رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'مهندسی پروژه'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. در صورتی كه در نقشه های معماری درز انقطاع در ستون گذاری ستونهای كناری رعایت نشده باشد برای جلوگیری از مشكلات اجرایی حتماً باید با توجه به سایت پلان و مراجعه به بند 1-6-3 آیین نامه 2800 ویرایش سوم درز انقطاع را محاسبه و نقشه های معماری را تصحیح كرد. 2-حتی الامكان از داشتن محورهای فرعی در ستون گذاری بپرهیزید و سعی شود ستونهای یك محور، در یك راستا باشند همچنین ستون گذاری طوری باشد كه پانل ها مستطیلی شود. 3-قبل از ستون گذاری حتماً به محل ستونها در پاركینگ توجه شود كه مشكلی برای تامین فضای لازم برای پارك ماشین ها ایجاد نشود. نكته: ضوابط تامین پاركینگ: -عرض مورد نیاز برای پارك یك خودرو۶/۲ متر است . -عرض مورد نیاز برای پارك دو خودرو در مجاورت یكدیگر،داخل به داخل ستون با نازك كاری(فاصله خالص) برابر۶/۴متر است. -عرض مورد نیاز برای پارك سه خودرو در مجاورت یكدیگر،داخل به داخل ستون با نازك كاری(فاصله خالص) برابر۶/۶متر است. -طول مورد نیاز برای پارك هر خودرو 5 متر است . -فضای مورد نیاز برای مانور هر خودرو برابر۵ متر از پشت هر خودرو می باشد به عبارت دیگر فضای مورد نیاز برای مانور خودرو برابر۲۵متر مربع یا فضایی به ابعاد۵x۵ متر است. توصیه: حدود فاصلۀ مناسب ستون ها از یكدیگر در ساختمان های متعارف 3 تا 5 متر است كه بهتر است در ستون گذاری رعایت شود. 4-هر ستون بهتر است طوری قرار گیرد كه حداقل از سه طرف مهار شود(تیر به آن متصل شود) به جز ستونهای كناری. 5- بهتر است اطراف باكس پله یا چاله آسانسور ستون گذاشته شود. 6- در سازه هایی كه دارای سیستمهای سازه ایِ یك جهت بادبندی و یك جهت قاب خمشی است ، چون در جهت بادبندی دارای اعضای بادبندی برای جذب نیروی زلزله هستیم در حالی كه در جهت قاب خمشی عضو خاصی به طور مستقیم برای جذب نیروی زلزله نداریم پس جهت تیرریزی ،حتماً عمود بر جهت قابخمشی قرار گیرد. 7-در سازه های دارای سیستمِ ، یك جهت بادبندی و جهت دیگر خمشی، محور قوی ستونها در جهت خمشی می باشد. 8-در صورتی كه سازه در دو جهت بادبندی باشد بهتر است تیرریزی به صورت شطرنجی باشد و اگر سازه در دو جهت خمشی باشد جهت تیر ریزی تفاوتی ندارد. 9- در صورت استفاده از سیستم قاب خمشی بهتر است این سیستم در جهتی كه ساختمان دارای بعد بلند تری است اعمال شود(زیرا احتمالاً در جهت بلندتر تعداد ستون بیشتری نیز داریم و نیروی جانبی بین تعداد بیشتری ستون تقسیم می شود). 10- درصورتی كه ستون گذاری مهندس معمار با شرایط سازه ای سازگاری نداشته باشد می توان ستون گذاری را حذف و با توجه به نقشه معماری مخصوصاً با رعایت ضوابط تامین پاركینگ مجداَ ستون گذاری كرد. 11-تعداد باد بند ها باید با توجه به تجربه و دید مهندسی كافی باشد تا در مراحل محاسبه نیاز به اضافه یا كم كردن آنها نباشد. توصیه: برای مثال در یك سازه حدود 300متر مربع در هر راستا 6دهانه ی بادبند دار مناسب است ولی در همه ی سازه ها ممکن است جوابگو نباشد. 12-حتی امكان نباید بادبند ها در بازشوها قرار گیرد(چون غیر از ایجاد مشكل در نمای ساختمان در هنگام بروز زلزله به دلیل وجود نیروی زیاد در آنها موجب لرزش و شكستن شیشه های بازشو هایی كه در بادبندها تعبیه شده اند می گردد) اما در صورت ضرورت بهتر است از بادبند های 8 شكل، 7 شكل و یا برون محور استفاده شود و با توجه به ضخامت ستونها وبادبند های مورد نظربا كمك نرم افزار Autocad ابعاد دقیق ومفید بازشوها محاسبه و ترسیم شود تا در هنگام اجرا مشكل ایجاد نشود. 13-بهتر است محل قرار گیری بادبندها نسبت به محور های وسط ساختمان متقارن باشد. نكته: -طبق آیین نامه 2800 استفاده از بادبند K شكل تنها در مورد ساختمانهای یك یا دو طبقه مجاز است ودر ساختمانهای بلندتر ممنوع است. -استفاده از تیر های لانه زنبوری به عنوان تیر افقی دردهانه هایی كه دارای باد بند برون محور هستند مطلقاً ممنوع است. 14-بهتر است در سازه ستونی نباشد كه از دو طرفِ عمود بر هم بادبند به آن متصل شود چون اولاً به دلیل وجود نیروی زیاد در آن باعث بزرگ شدنابعاد ستون شده و ثانیاً با توجه به آیین نامه 2800 در تركیبات بارگذاری مشمول جریمه می شویم(تركیبات بارگذاری بیشتری را برای آن ستون در نظر می گیریم). 15- توصیه می شود حتماً بادبند را در یك قاب از بالا تا پایین ادامه داد كه این امر به دلیل عدم انفصال در انتقال نیروی زلزله از بالا به پایینِ سازه می باشد ولی در صورت عدم امكان میتوان آن بادبند رادرهمان صفحۀ قاب ودر دهانه كناری قرار داد. 16-اگر از بادبند قطری در یك قاب استفاده می كنیم بهتر است در قاب مجاور قرینۀ آن بادبند استفاده شود. 17-برای توزیع بهتر نیرو و انتقال آن به زمین، بهتر است در دو تراز پایین سازه با توجه به دید مهندسی و رعایت بند 1- 14 این فصل از بادبند به تعداد كافی استفاده شود(اغلب اوقات به دلیل وجود پاركینك در پایین ترین تراز این امكان فقط برای تراز پاركینگ امكان پذیر است). 18-بهتر است بادبند ها را در دهانه های بزرگتر قرار داد تا در دهانه های مشابه كوچكتر. 19-اگر در سازه قابی وجود داشته باشد كه آن قاب توسط سقف در هربه سازه اصلی متصل نباشد زدن بادبند تاثیری در مهار نیروی زلزله ندارد. 20- حتی الامكان باد بندها را در قسمتهای پیرامونی و خارجی سازه قرار دهید تا بازوی مقاومِ بزرگتری در مقابل پیچش ایجاد كنند . نكته: تعداد بادبند زیاد مناسب نمی باشد چون با علت بالا بردن سختی سازه زمان تناوب سازه را كاهش و در نتیجه موجب افزایش شتاب سازه می گردد و در نهایت موجب افزایش برش پایه می گردد. 21- نمی توان در یك فاب از از دو نوع سیستم مهار بندی(هم محور و برون محور)استفاده كرد و فقط با رعایت بند 2-3-8-9 آیین نامۀ 2800 ویرایش سوم مجاز به استفاده هستیم ولی در یك قاب می توان از دو نوعبادبند ولی با یك سیستم مهار بندی(مثلاً بادبند x و 8 كه هر دو هم محورهستند) استفاده كرد. 22-بهتر است اگر در بالاترین طبقه از بادبند 7 استفاده می كنیم در طبقۀ زیرین آن از بادبند8 استفاده شود چون این دو بادبند با هم تشكیل یك بادبند x می دهند واین كار را تا رسیدن به فونداسیون انجام می دهیم. 23-در سازه های فلزی باید ارتفاع سقف تیرچه بلوك 30سانتی متر و ارتفاع سقف كامپوزیت 40 سانتی متر در نقشه های معماری لحاظ شود. 24-در شرایط عادی در صورتی كه از لحاظ معماری مشكلی پیش نیاید استفاده از سیستم مهار بندی هم از لحاظ اجرایی و هم از لحاظ هزینه و زمان مقرون به صرفه است. 25- ضوابط طبقاتیِ شهرداری كه با عبارت M مشخص می شود(مثلاً M5 ) به این معنامی باشد كه به تعداد ِعددِ جلوی M ،طبقۀ مسكونی بالای پیلوت داریم. 26- طول بالكنها بهتر است از 20/1متر تجاوز نكند . 27-در بالكنهای با طول بیشتر حدود 60 تا 70 سانتی متر چون زیرتیرهای اطراف بالكن دستك داریم اتصال آنها به ستون باید به صورت مفصل باشد تا در انتقال نیرو و ممان ایجاد شده دستك نیز دخالت داشته باشد. و همچنین تیر ریزی بر روی این نوع بالكنها در جهت بلند تر(طولی) است. 28- بالكنهای با طول كم(حدود 60 تا 70 سانتی متر) باتیرچۀ ممان منفی اجرا می شود و در اكثر موارد در نرم افزار Etabs مدل نمی شود و یك نكتۀ مهم در اجرای این نوع تیرچه این است كه حتماً اتصال تیرهای اطراف بالكن به سازه باید گیر دار باشد چون اگر مفصل شود عملاً تمام ممان ایجاد شده در بالكن باید توسط میلگردهای ممان منفی تحمل شود ولی با این كار ممان بین تیر و میلگرد های ممان منفی تقسیم می شود. 29-در صورتی كه در سازه دارای ستون كوتاه باشیم حدود (50 تا 60 سانتی متر) یعنی به دلیلی مجبور باشیم بین 2 طبقه طبقه ای با ارتفاع كم تعریف كنیم آن ستونِ كوتاه باید برای برش كنترل شود. 30-در صورتی كه بخواهیم از سیستم قاب خمشی استفاده كنیم در شهر های با خطر پذیری زیاد و خیلی زیاد(شیراز و تهران) فقط می توان از قاب خمشی متوسط یا ویژه استفاده كرد و مجازبه استفاده از سیستم قاب خمشی معمولی نیستیم(رجوع شود به آیین نامه 2800 ویرایش سوم). 31- معمولاً عیار بتن ریزی های معمولی برای بتن فونداسیون و سقفها۳۵۰ کیلوگرم بر متر مربعو مقاومت 28 روزۀ آن(f'c) برابر۲۱۰کیلوگرم بر متر مربع است. 32- معمولاً میلگرد های فونداسیون از نوعA-III با تسلیم ۴۰۰۰کیلوگرم بر متر مربعاست البته در بعضی مواردA-II نیز استفاده می شود وbolt ها از میلگرد های A-II با تنش تسلیم ۳۰۰۰ کیلوگرم بر متر مربع است . 33- معمولاً فولاد مصرفی در سازه های فلزی از نوع ST-37 با تنش تسلیم۲۴۰۰ کیلوگرم بر متر مربعو تنش نهایی برابر ۳۷۰۰کیلوگرم بر متر مربعباشد. 34-در اسكلت فلزی(چه با سیستم قاب خمشی و یا سیستم مهار بندی و یا تركیب هر دو سیستم) حتماَ اتصال ستونها به فونداسون به صورت مفصلی می باشد و در سازهایی با اسكلت بتنی در تمام موارد،كلیۀ اتصالات موجود در اسكلت صلب می باشند. 35- معین كردنِ مشخصات و داده های پروژۀ مورد نظر مانند:مشخصات ژئوتكنیكی زمین،تنش مجاز خاك،محل قرار گیری پروژه،نوع مصالح مورد استفاده،تعداد طبقات و ارتفاع هر طبقه ، ابعاد زمین،مشخصات فولاد و بتنِ مصرفی و.... 36-قبل از محاسبۀ سازه بهتر است بار انواع سقفها ، دیوارها ، پله ها محاسبه و آنها را تیپ بندی كرد.
  2. spow

    مهندسی ارزش Value Engineering

    معرفي مهندسي ارزش مهندسي ارزش(Value Engineering)، تلاشي است سازمان يافته كه با هدف بررسي و تحليل تمام فعاليتهاي يك طرح، )از زمان شكل‌گيري تفكر اوليه تا مرحله طراحي و اجرا و سپس راه اندازي و بهره برداري( انجام مي شود و به عنوان يكي از كارآمدترين و مهم ترين روشهاي اقتصادي در عرصه فعاليتهاي مهندسي، شناخته شده است. مهندسي ارزش در چهارچوب مديريت پروژه، ضمن اينكه به تمام اجزاي طرح توجه مي كند، هيچ بخشي از كار را قطعي و مسلم نمي داند. هدف مهندسي ارزش، زمان كمتر براي رسيدن به مرحله بهره برداري بدون افزودن بر هزينه ها يا كاستن از كيفيت كار است. افزايش پيوسته هزينه هاي اجرايي و توسعه روز افزون فن آوري، حذف آن بخش از هزينه ها را كه نقشي در ارتقاي كيفيت ندارند و از لحاظ اجرايي نيز غير ضروري مي باشند، الزامي ساخته است. به كارگيري مهندسي ارزش در پروژه هاي اجرايي با توجه به پيچيدگي كارها به ويژه در طرحهاي بزرگ اجرايي، مي تواند به ابزار بي چون و چراي مديريت در كنترل هزينه ها تبديل شود. هدف اين روش، از ميان برداشتن يا اصلاح هر چيزي است كه موجب تحميل هزينه هاي غير ضروري مي شود، بدون آنكه آسيبي به كاركردهاي اصلي و اساسي طرح وارد آيد. مهندسي ارزش، مجموعه اي متشكل از چندين روش فني است كه با بازنگري و تحليل اجزاي كار، قادر خواهد بود، اجراي كامل طرح را با كمترين هزينه و زمان تحقق بخشد. هزينه طرح در اين مقوله نه فقط هزينه هاي طراحي و اجرا بلكه هزينه هاي مالكيت شامل بهره برداري، تعمير و نگهداري و هزينه هاي مصرف در سراسر دوره عمر مفيد طرح را نيز شامل مي شود. روشهاي مهندسي ارزش مي تواند موجب اصلاح و ارتقاي كيفيت فرايندهاي توليد صنعتي و انجام طراحي هاي جديد در هر مرحله از يك پروژه اجرايي گردد. برخلاف آنچه كه در صنايع توليدي مرسوم است و مي توان يك روش اصلاحي را همواره در مراحل بعدي توليد يك محصول خاص نيز اجرا كرد، در پروژه هاي ساختماني كه هر سازه داراي شرايط ويژه اي است، حدود به كارگيري يك روش اصلاحي مهندسي ارزش، محدود به همان پروژه است گذشته از اين، امكانات صرفه جويي در هزينه هاي يك پروژه اجرايي نيز در مراحل مختلف آن تفاوتهاي بسيار پيدا مي كند. با آنكه روش مهندسي ارزش را مي توان در تمام مراحل يك پروژه اجرايي به كارگرفت، بيشترين مزاياي آن زماني حاصل مي شود كه در نخستين مراحل برنامه ريزي و طراحي به كار گرفته شود. نوآوري و جنبه هاي كاربردي مهندسي ارزش، اين روش را از روشهاي سنتي و متعارف كاهش هزينه ها، متمايز مي گرداند. روشهاي سنتي كاهش هزينه ها، عموماً از تجربيات گذشته، نگرشها و عاداتي كه جنبه تكرار به خود گرفته است، تبعيت مي كند و اثري از خلاقيت در آنها ديده نمي شود. مهندسي ارزش برعكس، اطلاعات، شناسايي عرصه هاي مشكل دار، پيشنهاد و تدوين روشها و طرحهاي ابتكاري، پرورش انديشه هاي نو و تلفيق همه جانبه ديدگاههايي را كه قرار است توصيه شود، مطرح مي سازد. از سال 1961 كه لارنس مايلزدر كتاب ًروش هاي فني تحليل و مهندسي ارزش ً ،تحليل ارزش را همچون ديدگاهي خلاق و سازمان يافته در جهت شناسايي و حذف هزينه هاي غير ضروري ، تعريف كرد تا سال 1995 كه ساكسنا و كريشنان كتاب ً مهندسي ارز ش در مديريت پروژه ً را منتشر نمودند ، مهندسي ارزش به صورت يك روش فني پذيرفته شده در فعاليتهاي طراحي و اجرايي در بيشتر كشورها تثبيت گرديد و رسميت يافت ، به طوري كه بسياري از دست اندر‌كاران عرصه هاي اجرايي به ويژه طراحان ، پيمانكاران و كارفرمايان با مفاهيم و روش هاي فني مهندسي ارزش آشنا شدند .
×
×
  • اضافه کردن...