رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'مقاومسازی'.



تنظیمات بیشتر جستجو

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
  • فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی
  • مکانیک در صنعت مکانیک در صنعت Topics
  • شهرسازان انجمن نواندیشان شهرسازان انجمن نواندیشان Topics
  • هنرمندان انجمن هنرمندان انجمن Topics
  • گالری عکس مشترک گالری عکس مشترک Topics
  • گروه بزرگ مهندسي عمرآن گروه بزرگ مهندسي عمرآن Topics
  • گروه معماری گروه معماری Topics
  • عاشقان مولای متقیان علی (ع) عاشقان مولای متقیان علی (ع) Topics
  • طراحان فضای سبز طراحان فضای سبز Topics
  • بروبچ با صفای مشهدی بروبچ با صفای مشهدی Topics
  • سفيران زندگي سفيران زندگي Topics
  • گروه طرفدارن ا.ث.میلان وبارسلونا گروه طرفدارن ا.ث.میلان وبارسلونا Topics
  • طرفداران شياطين سرخ طرفداران شياطين سرخ Topics
  • مهندسی صنایع( برترین رشته ی مهندسی) مهندسی صنایع( برترین رشته ی مهندسی) Topics
  • گروه طراحی unigraphics گروه طراحی unigraphics Topics
  • دوستداران معلم شهید دکتر شریعتی دوستداران معلم شهید دکتر شریعتی Topics
  • قرمزته قرمزته Topics
  • مبارزه با اسپم مبارزه با اسپم Topics
  • حسین پناهی حسین پناهی Topics
  • سهراب سپهری سهراب سپهری Topics
  • 3D MAX 3D MAX Topics
  • سیب سرخ حیات سیب سرخ حیات Topics
  • marine trainers marine trainers Topics
  • دوستداران بنان دوستداران بنان Topics
  • ارادتمندان جليل شهناز و حسين عليزاده ارادتمندان جليل شهناز و حسين عليزاده Topics
  • مکانیک ایرانی مکانیک ایرانی Topics
  • خودرو خودرو Topics
  • MAHAK MAHAK Topics
  • اصفهان نصف جهان اصفهان نصف جهان Topics
  • ارومیه ارومیه Topics
  • گیلان شهر گیلان شهر Topics
  • گروه بچه های قمی با دلهای بیکران گروه بچه های قمی با دلهای بیکران Topics
  • اهل دلان اهل دلان Topics
  • persian gulf persian gulf Topics
  • گروه بچه های کرد زبان انجمن نواندیشان گروه بچه های کرد زبان انجمن نواندیشان Topics
  • شیرازی های نواندیش شیرازی های نواندیش Topics
  • Green Health Green Health Topics
  • تغییر رشته تغییر رشته Topics
  • *مشهد* *مشهد* Topics
  • دوستداران داريوش اقبالي دوستداران داريوش اقبالي Topics
  • بچه هاي با حال بچه هاي با حال Topics
  • گروه طرفداران پرسپولیس گروه طرفداران پرسپولیس Topics
  • دوستداران هامون سینمای ایران دوستداران هامون سینمای ایران Topics
  • طرفداران "آقایان خاص" طرفداران "آقایان خاص" Topics
  • طرفداران"مخربین خاص" طرفداران"مخربین خاص" Topics
  • آبی های با کلاس آبی های با کلاس Topics
  • الشتریا الشتریا Topics
  • نانوالکترونیک نانوالکترونیک Topics
  • برنامه نویسان ایرانی برنامه نویسان ایرانی Topics
  • SETAREH SETAREH Topics
  • نامت بلند ایـــران نامت بلند ایـــران Topics
  • جغرافیا جغرافیا Topics
  • دوباره می سازمت ...! دوباره می سازمت ...! Topics
  • مغزهای متفکر مغزهای متفکر Topics
  • دانشجو بیا دانشجو بیا Topics
  • مهندسین مواد و متالورژی مهندسین مواد و متالورژی Topics
  • معماران جوان معماران جوان Topics
  • دالتون ها دالتون ها Topics
  • دکتران جوان دکتران جوان Topics
  • ASSASSIN'S CREED HQ ASSASSIN'S CREED HQ Topics
  • همیار تاسیسات حرارتی برودتی همیار تاسیسات حرارتی برودتی Topics
  • مهندسهای کامپیوتر نو اندیش مهندسهای کامپیوتر نو اندیش Topics
  • شیرازیا شیرازیا Topics
  • روانشناسی روانشناسی Topics
  • مهندسی مکانیک خودرو مهندسی مکانیک خودرو Topics
  • حقوق حقوق Topics
  • diva diva Topics
  • diva(مهندسین برق) diva(مهندسین برق) Topics
  • تاسیسات مکانیکی تاسیسات مکانیکی Topics
  • سیمرغ دل سیمرغ دل Topics
  • قالبسازان قالبسازان Topics
  • GIS GIS Topics
  • گروه مهندسین شیمی گروه مهندسین شیمی Topics
  • فقط خودم فقط خودم Topics
  • همکار همکار Topics
  • بچهای باهوش بچهای باهوش Topics
  • گروه ادبی انجمن گروه ادبی انجمن Topics
  • گروه مهندسین کشاورزی گروه مهندسین کشاورزی Topics
  • آبروی ایران آبروی ایران Topics
  • مکانیک مکانیک Topics
  • پریهای انجمن پریهای انجمن Topics
  • پرسپولیسی ها پرسپولیسی ها Topics
  • هواداران رئال مادرید هواداران رئال مادرید Topics
  • مازندرانی ها مازندرانی ها Topics
  • اتاق جنگ نواندیشان اتاق جنگ نواندیشان Topics
  • معماری معماری Topics
  • ژنتیکی هااااا ژنتیکی هااااا Topics
  • دوستداران بندر لیورپول ( آنفیلد ) دوستداران بندر لیورپول ( آنفیلد ) Topics
  • group-power group-power Topics
  • خدمات کامپپوتری های نو اندیشان خدمات کامپپوتری های نو اندیشان Topics
  • دفاع دفاع Topics
  • عمران نیاز دنیا عمران نیاز دنیا Topics
  • هواداران استقلال هواداران استقلال Topics
  • مهندسین عمران - آب مهندسین عمران - آب Topics
  • حرف دل حرف دل Topics
  • نو انديش نو انديش Topics
  • بچه های فیزیک ایران بچه های فیزیک ایران Topics
  • تبریزیها وقزوینی ها تبریزیها وقزوینی ها Topics
  • تبریزیها تبریزیها Topics
  • اکو سیستم و طبیعت اکو سیستم و طبیعت Topics
  • >>سبزوار<< >>سبزوار<< Topics
  • دکوراسیون با وسایل قدیمی دکوراسیون با وسایل قدیمی Topics
  • یکم خنده یکم خنده Topics
  • راستی راستی Topics
  • مهندسین کامپیوتر مهندسین کامپیوتر Topics
  • کسب و کار های نو پا کسب و کار های نو پا Topics
  • جمله های قشنگ جمله های قشنگ Topics
  • مدیریت IT مدیریت IT Topics
  • گروه مهندسان صنایع گروه مهندسان صنایع Topics
  • سخنان پندآموز سخنان پندآموز Topics
  • مغان سبز مغان سبز Topics
  • گروه آموزش مهارت های فنی و ذهنی گروه آموزش مهارت های فنی و ذهنی Topics
  • گیاهان دارویی گیاهان دارویی صنایع غذایی شیمی پزشکی داروسازی
  • دانستنی های بیمه ای موضوع ها
  • Oxymoronic فلسفه و هنر

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


شماره موبایل


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

2 نتیجه پیدا شد

  1. مقاوم سازی لرزه ای تاسیسات آب شهری شهر تهران با وسعت حدود بیش از 1000 کیلومتر مربع و جمعیتی بالای 10 میلیون نفر در جوار رشته کوههای البرز قرار دارد. بدلیل قرار گرفتن این شهر روی گسل‌های متعدد و با توجه به سوابق تاریخی موجود در خصوص لرزه‌خیزی تهران و حوادث مختلفی که ناشی از بروز زمین‌لرزه، بوقوع پیوسته است، این شهر همیشه در معرض بروز زمین لرزه قرار دارد. هنگام زلزله خسارات زیادی به سیستمهای خط لوله مدفون وارد کرده و این خسارات مشکلات فراوانی را در زندگی روزمره سبب شده است. از انجا که خطوط لوله در سطح وسیعی گسترد بوده و در برخی مناطق الزاما از نواحی دارای گسل عبور می کنند.لذا مطالعه بهسازی خطوط لوله در نواحی دارای گسل‌ها از اهمیت خاصی برخوردار است. بارگذاری ناشی از وقوع زمین لرزه به صورت تغییر مکان گسل به لوله اعمال شده، که در نتیجه آن این تغییر مکان باعث ایجاد نیرو و تنش در خطوط لوله مدفون می‌شود. شکست خط لوله مدفون به صورت شکست ناشی از اندر کنش نیروی محوری و گشتاور خمشی است. حساسیت پارامترهای طراحی در شکست خط لوله باید مورد بررسی قرار گرفته است. نتایج آنالیز نشان می دهد که با افزایش تغییر مکان گسل، افزایش قطر لوله، افزایش عمق دفن لوله، افزایش زاویه اصطکاک بین خاک و لوله به ناحیه شکست خود نزدیکتر می‌گردد. در این مقاله ضمن تشریح وضعیت کنونی تصفیه خانه و تاسیسات آب شرب شهر تهران، مقدار آسیب پذیری آنها در زلزله تشریح می‌گردد، و اقدامات مورد نیاز در جهت تعمیرات پیشگیرانه و مقاوم سازی در برابر زلزله ارائه می‌شود. کلیدواژه‌ها: مقاوم‌سازی، تاسیسات آبی، زلزله، لوله مدفون، شریانهای حیاتی 1- مقدمه: شبکه های توزیع آب شهری و مجراهای تخلیه پسآب مدفون، از شریانهای حیاتی جامعه شهری می‌باشند که بروز آسیب در آنها از یک سو لطمه اقتصادی قابل توجه در بر داشته و از سوی دیگر می‌تواند منجر به بروز صدمات و خسارات گسترده شود. تغییر شکل‌های بزرگ ناشی از شکست شیبها، زلزله، حرکت گسلها و شناور شدن لوله‌ها در ترانشه‌های کم عمق صدمات عمده‌ای در شبکه خطوط لوله مدفون به وجود آورده است. در خطوط جمع اوری فاضلاب نیز بیرون زدگی منهول‌ها بیشترین موردی است که پس از وقوع زلزله در نقاط مختلف از جمله زلزله کوبه ژاپن مشاهده می‌شود. به علت گسترده بودن خطوط لوله مدفون در جوامع شهری از جمله شهر تهران که به واقع این خطوط کلاف سردر گمی را تشکیل داده‌اند که عومل مختلف ایجاد کننده خرابی در خطوط لوله بایستی در طراحی خطوطی لوله مدفون در نظر گرفته شود. با توجه به طول عمر خطوط لوله زیرزمینی و مدت زمان بهره‌برداری در شرایط محیطی و نیز تغییرات آئین‌نامه ها لزوم بهسازی، مقاوم‌سازی، تعمیرات پیشگیرانه این خطوط در برابر عوامل مخرب حیاتی است. یکی از پدیده‌های مخرب بر روی خطوط لوله حرکت گسل است. در طی سالهای گذشته، محققان بسیاری در زمینه تاثیر حرکت فعال گسل بر روی خطوط لوله مدفون مطالعه کرده اند. بدیهی است که قابل استفاده بودن خطوط لوله پس از حرکت گسل نیاز به قابلیت تغییر شکل غیرالاستیک بدون ایجاد خرابی دارد. در شهر تهران که ره طور عمده بر روی سه گسل عمده قرار گرفته است ضرورت در نظر گرفتن محل گسل‌ها و بکارگیری اتصالات قابل انعطاف بیش از پیش اهمیت دارد. زمین لرزه ممکن است باعث ایجاد خسارات شدیدی به تاسیسات آبی یک شهر شود. آمار و گزارشات متعددی از سراسر دنیا در خصوص حصول خسارات شدید ناشی از بروز حوادث روی خطوط حیاتی (Lifelines ) تاسیسات مختلف منجمله تاسیسات آب و گاز و برق و مخابرات بعد از وقوع یک زمین لرزه با شدت بالا وجود دارد. چنین گزارشاتی از زمان وقوع زمین‌لرزه سال 1906 در سانفرانسیسکوی آمریکا تا کنون در دسترس می‌باشد. در این زمین‌لرزه خسارات شدیدی به تاسیسات تصفه آب و خطوط لوله انتقال شهر وارد گردید، که باعث عدم تامین آب شرب شهر و آتش‌سوزی‌های متعدد در سطح شهر بعد از وقوع زمین‌لرزه شد. در گزارش دیگری موضوع زمین‌لرزه بزرگ شهر مکزیکوسیتی در سپتامبر سال 1985 مطرح شده است. در این زمین‌لرزه که منجر به جابجایی وسیعی از اراضی شده است ضمن تخریب مخازن آب شرب و تصفیه‌خانه، خطوط اصلی لوله آب شرب نیز دچار شکستگی شد و در نتیجه آن بیش از 4 میلیون نفر به مدت سه هفته فاقد آب آشامیدنی بوده‌اند. در سال 1994 در زمین لرزه Northridge کالیفرنیا نیز تاسیسات تهیه آب شرب از جمله تاسیسات تصفیه و خطوط لوله اصلی انتقال و توزیع آب به دلیل تخریب دائمی زمین دچار شکستگی شدند. در سال 1995 در زمین لرزه شهر کوبه ژاپن در مخازن نگهداری و شبکه توزیع آب شهری به دلیل تخریب زمین و تکان زیرزمینی بیش از 2000 مورد شکستگی، تخریب لوله‌ها و تاسیسات آب شربشهر گزارش شده است. همچنین اثر زمین‌لرزه بر منهولها به طوری بوده که باعث بیرون زدگی منهولها در سرتاسر منطقه زلزله زده شده است. 2- اهمیت شریانهای حیاتی و مجاری مدفون: آسیب‌پذیری لوله کشی‌ها به هنگام زلزله از چند جنبه حائز اهمیت است، اول انکه برای مثال قطع جریان در شاه لوله‌های آب به واسطه شکستگی‌ها می‌تواند جان بازماندگان زلزله را به خطر بیاندازد. شکست و انفجار در لوله های گاز طبیعی می‌تواند باعث آتش‌سوزی‌های وسیع گردد. در صورت آسیب دیدن لوله‌ها و شبکه‌ها‌ی جمع‌آوری فاضلاب بوی تعفن منطقه آسیب دیده را فرا گرفته و احتمال شیوع بیماریهای عفونی پس از زلزله وجود دارد. با توجه به مطالب گفته شده اهمیت تعمیرات پیشگیرانه و مقاوم سازی و تقویت شریانهای حیاتی و مجاری مدفون شهر تهران بیش از پیش آشکار می‌گردد. 3- عوامل موثر بر مقاومت لوله مدفون: تحقیقات نشان داده است که عوامل موثر بر مقدار ظرفیت مقاومت لوله مدفون در برابر حرکت گسل به پارامترهای خاک، زاویه برخورد لوله با گسل، طول لغزش، خواص مواد، شکل‌پذیری و غیره بستگی دارد. ضمنا با کم کردن مقاومت طولی خاک در برابر حرکت لوله، مقاومت لوله بالا می‌رود. 4- مدل‌های ارائه شده برای لوله های مدفون: *کندی (Candi) با در نظر گرفتن فشار پاسیو خاک به صورت یکنواخت و استفاده از تئوری افت بزرگ روش جدیدی ارائه داد. در این روش فرض شده است که خطوط لوله به شکل یک کابل نرم رفتار می‌کند که با توجه به سازگاری تغییر شکل لوه به صورت یک منحنی با انحنا ثابت تغییر شکل می‌دهد. برای اعمال تعادل فقط از یک نیروی محوری کششی در نقطه انحنا استفاده کرده و از مقاومت نرمی لوله صرف نظر گردید. توجه به این نکته الزامی است که حذف صلبیت خمشی فرض شده در این مدل شرایط تعادل را ارضا نکرده و باعث ایجاد فشار در خطوط لوله می‌شود. فرض دیگر کندی این است که نقاط دور از محدوده انحنادار به صورت مماسی به خطوط تغییر شکل نیافته لوله متصل می‌شوند که مشابه رفتار یک تیر روی بستر الاستیک می‌باشد. * نیمان آزمایشات متعددی در موضوع مقاومت خاک در برابر حرکت افقی لوله‌ها انجام داده است. نتایج آزمایشات نشانگر این نکته است که، مقاومت پاسیو خاک حول محیط لوله یکنواخت نیست و بسیار بیشتر از فشار استاتیکی زمین می‌باشد. و نیز نشان دادند که رابطه بین فشار خاک و تغییر مکان غیرخطی است و در مقادیر بیشتر فشار زمین، افزایش بیشتری از تغییر مکان دیده می‌شود. * وانگ ویه یک مدل تحلیل ارائه داده است که در آن تاثیر حرکت بزرگ گسل بر روی خطوط لوله مدفون بصورت آنالیز استاتیکی و بر پایه تئوری تغییر شکل‌های بزرگ استوار شده است. بر خلاف مدل‌های قبلی که شکست لوله را به صورت شکست کششی محوری در نقطه تماس گسل با خط لوله در نظر می‌گرفتند در این مدل شکست به صورت اندرکنش نیروی محوری و گشتاور خمشی منظور شده است. آنها همچنین انحنا خط لوله را با شعاع ثابت در نظر گرفته‌اند. نتایج نشان می‌دهد که اغلب موارد شکست در حالت اندرکنش نیروی محوری ولنگر خمشی است. با این حال مطالعات اوله نشان داد هر چه حرکت گسل بزرگتر باشد، طول قسمت تغییر شکل یافته لوله نیز بلندتر خواهد بود. لذا باید ناحیه تغییر شکل پذیر را بزرگتر در نظر گرفتو در صورت استفاده از اتصالات انعطاف‌پذیر یا ریل در طول خطوط باید مقدار تغییر مکان را بیشتر در نظر گرفت. 5- مبانی مدل تحلیلی لوله مدفون در تلاقی با گسل: در این مدل تغییر شکل لوله در تقاطع با گسل با عنایت به تاثیر نیوری زلزله بر روی خط لوله مورد توجه قرار می‌گیرد. این نیرو به صورت جابجایی زمین، ناشی از حرکت گسل ظاهر می‌شود و باعث ایجاد تغییر شکل در خط لوله می گردد. این تغییر شکل، نیروی گشتاور خمشی در طول خط لوله ایجاد می‌کند. 6- کارکرد خاک: برای یک لوله مدفون در ارتباط با حرکت بزرگ ناشی از گسل، در نظر گرفتن فشار مقاوم خاک اطراف لوله به عنوان فشار طولی مقاومت کننده در برابر حرکت لوله معقول به نظر می‌رسد. 7- نقاط بحرانی: راهکارهایی که برای شناخت هرچه بیشتر نقاط بحرانی پیشنهاد می‌گردد، عبارتند از: - آزمایش‌های آلتراسونیک برای ضخامت‌سنجی جداره‌ای لوله‌ها، به منظور بررسی اثرات ناشی از خوردگی لوله‌هایی که در عمق زمین، مکانهائی با دسترسی مشکل، ارتفاع، مجاور سقف یا در داخل سقفهای کاذب قرار گرفته اند بکار می‌رود. - جهت بررسی ستون و پایه‌ها، مهاربندی قاب، لوله‌ها و بادبندهای سازه های فولادی. شامل بررسی و آزمایش کیفیت و سلامت جوش‌ها از طریق انجام آزمایشها غیرمخرب (NDT) و آزمایش آزمایشهای آلتراسونیک (UT)، آزمایش با مایعات نافذ (MT)، آزمایش با ذرات مغناطیسی. - پرتونگاری و رادیوگرافی (RT) بررسی وضعیت دستگاهها و تجهیزات انتقال سیالات که در امتداد خطوط لوله قرار دارند نظیر پمپ‌ها، کمپرسورها و... - بررسی مواد و مصالح به کار رفته. - بررسی اتصالات، انشعاب‌ها و مقاومت آنها. 8- خسارت‌های وارده به شبکه های لوله کشی: به طور کلی خسارت های وارده به شبکه های لوله‌کشی ناشی از زلزله را می توان به سه دسته کلی تقسیم نمود که عبارتند از: 1- از دست دادن قابلیت بهره‌برداری: زمانی که شبکه دیگر توانایی انتقال سیال را نداشته باشد حتی بدون اینکه نشتی یا شکستگی حادث شده باشد (برای مثال زمانی که پمپی آسیب دیده و دیگر نمی توان آن را به سرویس آورد یا زمانی که کمپرسور روی خط لوله دچار نقص فنی شده یا یک شیر کنترل در اثر ضربه از کار افتاده و دیگر اجازه عبور سیال را از خود نمی‌دهد. 2- از دست دادن فشار کافی: که می‌تواند در اثر نشت، شکستگی، ترک یا پارگی جداره ای لوله به هنگام زلزله اتفاق افتد. 3- از دست دادن تکیه‌گاهها و نگهدارنده‌ها: لوله از روی تکیه گاهها، آویزها و نگهدارنده‌ها سقوط نموده یا کنده شدن تکیه گاهها از داخل دیوارها سبب سقوط لوله‌ها بر روی زمین می‌شود. 9- رفتار سیستمهای لوله‌کشی به هنگام زلزله: رفتار صحیح و قابل قبول سیستمخای لوله کشی به هنگام زلزله بستگی به سلامت و کیفیت عوامل اساسی و کلیدی زیر دارد: - مواد و مصالح مصرفی، طراحی مکانیکی خطوط لوله، ضخامت جداره، چیدمان و نگهدارنده‌ها. - ساخت (جوشکاری، لحیم‌کاری، قید و بست‌ها و اتصالات، ازمایش‌های غیرمخرب تعمیر و نگهداری) - پایش و مقابله با خوردگی، بازرسی‌های منظم و دوره‌ای حین بهره‌برداری - ساختمانها و سازه‌ها و شرایط خاک زیر و اطراف ساختمانها. 10- عوامل موثر در آسیب‌پذیری لوله‌ها: در اینجا به تشریح 12 عامل موثر در آسیب‌پذیری لوله ها می‌پردازیم: 1- خوردگی (Corrosion: خوردگی و زنگ زدن در لوله‌ها باعث کاهش سطح مقطع موثر در لوله‌ها می گردد و مقطع بحرانی در ناحیه خوردگی یا زنگ زدگی ایجاد می‌شود. بر اساس گزارشهای منتشر شده از زلزله سال 1999 تایوان، 50 درصد لوله های فولادی شکسته شده قبلا به علت خوردگی ضعیف شده بودند که نشانگر این مطلب است که خوردگی عامل مهمی در افزایش خسارتهای ناشی از زلزله می‌باشد و برای مهار آن باید نسبت به تعویض لوله ها و احتمالا تغییر جنس اقدام نمود. 2- نشت محتویات داخل لوله‌ (Leakage) : نشت لوله ها از دو جهت مورد توجه است. اول از لحاظ ایجاد خرابی در خود لوله و دوم از لحاظ قرار گرفتن لوله‌ها و تکیه‌گاههای اطراف محل نشت در معرض خوردگی و زنگ زدگی. 3- کیفیت جوش (Weld Quality) : در صورتی که نقاط جوش از کیفیت مطلوب برخوردار نباشند نقاط جوش به نقاط بحرانی و آسیب‌پذیر در هنگام زلزله تبدیل خواهند شد. 4- وضعیت خم ها (Bend Conditions) : تجربه زلزله‌های گذشته نشان داده است که بیشتر شکست‌ها در لوله‌ها در نواحی خم ها رخ داده است که می تواند به علت عوامل مختلفی باشد و لذا محل خم‌ها یک ناحیه آسیب‌پذیر است. بنابراین هرچه تعداد خم ها کمتر و زوایای تغییر در خم‌ها ملایم‌تر باشد آسیب‌پذیری کمتر خواهد بود. 5- پوشش (Isolation) : وضعیت پوشش یا ایزولاسیون لوله‌ها از آن جهت مورد نظر است که در لوله های فولادی خرابی پوشش موجب ایجاد زنگ‌زدگی و خوردگی، در لوله ها و در نتیجه ایجاد مقطع بحرانی می‌شود. 6- مهارلوله‌ها (Restraints) : مهمترین عامل و اساسی‌ترین معیار در افزایش و کاهش آسیب پذیری لوله‌ها وضعیت مهار لوله ها می‌باشد. مهار جانبی لوله ها در واقع تعیین‌کننده ترین عامل در رفتار لوله در هنگام زلزله می‌باشد. 7- نسبت قطر لوله‌های انشعاب (Branch relative diameter) : مبنای کلی برای انشعابهای نامناسب، O می‌باشد/ انشعابهای با قطر نسبی کمتر از 5. 8- خستگی (Fatigue) : آنچه به عنوان خستگی در این ارزیابی مد نظر است اثرات ناشی از لرزش لوله یا حرکات دائمی دیگر لوله‌ها تحت اثر عوامل مختلف می‌باشد. 9- ضربه و برخورد(Proximity and Impact) : ضربه و برخورد به لوله‌ها و عدم رعایت فاصله مناسب بین لوله‌ها با هم و یا سایر تجهیزات و تکیه‌گاهها در ارزیابی عینی مورد بررسی قرار گرفته است. در اثر حرکات جانبی ناشی از زلزله اگر موقعیت لوله‌ها نامناسب باشد، در اثر ضربه و برخورد نیروهای اضافه به بدنه و نقاط حساس بر لوله‌ها وارد می‌شود که می تواند منجر به آسیب لوله ها گردد که بر این اساس تعداد موارد مستعد برخورد ارزیابی می‌گردد. 10- اتصال به تجهیزات مهار نشده (Connection To Unanchored Component): اتصال لوله ها به تجهیزات مهار نشده عملا در هنگام وقوع زلزله و ایجاد تغییر مکانهای زیاد در تجهیزات به علت مهار ناکافی باعث ایجاد تغییر مکانهای بیش از حد انتظار در لوله‌های متصل به آن تجهیزات می‌شود. 11- تغییر مکان‌های متفاوت (Differential Displacement) : وجود گیرداری زیاد در یک سر لوله و امکان ایجاد تغییر مکان‌های بزرگ در سر دیگر لوله باعث آسیب در مقطعی که گیرداری آن زیاد است می گردد. 12- قطر زیاد و دهانه کوتاه (Aboveground) : لوله‌هایی با قطر زیاد و طول کوتاه که طبعا دارای سختی بسیار زیادی هستند مستعد شکست‌های برشی در سیستم های لوله‌کشی می‌باشند. 13- امروزه عمدتا در مناطق شهری و (Aboveground) بیشتر از لوله‌های روی زمینی سایت‌های صنعتی به دلایل ایمنی و زیباسازی خطوط لوله به صورت مدفون اجرا می‌شوند. از انجا که یک سیستم خط لوله مدفون عمدتا از یک منطقه جغرافیایی وسیع عبور می نماید با خطرات لرزه‌ای و شرایط خاک بسیار متنوع مواجه می‌باشد. به ویژه اگر لوله‌های زیرزمینی با گسل تقاطع ایجاد کند در نواحی تقاطع با گسل بسیار آسیب‌پذیر خواهد بود. از طرف دیگر لوله‌های زیرزمینی یا مدفون در خاک به حرکت‌های زلزله به صورت حرکتهای همراه با زمین به شکلی که تقریبا همان انحنا در تنش‌های محوری زمین را دار باشد پاسخ می‌دهند. در هنگام زلزله، زمین توسط امواج زلزله تغییر شکل می دهد و خطوط لوله مدفون ممکن است کمانش نموده یا بشکنند. بنابراین اصل اساسی در طراحی لرزه‌ای خطوط لوله مدفون طرحی آزاد برای زلزله می‌باشد. بدین معنا که به لوله اجازه انبساط و انقباض و همچنین انعطاف‌پذیری لازم برای کاهش نیروهای لرزه‌ای داده شود. 11- منابع: 1- دباغی، م، مقاوم سازی تاسیسات لوله کشی، 1385، اولین همایش بین‌المللی مقاوم سازی لرزه‌ای 2- رجایی،ح، ارزیابی فتار خطوط لوله در برابر حرکت گسل، اولین همایش بین‌المللی مقاوم سازی لرزه‌ای 3- کمک پناه، علی، منتظرقائم، سعید، موسسه بین‌المللی زلزله شناسی و مهندسی زلزله، مجموعه مقالات اولین کارگاه تخصصی بررسی راهبردهای کاهش خسارات زمین لرزه در کشور، تهران، 1373. 4- فرشاد، علی اصغر محمدی، ناصر، اقدامات بهداشت محیط در کاهش اثرات بلایای طبیعی، کمیته تخصصی بهداشت درمان کاهش اثرات بلایای طبیعی، سال 1378. 5- اصل هاشمی، احمد- اقدامات بهداشتی در شرایط اضطراری، دانشگاه علوم پزشکی تبریز، مرکز کشوری برنامه مدیریت سلامت دانشگاه علوم پزشکی تبریز. 6- دکتر نجف‌پور، علی‌اصغر، استادیار گروه مهندسی بهداشت محیط دانشگاه علوم پزشکی تبریز- جلیل‌زاده، علی‌رضا، دانشجوی کارشناسی ارشد مهندسی محیط زیست (مدیریت بهداشت محیط در بلایای طبیعی) خلاصه مقالات دومین همایش علمی – تحقیقی مدیریت امداد و نجات. 7- شمسی، ا، ارایه راهکارهای لازم برای مقاوم سازی لرزه‌ای منهول های فاضلاب، اولین همایش بین‌المللی مقاوم‌سازی لرزه‌ای. 8 - American Waterworks Associatio, " Who environmental health management in emergency ", 2003 9 -Ground Respones curves For Rock Tunels by: Edwin T.Brown, MAsce, John w.Broy 10 -under ground excavation in rock By: Hoekond Brown [1980] 11 - Support of underground Excavation inhand Rock By: Hoek, E. kaiser, P.K. & bowden برگرفته از: فصلنامه عمران و مقاوم سازی ، شماره اول، بهار 86، ص 48-44.
  2. « بهسازی لرزه ای » (Seismic Rehabilitation) بیانگرمفهومی مرکب از دو مفهوم دیگر به شرح زیر است : ▪ اول، « بهسازی » ، که مفهومی است گسترده و فراگیر و دارای وجوه مختلف و متعدد ▪ دوم، « لرزه ای » که مشخص می کند چه نوع بهسازی مورد نظر است. برای شناخت « بهسازی لرزه ای » باید دو مفهوم فوق مورد بررسی و واکاوی قرار داده شوند تا بتوان با نگاه کردن به امر « بهسازی لرزه ای » از زوایای مختلف، جوهراصلی آن را دریافت. ● بهســـازی « بهسازی » (Rehabilitation) درلغت به مفهوم بهتر کردن، اصلاح یا بهبود بخشیدن به وضعی یا شرایطی است . در صنعت ساختمان، بهسازی برحسب تعریف ، ایجاد قابلیت انجام وظیفه یا وظائفی است در ساختمان، سازهٔ ساختمان یا اجزا (Components) و عناصر (Elements) آن ، که در وضع موجود قادر به انجام تمام و کمال آن وظیفه یا وظائف نیستند. ▪ در این تعریف : - منظور از « ساختمان » (construction) هر فضائی است که برای زیست ، کار ، خدمات ، تولید، ارتباطات ، جابه جا شدن انسانها و حمل ونقل تولیدات صنعتی و کشاورزی حاصل از کار انسانها، ساخته می شود. - « سازه» (Structure) مجموعه آن « اجزا » (Components) و « عنــــاصـر» (Elements) ساختمان است که بارها و اثر عاملهای دیگر را از قسمتهای مختلف ساختمان گرفته و به زمین منتقل می سازند. - عدم توانائی ساختمان برای انجام وظیفه، که دراین تعریف مورد اشاره قرارگرفته، ممکن است ناشی از نارسائی طرح، نامناسب بودن اجرا، بهره برداری بی ضابطه یا فروپایگی ساختمان، سازه ساختمان یا اجراو عناصر آن در اثر از دست رفتن مشخصه های مصالح و تجهیزات به دلائل مختلف از جمله اثر فرساینده زمان، سانحه، حادثه یا عوامل دیگر ، یا حاصل تغییر و تحول در شرایط زیست و کار وسنگین تر شدن وظائف مورد انتظار از ساختمان باشد. اگر بهسازی به منظور جبران فروپایگی و برگرداندن ساختمان، سازه ساختمان یا اجرا وعناصر آن به وضع اولیه باشد، « اعاده کیفیت » یا « اعادهٔ وضع» (Retrofitting) گفته می شود. اگر بهسازی به منظور پاسخگوئی به تغییر و تحول شرایط بهره برداری و سنگین تر شدن وظائف مورد انتظار از ساختمان باشد، اعم از اینکه در ساختمان ، سازهٔ ساختمان یا اجزا و عناصر آن فروپایگی به جود آمده باشد یا خیر، « ارتقای کیفیت » یا « ارتقای وضع» (Upgrading) نام دارد. بهسازی طیفی گسترده از خدمات مهندسی و فعالیتهائی را در بر می گیرد که ممکن است به منظورهای مختلف فنی ، اقتصادی، اجتماعی ، فرهنگی، زیبائی شناسی وحتی سیاسی، انجام داده شوند، از جمله: - نمای ساختمان را به منظور تلطیف منظر یا هماهنگی با محیط اطراف بهسازی می کنند. - به منظور کم کردن بار ساختمان، دیوارهای جداگر آن را تخریب و با مصالح سبک تر جایگزین می نمایند. - دیوارهای ساختمان را به منظور کاهش آلودگی صوتی، بهبود شرایط زیست و افزایش رفاه بهره برداری کنندگان ، عایق بندی صدائی می کنند. - گردشکار داخلی بنا را به منظور پاسخگوئی به نیازهای جدید و هماهنگ کردن آن با شرایط وتکنولوژی روز تغییر می دهند. - به منظور کاهش هزینه های تامین شرایط دمائی در داخل ساختمان و کاهش میزان تبادل حرارتی آن با بیرون، دیوارهای ساختمان را عایق بندی حرارتی می نمایند. - برای بهتر کردن شرایط دمائی در فضاهای داخل ساختمان و کاهش هزینه های گرمایش، خنک کردن وتهویه، موتورخانه ها وسیستمهای تاسیساتی را تعویض و با سیستمهائی کاراتر جایگزین می کنند. - با تغییر یافتن وضع شبکه های زیربنائی سراسری آب ، فاضلاب ، گاز وبرق، به منظور تامین هماهنگی ، شبکه های داخلی را اصلاح یا تعویض می نمایند. - به منظور ایجاد قابلیت های لازم در ساختمان برای استفاده از کامپیوتر و سیستمهای ارتباطی و مخابراتی روز آمد، تغییراتی در فضاهای داخل بنا داده می شوند. - بناهائی را به عنوان میراث فرهنگی باقیمانده از گذشتگان ، احیا، تعمیر یا مرمت می کنند تا بتوان آنها را حفظ کرده وسالم به آیندگان سپرد. - محتمل است یک بنا را که جنبه ملی و نمادین دارد، مثلا" ساختمانی را که اتفاقی ویژه ومهم در آن رخ داده، منزل یک رهبر سیاسی، یک دانشمند یا یک هنرمند را از طریق بهسازی حفظ نمایند. - ممکن است سازه یک ساختمان و اجزا وعناصر متشکله آن، به منظور افزایش ایمنی و عمر مفید ساختمان، مورد بهسازی قرار داده شوند. - به منظور « ایمنداشت » (Preservation) یعنی حراست زندگی انسان در مقابل بلاهائی که خود به وجود آورده ، نظیر خطرات امواج الکترو مغناطیسی ، تابشهای رادیو اکتیو و آلودگیهای زیست محیطی، محتمل است که تغییراتی کوچک یا بزرگ در اجزا و عناصر ساختمان داده شوند. - بهسازی صرفنظر از نوع و گستردگی آن ، مستلزم «دخالت » (Intervention) در وضع موجود ساختمان است و همانطور که بهسازی، طیفی گسترده را شامل می شود، میزان دخالت در وضع ساختان،اجزا و عناصر آن نیز طیفی گسترده از بسیار کم تا بسیار زیاد را پوشش می دهد که از ترمیم (Make up, Clean up) آغاز شده و پس از عبور از تعمیر (Repair) ، تقویت (Strengthening)، باز پیرائی (تعمیر و رنگ) (Refurbishing) ، نوکاری (تعمیر و رنگ کلی) (Renovation) ، تعمیرسازگاری (Adaptation)، (تعمیر اساسی)(Reconditioning)، تغییرنوع بهره برداری و گردشکار (Remodeling) ، بازسازی (Rebuilding) ، جـــایگزینی (Substitution) یـا تعویض (Restoration) در ساختمانهای پیش ساخته، به احیای (Restoration) ، بناهای قدیمی می رسد که وارد جزییات آنها نمی شوم . بدیهی است که اگر هیچ یک از این راه حلها وافی به مقصود نبود، اگر ساختمان مزاحمتی نداشت، به حال خود رها می شود یا تخریب و به جای آن بنائی دیگر با مشخصه های دیگر احداث می گردد که « نوسازی» (Reconstruction) گفته می شود. ● مفهوم « لرزه ای» مفهوم « لرزه ای» از زمانی در نوشته ها وخدمات مهندسی وارد شد ، که مهندسان به تجربه دریافتند که برای تامین ایمنی آنچه می سازند، ناگزیر باید اثر تکانهای شدید زمین را ، که به صورت ادواری حادث می شوند، در نظر بگیرند. در واقع، لطمات ناشی از زلزله های بزرگ وکوچک و کوشش برای احتراز از این لطمات، محمل اصلی تکوین ورشد روشها و مشخص شدن معیارهای تامین ایمنی ساختمانها در برابر زلزله بوده اند و بطور بدیهی، هرچه مراکز تجمع جمعیت بزرگتر شده اند، به دلیل افزایش آسیب پذیری بالقوه آنها در برابر زلزله، ضرورت تامین ایمنی آنها در برابر زلزله محسوستر وتلاش برای یافتن راه حلی به منظور تامین ایمنی بیشتر شده است. پیشگامان این راه دانشمندان کشور ژاپن و در پی آنان دانشمندان ایالات متحده آمریکا بوده اند. اولین اقدام عملی در این راه ، انجام پژوهشهائی در دانشگاه توکیو از سالهای ۱۹۱۰ برای شناختن رفتار ساختمانها در موقع زلزله و تامین پایداری آنها ، به ابتکار دکتر ر.سانو (Dr.R.SANO) بوده است. در ایالات متحده آمریکا پس از زلزله سال ۱۹۰۶ سانفرانسیسکو و حریق فراگیر ناشی از آن در ساختمانهای چوبی ، ابتدا حریق در مرکز توجه قرار گرفت ولی بتدریج توجه به سمت تامین پایداری ساختمانها در برابر زلزله معطوف شد و درسال ۱۹۲۵ پس از زلزله سانتاباربارا ، برای اولین بار ضوابط و معیارهائی برای تامین پایداری ساختمانها در برابر زلزله در آئین نامه متحدالشکل آمریکا U.B.C. مطرح شدند که رعایت آنها اختیاری بود و حدود ۱۰ سال طول کشید که رعایت این ضوابط از حالت اختیاری خارج و اجباری گردد. این امر در سال ۱۹۳۵ در U.B.C. تصریح شد. تدوین ضوابط برای تامین ایمنی ساختمانها در برابر زلزله، بتدریج در سایر کشورها هم آغاز گردید و هنوز تلاش برای تدقیق و پالایش این ضوابط، بطور گسترده وجهانی ادامه دارد. در کشور ما نیز پس اززلزله ویرانگر بوئین زهرا در سال ۱۳۴۱، تلاش برای تدوین اولین مدرک آئین نامه ای به منظور تامین ایمنی ساختمانها در برابر زلزله ، به ابتکار و هدایت آقای مهندس علی اکبر معین فر در چارچوب دفتر فنی سازمان برنامه آغاز گردید. با توجه به اینکه تلاش مهندسان برای طراحی ساختمانها در برابر زلزله وقتی شروع شدکه دهها سال از تدوین ضوابط طراحی و تامین ایمنی ساختمانها در مقابل بارهای قائم می گذشت، بطور طبیعی برای طراحی ساختمانها در برابر زلزله، از همان الگوی تامین ایمنی در مقابل بارهای قائم کمک گرفتند و همانطور که تامین ایمنی در مقابل بارهای قائم و گاه بارهای جانبی باد، با برداشتی « یقین اندیشانه» به «تامین مقاومت» اجزا و عناصر سازه ای مشخص، در محیط ارتجاعی ، در مقابل نیروهای مشخص، محدود می شد، کوشش به عمل آمد که اثر زلزله را هم به صورت نیروئی جانبی در نظر گرفته و بر روی ساختمان اثر بدهند. در اولین ضوابط مربوط به طراحی ساختمانها در برابر زلزله، با این استدلال که در موقع زلزله ، ساختمان تحت اثر(شتاب زمین) شتاب می گیرد واین شتاب به پدید آمدن نیروی اینرسی می انجامد، در صدی از وزن ساختمان و اشیاء، مواد و بارهای دیگر موجود در آن را به صورت نیروئی افقی برساختمان اثر دادند و تصور حاکم این بود که با تامین «مقاومت» اجزا و عناصر سازه ای در برابر این نیرو در محیط ارتجاعی ، می توان ایمنی در برابر زلزله را تامین کرد و مانع خرابی ساختمان شد. به این ترتیب « طراحی برای مقاومت در برابر زلزله» شکل گرفت . ولی به دلیل قدرت تخریبی زیاد مشاهده شده در زلزله های شدید ونامشخص بودن سقف آن، در هر تجدید نظر، درصد منظور شده در ضوابط افزایش داده می شد و خیلی زودآشکار گردید که با پذیرش رفتار ارتجاعی اجزا و عناصر سازه ای، ابعاد این اجزا وعناصر بطور غیر متعارف بزرگ می شوند وعملا" امکانات موجود انسان پاسخگوی این راه حل نیست. رسوبات ذهنی آن دوره هنوز هم کاملا" از بین نرفته وهنوز هم عده ای از مهندسان، تامین ایمنی در برابر زلزله را به « تامین مقاومت» تعبیر می کنند. وقتی مهندسان دریافتند که تامین ایمنی ساختمانها در برابر نیروهای زلزله با همان الگوی تامین ایمنی در برابر بارهای قائم عملی نیست، جستجوی راه حلهای دیگر را در دستور کارشان قراردادند. در اولین پژوهشها، مشخص گردید که باید فرق ماهوی موجود بین بارهای قائم ونیروهای اینرسی ناشی از زلزله را در بررسی ایمنی ساختمانها در برابر زلزله مد نظر داشت. مقادیربارهای قائم در جریان زلزله تغییری نمی کنند و ثابت اند ولی نیروهای اینرسی تابع شتاب داده شده به ساختمان دراثر زلزله اند و با تغییر مقدار شتاب تغییر می کنند و در واقع نمایانگر انرژی حرکتی القا شده به ساختمان می باشند که باید توسط ساختمان جذب و مستهلک شوند. با عنایت به اینکه بخشی از این انرژی می تواند با تغییر شکلهای ارتجاعی و بخشی دیگر با تغییر شکلهای فرا ارتجاعی جذب شوند واگر ساختمان قادر به جذب و اتلاف انرژی حرکتی از این طریق نباشد، خرابی آن حتمی خواهد بود، مهندسان کوشش کردند با پذیرش خرابیهای محدود قابل کنترل وبا قبول درهم شکستن موضعی بخشهائی از اجزا وعناصر متشکله سازه ساختمان که خرابی آنها باعث فروپاشی ساختمان نمی شود وپس از زلزله، بسادگی قابل بهسازی اند، نیروهای زلزله را جذب و مستهلک نمایند. به عبارت دیگرسعی کردند که اگر نمی توانند از بروزخرابی جلوگیری کنند، آن را به جائی منتقل نمایند که آثار زیانبارش کمتر وجبران آنها پس از زلزله آسانتر باشد.به علاوه برای محدود کردن آثار جانبی خرابی، سعی کردند که پدیدار شدن گسیختگی در اجزا و عناصر سازه حالت ترد و ناگهانی نداشته و به صورت تغییر شکلهای فرا ارتجاعی و تشکیل مفصلهای خمیری باشد. به این ترتیب بتدریج ، اهمیت تغییر شکلهای فرا ارتجاعی برای جذب و اتلاف انرژی القا شده به ساختمان در اثر زلزله ، روشن شد و ابتدا مفهوم « شکل پذیری » در ضوابط طراحی منعکس و سپس «طراحی برای ظرفیت» شکل گرفت. موضوع محوری « طراحی برای ظرفیت» جذب و اتلاف انرژی حرکتی زلزله به کمک تغییر شکلهای فرا ارتجاعی و تشکیل مفصلهای خمیری در مقاطع و مناطق از پیش تعیین شده سازه می باشد که بطور بدیهی مستلزم آن است که سازه نا معین (هیپرستاتیک) و دارای پیوندهای اضافی مناسب باشد، بطوریکه با از بین رفتن تعدادی از این پیوندها دراثر تغییر شکلهای فرا ارتجاعی ، سازه فرو نریزد. بموازات این تغییر وتحولات ، اهمیت تغییر مکانهای جانبی نقاط مختلف اجزا و عناصر سازه ای در پایداری سازه ها روشن و محدود کردن این تغییر مکانها به منظورتامین ایمنی در برابر نیروهای زلزله ضرورت یافت، بویژه توجه به این نکته معطوف گردید که گرچه بروز تغییر شکلهای فرا ارتجاعی وتشکیل مفصلهای خمیری کار جذب و اتلاف انرژی حرکتی ناشی از تکانهای شدید زمین را تسهیل می نماید، ولی تغییر مکانهای جانبی سازه نسبت به تغییر مکانهای نظیر رفتار ارتجاعی بیشتر می شوندو این مسئله از لحاظ انطباق با ضوابط و قیود آئین نامه ای مربوط به تغییر مکانهای جانبی باید در طراحی ملحوظ شود. همچنین بتدریج با توجه به اینکه در همه احوال منظور از طراحی ، تامین و حفظ قابلیت بهره برداری از ساختمان است و سازه فقط بخشی از این قابلیت را فراهم می کندو اجرا و عناصر غیر سازه ای هم در تامین قابلیت بهره برداری از ساختمان نقش اساسی دارند، بتدریج ضوابط و قیودی، هرچند کمرنگ، در آئین نامه ها وضوابط تایمن ایمنی ساختمانها در برابر زلزله وارد شدند. __________________
×
×
  • جدید...