جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'لاگرانژ'.
1 نتیجه پیدا شد
-
لاگرانژ ژوزف لویی لاگرانژ در 25 ژانویه سال 1736 در تورینو ایتالیا متولد شد او که از بزرگترین ریاضی دانان تمام ادوار تاریخ می باشد هنگام تولد بیش از حد ضعیف و ناتوان بود و از 11 فرزند خانواده فقط او زنده مانده بود. زندگی لاگرانژ را می توان به سه دوره تقسیم کرد: نخستین دوره شامل سالهایی می شود که در موطنش تورینو سپری شد(1736 – 1766) دوره دوم دوره ای بود که وی بین سالهای 1766 و 1787 در فرهنگستان برلین کار می کرد دوره سوم از 1787 تا 1813 که عمر وی به پایان رسید در پاریس گذشت. دوره اول و دوم از نظر فعالیتهای علمی پر ثمرترین دوره ها بودند که با کشف حساب تغییرات در 1754 آغاز گردید و با کاربرد آن در مکانیک در 1756 ادامه یافت در این نخستین دوره وی در باره مکانیک آسمانی نیز کار کرد دوره اقامت در برلین هم از نظر مکانیک و هم از لحاظ حساب دیفرانسیل وانتگرال سازنده بود با این حال در آن دوره لاگرانژ در درجه اول در زمینه حل عددی و جبری معادلات و حتی فراتر از آن در نظریه اعداد، چهره ای برجسته و ممتاز شده بود. سالهای اقامتش در پاریس را صرف نوشته های آموزشی و تهیه رساله های بزرگی نمود که استنباطهای ریاضی وی را خلاصه می کردند این رساله هادر هنگامی که عصر ریاضیات قرن 18 در شرف پایان بود مقدمات عصر ریاضیات قرن 19 را فراهم کردند و از برخی جهات آن دوره را گشودند. پدر لاگرانژ وی را نامزد آموختن حقوق نمود اما لاگرانژ به محض آنکه تحصیل فیزیک را زیر نظر بکاریا و تحصیل هندسه را زیر نظر فیلیپو آنتونیو رولی آغاز کرد به سرعت متوجه تواناییهای خود شد و بنابراین خویشتن را وقف علوم دقیق تر کرد. در 1757 چند دانشمند جوان تورینویی که لاگرانژ وکنت سالوتسو و جووانی چنییای فیزیکدان در میان آنها بودند انجمنی علمی بنیاد نهادند که منشاء فرهنگستان سلطنتی علوم تورینو گردید یکی از اهداف اصلی آن انجمن انتشار جنگ بود به زبان فرانسوی و لاتینی به نام (جنگ تورینو) که لاگرانژ خدمتی بنیادی به آن کرد سه جلد اول آن تقریباٌ حاوی تمامی آثاری بود که وی هنگام اقامت در تورینو به چاپ رسانده بود. فعالیت لاگرانژ در مکانیک آسمانی غالباٌ بر محور مسابقه هایی دور می زند که از طرف انجمنهای مختلف علمی پیشنهاد شده بودند اما به این گونه مسابقه ها منحصر نبود. در تورینو غالباٌ کارش جهت گیری مستقل داشت و در 1782 به دالامبر و لاپلاس نوشت که در باره تغییرات قرنی نقطه های نهایی اوج و خروج از مرکز تمام سیارات کار می کند. این پژوهش لاگرانژ به اتنشار کتاب انجامید با عنوان نظریه تغییرات قرنی عناصر سیارات و مقاله ای با عنوان در باره تغییرات قرنی حرکات متوسط سیارات که در سال 1785 منتشر شد. لاگرانژ در برلین و در سال 1768 مقاله حل مسئله ای از حساب را برای جنگ تورینو فرستاد تا در جلد چهارم درج شود در آن نوشته لاگرانژ به نوشته قبلی خود اشاره داشت و از طریق کاربرد ظریف و استادانه الگوریتم کسرهای پیوسته ثابت کرد که معادله فرما (ریاضی دان معروف) را در صورتی می توان در تمام حالات حل کرد که اعداد درست مثبت باشند، این است نخستین راه حل شناخته شده این مسئله مشهور. آخرین بخش این نوشته در مقاله ای با عنوان روش جدید برای حل مسائل نامحدود دراعداد درست بسط یافت که در نشریه یاداشتهای برلین برای سال 1768 عرضه شد ولی تا فوریه آن سال کامل نگردید و در سال 1770 منتشر شد. از بزرگترین شاهکارههای علمی لاگرانژ رساله مکانیک تحلیلی را می توان نام برد که در سال 1788 انتشار یافت او در آن اثر پیشنهاد کرد که بهتر است نظریه مکانیک و فنون حل کردن مسائل آن رشته به فرمولهایی کلی تحویل شوند، فرمولهایی که هر گاه پیدا شوند همه معادله های لازم برای حل هر مسئله را بوجود خواهند آورد. باری، لاگرانژ تصمیم گرفت که چاپ دومی از آن اثر منتشر کند که حاوی برخی پیشرفتها باشد او قبلاٌ در یادداشتهای انستیتو چند مقاله منتشر کرده بود که آخرین و درخشانترین خدمت وی را در راه پیشبرد مکانیک آسمانی نشان می دادند او قسمتی از آن نظریه را در جلد اول رساله تجدید نظر شده گنجانید. لاگرانژ مردی محجوب ومتواضع بود او بسیار ساده و راحت هنگامی که از یک مطلب علمی اطلاع نداشت میگفت نمی دانم. لاگرانژ در سال 1813 در پاریس درگذشت او در زمان مرگش 77 سال داشت. لاپلاس پیتر سیمون لاپلاس در 23 مارس 1749 در حوالی پون لوک فرانسه متولد شد پدرش دهقان فقیری بود و از کودکی خودش اطلاعی در دست نیست لاپلاس از جمله مؤثرترین دانشوران در طول تاریخ می باشد او به محض اینکه ریاضیدان مشهوری شد و افتخاراتی کسب نمود اصل و نسب خود را مخفی نگاه می داشت، مشهور است که لاپلاس برای ملاقات دالامبر ریاضیدان با ارزش در یکی از روزهای سال 1770 به خانه او می رود و با وجود توصیه هایی که ارائه می دهد کمک قابل توجهی از طرف زیاضی دان بزرگ نسبت به او نمی شود لاپلاس مایوس نمی شود و نامه ای برای دالامبر می فرستد و در آن افکار خویش را درباره اصل مکانیک شرح می دهد دالامبر به محض خواندن نامه نویسنده را احضار می کند و به او می گوید چنانچه ملاحظه میکنید من به توصیه و سفارش ترتیب اثر نمی دهم ولی شما برای شناساندن خود وسیله خوبی بدست آوردید دالامبر فوراٌ لاپلاس را به سمت استاد مدرسه نظامی پاریس انتخاب می کند. در مرحله اول لاپلاس نوشته هایی در باره مسائل حساب انتگرال، اختر شناسی، ریاضی کیهان شناسی نظریه بازیهای بخت آزمایی و علیت تالیف کرد در این دوره سازنده وی سبک و شهرت و موضع فلسفی و برخی شیوه های ریاضی خود را ساخته و پرداخته کرد و برنامه ای برای پژوهش در دو زمینه – احتمالات و مکانیک آسمانی – تنظیم نمود که بقیه عمر را به کار ریاضی در باره آنها پرداخت در مرحله دوم در هر دو زمینه به بسیاری از نتایج عمده ای رسید که به سبب آنها مشهور است و بعدها آنها را در رساله های بزرگ خو«مکانیک سماوی 1799 – 1825) و نظریه تحلیلی(1812) گنجانید اطلاع از بخش اعظم این مسائل به وسیله شیوه های ریاضی صورت گرفت که او در آن زمان یا قبل از آن، به وجود آورد ابداع کرده بود مهمترین آنها عبارتند از توابع مولد، که از آن پس به نام وی خوانده شدند. بسط، که آن نیز در نظریه دترمینانها به نام وی گردید، تغییر مقادیر ثابت به منظور رسیدن به راه حلهای تقریبی در انتگرال گیری عبارتهای اختر شناسی و ابع گرانشی تعمیم یافته که بعدها با دخالت پواسون به صورت تابع پتانسیل برق و مغناطیس قرن 19 در آمد همچنین در طی همین دوره بود که لاپلاس به سومین حوزه علایقش – یعنی فیزیک که با همکاری لاوازیه در زمینه نظریه گرما بود، وارد گردید و تا حدودی در نتیجه آن همکاری بود که وی تبدیل به یکی از اعضای مؤثر حلقه درونی مجمع ملی شد. اولین مسئله مورد توجه لاپلاس دنبال نمودن کار اسحاق نیوتن بود زیرا اسحاق نیوتن قانون اصلی مکانیک آسمانی را یافته بود و لاپلاس می خواست این قانون را در مورد تمام اجسام منظومه شمسی به کار برد لاپلاس شروع به تعیین قوانین مکانیک سیارات کرد تا نشان دهد که این اجسام مانند سایر اجسام تابع قوانین فیزیکی هستند اولین موضوعی که لاپلاس نزد خود مطرح می کند موضوع ثبات دستگاه شمسی است که آیا به وضعی که داراست می ماند یا بالاخره ماه روی زمین سقوط می کند و سیارات بر جرم خورشید پرتاب شده و معدوم می گردند اسحاق نیوتن هم این سؤال را مطرح کرده بود و به این نتیجه رسیده بود که باید گاهگاهی دست خداوند در کار بیاید و حرکات آنها را به جریان عادی برگرداند ولی لاپلاس گفت اگر چه وضع سیارات نسبت به خورشید تغییر می کند ولی این تغییرات تناوبی است لاپلاس تمام این اکتشافات را تحت عنوان مکانیک آسمانی منتشر ساخت ولی چون فهم مطالبش برای همه کس مقدور نبود لذا تصمیم گرفت کتابی دیگر بنویسد که مردم عادی هم از آن بهره مند گردند این کتاب تحت عنوان شرح دستگاههای جهانی منتشر شد. لاپلاس علاوه بر نجوم و ریاضیات استادی عالیقدر در علم فیزیک بود و در باره لوله های موئین و انتشار امواج صوتی مطالعات فراوانی داشت از مهمترین آثار لاپلاس تئوری تحلیلی احتمالات را که در سال 1812 نوشته است می توان نام برد لاپلاس را که دانشمندی بی همتا می توان گفت متاسفانه نسبت به تمام حکومتهایی که پی در پی عوض می شدند تملق می گفت و از آنها استفاده می کرد در مقابل ناپلئون تا زانو تعظیم می کرد و به همین علتها بود که از طرف امپراطور به مقامهای کنت – سناتور – ریاست مجلس سنا انتخاب شد با وجود اینها وقتی ناپلئون اسیر شد به او پشت کرد و به عزلش رای داد و خود را در دامان لویی هجدهم انداخت و از طرف او به سمت رئیس کمیته تجدید تشکیلات مدرسه پلی تکنیک و عضو مجلس عیان انتخاب شد. لاپلاس با تمام این اوصاف جوانان را تشویق و کمک می کرد به طوری که روزی یکی از اکتشافات جوان ناشناسی بنام بیو از طرف آکادمی مورد تمجید قرار گرفت او را نزد خود خواند و معلوم گردید لاپلاس قبلاٌ این اکتشاف را مورد مطالعه قرار داده سات. لاپلاس اواخر عمر را در آرکوری نزدیک پاریس در عمارت ییلاقی خود که نزدیک دوستش برتوله بود گذارنید او روز 5 مارس 1812 در 78 سالگی در گذشت در حالیکه آخرین حرف او این بود: آنچه می دانیم بسیار ناچیز و آنچه نمی دانیم عظیم و وسیع است. بلزپاسکال «بلزپاسکال» ریاضیدان، و فیزیکدان، و فیلسوف بزرگ فرانسوی، در قرن 17زندگی میکرد. او ماشین حساب را ساخته است. و نیز نشانههای کلی بخش پذیری هر عدد صحیح به هر عدد صحیح دیگر را پیدا کرده است. و نیز یک مثلث عددی خاصی ترتیب داده است، که به نام خود او «مثلث پاسکال» نامیده میشود. و منظور ما در اینجا آشنایی با همین مثلث است. اما قبل ازاینکه مثلث پاسکال را توضیح دهیم، ناچاریم ابتدا دو عدد مخصوص را بشناسیم: اولا ّعدد مثلثی چیست؟ این عدد حاصل جمع چند جملهی متوالی یک تصاعد عددی است، که جملهی اول آن 1وقدرنسبتش عددصحیح است. مثلاّ در تصاعد عددی7، 6، 5، 4، 3 ، 2، 1اعداد(1) و (2+1) و (3+2+1)و (4+3+2+1)...و یعنی عددهای 1و3و6و10و15و...را اعداد مثلثی مینامند، زیرا با هر یک از آنها میتوان تشکیل مثلث متساویالاضلاع داد. مثلاّ اگر6 گلولهی را در ردیفهای 1و2و3تایی کنار هم روی میز قرار دهید، یک مثلث متساویالاضلاع تشکیل میشود. حال اگر4گلولهی شیشهای دیگر را زیر آنها قرار داده، و ردیف جدید را تشکیل دهید، یک مثلث متساویالاضلاعجدید شامل 10گلوله خواهیدداشت. ثانیاّ عدد هرمی چیست؟ گفتیم که با10گلولهی شیشهای میتوان یک مثلث منتظم تشکیل داد. مثلث قشر دوم را که با6گلوله ساخته میشود، و روی آن قرارداد. و سرانجام یک گلولهی شیشهای را هم میتوان روی آنها گذاشت، و با چهار ردیف مثلث، که از گلولههای شیشهای تشکیل یافتهاند، که یک عدد مثلثی بلافاصله بزرگتر زیر آنها بگذاریم، پس با معلوم بودن سری اعداد مثلثی 1و3و6و10و 15و 21و 28و36و 45و 55 و... ساختن اعداد هرمی آسان است: از1 شروع میکنیم، مرتباّ تا هر جا که بخواهیم، با عددهای مثلثی پشت سرخود جمع میکنیم، تا پشت سرهم عددهای هرمی حاصل شوند. مثلاّ از مجموع 1و3و6و10و15و21عدد56 به دست میآید، که یک عدد هرمی است. و برای پیداکردن عدد هرمی بزرگتر از آن باید روی 56 عدد28را بیفزاییم تا84 به دستآید. و حالا مثلث پاسکال: مثلثپاسکال به این ترتیب درست شده است، که هرعدد (جزواحدهای کنار آن) از مجموع نزدیکترین دوعدد بالای آن درست شده است. مثلاّ120حاصل جمع عددهای 84 و36 است، که در ردیف افقی فوقانی آن، و در طرفین عدد مزبور قرار دارند. در این جدول شگفتانگیز نخستین ردیف اریب را واحدها تشکیل دادهاند. در دومین ردیف اریب سری عددهای طبیعی قرار دارند. در سومین ردیف اریب اعداد مثلثی پشت سر هم واقع شده اند. و در چهارمین ردیف اریب عددهای هرمی1و4و10و20و35و56 و... به دنبال هم قرار گرفتهاند.برای اطلاع از ویژگیهای ردیف اریب باید به فضای چهار بعدی برویم، که فعلاّ از آن صرفنظر میکنیم. شما میتوانید بین اعداد واقع در این مثلث ویژگیهای عجیب دیگری هم کشف کنید مثلاّ اعداد «فیبوناچی» هم در مثلث پاسکال ظاهر میشوند، که گویا خود پاسکال از آن بیاطلاع بوده است. در واقع این ویژگی مثلث پاسکال تا نیمهی دوم قرن نوزدهم ناشناخته بود. برای به دست آوردن اعداد فیبوناچی از مثلثپاسکال، کافی است به خطوط اریبی، که بالای این مثلث به موازات هم رسم کرده ایم، توجه کنید. خواهیددید که مجموع عددهای واقع در هر ردیف به ترتیب اعداد فیوناچی را میرساند. و شما میتوانید رسم خطهای اریب را زیرهم ادامه دهید، و مجموع اعداد واقع در روی آنها را به دست آورید، تا سری اعداد فیبوناچی کامل شوند. از خصوصیات جالب مثلثپاسکال این است که مجموع عددها در هر سطر افقی برابر است با توانی از2، مثلاّ اعداد واقع در پنجمین ردیف افقی را اگرجمع کنیم، 16می شود، که برابر24است. و مجموع اعداد ششمین ردیف افقی نیز 32 یا 25است. و حالا نوبت شماست، که اعداد واقع در این مثلث را به دقت مورد بررسی قراردهید، تا ویژگیهای جدیدی در آن کشف کنید. اراتستن اولین فردی که اندازه زمین را دقیق اندازه گرفت، اراتستن (195 ـ 276 قبل از میلاد) ریاضیدان یونانی بود. او می دانست که درظهر اواسط تابستان خورشید در شهر سین، واقع در جنوب خانه اش در اسکندریه مصر، مستقیما درون چاه عمیقی می تابد. او در همان روز زاویه تابش خورشید بر فراز اسکندریه را 2/7 درجه اندازه گرفت. این زاویه برابر است با یک پنجاهم کمان یک دایره. او می دانست که فاصله سین و اسکندریه 772 کیلومتر است و بدین ترتیب محیط زمین را 772×50 یعنی 38600 کیلومتر محاسبه کرد. این رقم به عدد واقعی 40074 کیلومتر بسیار نزدیک است. اندازه گیری دقیق اراتستن با سایه یک چوب زاویه تابش خورشید در اسکندریه را محاسبه کرد. منبع