رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'سمانتیت'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. سمانتیت (Cementite): حدس زدن این مورد شاید آسان باشد. این لغت برگرفته از کلمه Cement در زبان انگلیسی به معنای ماده ای است که مواد مختلف را به هم می چسباند، می باشد. در سال 1855 Osmond و Werth تئوری سلولی را ارائه دادند که در آن نه تنها وجود گونه های آلوتروپیک آهن( که امروزه به نام آستنیت و فریت معروف هستند) را پیشنهاد دادند، بلکه در این تئوری نگاه تازه ای به تشکیل کاربید ها شده بود. تحقیقات آنها در خصوص فولادهای پرکربن نشان داد که مخلوطی شامل سلولهای و دانه های آهن وجود دارد که توسط لایه ای از کاربید آهن محصور شده است.در حین انجماد ابتدا گلبولها یا سلولهای آهن تشکیل شده و رشد می کنند و باقیمانده مذاب به صورت کاربید آهن منجمد می شود. بدین ترتیب کاربید تشکیل شده با قرار گرفتن در اطراف سلولهای قبلی شکل گرفته، آنها را به هم می چسباند. از این شرح می توان دریافت چرا Osmond کاربید تشکیل شده را از لغت فرانسوی Ciment نامگذاری کرد. این فاز در زبان آلمانی با Zementit و در انگلیسی با Cementite نشان داده می شود. فریت (Ferrite): Ferrum ریشه لاتین برای بیشتر لغات جدید ساخته شده در خصوص آهن و ترکیبات آن می باشد که احتمالا ریشه سامی دارد.آستنیت (Austenite): این فاز به یادبود Sir William Chandler Roberts-Austen متالورژیست انگلیسی تبار(1843-1902) نامگذاری شده است. Robert-Austen اولین کسی بود که دیاگرام اولیه آهن – کربن را در سال 1897 (شکل زیر) و فرم نهایی آن را در سال 1899 منتشر کرد. او همچنین اولین دانشمندی است که اندازه گیری کمی (Quantitative ) نفوذ در حالت جامد (طلا در مس ) را با توجه به قوانین نفوذ فیک انجام داد. پرلیت(Pearlite): برگرفته از ظاهر درخشنده مروارید شکل (Pearl) و رنگین کمانی این فاز می باشد.علت اینکه ساختار این فاز به صورت مروارید این است که تیغه های تشکیل شده با داشتن خاصیت انعکاس نور متفاوت به علت جهت گیری مختلف، تشکیل کریستال های متفاوت نوری می دهند. لدبوریت (Ledeburite): نامگذاری شده به افتخار Adolf Ledebur (1837- 1916). Ledebur اولین پروفسوری بود که در سال 1882 مخلوط کریستالی آهن کربن را کشف نمود. مارتنزیت (Martensite): به افتخار Adolf Martens(1850-1914) نامگذاری شده است. وی کارش را در آزمایشگاه مکانیکی رویال در برلین به عنوان مهندس شروع نمود. امروزه یک جایزه مشهور به نام او اهدا می شود. بینیت (bainite): این فاز به یادبود E.C. Bain شیمیدان آمریکایی نامگذاری شده است. تاریخچه آستمپرینگ به سال 1930 بر می گردد، زمانی که Grossman و Bain در آزمایشگاه های فولاد ایالات متحده بر روی ارزیابی پاسخ متالورژیکی فولادهای سرد شده با سرعت زیاد از دمای 1450 درجه فارنهایت (788 درجه سانتیگراد) به دماهای متناوبا بالا و نگهداری در این دماها به مدت زمانهای مختلف های در حال کار بودند. نتیجه تحقیقات آنها چیزی است که ما امروزه به عنوان دیاگرامهای استحاله همدما (Isothermal Transformation Diagram) می شناسیم. Grossman و Bain با ساختارهای معمول متالورژیکی فریت، پرلیت و مارتنزیت آشنا بودند. چیزی که آنها کشف کردند ساختار دیگری بود که در بالاتر از دمای آغاز تشکیل مارتنزیت (Ms) و پایین تر از دمای تشکیل پرلیت بود. در فولادها این ساختار شکل ساختارهای سوزنی (بشقابی) با ظاهری پر مانند را داراست. تحقیقات X ray نشان داد که بینیت شامل فریت و کاربید فلزی است
  2. Peyman

    رسم نمودار فازی

    چگونه یک نمودار فازی رسم کنیم: یک دیاگرام فازی دوتایی نشان دهنده فازهای تشکیل شده و موجود در درصدهای مختلف از مخلوط دو عنصر و در یک دامنه دمایی می باشد. ترکیب شیمیایی از 100 درصد در مورد عنصر A در سمت چپ نمودار آغاز و با در نظر گرفتن تمامی مخلوطهای ممکن به 100 درصد از عنصر B در سمت راست پایان می یابد. ترکیب شیمیایی یک آلیاژ به شکل A - x%B نشان داده می شود. برای نمونه Cu - 20%Al دارای 80 درصد مس و 20 درصد آلومینیوم می باشد. برای نشان دادن خواص عناصر آلیاژی معمولا از درصد وزنی (Weight percentage ) استفاده می شود از درصد اتمی ( Atomic percentage ) هم می توان استفاده نمود.د درصد وزنی با wt%و درصد اتمی با at%نشان داده می شود. در این نوشته ما از درصد وزنی استفاده می کنیم. تفاوت درصد وزنی و اتمی را با یک مثال نشان می دهیم: وقتی از Cu-27at%Al حرف می زنیم، یعنی در این آلیاژ 27% اتمها مربوط به آلومینیوم و 73 % اتمها مس هستند و هنگامی که آلیاژ به شکل Cu-27wt%Al باشد، 27% از وزن آلیاژ Al و 37% Cu خواهد بود. تبدیل درصد وزنی و اتمی به یکدیگر الف) تبدیل درصد وزنی به اتمی: در ابتدا باید وزن را برحسب گرم در نظر گرفت. پس در 100 گرم از آلیاژ Fe-7wt%C به میزان 7 گرم کربن و 93 گرم آهن وجود دارد. وزن اتمی آهن 56 و وزن اتمی کربن 12 است. عدد آووگادرو 6.022 x 1023 می باشد. تعداد اتمها در 7 گرم کربن برابر است با: 7 ضربدر عدد آووگادرو تقسیم بر وزن اتمی کربن 7 x 6.022 x 1023 / 12= 3.513 x 1023 برای 93 گرم آهن به همین ترتیب داریم: 93 x 6.022 x 1023 / 56= 10.000 x 1023 بنابراین درصد اتمی کربن برابر است با: تعداد اتمهای کربن ضربدر 100% بخش بر مجموع اتمهای کربن و آهن 3.513 x 1023x 100 / (3.513 + 10.000) x 1023= 26% پس آلیاژ Fe-7wt%C معادل با Fe-26at%C می باشد. سمانتیت در Fe-25at%C تشکیل می شود. این فاز را در چه درصد وزنی خواهیم داشت؟ در نظر بگیرید یک نمونه دارای 100 اتم می باشد. برای مثال، نمونه ای از Fe-25at%C دارای 25 اتم کربن و 75 اتم آهن است. وزن 25 اتم کربن= 25 ضربدر وزن اتمی کربن بخش بر عدد آووگادرو= 4.98 واحد جرم اتمی وزن 75 اتم آهن= 75 ضربدر وزن اتمی آهن بخش بر عدد آووگادرو= 69.74 واحد جرم اتمی. بنابراین: درصد وزنی کربن = وزن اتمهای کربن ضربدر 100 بخش بر مجموع وزن اتمهای کربن و آهن= 4.98 x 100 / (4.98 + 69.74)= 6.66% پس at%C 25 معادل با 6.66wt%C است. تمایل در آلیاژها انجماد در یک دامنه دمایی (به جای انجماد در دمایی خاص مانند آنچه در عناصر خالص رخ می دهد)، می باشد.در هر یک از دو سر نمودار فازی فقط یکی از عناصر (100% A یا 100%B) و در نتیجه یک نقطه ذوب خاص وجود دارد.در برخی مواقع نیز مخلوطهایی وجود دارند که مانند عناصر خالص در یک دمای ویژه منجمد می شوند. این نقطه به نام نقطه یوتکتیک نامیده می شود. امکان وجود بیش از یک نقطه یوتکتیک در برخی نمودار های فازی وجود دارد. نقطه یوتکتیک نقطه ای است که واکنش یوتکتیک رخ می دهد. نقطه یوتکتیک را می توان به صورت تجربی با رسم نمودارهای نرخ سرد شدن در دامنه ای از ترکیب شیمیایی آلیاژ به دست آورد. نمودارهای فازی برای آلیاژهای بسیار ساده دوتایی دارای نقطه یوتکتیک نیست. در این حالت مخلوط مذاب (مایع) در یک دامنه انجماد (دامنه دمایی) سرد شده و محلی جامد از دو عنصر تشکیل دهنده بوجود می آید. این نمودار ساده فازی معمولا فقط وقتی بوجود می آید که دو عنصر بسیار شبیه به هم تشکیل آلیاژی را داده و یا بخشی از یک نمودار فازی پیچیده باشند. با سرد کردن آلیاژ از حالت مذاب و ثبت کردن نرخ سرد شدن آن، می توان دمای شروع انجماد را مشخص و در نمودار فازی رسم نمود. با انجام دادن آزمایشات تجربی به تعداد کافی در دامنه ای از ترکیب شیمیایی، یک منحنی شروع انجماد را در نمودار می توان رسم نمود. این منحنی به سه نقطه انجماد ساده (Single) ختم می شود و به خط لیکیدوس معروف است. بالای این خط فقط حالت مایع از آلیاژ وجود خواهد داشت. به همان روشی که شکر در چای داغ حل می شود(محلول مایع)، برای یک عنصر نیز امکان اینکه در یک عنصر دیگر حل شده ،در حالی که هر در حالت جامد باقی بمانند، وجود دارد. به این امر حلالیت جامد می گویند که مشخصاً تا چند درصد وزنی وجود دارد. این حد حلالیت معمولا با دما تغییر می کند. گستردگی منطقه حلالیت جامد را می توان در نمودار فازی رسم کرده و نامگذاری نمود. محلول جامدی از عنصر Bدر A(یعنی عمدتا عنصر A وجود داشته باشد)، به نام فاز آلفا(فاز تشکیل شده در سمت چپ نمودار) و وارون این حالت بتا (فاز تشکیل شده در سمت راست نمودار)نامیده می شود. نکته قابل توجه در در مورد برخی از عناصر این است که برخی از این عناصر در حالت آلیاژی با یکدیگر دارای حلالیت صفر هستند(در همدیگر حل نمی شود). یک شاهد بسیار خوب آلیاژ های Al – Si است که آلومینیوم در سیلیکون حلالیت برابر با صفر دارد. اگر ترکیب شیمیایی یک آلیاژ در منطقه کوچک محلول جامد و یا در کناره های نمودار فازی قرار نگیرد، آلیاژ در نقطه یوتکتیک به شکل کامل جامد می شود که این به شکل خط یوتکتیک در نمودار فازی نشان داده شده است. در دماها و ترکیبات شیمیایی بین شروع انجماد و نقطه ای که جامد کامل به دست می آید(دمای یوتکیتیک)، مخلوطی خمیری از هر دو فاز آلفا یا بتا به شکل توده های جامد با مخلوطی مایع از A و B بوجود خواهد آمد. این منطقه را که به صورت جزیی جامد شده است، در نمودار فازی زیر می توانید مشاهده کنید. منطقۀ قرار گرفته در زیر خط یوتکتیک و خارج از منطقۀ محلول جامد، مخلوطی از آلفا و بتا خواهد بود. خطوط ارتباطی و قانون اهرم Lever آلیاژی را که در نمودار زیر نشان داده شده است، در دما و ترکیب مشخص ده در نظر بگیرید. در این دما آلیاژ مخلوطی از فازهای آلفا و مایع(مذاب) است اما ترکیب دقیق شیمیایی در این دما چیست؟ یک خط ایزوترمال(دمای ثابت) از نقطه مورد نظر رسم کنید. این خط دو منحنی حلالیت مجاورش را قطع می کند و به نام خط ارتباطی نامیده می شود(Tie Line). دوسر انتهایی این خط نشان دهنده ترکیب شیمیایی دو فاز موجود در حالت تعادل با دیگر فاز در این دما می باشد. از نمودار می دانیم که فازهای آلفا و مذاب وجود دارند. خط ارتباطی نشان می دهد که فاز آلفا 5.2% B و فاز مذاب 34.5%B در این دما است. توجه داشته باشید که ترکیب کلی نمونه بدون تغییر مانده و ما فقط ترکیب شیمیایی فازهای تشکیل دهنده نمونه را تعیین می کنیم. برای یک آلیاژ که در ترکیب شیمیایی Co و دمای Tx سرد شده است، خطوط ارتباطی برای جواب دادن به پرسشهای زیر بکار می رود: -چه فازهایی وجود دارند؟ - ترکیب شیمیایی آنها چیست؟ - اگر دما تا Ty کاهش یابد، ترکیب شیمیایی دو فاز چگونه تغییر می کند؟ چون ترکیب شیمیایی Co و دمای Tx در منطقه فازی بتا + مذاب همدیگر را قطع می کنند، بنابراین فاز بتا و مذاب فازهای موجود هستند. پاسخ پرسش دوم دربارۀ ترکیب شیمیایی: بایستی خطی افقی از نقطه مورد نظر به نزدیکترین مرزهای نمودار فازی رسم کرد. این خط نشان دهنده موارد زیر خواهد بود: مذاب: X درصد وزنی از B فاز بتا: Y درصد وزنی B با کاهش دما تا Ty خط جدیدی از نقطه مورد نظر که از تقاطع این دما و ترکیب شیمیایی به دست می آید، رسم کنید. ترکیب شیمیایی عبارتست از: مذاب:X' درصد وزنی از B فاز بتا: Y' درصد وزنی B بنابراین، هر دو فاز مذاب و بتا وقتی نمونه سرد شود،غنی تر از عنصر A می شود. اکنون ما ترکیب شیمیایی دو فاز را می دانیم و نیاز به این داریم دریابیم که چه مقدار از هر فاز در دمای داده شده وجود دارد. نسبت کسری از هر دو فاز را بوسیله قانون اهرم Lever می توان به دست آورد. در نگاه اول این قانون گیج کننده به نظر می رسد. در واقع این قانون تبدیل جرم بوده و می توان آن را به شکل ریاضی تبدیل کرد.ما ابتدا با یک ترکیب شیمیایی کلی Co آغاز کردیم. از خط ارتباطی رسم شده دریافتیم که دو فاز موجود در یک دمای خاص دو ترکیب شیمیایی مختلف دارند، اما مقدار کلی این دو ترکیب شیمیایی بایستی به مقدارترکیب کلی آلیاژ اضافه شود. این اساس قانون اهرم است. منبع
  3. Peyman

    چدن نایهارد (چدن نیکل - سخت)

    مقدمه نخستین خانواده چدنهای پر آلیاژ که بیشترین اهمیت را کسب کردند چدن نایهارد بودند با زمینه مارتنزینی، کاربیدی، کربن در آنها از 2.5% تا 3.6% متغیر می‌باشد. در چدن نایهارد وجود عنصر نیکل است که به منظور به تعویق افتادن تشکیل پرلیت و کاهش سرعت بحرانی سرد شدن در رنج 0.5 تا 3.3 دزصد به کار می‌رود که نتیجتاً مارتنزیت به همراه مقداری آستنیت باقیمانده در زمینه ساختار به وجود می‌آید. کروم در رنج %3.5– 1.4% اضافه می‌شود، برای حصول اطمینان از اینکه مازاد کربن آلیاژ به جرم کاربیدهای پایدار می‌سازد و همچنین از خاصیت گرافیت زایی نیکل نیز جلوگیری به عمل می‌آید. تعیین درصد عناصر آلیاژی در چدن نایهارد بستگی دارد به ابعاد قطعه و خواصی که از آن انتظار می‌رود. زمانیکه مقاومت سایشی خوب و ضربه‌پذیری پایین مورد نظر باشد کاربیدهای درشت‌تر انتخاب شده و نتیجتاً درصد کربن بین 3.6-3.3% انتخاب می‌شود و زمانیکه قطعه در معرض بارهای ضربه‌ای قرار می‌گیرد کربن بین 2.3-2.7% متغیر خواهد بود. درصد عناصر بستگی به سرعت سرد شدن و ضخامت قطعه دارد برای قطعات با ضخامت 1 تا 2 اینچ سیکل بین 2.4 تا 3.4 برای به تعویق انداختن در تبدیل پرلیتی و اطمینان از تبدیل کامل مارتنزیتی ضروری است. چنانچه ضخامت قطعه بالاتر باشد نیکل از 5.5 – 4% مورد استفاده قرار می‌گیرد تا پرلیت تشکیل شود. در چدن نایهارد نوع II چنانچه درصد نیکل پایین باشد پرلیت تشکیل می‌شود و چنانچه مقدار نیکل زیاد باشد به پایداری استنیت کمک می‌کند. تفاوت اصلی در بین 4 آلیاژ چدن نایهارد در کاربردد آنهاست. مقاومت به ضربه نوع D بسیار بالاتر از سه مورد قبل (A, B, C) می‌باشد. SI در آن بالاست و نقش کمک کردن به تشکیل کاربید را تسریع می‌کند چون حلالیت کربن در گاما را کاهش می‌دهد. چدن نایهارد بوفور در عملیات خرد کردن، پودر کردن، نورد کردن، و حمل مواد به کار برده می‌شوند. دو گروه عمده چدن نایهارد وجود دارند، چدنهای با 4% نیکل و چدنهای با 6% نیکل و 9% کروم که معمولاً به چدن نایهارد 2 و 4 موسوم‌اند. نوع 2 چدن نایهارد شامل کاربیدهای یوتکتیکی M3C لدبوریتی است و بنابراین دارای چقرمگی کمی است در صورتیکه نوع 4 چدن نایهارد عمدتاً شامل کاربیدهای ناپیوسته M7C3 است و در نتیجه چقرمگی چدن نایهارد 4 بیشتر است. در نوع 2 چقرمگی کمتری دارد عمدتاً در تولید غلطکهای فلز کاری مورد استفاده قرار می‌گیرد. متالورژی و کاربرد چدن نایهارد نوع 4 تقریباً مشابه چدنهای پرکروم است. اما مشاهده شده است که در کاربردهای خاص مانند گلوله‌های آسیاب و جدار پوسته آسیابهای سیمان با قطر زیاد که قطعات ریختگی در آن هم تحت سایش و هم ضربات مکرر سنگین قرار دارند چدن نایهارد 4 مقاومت لازم برای شکست را ایجاد نمی‌کند. به طور کلی مقاومت شکست چدنهای پرکروم بیش از چدن نایهارد 4 است. مشخصه‌ای که سبب ارجحیت بارز چدن نایهارد 4 در مقایسه با چدنهای پرکروم می‌شود قابلیت سختی‌پذیری عالی آن است. محدودیت استفاده از چدن نایهارد مخصوصاً در نوع 2، مربوط به شبکه پیوسته کاربید آهن می‌شود که دانه‌های آستینت رادر خود احاطه کرده است و باعث تردی آن می‌گردد. همچنین در مقاطع ضخیم چدن نایهارد را نمی‌توان تولید نمود زیرا امکان به وجود آمدن گرافیت آزاد و کاهش مقاومت به سایش وجود دارد. دیگر اینکه در چدن نایهارد سختی فاز کاربید آهن از کاربیدهای آلیاژی کمتر است. سمانتیت یا کاربید آهن را می‌توان با کاربیدهای دیگر جایگزین نمود به این طریق این امکان وجود دارد که چدنی تولید نمود که فاز کاربید آن از سمانتیت سخت تر بوده و از نظر ساختاری نیز خواص مکانیکی بهتری را عاید نماید.
×
×
  • اضافه کردن...