک ماه است . هنگامی که خرگوش ماده به سن بلوغ میرسد حتما باردار میشود . در هر بار بارداری خرگوش ماده یک خرگوش نر و یک ماده میزاید . خرگوشها تا پایان سال نمیمیرند . ” او برای حل این مسئله به یک سری از اعداد یا بهتر است بگوییم به یک دنباله رسید که عبارت بود از … ,۰،۱,۱,۲,۳,۵,۸,۱۳,۲۱,۳۴,۵۵,۸۹,۱۴۴,۲۳۳ که در این دنباله هر عددی ( به غیر از صفر و یک اول ) حاصل جمع دو عدد قبلی خودش میباشد ، به طور مثال ۳+۵=۸ یا ۱+۲=۳ و ….. علت بر اینکه در پایان ماه اول ، جفت اول به بلوغ میرسد و در پایان ماه دوم بعد از سپری کردن یک ماه بارداری ، یک جفت خرگوش متولد میشود که جمعا دو جفت خرگوش خواهیم داشت ، در پایان ماه سوم جفت اول یک جفت دیگر به دنیا میآورد ولی جفت دوم به پایان دوران بلوغ خود میرسد که در کل سه جفت خواهیم داشت در پایان ماه چهارم جفت اول و جفت دوم وضع حمل میکنند و تبدیل به چهار جفت میشوند و جفت سوم به بلوغ میرسد و در کل پنج جفت خواهیم داشت و الی آخر که در پایان ماه دوازدهم تعداد ۲۳۳ جفت خرگوش خواهیم داشت . این مستطیل را ، مستطیل فیبوناچی نیز مینامند . برای رسم مارپیچ طلایی یا فیبوناچی از راس ( گوشهی ) هر مربع یک کمان به شعاعی برابر ضلع آن مربع رسم میکنیم . به این مارپیچ بدست آمده ، اسپیرال لگاریتمی هم گفته میشود . در رسم فوق دنباله را از عدد ۲۰ شروع کردهایم یعنی سری اعداد ۲۰،۲۰،۴۰،۶۰،۱۰۰ ، در واقع نسبت عرض مستطیل به طول آن را ۱٫۶/۱ در نظر گرفتهایم . رسم فوق با تقریب ۱۰۰٫۰۰۰٫۰۰۰/۱ توسط نرمافزار اتوکد اندازه گذاری شده است و طریقه رسم به حد کافی واضح و روشن میباشد و نکته جالب توجه اینکه برای رسم مارپیچ به این روش ، میبایست هفت کمان رسم شود که عدد صحیح ۱۲ برای شعاع کمان پنجم بدست میآید . مرکز هر کمان با علامت جمع مشخص شده است . بهطور خلاصه با در نظر گرفتن تقاطعهایی که خطوط با زاویهی قائمه یکدیگر را قطع کردهاند ، میتوان مستطیل و مارپیچ طلایی فیبوناچی را در رسم توسعه یافتهی ستاره داوود رسم نمود . همانطور که مشخص است اختلاف بسیار جزیی این رسم با رسم قبلی مشاهده میشود آنهم در کمانهای ۵ ، ۶ ، ۷ به علت تغییر جزیی در قطرهای آبی رنگ و در تناسبات هندسی اختلافی وجود ندارد ، که دال بر این موضوع است که تناسب طلایی در رسم ستاره داوود توسعه یافته جاری میباشد و در مباحث بعدی توضیح خواهیم داد که کلیه موجوداتی که در آنها تناسبات طلایی دیده میشود ، تناسب خود را مدیون این ترسیمها و ساختارهای هندسی در ستاره داوود توسعه یافته هستند. در رسم فوق مستطیل و مارپیچ طلایی به مرکز رسم ستاره داوود توسعه یافته انتقال داده شده است . در رسم فوق مستطیل و مارپیچ طلایی به نقطهی دیگری انتقال داده شده است . اینک اگر در این دنباله ( ۱,۱,۲,۳,۵,۸,۱۳,۲۱,۳۴,۵۵,۸۹,۱۴۴,۲۳۳ ) هر عدد را به عدد قبلیاش تقسیم کنیم یک چنین سری را بدست میآوریم : ۱/۱=۱ ، ۲/۱=۲ ، ۳/۲=۱٫۵ ، ۵/۳=۱٫۶۶… ، ۸/۵=۱٫۶ ، ۱۳/۸=۱٫۶۲۵ ، ……. ، ۲۳۳/۱۴۴=۱٫۶۱۸۰۵…… که هر چقدر جلوتر برویم بهنظر میآید که به یک عدد مخصوص میرسیم . این عدد را عدد طلایی مینامند که این عدد تقریبا برابر است با : ۱٫۶۱۸۰۳۳……………. روش جبری برای بدست آوردن عدد طلایی : مستطیلی به عرض ۱ واحد و طول x را در نظر میگیریم مسلما x بزرگتر از ۱ میباشد . اینک باید مقدار x را چنان تعیین کنیم ( بدست آوریم ) که اگر مربعی به ضلع ۱ واحد را از این مستطیل جدا نماییم ، مستطیل بدست آمدهی کوچکتر ، متناسب مستطیل بزرگتر قبلی باشد ، یعنی x/1=1/(x-1) a به بیان سادهتر ، نسبت طول به عرض مستطیل اول برابر نسبت طول به عرض مستطیل بدست آمده ( مستطیل دوم ) باشد که با ضرب صورت در مخرج طرفین تناسب ، یک معادله درجه ۲ بدست میآید یعنی x²-x-1=0 و با ریشهیابی این معادله به ریشههای ۱٫۶۱۸۰ و ۰٫۶۱۸۰- دست مییابیم . روشهای هندسی برای بدست آوردن عدد طلایی : اگر یک مثلث متساویالاضلاع رسم کنیم ( مثلث بنفش ) و از مرکز آن دایرهای رسم کنیم تا از سه راس آن مثلث عبور کند ( دایره نارنجی ) و وسط دو ضلع مثلث را یافته و پاره خطی از آن دو نقطه تا محیط دایره ، رسم کنیم دو پاره خط با نسبت طلایی بدست میآید ( پاره خط زرشکی و سرخ آبی ) یعنی ۶۹٫۲۸۲۰۳۲۳/۴۲٫۸۱۸۶۵۰۷۷=۱٫۶۱۸۰۳۳۹۸……….. رسم زیر روش دیگری برای رسم مستطیل طلایی ویژه و تناسبات طلایی ، و همچنین بدست آوردن عدد طلایی را نشان میدهد . جهت رسم یک مستطیل طلایی به نسبت عدد طلایی ابتدا یک مربع به ضلع یک واحد کشیده سپس طبق شکل فوق وسط ضلع پایینی این مربع را پیدا میکنیم . سپس یک قوس با شعاعی به اندازه وسط ضلع پایینی مربع تا گوشه سمت راست بالا میکشیم تا طول مستطیل معلوم شود . اهرام : جالب است بدانیم که نسبت ضلع بلندتر به ضلع کوتاهتر مستطیل طلایی که نسبت طلایی نامیده میشود ، در بسیاری از طرحهای هنری از قبیل معماری و خطاطی ظاهر میشود . مطابق تحقیقات انجام شده ، نسبت طول ضلع قاعده به ارتفاع در اهرام ثلاثه مصر ، برابر نسبت طلایی است . همچنین دیوارهای معبد پارتنون از مستطیلهای طلایی ساخته شده است ! زیرا به اعتقاد سازندگان آنها ، مستطیلها با نسبتهای طلایی به چشم خوشایندتر هستند و این موضوع دال بر این واقعیت است که این تناسبات هندسی در ذات انسانها نیز شکل گرفتهاند ! تعریف ریاضی سری اعداد یا دنبالهی فیبوناچی و عدد طلایی ( فی Φ ) : غیر از دو عدد اول ( ۰ و ۱ ) اعداد بعدی از جمع دو عدد قبلی خود بدست میآیند . اولین اعداد این سری عبارتند از : ۰,۱,۱,۲,۳,۵,۸,۱۳,۲۱,۳۴,۵۵,۸۹,۱۴۴,۲۳۳,۳۷۷,۶۱۰,۹۸۷,۱۵۹۷,۲۵۸۴,۴۱۸۱,۶۷۶۵,۱۰۹۴۶ این سری از اعداد به نام لئوناردو فیبوناچی ریاضیدان ایتالیایی نام گذاری شده است . طبق تعریف :مقدار عددی حد فوق به عدد فی یا همان ………. ۱٫۶۱۸۰۳۳ میرسد . اگر عدد فی را بتوان دو برسانیم مثل این است که یک واحد به عدد فی افزوده باشیم یعنی Φ²=Φ+۱ و اگر عدد یک را بر فی تقسیم کنیم مثل این است که یک واحد از عدد فی کم کرده باشیم یعنی : ۱/Φ=Φ-۱ عدد فی را در مبنای دوجینی میتوان به صورت ۱٫۷۵ نوشت که مقدار واقعی ، حقیقی و درستی جهت فی میباشد برای اینکه : ۱+(۷/۱۲)+(۵/۱۲/۱۲)=۱٫۶۱۸۰۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵………. ۲۳۳/۱۴۴=۱٫۶۱۸۰۵۵۵۵۵۵۵۵۵۵۵۵۵۵…… همانطور که میدانیم عدد ۲۳۳ توالی دوازدهم سری یا دنبالهی فیبوناچی است یعنی همان تعداد خرگوشها در پایان ماه دوازدهم . و بدست آمدن عدد ۱٫۷۵ در مبنای دوجینی برای مقدار فی بیانگر این موضوع است که سیستم دوجینی از بعضی جهات راحتتر از سیستم دهدهی است . راحتی فوق اصولا از این حقیقت ناشی میشود که تعداد مقسوم علیههای دوازده از تعداد مقسوم علیههای ده بیشتر میباشد . دوازده بر یک ، دو ، سه ، چهار ، شش و خودش بخشپذیر است . بنابراین بسیاری از محاسبات دستی در سیستم دوجینی تا حدودی سادهتر از سیستم دهدهی هستند ، عدد فی که در مبنای دهدهی به صورت عددهای کسری متناوب در میآید در مبنای دوجینی چنین نیست و میتوان به مقدار فیکس شدهی ۱٫۷۵ دست یافت . مایاهایی که در خلال سالهای ۲۰۰۰ تا ۹۰۰ قبل از میلاد ، ساکن آمریکای جنوبی بودهاند ، چنین به نظر میرسد که برای رصد کردن حرکات متغیر اجرام آسمانی ، اهرامی بنا نهادند و تقویم شمسی دقیقی وضع کردند . همچنین با محاسبات خود ، وقوع خسوف و کسوف را پیش بینی و مراسم قربانی کردن انسانها را تدارک میدیدهاند و عقیده بر این داشتند که این کار آنها خشم خدایان را از آنها برطرف میکند . به یقین میتوان گفت که مطالب و موضوعات بسیار مهمی در علوم بشریت در زمینهی ریاضیات ، هندسه و نجوم مفقود و از بین رفته است و فقط نشانههای تلخ و ناخوشایندی از آن دانستهها در ساختههای دست بشر باقیمانده است که در مباحث بعدی سعی خواهیم کرد این دانستههای از بین رفته را بازیابی نماییم . البته ما باید مابین علم و جنایت فرق قائل شویم . سری فیبوناچی چه در ریاضیات چه در فیزیک و علوم طبیعی ، کاربردهای بسیار دیگری دارد ، ارتباط زیبای فاصلههای خوش صدا در موسیقی ، چگونگی تولد یک کهکشان و … که در مطالب آینده راجع به آنها بحث خواهیم کرد . این الگو را می توان در گلبرگها یا دانههای بسیاری از گیاهان مثلاً آناناس ، گل داوودی ، گل کلم ، میوههای کاج و … مشاهده کرد . خود انسان از ناف به نسبت فی تقسیم میشود . این نسبت نقش پیچیدهای در پدیدههایی مانند ساختار کریستالها ، سالهای نوری فاصله بین سیارات و پریودهای چرخش ضریب شکست نور در شیشه ، ترکیبهای موسیقی ، ساختار سیارهها و حیوانات بازی میکند . علم ثابت کرده است که این نسبت به راستی نسبت پایه و مبنای خلقت جهان است . هنرمندان دورهی رونسانس عدد فی را یک نسبت الهی میدانستهاند . از زمانی که هنرمندان و معماران به عمد شروع به استفاده از نسبت طلایی کردند ، نشان داده شد که مخاطبان شیفتگی و شیدایی بیشتری نسبت به کارهای آنها از خود نشان دادند . مستطیلهای طلایی ، مانند نسبت طلایی فوقالعاده ارزشمند هستند . در بین مثالهای بیشمار از وجود این نسبت و یکی از برجستهترین آنها مارپیچ های DNA است . این دو مارپیچ فاصله دقیقی را با هم براساس نسبت طلایی حفظ میکنند و دور یکدیگر میتابند . در حالی که نسبت طلایی و مستطیل طلایی جلوههای زیبایی را از طبیعت و ساختههای دست انسان به نمایش میگذارد ، جلوه دیگری از این شکوه وجود دارد که زیباییهای تحرک را به نمایش میگذارد . یکی از بزرگترین نمادهایی که میتواند رشد و حرکات کاینات را نشان دهد ، اسپیرال طلایی است . اسپیرال طلایی که به آن اسپیرال لگاریتمی و اسپیرال متساویالزاویه نیز میگویند هیچ حدی ندارد و شکل ثابتی است . روی هر نقطه از اسپیرال می توان به هر یک از دو سو تا بینهایت حرکت کرد . از یک سو هرگز به مرکز نمیرسیم و از سوی خارجی نیز هرگز به انتها نمیرسیم . هستهی اسپیرال لگاریتمی وقتی با میکروسکوپ مشاهده میشود همان منظرهای را دارد که وقتی به اندازه هزاران سال نوری به جلو میرویم . دیوید برگامینی در کتاب ریاضیاتش خاطرنشان میکند که منحنی ستارههای دنبالهدار از خورشید کاملا شبیه به اسپیرال لگاریتمی است . عنکبوت شبکه تارهای خود را به صورت اسپیرال لگاریتمی میبافد . رشد باکتریها دقیقاً براساس رشد منحنی اسپیرال است . هنگامی که سنگهای آسمانی با سطح زمین برخورد میکنند ، مسیری مانند اسپیرال لگاریتمی را طی می کنند . عدد فی Φ عددی مربوط به خلقت پروردگار یکتا است . اسبهای آبی ، صدف حلزونها ، صدف نرمتنان ، موجهای اقیانوسها ، سرخسها ، شاخهای جانوران و نحوه قرار گرفتن گلبرگهای گل آفتابگردان و چیدمان گل مروارید ، همه به صورت اسپیرال لگاریتمی است . گردباد و منظومهها از نگاه بیرون کاملاً در مسیری به صورت اسپیرال حرکت میکنند . برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید. ورود یا ثبت نام 11 لینک به دیدگاه
farzaneh.y 2170 اشتراک گذاری ارسال شده در 3 آبان، ۱۳۹۰ عالی بود مهناز جان ممنون....:flowerysmile: 2 لینک به دیدگاه
Abolfazl_r 20780 اشتراک گذاری ارسال شده در 3 آبان، ۱۳۹۰ توی گرافیک هم یه چیزی داریم به نام نقطه طلایی. این که اون نیست درسته؟ 2 لینک به دیدگاه
.FatiMa 36559 اشتراک گذاری ارسال شده در 3 آبان، ۱۳۹۰ توی گرافیک هم یه چیزی داریم به نام نقطه طلایی. این که اون نیست درسته؟ والا از گرافیک اطلاعی ندارم من :JC_thinking: 2 لینک به دیدگاه
AFARIN 7196 اشتراک گذاری ارسال شده در 3 آبان، ۱۳۹۰ توی گرافیک هم یه چیزی داریم به نام نقطه طلایی. این که اون نیست درسته؟ اگه منظورتون هموني باشه كه من فكر ميكنم، درسته فرق ميكنن توي عكاسي يا طراحي پوستر، كادري كه در اختيارمون هست رو هم از طول هم از عرض به سه قسمت تقسيم ميكنيم (با خطوط فرضي) > 4 تا نقطه بدست مياد كه نقاط كانوني يا طلايي كادر هستن سوژه اصلي كه ميخوايم تأكيد بيشتري روش بشه، بهتره رو يكي از اين نقاط يا در امتداد خطوط يك سوم قرار بگيره تا تركيب بندي بهتر و چشم نوازتري بوجود بياد؛ مثل عكس زير كه خورشيد رو نقطه طلاييه و خط افق در امتداد خط يك سوم 5 لینک به دیدگاه
Abolfazl_r 20780 اشتراک گذاری ارسال شده در 3 آبان، ۱۳۹۰ اگه منظورتون هموني باشه كه من فكر ميكنم، درسته فرق ميكننتوي عكاسي يا طراحي پوستر، كادري كه در اختيارمون هست رو هم از طول هم از عرض به سه قسمت تقسيم ميكنيم (با خطوط فرضي) > 4 تا نقطه بدست مياد كه نقاط كانوني يا طلايي كادر هستن سوژه اصلي كه ميخوايم تأكيد بيشتري روش بشه، بهتره رو يكي از اين نقاط يا در امتداد خطوط يك سوم قرار بگيره تا تركيب بندي بهتر و چشم نوازتري بوجود بياد؛ مثل عكس زير كه خورشيد رو نقطه طلاييه و خط افق در امتداد خط يك سوم بله. منظورم همین بود. ممنون از توضیحتون. 2 لینک به دیدگاه
ارسال های توصیه شده