جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'ﻣﻘﺎﻳﺴﻪ'.
3 نتیجه پیدا شد
-
پلیمر یک واژه یونانی است. و از اتصال زنجیرهای کوچک منومرساخته میشود. که انصال این زنجیره ها را پلیمریزاسیون گویند. فرایند پلیمریزاسیون عموماً به دو صورت انجام میشود که خود نیاز به یک بحث طولانی و پیچیده میباشد. ویژگی برتر این مواد پلیمری : سبکی، سختی و در عین حال انعطاف پذیری، مقاومت در برابر خوردگی، رنگ پذیری، شفافیت، سهولت در شکل پذیری و بسیاری از خواص مورد استفاده در کاربردهای مختلف. پلیمرها عموماً به دو دسته پلاستیکها و لاستیکها تقسیم میشوند. وهر دو گروه نیز خود به پلیمرهای گرمانرم(termoplast) و گرما سخت (termoset) تقسیم میشوند که بطور مفصل شرح داده خواهد شد. به خاطر اینکه مواد پلیمری به تنهایی نمی توانند مورد مصرف قرار گیرند در محل تولید (پتروشیمی) یا صنایع پایین دستی بنا به شرایط و کاربرد آنها از مواد افزودنی (addetive) استفاده میشود. به طور مختصر بعضی از این افزودنی ها ذکر میشود. مواد پرکننده (filler): مانند خاک رس یا در اکثر موارد کربنات کلسیم یا سیلیکا استفاده میشود و علت افزودن آنها کاهش قیمت است و تأثیری در افزایش خواص ندارد. از افزودنی مثل الیاف کوتاه یا پولک جهت بهبود خواص مکانیکی استفاده میشود. منظور از خواص مکانیکی کاهش خزش و استحکام در برابر تنش و ... میباشد. روان کننده ها (lubricant): این مواد ویسکوزیته پلیمر مذاب را کاهش داده و شکل پذیری در قالب ها را آسان تر میکند. مانند استارات کلسیم. رنگدانه ها (pigment): جهت ایجاد رنگهای گونگون در پلاستیکها به کار میروند. نرم کننده ها (plasticizers): موادی با وزن مولکولی و طول زنجیره کمتر نسبت به رنجیره پلیمرها که خواص و مشخصه شکل گیری پلیمرها را کمتر میکند. بهترین نمونه کاربرد آن DOP دی اکتیل فتالات، در تهیه PVC پلی وینیل کلراید میباشد که باعث انعطاف پذیری آن میشود. پی وی سی تقریباٌ سخت میباشد و در موارد استفادهایی که انعطاف پذیری نیاز داریم بوسیله این ماده آن را نرم میکنیم. مثال ساده استفاده در سفره ها (به بوی خاص و تند آن توجه کنید همان DOP است) و دمپایی ها و داشبوردهای پیکان های مدل قدیم! میباشد. و اگر به ترک! داشبورد بعضی از آنها توجه کنیم مربوط به از بین رفتن (پریدن) این افزودنی میباشد. استحکام دهنده ها(reinforcement) : با افزودن موادی نظیر الیاف شیشه یا الیاف کربن مقاومت و سفتی پلیمرها افزایش و بهبود می یابد. نظیر فایبر گلاس ها یا بدنه هواپیما و بعضی از خودروها مانند سیناد2 ! پایدار کننده ها(stabilizers) : این افزودنی ها از فساد و تخریب پلیمرها در مقابل عوامل محیطی مانند نور خورشید (اشعه UV) و رطوبت و ... جلوگیری میکند. مانند مواد ضد اکسایش که به پلاستیکهایی نظیر ABS اکریو نیتریل-بوتادین- استایرن ، پلی اتیلن و پلی استایرن اضافه میشود و پایدارکننه های حرارتی که معمولاٌ برای شکل دهی PVC به کار میرود. مواد ضد آتش زا(inflammable) : از این مواد در پلیمرهای استفاده میشود که خطر آتش سوزی در محل میباشد. بعضی از پلیمرها مانند PVC که حوای ماده کلر(ضد آتش) میباشد، در هنگام آتش سوزی خود اطفا میباشد و خاموش میشود. همچنین گاز وجود گاز خنثی نیتروژن در فوم های پلی استایرن (سقف کاذب) نیز باعث اطفاء حریق میباشد.
- 28 پاسخ
-
- polymer
- لاستیک
-
(و 48 مورد دیگر)
برچسب زده شده با :
- polymer
- لاستیک
- مقايسه
- مهندسی پلیمر
- مونومر
- مواد پلیمری
- ماکرومولکول
- چسب
- کاربرد پلیمر
- کاربردهای پلیمر
- گرمانرم
- گرماسخت
- پليمر
- پليمر،كاربردهای آن و انقلاب صنعتی
- پلیمر
- پلیمر مصنوعی
- پلیمر صنعتی
- پلیمر طبیعی
- پلیمرها
- پلاستیک
- آشنایی با پلیمر
- الاستومر
- انواع پلیمر
- بسپار
- بسپار لاستیک
- تقسيم بندي پليمر
- تهیه پلیمر
- ترموپلاست
- ترموپلاستیک
- ترموپلاستیک الاستومر
- ترموسيتينگ
- ترموست
- دسته بندی پلیمر
- دسته بندی پلیمرها
- رنگ
- رزین
- رشته پلیمر
- ساختمان مولكولي
- ساختار
- ساختار پلیمر
- ساختار،پلیمر
- شماسایی لاستیک
- شناخت پلیمرها
- شناسایی پلیمر
- شناسایی پلیمرها
- شناسایی پلاستیک
- شناسایی ترموپلاست
- شناسایی ترموست
- شیمی پلیمر
- علوم پلیمر
-
مقاله ساختمان های بتنی یا فولادی...؟(مقایسه)
pme پاسخی ارسال کرد برای یک موضوع در مقالات علمی و اجرایی مهندسی عمران
هر روز هنگام عبور از خيابانهاي شهر شاهد ساخت و سازهاي روز افزوني هستيم، ساختمانهاي مختلف از يك طبقه تا... طبقه كه جلوي آنها انواع مصالح ديده ميشود؛ سازههايي كه گاه از بتن ساخته ميشوند و گاه از فولاد.در مورد اينكه كدام نوع سازه بر ديگري برتري دارد، اختلاف نظر شديدی بين سازندگان ساختمانها وجود دارد. معمولاً معيارهاي ساخت، جوابهاي متفاوتي براي ما به همراه دارند. عمده عوامل مؤثر در اين روند، هزينه، زمان و كيفيت ساخت هستند.هزينه ساخت و سود حاصل از اين سرمايهگذاری با زمان اتمام طرح رابطه تنگاتنگي دارند. بديهي است هر چه زمان طرح طولانيتر شود شاهد افزايش قيمت مصالح، قيمت تمام شده طرح، هزينههاي متفرقه و بازگشت ديرتر سرمايه خواهيم بود كه خوشايند هيچ سازندهاي نيست. سازههاي بتن آرمه در مقابل سازههاي فولادي معمولاً نياز به هزينه كمتر و زمان بيشتري براي ساخت دارد؛ در حاليكه سازههاي فولادي ابتدا نياز به سرمايه زيادي براي خريد آهن آلات دارد ولي در عوض شاهد سرعت اجراي بالاتري خواهيم بود.بنابراين در ساختمانهاي عادي كمتر از 6 طبقه در نهايت از اين منظر تفاوت زيادي وجود ندارد. در اسكلتهاي فولادي حتماً بايد تمام اسكلت آماده باشد تا بتوان سقف را اجراكرد. به عبارت ديگر اول بايد تير و ستونهايي وجود داشته باشد تا بتوان روي آن سطحي به نام سقف يا همان كف اجرا كرد. در حاليكه در سازههاي بتن آرمه ابتدا ستونهاي هر طبقه و سپس سقف همان طبقه كه خود مشتمل بر تيرها و كف يكپارچهتري نسبت به سازههاي فولادي است اجرا ميشود. مزيت اين روش نسبت به روش اول آن است كه ميتوان طبقه مورد نظر را سريعتر براي اجراي ديگر مراحل از جمله تيغه چيني، اجراي تأسيسات مكانيكي و برقي و... در اختيار ساير پيمانكاران قرار داد كه خود موجب تسريع در روند طرح خواهد بود. ولي بهطور كلي زمان اجراي سازههاي فولادي در مقياسهاي بزرگ تا حدودي كوتاهتر از سازههاي بتن آرمه و هزينههاي سازههاي بتن آرمه كمتر از سازههاي فولادي است كه هر سازندهاي با توجه به شرايط و معيارهاي خود تصميمگيرنده اصلي است. حال با فرض وجود شرايطي كاملاً ايدهآل، يعني عدموجود محدوديت زمان و هزينهها، عامل سوم يعني كيفيت سازه را بررسي ميكنيم. كيفيت را ميتوان از جنبههاي متفاوتي مانند مقاومت در برابر بارهاي ثقلي وارده و زلزله، مقاومت در برابر حرارت، ابعاد، دهانههاي قابل پوشش، تعداد طبقات قابل طراحي، قابليت ترميم آسان و... مورد نقد و بررسي قرار داد. با توجه به گستردگي و پيچيدگي مسئله، در اينجا فقط تصميمگيري براي ساختمانهاي عادي را مورد توجه قرار ميدهيم. اولين و مهمترين نكته قابل ذكر در اين مورد مقاومت مصالح و ابعاد مصالح مصرفي است. معمولاً هر چه اعضای باربر ما ابعاد بزرگتر از نگاه عام و ممان اينرسي بالاتر از ديد مهندسي داشته باشد، رفتار سازهاي مناسبتر است و هر چه مصالح مصرفي كه در عرف ساختمانسازي بتن يا فولاد هستند قابليت تحمل نيروهاي بيشتر را داشته باشند منجر به طراحي اعضاي ظريفتري خواهند شد. اگر هر دو عامل در كنار هم قرار گيرند منجر به رسيدن به سختي و صلبيت بالاتري خواهند شد كه جزء اصليترين آيتمهاي طراحي يك مهندس محاسب به شمار ميروند. در طراحي سازهها، مقاومت بتن را 10 درصد مقاومت فولاد فرض ميكنند بنابراين ابعاد ستونها و تيرهاي بتني، بهمراتب بيش از سازههاي فولادي است. البته اين ابعاد بزرگ اعضای بتني، ممان اينرسي بسيار بالاتري نسبت به گزينه ديگر به ارمغان خواهند آورد كه در نهايت سازه بتنی، سختي بالاتر و معمولاً رفتار سازهاي مناسبتری دارد. « سازههاي بتني سنگين هستند.» در پاسخ به اين ايراد بايد گفت: ابعاد بزرگ سازه تا جايي مورد پذيرش يك مهندس است كه منجر به سنگيني بيش از حد سازه نشود و با توجه به آنكه بحث ما در مورد سازههاي عادي كمتر از 6 طبقه است تفاوت وزن اسكلت نيز آنچنان نخواهد بود تا مهندس طراح را به سمت طراحي سازه فولادي بكشاند. اين موضوع در بسياري از سازههاي عظيم نيز صادق است كه برج 56 طبقه تهران نمونه بارزي از اين دست است. بحث زلزله ميتواند جنبه ديگري از كيفيت مناسب يك سازه باشد. سازههاي بتن آرمه عادي و به ويژه مجهز به ديوارهاي بتني بهعلت سختي بالا نسبت به سازههاي فولادي در برابر زلزله، در بيشتر موارد مقاومت بسيار بالايي از خود نشان ميدهند اما سازههاي فولادي نيز ميتوانند همين رفتار را از خود نشان دهند مشروط برآنكه طراحي مناسبي داشته باشند. نكته قابل تامل اينجا است كه اين رفتار به چه قيمتي به دست خواهد آمد؟ اگر طراحي، يك طراحي بدون نقص باشد، هم سازه فولادي و هم سازه بتن آرمه در چند ثانيه وقوع زلزله، با حداقل خسارت ممكن جان سالم به در خواهند برد. اما كار به اينجا ختم نخواهد شد و پس از زلزلههاي زيادي شاهد شكستگي لولههاي گاز و وقوع آتش سوزيهاي مهيب بودهايم كه گاه از خود زلزله مخربتر هستند. با توجه به اينكه اطفاء حريق بلافاصله بعد از وقوع حادثه ممكن نيست، ساختمان بايد به گونهاي طراحي شود كه تا چند ساعت متوالي بتواند آتش را با حداقل خسارات وارده تحمل كند. در سازههاي بتن آرمه مقاومت بالايي در برابر آتش سوزي وجود دارد، اما درسازههاي فولادي درصورتيكه تمهيدات ايمني لازم در آنها صورت نپذيرد در چند دقيقه ابتدايی حريق، شاهد تخريبهاي بسيار سريع و غيرقابل جبران خواهيم بود كه اين مورد نيز مزيتي بسيار ارزشمند براي سازههاي بتن آرمه به حساب ميآيد. اما آنچه اكثر مهندسان را نسبت به سازههاي بتن آرمه به شدت بدبين كرده، عدمقطعيتها، يكنواخت نبودن مقاومت بتن و كم اطلاعي بسياري از سازندگان از نحوه عملآوري و به دست آوردن نتيجهاي مطلوب از اين ماده است. قابليت اشتباه در تهيه بالقوه اين نوع ماده در مقابل فولاد توجيه ديگري است كه از سوي عده زيادي در مخالفت با بتن ارائه ميشود، چراكه ممكن است حين عمل آوری، مقاومت فشاری كمتر از حد مورد نياز به دست آيد. اين گروه معتقدند جبران يك اشتباه در سازههای بتن آرمه در مواردي منجر به تخريب اجباري سازه ميشود در حاليكه فولاد در هر لحظه كه سازنده اراده كند با هزينهاي به نسبت پايين قابل ترميم و تقويت است. در پاسخ به اين ايراد بايد گفت اين عدمقطعيتها در آيين نامهها با اعمال ضريب ايمني بسيار بالايي پيشبيني شده تا جايي كه در موارد زيادي شاهد مقاومتي چند برابر مقاومت مورد نياز در ساخت اين قبيل سازهها هستيم.از سوي ديگر اين عدمقطعيت كيفيت بتن در شالوده و سقفهاي سازه فولادي نيز وجود دارد و صرفاً متعلق به سازههاي بتن آرمه نيست. در نهايت بايد بر اين موضوع تاكيد كرد كه بهطور كلي هم سازههاي فولادي و هم سازههاي بتن آرمه درصورتي كه در طراحي آنها سيستم مناسب و منطبق بر آييننامههای به روز، مورد استفاده قرار نگيرد و متخصصين متبحر آنها را اجرا و مهندسين با تجربه بر اجراي آنها نظارت مستمر نكنند، هيچ رجحاني از نظر كيفيت و قابليت اطمينان بر ديگري ندارند. فراموش نكنيم معيار چهارمي نيز در انتخاب وجود دارد؛ معياري كه 3 معيار هزينه، زمان و كيفيت را تحت سيطره خود قرار ميدهد: فولاد بهعنوان يك سرمايه ملي مادهاي است كه ارزان به دست نميآيد و همانند نفت روزي تمام خواهد شد؛ مادهاي كه بايد در صنايع ارزشمندتر و يا حداقل در سازههاي خاص كه نياز به ظرافت خاصي دارند و پس از بررسيهاي علمي برتري فولاد در آن محرز شده، مورد استفاده و بهره برداري قرار گيرد تا شاهد رشد اقتصادي در ديگر زمينهها باشیم. استفاده از سازههاي بتن آرمه با توجه به مصرف بهمراتب پايينتر از فولاد (بهصورت ميلگرد) هم از نظر سازهاي و هم از نظر اقتصادي و هم از جنبه ملي بهمراتب مناسبتر و بهينهتر از سازههاي فولادي است. -
ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه ﻳﻚ ﻣﺒﺪل آﻧﺎﻟﻮگ ﺑﻪ دﻳﺠﻴﺘﺎل ﺗﻚ ﺑﻴﺘﻲ اﺳﺖ ﻛﻪ دارای ورودی ﺗﻔﺎﺿﻠﻲ و ﺧﺮوﺟﻲ دﻳﺠﻴﺘﺎل اﺳﺖ. در ادامه بحث تفاوت مقایسه کننده و آپ امپ به بررسی مقایسه کننده می پردازیم ﻣﻌﻤﻮﻻً ﺑﻪ ﻧﺪرت ﭘﻴﺶ ﻣﻲآﻳﺪ ﻛﻪ ﻃﺮاح از ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه ﺑﻪ ﺟﺎی Op‐amp اﺳﺘﻔﺎده ﻛﻨﺪ، زﻳﺮا ﺑﻴﺸﺘر ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه ﻫﺎ ﺧﺮوﺟﻲ ﻛﻠﻜﺘﻮر ﺑﺎز دارﻧﺪ. ﺗﺮاﻧﺰﻳﺴﺘﻮر ﺧﺮوﺟﻲ ﻳﻚ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه ﻛﻠﻜﺘﻮرﺑﺎز (ﺑﻪﻣﻨﻈﻮر راه اﻧﺪازی ﺑﺎرﻫﺎی دﻳﺠﻴﺘﺎل) دارای VCE (ولتاژ کلکتور- امیتر) ﻛﻮﭼﻜﻲ اﺳﺖ ﺳﺎﺧﺘﺎر ﻛﻠﻜﺘﻮر ﺑﺎز واﺑﺴﺘﮕﻲ ﺑﻪ ﻣﺪار ﺧﺎرﺟﻲ دارد ﻛﻪ اﺗﺼﺎل ﺑﻪ ﺗﻐﺬﻳﻪ را ﺑﺮﻗﺮار ﻛﺮده و ﻣﺪار را ﻛﺎﻣﻞ ﻣﻲ ﻛﻨﺪ. ﻫﻤﭽﻨﻴﻦ ﺑﺮﺧﻲ از ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه ﻫﺎ، اﻣﻴﺘﺮ را ﺑﻪ ﺻﻮرت ﻳﻚ ﭘﺎﻳﻪ IC در اﺧﺘﻴﺎر ﻃﺮاح ﻗﺮار ﻣﻲدﻫﻨﺪ ﺗﺎ وی ﺑﺘﻮاﻧﺪ ﻫﺮ دو اﺗﺼﺎل ﻛﻠﻜﺘﻮر و اﻣﻴﺘﺮ را ﺑﻪ ﺧﻮاﺳﺖ ﺧﻮد ﻛﺎﻣﻞ ﻛﻨﺪ. ﺳﺎﻳﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه ﻫﺎ در ﺧﺮوﺟﻲ ﺧﻮد از FET اﺳﺘﻔﺎده ﻣﻲ ﻛﻨﻨﺪ ﻛﻪ ﺑﻪ ﺟﺎی ﻛﻠﻜﺘﻮر ﺑﺎز، ﺳﺎﺧﺘﺎر درﻳﻦ ﺑﺎز را در اﺧﺘﻴﺎر ﻣﻲ ﮔﺬارﻧﺪ. در ﺗﻤﺎم اﻳﻦ ﻣﻮارد ﺗﺎﻛﻴﺪ ﺑﺮ راه اﻧﺪازی ﺑﺎرﻫﺎی "ﻗﻄﻊ و وﺻﻠﻲ" اﺳﺖ. ﻛﺎرﺑﺮد اوﻟﻴﻪ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه، راه اﻧﺪازی ﺑﺎرﻫﺎی دﻳﺠﻴﺘﺎل ﺑﻮد اﻣﺎ ﺑﻌﺪﻫﺎ ﻣﺸﺨﺺ ﺷﺪ ﻛﻪ اﮔﺮ اﻳﻦ وﺳﻴﻠﻪ ﺑﻪ ﺻﻮرت ﻛﻠﻜﺘﻮر- درﻳﻦ ﺑﺎز ﺳﺎﺧﺘﻪ ﺷﻮد ﻣﻲﺗﻮان ﺑﺎ آنﻫﺎ ﻋﻤﻠﻜﺮدﻫﺎی ﻣﻨﻄﻘﻲ ( مانند NAND را ﻧﻴﺰ ﭘﻴﺎدهﺳﺎزی ﻛﺮد.) ﺑﺎ اﻓﺰاﻳﺶ ﺳﺮﻋﺖ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪهﻫﺎ، ﺑﺴﻴﺎری از آنﻫﺎ ﺑﺎ ﺧﺮوﺟﻲ ﺗﻮﺗﻢ ﭘﻞ (در آینده به بررسی و معرفی ساختار توتم پل خواهیم پرداخت) ﺳﺎﺧﺘﻪ ﺷﺪﻧﺪ ﻛﻪ ﺑﻪ اﻳﻦ ﺗﺮﺗﻴﺐ اﻣﻜﺎن ﺻﻔﺮ و ﻳﻚ ﻛﺮدن ﺧﺮوﺟﻲ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه وﺟﻮد دارد. زﻣﺎﻧﻲ ﻛﻪ از ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه اﺳﺘﻔﺎده ﻣﻲﺷﻮد، ﺳﻄﺢ وﻟﺘﺎژ دو ورودی ﺑﺎ ﻳﻜﺪﻳﮕﺮ ﻣﻘﺎﻳﺴﻪ ﻣﻲ ﺷﻮﻧﺪ. ﻣﻘﺎﻳﺴﻪ ﻛﻨﻨﺪه، ﻳﻚ ﺧﺮوﺟﻲِ دﻳﺠﻴﺘﺎل اﻳﺠﺎد ﻣﻲ ﻛﻨﺪ ﻛﻪ ﻣﺘﻨﺎﻇﺮ ﺑﺎ ورودی ﻫﺎﺳﺖ: اﮔﺮ وﻟﺘﺎژ ورودی ﻧﺎواروﻧﮕﺮ (+) ﺑﻴﺸﺘﺮ از ورودی واروﻧﮕﺮ (-) ﺑﺎﺷﺪ، در ﺻﻮرﺗﻲ ﻛﻪ ﺧﺮوﺟﻲ، ﻛﻠﻜﺘﻮر - درﻳﻦ ﺑﺎز ﺑﺎﺷﺪ، ﺑﻪ ﺣﺎﻟﺖ اﻣﭙﺪاﻧﺲ ﭘﺎﻳﻴﻦ ﻣﻲرود و اﮔﺮ ﺧﺮوﺟﻲ ﺗﻮﺗﻢﭘﻞ ﺑﺎﺷﺪ در ﺳﻄﺢ ﻳﻚ ﻣﻨﻄﻘﻲ ﻗﺮار ﻣﻲ ﮔﻴﺮد. اﮔﺮ وﻟﺘﺎژ ورودی ﻧﺎواروﻧﮕﺮ (+) ﻛﻤﺘﺮ از ورودی واروﻧﮕﺮ (-) ﺑﺎﺷﺪ، در ﺻﻮرﺗﻲ ﻛﻪ ﺧﺮوﺟﻲ، ﻛﻠﻜﺘﻮر- درﻳﻦ ﺑﺎز ﺑﺎﺷﺪ، ﺑﻪ ﺣﺎﻟﺖ اﻣﭙﺪاﻧﺲ ﺑﺎﻻ ﻣﻲرود و اﮔﺮ ﺧﺮوﺟﻲ ﺗﻮﺗﻢ ﭘﻞ ﺑﺎﺷﺪ در ﺳﻄﺢ ﺻﻔﺮ ﻣﻨﻄﻘﻲ ﻗﺮار ﻣﻲ ﮔﻴﺮد.