رفتن به مطلب

ارسال های توصیه شده

اعمال ولتاژ با پلاریته موافق باعث عبور جریان از یک پیوند PN می شود و چنانچه پلاریته ولتاژتغییر کند جریانی از مدار عبور نخواهد کرد

 

2362770101194847721124142828194159120227.jpg

 

در مقاله قبلی مختصری د رمورد ترانزیستور ها صحبت کردیم

 

اگر ساده بخواهیم به موضوع نگاه کنیم عملکرد یک ترانزیستور را می توان تقویت جریان دانست. مدار منطقی کوچکی را در نظر بگیرید که تحت شرایط خاص در خروجی خود جریان بسیار کمی را ایجاد می کند. شما بوسیله یک ترانزیستور می توانید این جریان را تقویت کنید و سپس از این جریان قوی برای قطع و وصل کردن یک رله برقی استفاده کنید.

 

از لحاظ ساختاری می توان یک ترانزیستور را با دو دیود مدل کرد.

 

ترانزستورهای اولیه از دو پیوند نیمه هادی تشکیل شده اند و بر حسب آنکه چگونه این پیوند ها به یکدیگر متصل شده باشند می توان آنها را به دو نوع اصلی PNP یا NPN تقسیم کرد. برای درک نحوه عملکرد یک ترانزیستور ابتدا باید بدانیم که یک پیوند (Junction) نیمه هادی چگونه کار می کند.

 

7924510352228125751132466729239170813772.jpg

 

در شکل اول شما یک پیوند نیمه هادی از نوع PN را مشاهده می کنید. که از اتصال دادن دو قطعه نیمه هادی P و N به یکدیگر درست شده است. نیمه هادی های نوع N دارای الکترونهای آزاد و نیمه هادی نوع P دارای تعداد زیادی حفره (Hole) آزاد می باشند. بطور ساده می توان منظور از حفره آزاد را فضایی دانست که در آن کمبود الکترون وجود دارد.

 

اگر به این تکه نیمه هادی از خارج ولتاژی بصورت آنچه در شکل نمایش داده می شود اعمال کنیم در مدار جریانی برقرار می شود و چنانچه جهت ولتاژ اعمال شده را تغییر دهیم جریانی از مدار عبور نخواهد کرد.

 

این پیوند نیمه هادی عملکرد ساده یک دیود را مدل می کند. یکی از کاربردهای دیود یکسوسازی جریان های متناوب می باشد. از آنجایی که در محل اتصال نیمه هادی نوع N به P معمولآ یک خازن تشکیل می شود پاسخ فرکانسی یک پیوند PN کاملآ به کیفیت ساخت و اندازه خازن پیوند بستگی دارد. به همین دلیل اولین دیودهای ساخته شده توانایی کار در فرکانسهای رادیویی - مثلآ برای آشکار سازی - را نداشتند.

 

معمولآ برای کاهش این خازن ناخاسته، سطح پیوند را کاهش داده و آنرا به حد یک نقطه می رسانند.

  • Like 3
لینک به دیدگاه

ترانزیستور چه کاری انجام می دهد؟

در میکرو چیپ های امروزی ، که حاوی میلیونها ترانزیستور هستند که در الگو یا طرح مخصوصی چیده شده اند خروجی تقویت شده یک ترانزیستور به ورودی ترانزیستور دیگر داده می شود تا آن هم عمل تقویت کنندگی را بر روی ورودی انجام دهد و به همین ترتیب ادامه می یابد که نتیجه یک خروجی تقویت شده و پر توان می باشد.

 

20819388012624515219413517211520323487177116.jpg

 

چنین میکروچیپی می تواند سیگنالی بسیار ضعیفی را از آنتن بگیرد و یک صوت قوی و چهار کاناله را تحویل دهد. با ساختن چیپ ها در طراحی های مختلف می توان تایمر هایی برای ساعت یا سنسور هایی برای نشان دادن درجه حرارت و یا کنترل کننده چرخ های ماشین تا قفل نشوند (سیستمABS) ساخت.می توان ترانزیستور ها را در آرایشی دیگر در داخل چیپ قرار داد (طراحی متفاوت) و پروسسور های منطقی و محاسباتی را ساخت که باعث می شوند تا ماشین حسابها محاسبه و کامپیوتر ها پردازش کنند و یا شبکه هایی را برای انتقال مکالمات تلفنی ساخت و یا سیستمهایی را ساخت که بتوانند صدا و تصویر را انتقال دهند.

 

می توان ترانزیستور ها را در بسته هایی چید (گیت های منطقی) می گویند و می توانند دو عدد 1 و 1 را باهم جمع کنند و یا می توان آنها را در آرایشی خاص قرار داد تا کارهای بسیار بزرگی را با استفاده از سرعت سوئیچینگ – 100 میلیون بار بر ثانیه و بیشتر - خود انجام دهند .

 

البته مداراتی که در چند سال گذشته برای انجام عملی خاص به وسیله ترانزیستور ها بر روی بورد ها بسته می شدند امروزه به مدد طراحی کامپیوتری و تکنیک مدارات مجتمع بر روی یک آی سی هزاران ترانزیستور و سیم کشی های مربوطه و تمام قطعات الکترونیکی لازم قرار داده می شوند.

 

---------------------------------------------------------------------------------------------

شاید بتوان گفت که حجم مدارات هزاران بار کاهش یافته است.

---------------------------------------------------------------------------------------------

 

چیزی که باعث می شود که ترانزیستور ها روز به روز پیشرفت کنند و بهتر و ارزان تر شوند تحقیقات نیمه هادی ها است که روز به روز بهتر و کاربردی تر می شوند.

  • Like 4
لینک به دیدگاه

ساختار ترانزیستور اثر میدانی

همانگونه که از نام این المان مشخص است، پایه کنترلی آن جریانی مصرف نمی کند و تنها با اعمال ولتاژ و ایجاد میدان درون نیمه هادی ، جریان عبوری از FET کنترل می شود

 

13713713559427165217541361561081317220481.jpg

 

به همین دلیل ورودی این مدار هیچ گونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد.

 

در مقالات قبلی انواع ترانزیستور های 3 پایه را بررسی اجمالی کردیم فت نیز نوع دیگری از ترانزیستور ها می باشد که کاربردهای خاص خود را داراست

 

فت دارای سه پایه با نامهای درِین D - سورس S و گیت G است که پایه گیت ، جریان عبوری از درین به سورس را کنترل می نماید. فت ها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می کند . FET ها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک می گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.

 

نوع دیگر ترانزیستورهای اثر میدانی MOSFET ها هستند ( ترانزیستور اثر میدانی اکسید فلزی نیمه هادی - Metal-Oxide Semiconductor Field Effect Transistor ) یکی از اساسی ترین مزیت های ماسفت ها نویز کمتر آنها در مدار است.

 

فت ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر ، نخست پایه گیت را پیدا می کنیم. یعنی پایه ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می توان پایه درین را از سورس تشخیص داد.

  • Like 4
لینک به دیدگاه
  • 3 ماه بعد...

تو این پست تست ترانزيستور های BJT و تشخیص پایه های آن و چگونگی انتخاب تراتزیستور معادل را بررسی می کنیم.

transistor.JPG

ابتدا یک ترانزیستور سالم را بررسی می کنیم:

یک ترانزیستور یا مثبت (pnp) و یا منفی (npn) می باشد .

برای تشخیص تیپ ترانزیستور چندین روش وجود دارد .

تیپ بعضی از ترانزیستورهارا از روی نامگذاری می توان مشخص نمود .

 

طريقه شناسايي پايه هاي ترانزيستور توسط مولتي متر آنالوگ :

ابتدا مولتي متر را در رنج RX1 قرار داده و سپس به دنبال پايه اي مي گرديم كه به دو پايه ي ديگر راه بدهد . اين پايه B ( بيس ) است

و اگر اين پايه به وسيله سيم قرمز شناسايي شود معرف نوع ترانزيستور PNP ويا اصطلاحاً مثبت است .

و در صورتيكه توسط ترمينال مشكي تشخيص داده شود گويند كه ترانزيستورNPN و يا منفي است .

حال پايه B و نوع ترانزيستور مشخص شده است . جهت تشخيص دو پايه ي ديگر مولتي متر را در رنج RX10K قرار داده و در هردو جهت اين دو پايه را نسبت به هم تست مي كنيم در جهتي كه مولتي متر راه مي دهد ترمينالي كه B ( بيس ) را شناسايي كرده است E ترانزيستور را تشخيص مي دهد . و طبعاً پايه بعدي كلكتور است .

 

چگونه ترانزيستور را تست كنيم ؟

 

ابتدا یک ترانزیستور سالم را بررسی می کنیم:

یک ترانزیستور یا مثبت (pnp) و یا منفی (npn) می باشد .

برای تشخیص تیپ ترانزیستور چندین روش وجود دارد .

تیپ بعضی از ترانزیستورهارا از روی نامگذاری می توان مشخص نمود .

وبرای تشخیص از این راه باید سیستم های نامگذاری ترانزیستور را بشناسیم.

1- سیستم نامگذاری ژاپنی:

نام گذاری ترانزیستور در این سیستم به شرح زیر است :

با 2Sدر ابتداشروع و اگر حرف بعدی A و یا B باشدترانزیستور مثبت (PNP) میباشد پس 2SAیعنی ترانزیستور مثبت بافرکانس کار بالا و 2SB یعنی ترانزیستور مثبت (PNP )با فرکانس کار پائین می باشد.

مثال :

2SA1015 این ترانزیستور از نوع مثبت با فرکانس کار زیاد می باشد.

ویا 2SB941 این ترانزیستور از نوع مثبت با فرکانس کار پائین می باشد.

 

اگر ترانزیستور با 2SC و یا 2SD شروع شود در این روش یعنی ترانزیستور منفی می باشد .

2SCیعنی ترانزیستور منفی فرکانس بالا و 2SD یعنی ترانزیستور منفی وبا فرکانس کار پائین است .

اما در روش نامگذاری اروپایی که را آوردن دو حرف دراول و سه عدد در آخر مانند BC337 تیپ ترانزیستور قابل تشخیص نیست .

ویا در روش نامگذاری آمریکایی که با 2N شروع و چند عدد در آخر مانند 2N3055 نوع مثبت ویا منفی مشخص نمی شود .

برای تشخیص مثبت ویامنفی ترانزیستورها دیگر ضمن اینکه از دیتا شیت ها می توان استفاده

کرد. در صورت داشتن یک ترانزیستور با همان شماره وسالم می توان به شرح زیر عمل کرد .

 

ابتدا مولتی متر را روی RX1 قرار داده و دنبال پایه ای می گردیم که به دوپایه ی دیگر راه بدهد یعنی عقربه حرکت کند و معمولاً اهم کمتر از 40 قابل قبول است .

دراین حالت اگر مولتی متر آنالوگ (عقربه دار ) داشته باشیم و سیم قرمز مولتی متر به پایه ای که به دو پایه دیگر راه بدهد متصل کنیم ترانزیستور از نوع مثبت است وپایه ای که به دوپایه ی دیگر راه می دهد پایه ی بیس B می باشد .

و اگر سیم مشکی را به پایه ای متصل کنیم که به دو پایه ی دیگر رابدهد ترانزیستور منفی و پایه مشتر ک بیس B می باشد .

 

برای تشخیص دو پایه دیگر چندین روش وجود دارد که فقط به دوروش ساده آن اشاره می کنم

اگر مولتی متر رنج RX10K داشته باشد می توان در این رنج به شرح زیر C کلکتور را از امیتر E تشخیص داد .

 

باید در این رنج دستمان به پایه های ترانزیستور تماس نداشته باشد .

 

در این حالت( RX10K) ترمینال مشکی مولتی متر را اگر به دو پایه دیگر متصل کنیم ( دست با پایه های ترانزیستور تماس نداشته باشد ) فقط در یک جهت عقربه منحرف می شود .

 

که در این حالت در ترانزیستور منفی سیم مشکی که بیس را تشخیص داد E امیتر را نیز در این حالت مشخص می کند .

و در ترانزیستور مثبت ترمینال قرمز که قبلاً بیس را تعین نموده است اکنون E امیتر را تعیین می کند .

 

حال که پایه های ترانزیستور را شناختیم چگونه آنرا تست کنیم تا بدانیم که قطعه صدرصد سالم است .

برای تشخیص صحت ترانزیستور بشرح زیر توجه فرمائید .

 

1 - پایه بیس باید به دو پایه دیگر با مولتی متر آنالوگ و در رنج RX1 راه بدهد و اهم کمی را نشان دهد . طبیعی است که در این حالت دیود بیس امیتر درگرایش مستقیم است .

2 - پایه بیس به دو پایه دیگر حتی در رنج RX1k هم راه ندهد یعنی هیچ گونه نشتی در این حالت قابل قبول نیست . دیود بیس امیتر در گرایش معکوس می باشد .

3 - پایه های C کلکتور و E امیتر نیز در حالیکه مولتی متر در رنج RX1K قرار دارد از هردو سو نشتی ندارند پس در این حال نیز هیچ گونه نشتی قابل قبول نیست ( دست با پایه های ترانزیستور نباید تمای داشته باشد . )

 

توجه : این آزمایش فقط در یک ترانزیستور ساده بدون دیود داخلی ویا مقاومت داخلی صحت دارد

ودر ترانزیستوردارلینگتون نیز روش تست متفاوت است

 

چگونه ترانزيستورهاي معادل را انتخاب كنيم :

 

براي انتخاب ترانزيستور معادل و يا جانشين مناسب آن به مهمترين پارامترهاي آن توجه كنيد .

1 – ماكزيمم ولتاژ قابل تحمل EC

2 – ماكزيمم جريان گذر از EC

3 – توان ترانزيستور

4 – ضريب تقويت ترانزيستور

5 – فركانس قطع ترانزيستور

نكات فوق الذكر در اكثر موارد بايد مورد توجه باشد . اگر يك ترانزيستور خروجي هريزنتال و يا يك ترانزيستور سويچينگ تغذيه را انتخاب مي كنيم تمام موارد فوق حتي به اضافه ظرفيت خازني بين BC نيز بايد مورد توجه قرار گيرد زيرا فركانس كار هرچه بالاتر رود اهميت ظرفيت خازني ما بين پايه هاي ترانزيستور بيشتر مي شود .

نكته مهمي كه در انتخاب ترانزيستور هاي قدرت حائز اهميت است مقدار جريان گذر از EC مي باشد در اين حالت انتخاب ترانزيستور جانشين بايد به صورتي باشد كه نه تنها تحمل جريان گذر را داشته باشد بلكه اندكي از ترانزيستور قبلي نيز بهتر بوده تا طول عمر بيشتري در مدار داشته باشد .

در انتخاب ترانزيستورهاي طبقه هريزنتال علاوه بر توجه به جريان گذر اهميت تحمل ولتاژ كار بالا بيشتر از ترانزستورهاي سويچينگ است . زيرا همواره خروجيهاي هريزنتال پيكهاي ولتاژ بالاتر توليد مي كنند . اين بدان معني نيست كه در طبقه POWER SUPPLY يا منبع تغذيه ولتاژ كار ترانزيستور اهميتي ندارد . به هر حال انتخاب ولتاژ كار با توجه به ماكزيمم دامنه پيكهاي توليدي اهميت دارد . در ترانزيستورهاي خروجي هريزنتال گاهي محدوده ولتاژ كار بالاتر از 1500V مي باشد پس الزاماً بايد ولتاژ كار اين ترانزيستورها بالاتر از پيكهاي توليدي باشد تا تحمل كاردر اين وضعيت را داشته باشد

  • Like 2
لینک به دیدگاه
  • 5 ماه بعد...

ترانزیستور را معمولاً به عنوان یکی از قطعات الکترونیک می‌شناسند. ترانزیستور یکی از ادوات حالت جامد است که از مواد نیمه رسانایی مانند سیلیسیم و ژرمانیوم ساخته می‌شود.یک ترانزیستور در ساختار خود دارای پیوندهایپیوند نوع N و پیوند نوع P می‌باشد.

 

Transistor-photo.JPG

 

معرفی

 

ترانزیستورهای جدید به دو دسته کلی تقسیم می‌شوند: ترانزیستورهای اتصال دوقطبی(BJTs) و ترانزیستورهای اثر میدانی (FETs). اعمال جریان در BJTها و ولتاژ در FETها بیین ورودی وترمینال مشترک رسانایی بین خروجی و ترمینال مشترک را افزایش می‌دهد، از اینرو سبب کنترل جریان بین آنها می‌شود. مشخصات ترانزیستورها به نوع آن بستگی دارد. مدل های ترانزیستور را ببینید. لغت "ترانزیستور" به نوع اتصال نقطه‌ای آن اشاره دارد، اما انی سمبل قدیمی با سمبل هایی را کردند که اختلاف ساختار ترانزیستور دوقطبی را به صورت دقیقتر نشان می‌داد، اما این ایده خیلی زود رها شد. در مدارات آنالوگ، ترانزیستورها در تقویت کننده‌ها استفاده می‌شوند، (تقویت کننده‌های جریان مستقیم، تقویت کننده‌های صدا، تقویت کننده‌های امواج رادیویی) و منابع تغذیه تنظیم شده خطی. همچنین از ترانزیستورها در مدارات دیجیتال بعنوان یک سوئیچ الکترونیکی استفاده می‌شوند، اما به ندرت به صورت یک قطعه جدا، بلکه به صورت بهم پیوسته در مدارات مجتمع یکپارچه بکار می‌روند. مدارات دیجیتال شامل گیت های منطقی، حافظه با دسترسی تصادفی (RAM)، میکروپروسسورها و پردازنده‌های سیگنال دیجیتال (DSPs) هستند.

 

 

ساختمان ترانزیستور

 

BJT از اتصال سه لایه بلور نیمه هادی تشکیل می شود. لایه وسطی بیس(base)، و دو لایه جانبی ، یکی امیت(emitter)ر و دیگری کلکتور(collector) نام دارد .نوع بلور بیس ، با نوع بلورهای امیتر و کلکتور متفاوت است.

 

 

اهمیت

 

ترانزیستور از سوی بسیاری بعنوان یکی از بزرگترین اختراعات در تاریخ نوین مطرح شده است، در رتبه بندی از لحاظ اهمیت در کنار ماشین چاپ، خودرو و ارتباطات الکترونیکی و الکتریکی قرار دارد. ترانزیستور عنصر فعال کلیدی در الکترونیک مدرن است. اهمیت ترانزیستور در جامعه امروز متکی به قابلیت آن برای تولید انبوه که از یک فرآیند (ساخت) کاملاً اتماتیک که قیمت تمام شده هر ترانزیستور در آن بسیار ناچیز است استفاده می‌کند. اگرچه ملیون ها ترانزیستور هنوز تکی (به صورت جداگانه) استفاده می‌شوند ولی اکثریت آنها به صورت مدار مجتمع (اغلب به صورت مختصر ic و همچنین میکرو چیپ یا به صورت ساده چیپ نامیده می‌شوند) همراه با دیودها، مقاومت ها، خازن ها و دیگر قطعات الکترونیکی برای ساخت یک مدار کامل الکترونیک ساخته می‌شوند.یک گیت منطقی حاوی حدود بیست ترانزیستور است در مقابل یک ریزپردازنده پیشرفته سال 2006 که می‌تواند از بیش از 7/1 ملیون ترانزیستور استفاده کند (ماسفت ها)[1]. قیمت کم، انعطاف پذیری و اطمینان از ترانزیستور یک قطعه همه کاره برای وظایف غیرمکانیکی مثل محاسبه دیجیتال ساخته است. مدارات ترانزیستوری به خوبی جایگزین دستگاه‌های کنترل ادوات و ماشین ها شده اند. استفاده از یک میکروکنترلر استاندارد و نوشتن یک برنامه رایانه‌ای که عمل کنترل را انجام می‌دهد اغلب ارزان تر و موثرتر از طراحی معادل مکانیکی آن می‌باشد. بعلت قیمت کم ترانزیستورها و ازاینرو رایانه‌ها گرایشی برای دیجیتال کردن اطلاعات وجود دارد. با رایانه‌های دیجیتالی که توانایی جستوجوی سریع، دسته بندی و پردازش اطلاعات دیجیتال را ارائه می‌کنند، تلاش بیشتری برای دیجیتال کردن اطلاعات شده است.در نتیجه امروزه داده های رسانه ای بیشتری به دیجیتال تبدیل می‌شوند، در پایان توسط رایانه تبدیل شده و به صورت آنالوگ در اختیار قرار می‌گیرد. تلوزیون، رادیو و روزتامه‌ها چیزهایی هستند که تحت تاثیر این انقلاب دیجیتال واقع شده اند.

 

مزایای ترانزیستورها بر لامپ های خلإ

 

786px-Electronic_component_transistors.jpg

 

قبل از گسترش ترانزیستورها، لامپ های خلإ (یا در UK لاپ های ترمیونیک یا فقط لامپ ها) قطعات فعال اصلی تجهیزات الکترونیک بودند. مزایای کلیدی که به ترانزیستورها اجازه جایگزینی با لامپ های خلإ سابق در بیشتر کاربردها را داد در زیر آمده است: اندازه کوچک تر (با وجود ادامه کوچک سازی لامپ های خلإ) تولید کاملاً اتوماتیک هزینه کمتر (در حجم تولید) امکان ولتاژ کاری پایین تر ( اما لامپ های خلإ در ولتاژهای بالاتر می‌توانند کار کنند) نداشتن دوره گرم شدن (بیشتر لامپ های خلإ به 10 تا 60 ثانیه زمان برای عملکرد صحیح نیاز دارند) تلفات توان کمتر (نداشتن توان گرمایی،ولتاژ اشباع خیلی پایین) قابلیت اطمینان بالاتر و سختی فیزیکی بیشتر( اگرچه لامپ های خلإ از نظر الکتریکی مقاوم ترند. همچنین لامپ خلإ در برابر پالس های الکترومغناطیسی هسته‌ای (NEMP) وتخلیه الکترو استاتیکی (ESD) مقاوم ترند عمر خیلی بیشتر (قطب منفی لامپ خلإ سرانجام ازبین می‌رود و خلإ آن می‌تواند آلوده بشود) فراهم آوردن دستگاه‌های مکمل (امکان ساختن مدارات مکمل متقارن: لامپ خلإ قطبی معادل نوع مثبت BJTها و نوع مثبت FETها در دسترس نیست) قابلیت کنترل جریان بالا (ترانزیستورهای قدرت بریای کنترل صدها آمپر در دسترسند، لامپ های خلإ برای کنترل حتی یک آمپر بسیار بزرگ و هزینه برند) میکروفونیک بسیار کمتر (لرزش می‌تواند با خصوصیات لامپ خلإ تلفیق شود، به هر حال این ممکن است در صدای تقویت کننده‌های گیتار شرکت کند)

 

تاریخچه

 

اولین سه حق ثبت اختراع ترانزیستور اثرمیدان در سال 1928 در آلمان توسط فیزک دانی به نامJulius Edgar Lilienfeld ثبت شد، اما او هیچ مقاله‌ای در باره قطعه اش چاپ نکرد و این سه ثبت اختراع از طرف صنعت نادیده گرفته شد. در سال 1934 فیزیکدان آلمانی دکتر Oskar Heil ترانزیستور اثر میدان دیگری را به ثبت رساند. هیچ مدرک مستقیمی وجود ندارد که این قطعه ساخته شده است، اما بعداً کارهایی در دهه 1990 نشان داد که یکی از طرح های Lilienfeld کار کرده و گین قابل توجه‌ای داده است. اوراق قانونی از آزمایشگاه‌های ثبت اختراع بل نشان می‌دهد که Shockley و Pearson یک نسخه قابل استفاده از اختراع Lilienfeld ساخته اند، در حالی که آنها هیچگاه این را در تحقیقات و مقالات خود ذکر نکردند. ترانزیستورهای دیگر، R. G. Arns در 16 دسامبر 1947 Wiliam Shockley, John Bardan و Walter Brattain موفق به ساخت اولین ترانزیستور اتصال نقطه‌ای در آزمایشگاه بل شدند. این کار با تلاش های زمان جنگ برای تولید دیودهای مخلوط کننده ژرمانیم خالص "کریستال" ادامه یافت، این دیودها در واحدهای رادار بعنوان عنصر میکسر فرکانس در گیرنده‌های میکروموج استفاده می‌شد. یک پروژه موازی دیودهای ژرمانیم در دانشگاه Purdue موفق شد کریستال های نیمه هادی ژرمانیم را با کیفیت خوب که در آزمایشگاه‌های بل استفاده می‌شد را تولید کند.[2] سرعت سوئیچ تکنولوژی لامپی اولیه برای این کار کافی نبود، همین تیم Bell را سوق داد تا از دیودهای حالت جامد به جای آن استفاده کنند. آنها با دانشی که در دست داشتند شروع به طراحی سه قطبی نیمه هادی کردند، اما دریافتند که کار ساده‌ای نیست. Bardeen سرانجام یک شاخه جدید فیزیک سطحی را برای محاسبه رفتار عجیبی که دیده بودند ایجاد کرد و سرانجام Brattain و Bardeen موفق به ساخت یک قطعه کاری شدند. آزمایشگاه‌های تلفن بل به یک اسم کلی برای اختراع جدید نیاز داشتند: "سه قطبی نیمه هادی"، "سه قطبی جامد"، "سه قطبی اجزاء سطحی"، "سه قطبی کریستال" و "لاتاتورن" که همه مطرح شده بودند، اما "ترانزیستور" که توسط John R. Pierce ابداع شده بود، برنده یک قرعه کشی داخلی شد. اساس وبنیاد این اسم در یاداشت فنی بعدی شرکت رای گیری شد: ترانزیستور، این یک ترکیب مختصر از کلمات "ترانسکانداکتانس" یا "انتقال" و "مقاومت متغیر" است. این قطعه منطقاً متعلق به خانواده مقاومت متغیر می‌باشد و یک امپدانس انتقال یا گین دارد بنابراین این اسم یک ترکیب توصیفی است. -آزمایشگاه‌های تلفن بل- یاداشت فنی(28 می 1948) Pierce این نام را قدری متفاوت تفسیر کرد: دلیلی که من این نام را انتخاب کردم این بود که من فکر کردم این قطعه چکار می‌کند، در آن زمان تصور می‌شد که این قطعه مثل دو لامپ خلإ است. لامپ های خلإ هدایت انتقالی دارند بنابراین ترانزیستور مقاومت انتقالی دارد. و این اسم می بایست متناسب با نام دیگر قطعات مثل وریستور، ترمیستور باشد. و من اسم ترانزیستور را پیشنهاد کردم. PBC Show مصاحبه با john R. Pierce بل فوراً ترانزیستور تک اتصالی را جزء تولیدات انحصاری شرکت Western Electric، شهر Allentown در ایالت Pennsylvania قرار داد. نخستین ترانزیستورهای گیرنده‌های رادیو AM در معرض نمایش قرار گرفتند، اما در واقع فقط در سطح آزمایشگاهی بودند.بهرحال در سال 1950 Shockley یک نوع کاملاً متفاوت ترانزیستور را ارائه داد که به ترانزیستور اتصال دوقطبی معروف شد. اگرچه اصول کاری این قطعه با ترانزیستور تک اتصالی کاملاً فرق می‌کند، قطعه‌ای است که امروزه به عنوان ترانزیستور شناخته می‌شود. پروانه تولید این قطعه نیز به تعدادی از شرکت های الکترونیک شامل Texas Instrument که تعداد محدودی رادیو ترانزیستوری بعنوان ابزار فروش تولید می‌کرد داده شد. ترانزیستورهای اولیه از نظر شیمیایی ناپایدار بودند و فقط برای کاربردهای فرکانس و توان پایین مناسب بودند، اما همینکه طراحی ترانزیستور توسعه یافت این مشکلات نیز کم کم رفع شدند. اگرچه اغلب نادرست به Sony نسبت داده می‌شود، ولی اولین رادیو ترانزیستوری تجاری Regency TR-1 بود که توسط Regency Division از I.D.E.A (گروه مهنسی توصعه صنعتی) شهر Indianapolis ایالت Indiana ساخته شده و در 18 اکتبر 1954 اعلام شد. آین رادیو در نوامبر 1954 به قیمت 95/49 دلار(معادل با 361 دلار در سال 2005) به فروش گذاشته شد و تعداد 150000 از آن به فروش رفت. این رادیو از 4 ترانزیستور استفاده می‌کرد وبا یک باتری 5/22 ولتی راه اندازی می‌شد. هنگامیکه Masaru Ibuka ، موسس شرکت ژاپنی سونی از آمریکا دیدن می‌کرد آزمایشگاه‌های بل ارائه مجوز ساخت شامل ریز دستوراتی مبنی بر چگونگی ساخت ترانزیستور را اعلام کرده بودند. Ibuka مجوز خرید 50000 دلاری پروانه تولید را از وزیر دارایی ژاپن گرفت و در سال 1955 رادیوی جیبی خود را تحت مارک سونی معرفی کرد. (کلمه جیبی اشاره دارد به مطلب بدنامی سونی وقتیکه فروشنده آنها پیراهن مخصوصی با جیب های بزرگ داشت). این محصول بزودی با طرح های بلند پروازانه ادامه پیدا کرد، اما آنها بعنوان آغاز رشد شرکت سونی از طرف عموم مورد توجه قرار می‌گرفتند تا سونی به یک قدرت تولیدی تبدیل شد. بعد از دو دهه ترانزیستورها بتدریج جای لامپ های خلإ را در بسیاری از کاربردها گرفتند و بعد ها امکان تولید دستگاه‌های جدیدی از قبیل مدارات مجتمع و رایانه‌های شخصی را فراهم آوردند. از Shockley, Bardeen و Brattian بخاطر تحقیقاتشان در مورد نیمه هادی ها وکشف اثر ترانزیستر با جایزه نوبل فیزیک قدردانی شد. Bardeen می‌رفت که دومین جایزه نوبل فیزیک را دریافت کند، یکی از دو نفری که بیش از یک جایزه از یک متد می‌گرفت. اولین ترانزیستور Gallium-Arsenide Schottky-gate توسط Carver Mead ساخته و در سال 1966 گزارش داده شد.

 

 

کاربرد

 

ترانزیستور دارای 3 ناحیه کاری می‌باشد.ناحیه قطع/ناحیه فعال(کاری یا خطی)/ناحیه اشباع ناحیه قطع حالتی است که ترانزیستور در ان ناحیه فعالیت خاصی انجام نمی‌دهد.اگر ولتاژ بیس را افزایش دهیم ترانزیستور از حالت قطع بیرون امده و به ناحیه فعال وارد می‌شود در حالت فعال ترانزیستور مثل یک عنصر تقریبا خطی عمل می‌کند اگر ولتاژ بیس را همچنان افزایش دهیم به ناحیه‌ای میرسیم که با افزایش جریان ورودی در بیس دیگر شاهد افزایش جریان بین کلکتور و امیتر نخواهیم بود به این حالت می‌گویند حالت اشباع و اگر جریان ورودی به بیس زیاد تر شود امکان سوختن ترانزیستور وجود دارد. ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد. درمدارات آنالوگ ترانزیستور در حالت فعال کار می‌کند و می‌توان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و ... استفاده کرد. و در مدارات دیجیتال ترانزیستور در دو ناحیه قطع و اشباع فعالیت می‌کند که می‌توان از این حالت ترانزیستور در پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و ... استفاده کرد.به جرات می‌توان گفت که ترانزیستور قلب تپنده الکترونیک است.

 

عملکرد

 

ترانزیستور از دیدگاه مداری یک عنصر سه‌پایه می‌باشد که با اعمال یک سیگنال به یکی از پایه‌های آن میزان جریان عبور کننده از دو پایه دیگر آن را می‌توان تنظیم کرد. برای عملکرد صحیح ترانزیستور در مدار باید توسط المان‌های دیگر مانند مقاومت‌ها و ... جریان‌ها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد.

 

انواع

 

دو دسته مهم از ترانزیستورها BJT (ترانزیستور دوقطبی پیوندی) (Bypolar Junction Transistors) و FETترانزیستور اثر میدان) (Field Effect Transistors) هستند. ترانزیستورهای اثزمیدان یا FET‌ها نیز خود به دو دستهٔ ترانزیستور اثر میدان پیوندی(JFET) و MOSFET‌ها (Metal Oxide SemiConductor Field Effect Transistor) تقسیم می‌شوند.

 

ترانزیستور دوقطبی پیوندی

 

در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل می‌شود. ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته می‌شوند. بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند. سرعت بالای این ترانزیستورها و بعضی قابلیت‌های دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود. امروزه بجای استفاده از مقاومت وخازن و...در مدارات مجتمع تمامآازترانزیستوراستفاده می‌کنند

 

 

ترانزیستور اثر میدان پیوندی(JFET)

 

در ترانزیستورهای JFET(Junction Field Effect Transistors( در اثر میدان، با اعمال یک ولتاژ به پایه گیتجریان عبوری از دو پایه سورس و درین کنترل می‌شود. ترانزیستور اثر میدانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type. از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیه‌ای ساخته می‌شوند.نواحی کار این ترانزستورها شامل "فعال" و "اشباع" و "ترایود" است این ترانزیستورها تقریباً هیچ استفاده‌ای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع می‌شوند. میزان

 

انواع ترانزیستور پیوندی

 

pnp

 

شامل سه لایه نیم هادی که دو لایه کناری از نوع p و لایه میانی از نوع n است و مزیت اصلی آن در تشریح عملکرد ترانزیستور این است که جهت جاری شدن حفره‌ها با جهت جریان یکی است.

 

npn

 

شامل سه لایه نیم هادی که دو لایه کناری از نوع n و لایه میانی از نوع p است. پس از درک ایده‌های اساسی برای قطعهٔ pnp می‌توان به سادگی آنها را به ترانزیستور پرکاربردتر npn مربوط ساخت.

 

ساختمان ترانزیستور پیوندی ترانزیستور دارای دو پیوندگاه است. یکی بین امیتر و بیس و دیگری بین بیس و کلکتور. به همین دلیل ترانزیستور شبیه دو دیود است. دیود سمت چپ را دیود بیس _ امیتر یا صرفاً دیود امیتر و دیود سمت راست را دیود کلکتور _ بیس یا دیود کلکتور می‌نامیم. میزان ناخالصی ناحیه وسط به مراتب کمتر از دو ناحیه جانبی است. این کاهش ناخالصی باعث کم شدن هدایت و بالعکس باعث زیاد شدن مقاومت این ناحیه می‌گردد.

 

امیتر که به شدت آلائیده شده، نقش گسیل و یا تزریق الکترون به درون بیس را به عهده دارد. بیس بسیار نازک ساخته شده و آلایش آن ضعیف است و لذا بیشتر الکترونهای تزریق شده از امیتر را به کلکتور عبور می‌دهد. میزان آلایش کلکتور کمتر از میزان آلایش شدید امیتر و بیشتر از آلایش ضعیف بیس است و کلکتور الکترونها را از بیس جمع‌آوری می‌کند.

طرز کار ترانزیستور پیوندی طرز کار ترانزیستور را با استفاده از نوع npn مورد بررسی قرار می‌دهیم. طرز کار pnp هم دقیقا مشابه npn خواهد بود، به شرط اینکه الکترونها و حفره‌ها با یکدیگر عوض شوند. در نوع npn به علت تغذیه مستقیم دیود امیتر ناحیه تهی کم عرض می‌شود، در نتیجه حاملهای اکثریت یعنی الکترونها از ماده n به ماده p هجوم می‌آورند. حال اگر دیود بیس _ کلکتور را به حالت معکوس تغذیه نمائیم، دیود کلکتور به علت بایاس معکوس عریض‌تر می‌شود.

 

الکترونهای جاری شده به ناحیه p در دو جهت جاری می‌شوند، بخشی از آنها از پیوندگاه کلکتور عبور کرده، به ناحیه کلکتور می‌رسند و تعدادی از آنها با حفره‌های بیس بازترکیب شده و به عنوان الکترونهای ظرفیت به سوی پایه خارجی بیس روانه می‌شوند، این مولفه بسیار کوچک است.

 

شیوهٔ اتصال ترازیستورها

 

اتصال بیس مشترک در این اتصال پایه بیس بین هر دو بخش ورودی و خروجی مدار مشترک است. جهتهای انتخابی برای جریان شاخه‌ها جهت قراردادی جریان در همان جهت حفره‌ها می‌شود.

 

اتصال امیتر مشترک مدار امیتر مشترک بیشتر از سایر روشها در مدارهای الکترونیکی کاربرد دارد و مداری است که در آن امیتر بین بیس و کلکتور مشترک است. این مدار دارای امپدانس ورودی کم بوده، ولی امپدانس خروجی مدار بالا می‌باشد.

 

اتصال کلکتور مشترک اتصال کلکتور مشترک برای تطبیق امپدانس در مدار بکار می‌رود، زیرا برعکس حالت قبلی دارای امپدانس ورودی زیاد و امپدانس خروجی پائین است. اتصال کلکتور مشترک غالبا به همراه مقاومتی بین امیتر و زمین به نام مقاومت بار بسته می‌شود.

 

 

ترانزیستور اثر میدان MOS

 

 

این ترانزیستورها نیز مانند Jfet‌ها عمل می‌کنند با این تفاوت که جریان ورودی گیت آنها صفر است. همچنین رابطه جریان با ولتاژ نیز متفاوت است. این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که فناوری استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد. این ترانزیستورها امروزه بسیار کاربرد دارند زیرا براحتی مجتمع می‌شوند و فضای کمتری اشغال می‌کنند. همچنین مصرف توان بسیار ناچیزی دارند.

 

به تکنولوژی‌هایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده می‌کنند Bicmos می‌گویند.

 

البته نقطه کار این ترانزیستورها نسبت به دما حساس است وتغییر می‌کند. بنابراین بیشتر در سوئیچینگ بکار می‌روند AMB

 

ساختار و طرز کار ترانزیستور اثر میدانی - فت

 

ترانزیستور اثر میدانی ( فت ) - FET همانگونه که از نام این المام مشخص است، پایه کنترلی آن جریانی مصرف نمی‌کند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی ، جریان عبوری از FET کنترل می‌شود. به همین دلیل ورودی این مدار هیچ کونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد.

 

فت دارای سه پایه با نهامهای درِین D - سورس S و گیت G است که پایه گیت ، جریان عبوری از درین به سورس را کنترل می نماید. فت ها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می‌کند . FET ها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک می‌گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.

 

نوع دیگر ترانزیستورهای اثر میدانی MOSFET ها هستند ( ترانزیستور اثر میدانی اکسید فلزی نیمه هادی - Metal-Oxide Semiconductor Field Efect Transistor ) یکی از اساسی ترین مزیت های ماسفت ها نویز کمتر آنها در مدار است.

 

فت ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر ، نخست پایه گیت را پیدا می کنیم. یعنی پایه‌ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می‌توان پایه درین را از سورس تشخیص داد.

 

  • Like 4
لینک به دیدگاه
  • 2 هفته بعد...

transistor.JPG

در این مقاله 3 روش استاندارد وعمده کد گذاری ترانزیستورها شرح داده می شود البته این روش ها برای کد گذاری قطعات نیمه هادی دیگر مانند دیود ها ، تریاک ها و... نیز به کار می روند.

1-(Joint Electron Device Engineering Council (JEDEC

2-نام گذاری ژاپنی (Japanese Industrial Standard (JIS

Pro-electron-3

 

: Joint Electron Device Engineering Council

 

فرم یا مد اصلی کد گذاری در این روش به صورت زیر است ( از چپ به راست بخوانید):

( پسوند ) ، شماره سریال ، حرف ، عدد

[digit, letter, serial number, [suffix

قسمت عدد: در این قسمت همیشه عددی که یکی کمتر از تعداد پایه های ترانزیستور است قرار می گیرد. یعنی برای ترانزیستورهای 3 پایه عدد 2 و اگر ترانزیستور 4 پایه ای وجود داشته باشد عدد 3. توجه داشته باشید که اعداد 4 و 5 به اپتوکوپلرها مربوط می شوند نه به ترانزیستورها. بنابراین شاید بتوان گفت که برای ترانزیستورها همیشه در این قسمت عدد 2 قرار می گیرد.

قسمت حرف: در این قسمت همیشه حرف "N" قرار می گیرد.

قسمت شماره سریال: در این قسمت اعدادی از 100 تا 9999 قرار میگیرد و هیچ اطلاعاتی بجز زمان تقریبی ابداع و معرفی ترانزیستور را به ما نمی دهد. مثلا ترانزیستوری که سریال نامبرش 904 باشد زودتر از ترانزیستوری که سریال نامبرش 2221 است ، ساخته شده است.

قسمت پسوند: این قسمت اختیاری است و محدوده بهره ( بتا hfe ) ی ترانزیستور را مشخص می سازد. به این صورت که حرف A برای ترانزیستورهای با بهره کم ، حرف B برای ترانزیستورهای با بهره متوسط ، حرف C برای ترانزیستورهای با بهره بالا و اگر دراین قسمت هیچ حرفی نباشد ترانزیستور می تواند هر یک از بهره های فوق را داشته یاشد.

مثال: 2N3819, 2N2221A, 2N904

 

2 - نام گذاری ژاپنی (Japanese Industrial Standard (JIS :

فرم یا مد اصلی کد گذاری در این روش به صورت زیر است ( از چپ به راست بخوانید):

( پسوند) ، شماره سریال ، دو حرف ، عدد

digit, two letters, serial number, [suffix]

قسمت عدد: در اینجا نیز عددی که یکی کمتر از تعداد پایه ها است قرار می گیرد. که عموما عدد 2 است.

قسمت دوحرفی: این دو حرف محدوده کاربرد و نوع قطعه را به صورت کدهای زیر مشخص می سازند:

 

SA: PNP HF transistor

SB: PNP AF transistor

SC: NPN HF transistor

SD: NPN AF transistor

SE: Diodes

SF: Thyristors

SG: Gunn devices

SH: UJT

SJ: P-channel FET/MOSFET

SK: N-channel FET/MOSFET

SM: Triac

SQ: LED

SR: Rectifier

SS: Signal diodes

ST: Avalanche diodes

SV: Varicaps

SZ: Zener diodes

 

قسمت شماره سریال: این قسمت نیز همانند روش قبل می باشد و از عدد 10 شروع می شود تا 9999 .

قسمت پسوند: این قسمت اختیاری است و هیچ گونه اطلاعاتی از قطعه به ما نمی دهد.

در این روش به این دلیل که کد ترانزیستورها با 2S شروع می شود در بعضی موارد ممکن است که این دو حذف شوند مثلا به جای اینکه روی ترانزیستور نوشته شده باشد 2SC733 ، بطور خلاصه نوشته می شود C 733.

مثال: 2SA1187, 2SB646, 2SC733

 

3 - Pro-electron:

فرم یا مد اصلی کد گذاری در این روش به صورت زیر است ( از چپ به راست بخوانید):

( پسوند ) ، شماره سریال ، (یک حرف) ، دو حرف

two letters, [letter], serial number, [suffix]

قسمت دو حرفی: اولین حرف نوع عنصر و ماده ای که ترانزیستور از آن ساخته شده است را مشخص می سازد:

A = Ge (ژرمانیوم)

B = Si (سیلیکون)

C = GaAs (گالیم آرسنیک)

R = compound materials (عناصر مرکب)

با توجه به این حروف کاملا واضح است که کد اکثر ترانزیستورها و قطعات نیمه هادی دیگردر این روش با حرف B شروع می شود.

دومین حرف کاربرد قطعه را نشان می دهد:

C: transistor, AF, small signal

D: transistor, AF, power

F: transistor, HF, small signal

L: transistor, HF, power

U: transistor, power, switching

A: Diode RF

Y: Rectifier

E: Tunnel diode

Z: Zener, or voltage regulator diode

B: Variac

K: Hall effect device

N: Optocoupler

P: Radiation sensitive device

Q: Radiation producing device

R: Thyristor, Low power

T: Thyristor, Power

قسمت حرف اختیاری: این حرف کاربرد صنعتی یا حرفه ای تا تجاری قطعه را مشخص می سازد و یکی از حروف W,X,Y,Z می باشد.

قسمت شماره سریال: سریال نامبر از عدد 100 شروع می شود تا 9999.

قسمت پسوند: این قسمت درست مانند قسمت پسوند روش اول یعنی JEDEC می باشد.

مثال: BC108A, BAW68, BF239, BFY51 , BC548

کارخانه های سازنده ترانزیستور و دیگر قطعات نیمه هادی به دلایل تجاری به ابتدای سه روش مذکور یک پیشوند اضافه می کنند که معرف کارخانه سازنده ؛ نوع بسته بندی و کاربرد قطعه است. معمول ترین این پیشوندها عبارتند از:

MJ: Motorolla power, metal case

MJE: Motorolla power, plastic case

MPS: Motorolla low power, plastic case

MRF: Motorolla HF, VHF and microwave transistor

RCA: RCA

RCS: RCS

TIP: Texas Instruments power transistor (platic case)

TIPL: TI planar power transistor

TIS: TI small signal transistor (plastic case)

ZT: Ferranti

ZTX: Ferranti

مانند : ZTX302, TIP31A, MJE3055, TIS43

  • Like 2
لینک به دیدگاه
  • 4 ماه بعد...

این ترانزیستورهای جدید بجای بهره‌گیری از سیلیکون، با ایندیوم فسفاید (indium phosphide) و ایندیوم گالیوم آرسناید ( indium gallium arsenide) ساخته می‌شوند. این مواد با هم ترکیب می‌شوند تا یک ماده سه لایه ایجاد شود که پایه ترانزیستورهای دوقطبی (bipolar) را تشکیل می‌دهد. هر ترانزیستور از سه قسمت ساخته می‌شود که عبارتند از امیتر، بیس و کلکتور. تیم طراح می‌گوید که ساختار کلکتور را با افزودن ایندیوم، کریستاله می‌کنند تا هتروجانکشن سودومورفیک (pseudomorphic heterojunction) درست شود. این پیوند اجازه می‌دهد تا الکترونها آزادانه تر بین دو لایه حرکت کنند که در نتیجه این عمل، سرعت بالا حاصل می‌شود. میلتون فینچ پروفسور مهندسی برق و کامپیوتر هولونیاک در ایلینویز که این مطالب را عنوان نمود اضافه کرد که هنوز چند سالی با ارائه نمونه عملی این ترانزیستورها به بازار فاصله داریم زیرا قیمتی که برای این نمونه تنظیم شده است 100 برابر ترانزیستور ساخته شده از سیلیکون است هرچند که انتظار می‌رود با تولید انبوه، این هزینه تا 90 درصد کاهش یابد. یکی از نقاط ضعف این مواد جدید آنستکه بشدت نیرو مصرف می‌کنند که باعث می‌شود تا نتوان آنها را در میکروپروسسورها کنار هم قرار داد.

 

 

در سال 1971 میلادی اولین پردازنده شرکت اینتل به نام 4004 تعداد 2300 ترانزیستور داشت و30 سال بعد از آن پردازنده پنتیوم 4 تعداد 42 میلیون ترانزیستور داشت در طی این مدت استراتژی اصلی سازندگان تراشه ها برای ساختن پردازنده های سریعتر کوچکتر کردن ترانزیستورها بوده برای فعال کردن آنها در انجام اعمال تکراری و همچنین فعال کردن مدارهای بسیار پیچیده که درون یک طاس از جنس سیلیکون جاگذاری شده اند به هر حال نظر به اینکه نیم رساناها حتی بیشتر از پیچیده بودن مرحله ی مهمی را در اندازه و حجم و کارایی ترانزیستورها می گذارنند مانند مصرف برق و گرما که دارد پدیدار می شود که به چند عامل محدود می شوند که به سرعت در طراحی و ساخت تراشه ها بستگی دارد.کاربرد طرحهای موجود برای پردازنده های آینده به خاطر تراوش کنونی در ساختمان ترانزیستور غیر قابل انجام است که نتایجی را از قبیل مصرف زیاد برق و تولید زیاد گرما در برداشته است.

در اواخر سال 2002 شرکت اینتل از نوآوری و پیشرفتهای محققانش در زمینه ساختمان ترانزیستورها و نمایاندن مواد جدید که به عنوان یک گام مهم در تلاش برای حفظ موازین قانون میکروچیپ و بهبود بخشیدن سرعت و راندومان قدرت و کاهش گرمای تولید شده در پردازنده خبرداد.این ساختمان جدید که به عنوان یک به روز رسانی در پردازنده ها اضافه می شود به نام اینتل تراهرتز ترانزیستور می باشد و این به خاطر توانایی در خاموش و روشن کردن ترانزیستورها در مدت زمانی به اندازه یک ترلیونم از ثانیه است شرکت اینتل امیدوار است که سرانجام تراشه های جدیدی بسازد که تعداد ترانزیستور های آن بیشتر از یک بیلیون است باسرعتی ده برابر بیشتر و با تراکم ترانزیستوری،بیست و پنج برابر تمام تراشه های پیشرفته موجود در سال 2000.انجام چنین کاری این معنی را به عناصر تراشه می بخشد که آنها قادر به اندازه گیری مقادیری بسیار کوچکتر از تار موی انسان به اندازه 20 نانو متر هستند.

ترانزیستور اختراع ساده ای است که در یک ناحیه ی سیلیکونی ساخته شده است که آن فقط میتواند به صورت الکترونیکی یک تبدیل بین خاموش و روشن انجام دهد.مطابق آیین و برنامه ترانزیستورها آنها سه پایانه با اسامی Gate و Source و Drain دارند.Source و Drain نوع دیگری از سیلیکون اساسی و Gate ماده به نام پلیسیلیکون است.پایین Gate لایه ی نازکی به نام ماده عایق برق که از دی اکسید سیلیکون ساخته شده وجود دارد وقتی که ولتاژی به ترانزیستور داده می شود Gate باز یا روشن می شود و جریان برق از Source به Drain جاری می شود وقتی که Gate بسته یا خاموش است هیچ جریان برقی وجود ندارد.تکنولوژی اینتل تراهرتز در ترانزیستورها دو تغییر عمده را شامل می شود اولی این است که فاصله ی بین Source و Drain زیاد تر می شود و زیربنای این ترانزیستور ها به گونه ای است که فقط یک جریان الکتریسیته می تواند از آن عبور کند.دومی این است که لایه ی عایق سیلیکون که اندازه ی آن بسیار نازک است زیر Source و Drain جاسازی می شود. این روش با روش موسوم برای ایزوله کردن سیلیکون در بقیه ی اختراعات متفاوت است.وقتی ترانزیستور روشن است ماکسیسم رانشی است که می تواند داشته باشد که این در سرعت تبدیل حالت خاموش و روشن کردن ترانزیستور بسیار مفید است.وقتی که Gate خاموش است لایه ی اکسید راه جریانهای ناخواسته ای که در گردش می افتد را مسدود می کند.سومی این است که قطعه شیمیایی لایه ی اکسیدی Gate ی ترانزیستور را با Source و Drain مرتبط می سازد که باعث می شود یک ماده عایق جدید ایجاد شود که این روش توسط تکنولوژی به نام لایه ی اتمی رشد یافته است که این لایه هایی هستند که با کلفتی یک مولکول رشد یافته اند.قطعه شیمییایی خیلی دقیق لایه ی اکسیدی Gate تابه حال توانسته از جنس آلومینیوم و تیتانیوم از بین بقیه قطعات باشد.

این سه روش بهبود سازی مستقل از هم هستند اما کار آنها در آینده یک هدف را دنبال خواهد کرد که استفاده ی موثرتری از جریان برق توسط ترانزیستورهاست:

1- ضخیمتر کردن منطقه ی مورد استفاده برای Source و Drain و تغییر قطعه ی شیمییایی Gate اکسیدی که همه ی اینها به تراوش بدنه ی اصلی Gate کمک می کند زیرا جریان میتواند به خارج از Gate تراوش کند.ترانزیستور های کوچکتر راه فرار بیشتری می گیرند به خاطر همین طراحان مجبورند جریان الکتریسیته ی بیشتری برای پمپ کردن در نظر بگیرند که باعث تولید گرمای بیشتری می شود. شرکت اینتل ادعا می کند تراوش Gate در ماده جدید نسبت به دی اکسید سیلیکون 10000 برابرکاهش می یابد.

2- افزایش لایه ی عایق کننده سیلیکون ((SOI باعث کاهش مقاومت در برابر جریان گردشی بین Source و Drain می شود.درنهایت این کاهش مقاومت به طراحان این اجازه را خواهد داد که مصرف برق را کاهش دهند یا بازده و کارایی را نسبت به انرژی داده شده بهبود بخشند.

3- مزیتهای دیگری هم وجود دارد که آنها را نشان می دهیم.برای مثال: گردش آزادانه ذرات آلفا که از تماس با یک ترانزیستور در تراشه ها می تواند به طور ناگهانی باعث تغییر حالت آن یا بروز خطا شود که در آینده این ذرات بوسیله ی لایه ی عایق کننده (SOI) جذب می شوند.

پردازنده های کنونی پنتیوم4 با توان 45 وات نار می کنند.خوب است بدانیم که ترانزیستورهای تراهرتز درپردازنده های آینده قادر هستند مراحل اتلاف توان را حفظ کنند و قدرت را در فاصله ی 100 وات نگهدارند.

شرکت اینتل پیشنهاد کرده که می تواند با بکارگرفتن قسمتهایی از تکنولوژی تراهرتز در تولیدات آتی خود مثلا تراشه های 0.09 میکرونی در سال 2003 یا زودتر استفاده کند.در نهایت تغییرات شیمییایی و معماری مجزا در تکنولوژی جدید می تواند در نیمه دوم قرن جاری به اوج خود برسد.شرکت اینتل در سال 2007 تراشه هایی خواهد ساخت که با یک بیلیون ترانزیستور کار می کند اما با میزان مصرف برق پردازنده های پنتیوم 4 که در قرن حاضر مصرف می شوند.با چنین سرعت پیشرفت،از ترانزیستورهای جدید انتظار می رود پردازنده هایی با سرعت 10 گیگا هرتز در سال 2005 و تراشه هایی با 20 گیگاهرتز سرعت در پایان دهه تولید شود

سریع‌ترین ترانزیستور جهان توسط دكتر " فرشید رییسی " عضو هیات علمی دانشكده مهندسی برق دانشگاه صنعتی خواجه نصیرالدین طوسی طراحی و ساخته شد.در طراحی این ترانزیستور به جای الكترون از سالیتان (بسته‌های امواج الكترو مغناطیسی ) كه با سرعت نور حركت می‌كند،استفاده شده است.رییسی درباره مزیت این طرح گفت:ترانزیستور سالیتانی می‌تواند صدها برابر سریع تر از ترانزیستورهای معمولی كه از جنس نیمه هادی هستند، عمل كند.وی افزود:این ترانزیستور در ابعاد ‪ ۸دهم میلیمتر ساخته شده است و سرعتی حدود ‪ ۸گیگاهرتز دارد كه در مقایسه با ترانزیستورهای معمولی (حدود ‪ ۲/۵گیگا هرتز) سه برابر بیشتر است و هر چه ابعاد آن كوچكتر باشد،سرعت ترانزیستور افزایش می‌یابد.وی با اشاره به اینكه قطعات مورد نیاز این ترانزیستور از خارج كشور تهیه می‌شود،گفت:تولید این ترانزیستور به آزمایشگاه‌های ساخت قطعات نیمه هادی نیازمند است كه متاسفانه در كشور وجود ندارد.وی افزود:در حالی كه هزینه تهیه یك آزمایشگاه ساخت ترانزیستور سالیتانی نسبت به هزینه آزمایشگاه‌های ساخت ترانزیستورهای كنونی بسیار كمتراست.دكتر رییسی خاطر نشان كرد:در صورت تجهیز آزمایشگاه قطعات نیمه هادی در كشور ،با تهیه ترانزیستورهای سالیتانی در ابعاد صد نانومتر ،می توان سرعت فركانسی آن را به حدود ‪ ۲۰۰تا‪ ۳۰۰گیگاهرتز رساند تا در مواردی نظیر ابررایانه‌ها وفعالیت‌های دفاعی كه سرعت ترانزیستور اهمیت دارد به كار رود.وی افزود:ترانزیستور سالیتانی علاوه بر سرعت سه برابر بیشتر نمونه اولیه آن نسبت به سریع‌ترین ترانزیستورهای موجود در بازار،از لحاظ هزینه تولید از ترانزیستورهای نیمه هادی با كاربردی در ‪ CPUهابسیار ارزانتر است.مقاله مربوط به طرح ابتكاری دكتر "فرشید رییسی" كه در مجله معتبر بین‌المللی ‪ Applied Physics Lettersآمریكا ارایه شده،بازتاب وسیعی در نشریات و رسانه‌های علمی فیزیك جهان داشته است.

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

  • Like 2
لینک به دیدگاه
×
×
  • اضافه کردن...