جستجو در تالارهای گفتگو
در حال نمایش نتایج برای برچسب های 'تاثیر پلیمر سوپرجاذب آب در شرایط تنش خشکی:'.
1 نتیجه پیدا شد
-
تاثیر پلیمر سوپرجاذب آب در شرایط تنش خشکی:
masi eng پاسخی ارسال کرد برای یک موضوع در کتب و مقالات و جزوات درسی
یک روش جدید در پرورش گیاهان استفاده از پلیمرهای مصنوعی ژل شکل برای نگهداری آب در خاک ، به ویژه در خاک های ماسه ای است . به تازگی یک سری از این پلیمرها ، که شامل فرمول های جدید اصلاح کننده خاک می باشند ، برای تولید محصولات کشاورزی به خصوص برای استفاده در شرایط آب و هوایی خشک و نیمه خشک گسترش یافته است . نقش این مواد افزایش ظرفیت نگهداری آب ، خاک است مه به وسیله آزمایش های مزرعه ای و گلخانه ای به اثبات رسیده است (جانسون ، 1984) . تولید محصول در خاک های درشت بافت بیشتر به دلیل ظرفیت نگهداری کم آب و تلفات آب به عمق ( به علت نفوذ زیاد ) محدودیت پیدا می کند که سبب کاهش بهره دهی مصرف آب و کود به کار برده شده ، توسط گیاهان می گردد ( سیواپالان ، 2001 ) . هیدروژل های معمول در کشاورزی و باغبانی ذرات جامدی بوده که دارای ظرفیت 1500 - 400 گرم آب در هر گرم هیدروژل می باشد ( بومن و اونز ، 1991 پتروسون ، 2002 ) از این رو در مناطق خشک و نیمه خشک به دلیل کمی بارندگی و روبه رو بودن با مشک کم آبی حفظ و نگهداری آب خاک از اهمیت ویژه ای برخودار است ، تحقیقات برای استفاده از این اصلاح کننده های خاک مورد توجه واقع شده است . ساختمان شیمیایی عمومی پلیمرهای جاذب اختلاف در اثرگذاری هیدروژل ها به ساختمان شیمیایی آن ها بستگی دارد . دو کلاس معمول هیدروژل هایی که امروزه به کار برده می شوند شامل پلیمرهای طبیعی و مصنوعی است . پلی ساکاریدها ، هوموس ها ، پلی یورونیدها و آلجینیک اسیدها نمونه هایی از پلیمرهای طبیعی هستند . هیدروژل های مصنوعی نوع اصلی برای مقاصد باغبانی و زراعی هستند . پلیمرهای مصنوعی شامل دو گروه پلیمرهای قابل حل و غیرقابل حل در آب هستند . پلیمرهای مصنوعی را برای جلوگیری از انحلال آن ها در آب به صورت شبکه ای تبدیل می کنند . پلیمرهای جاذب رطوبت پلیمرهای شبکه ای غیرقابل حل در آب هستند . علت قدرت بالای جذب آب به وسیله این مواد قرار داشتن گروه های قطبی در داخل زنجیره و در ساختمان پلیمر است ( والیس و تری ، 1998 ) . پلیمرهای هیدروژلی که در کشاورزی به کار برده می شوند ، شامل موارد زیر هستند . کوپلیمر گرافت استارچ پلی اکریلونیتریل [1] . کوپلیمر وینیل الکل اکریلیک اسید ( پلی وینیل الکل ها ) [2](CH20HOH-)n . کوپلیمر اکریلات نمک های اکریل آمید (CH2CHCONH2)n یا پلی اکریل آمیدهای شبکه ای [3] ( پترسون ، 2002 : جانسون ، 1994 ) . همه این هیدروژل ها در شرایط مناسب که به طور کامل منبسط شوند ، حداقل 95 درصد ذخیره آب قابل دسترس برای جذب گیاه خواهند داشت که در 4-2 = PF ذخیره می شود ( جانسون و ولتکامپ ، 1985 ) . پلیمرهای طبیعی در کمتر از دو ساعت به طور کامل هیدراته می شوند در حالی که پلیمرهای مصنوعی ( PVA ,PAM ) در حدود شش ساعت و یا بیشتر به طور کامل می توانند هیدراته شوند . پلیمرهای مصنوعی به دلیل این که کمتر در خاک تجزیه بیولوژیکی می شوند ، بیشتر از پلیمرهای طبیعی به کاربرده می شوند ( پترسون ، 2002 ) . مطالعات مربوط به PAM ها نشان می دهد که این مواد سمی نبوده و بی خطر هستند ( سیبولد ، 1994 ) . تحقیقات نشان می دهد که پلی اکریل آمیدها به اکریل آمیدها شکسته نمی شوند ، اما به نسبت به مولکول های اکریلونیتریل ، دی اکسیدکربن ، منوکسیدکربن ، سیانیدهیدروژن ، نیترات و نیتریت شکسته می شوند ( پترسون ، 2002 ) . ده ها نوع هیدروژل وجود دارد . هیدروژل ها به مدت چندین سال در خاک باقی می مانند ( پترسون ، 2002 ) . عکسبرداری الکتریکی ( شکل 1 ) نشان می دهد که این مواد در شرایط منبسط شده دارای یک ساختمان سلولی ، با قابلیت ذخیره رطوبت قابل دسترس گیاهان ، در مخازن احاطه شده به وسیله پل های شش گوشه می باشد . این پل ها به عنوان پایه ساختمانی و سطح انتشاری است که برای آب و بیشتر کاتیون های یک و دو ظرفیتی نفوذپذیر است . این پل ها در ذخیره آب برای فراهم کردن مقاومت فیزیکی در برابر خروج آب از ژل شرکت می کنند . ذخیره آب قابل دسترس به دو روش است . حدود 85-80 درصد در حفره های ریز ذخیره شده و باقیمانده در داخل روزنه های بسیار ریزتری است که البته آن هم قابل دسترس گیاه بوده و تامکش 98 کیلو پاسکال یعنی نقطه ای که حفره ای بزرگتر از هوا پر شوند ، در برابر از دست دادن آب مقاومت می کند ( جانسون و ولتکامپ ، 1985 ) . ظرفیت نگهداری آب خاک وکلمار و چانج (1994) افزایش ظرفیت نگهداری آب را با استفاده از مواد پلیمری جاذب آب در خاک لومی ماسه ای گزارش دادند . جانسون و لا (1990) مشاهده کردند که با مصرف 2/0 و 5/0 درصد از پلیمر جاذب آب در خاک ماسه ای ، ظرفیت نگهداری آب خاک 150 تا 590 درصد افزایش می یابد . العمران ، مصطفی و شلبی ( 1987) بیان کردند که استفاده از مواد جاذب جالما سبب افزایش ذخیره رطوبت در سه نوع خاک ماسه ای ، لوم ماسه ای و رسی می گردد و اثرگذاری آن در خاک سبک بیشتر است . الحربی ، العمران ، شلبی و چادوری ( 1999 ) گزارش دادند که اضافه کردن پلیمر جاذب آب به خاک لومی ماسه ای در محیط کشت خیار ، ظرفیت نگهداری آب به خاک و راندمان مصرف آن را افزایش می دهد که با گذشت زمان این اثر افزایش می یابد . هاترمن ، ریس . زمردی (1999) با اضافه کردن هیدروژل به خاک های ماسه ای در مقادیر 4/0 ، 2/0 ، 12/0 ، 08/0 ، 04/0 درصد وزنی ، افزایش نگهداری آب را به ویژه با افزایش مقدار هیدروژل در خاک مشاهده کردند . هیدروژل منبسط شده وقتی که به وسیله دستگاه پرژریلیت تحت فشار 15 بار قرار گرفت ، 99 درصد از آب ذخیره شده خود را رها ساخت . در حالی که با روش دیگری با استفاده از ماده گلیکول پلی اتیلن و دیالیز کردن پلیمز دارای آب در فشار اسمزی با 4 = PF تنها 50 درصد از آب ذخیره شده در پلیمر رها گردید . تفاوت بین رها سازی آب ذخیره شده در شرایط مختلف هنوز مشخص نشده است . تولید محصول در خاک های درشت بافت اغلب به دلیل ظرفیت کم نگهداری آب خاک و تلفات آب به عمق خاک محدودیت پیدا می کند که سبب کاهش راندمان مصرف آب و کود می گردد . استفاده از مواد جاذب رطوبت سبب می شود مشکل بالا بر طرف شود ( سیواپالان ، 2002 ) . وزن مخصوص ظاهری خاک پترسون به نقل از آزارم در سال 2002 بیان کرد که پلی اکریل آمید وزن مخصوص ظاهری خاک ماسه ای را از 616/1 به 585/1 گرم در مترمکعب و خاک رسی ماسه ای را از 331/1 به 203/1 گرم در مترمکعب کاهش داد ( پترسون ، 2002 ) .وزن مخصوص ظاهری یک خاک آهکی لومی ماسه ای زمانی که با 4/0 درصد هیدروژل تیمار شده بود ، 4/38 - 8/6 درصد کاهش یافت . برآورد شده است که تغییرات هیدروژل ها بر وزن مخصوص ظاهری به دلیل کاهش ظرفیت هیدروژل ها هر سال 15 - 10 درصد کاهش پیدا می کند ( الحربی و همکاران ، 1999 ) . در کل اثرگذاری هیدروژل ها با گذشت زمان کم می شود ( میلر ، 1979 ) . تغییر ویژگی های شیمیایی خاک سیلبربوش ، آدار و دمالاچ ( 1992 ) با استفاده از هیدروژل آگروسک در کشت ذرت مزرعه بیان داشتند که این ماده سبب رهاسازی سدیم به داخل خاک می شود . آزمایش ها نشان داده است ، گیاهانی که به شوری مقاوم هستند ، به این مواد جواب بهتری می دهند . آن ها علت رهاسازی سدیم به وسیله این مواد را وجود این عنصر در ساختمان هیدروژل بیان کردند . به دلیل این که پلیمریزاسیون این ماده در اسیدیته بالا و در حضور یک اسید قوی رخ می دهد ، بنابراین در پایان باید با یک بازخنثی شود که برای رسیدن به این مقصود از سود استفاده می گردد . پیشنهاد می شود که به جای سود از پتاس استفاده شود . با گذشت زمان از مقدار رهاسازی سدیم به وسیله این ماده کاسته می شود . فلتا و العمران ( 1995 ) طی یک آزمایش گلخانه ای ،اثر دو فاصله آبیاری ( 5 و 10 روزه ) را بر عمل یک اصلاح کننده جاذب آب در مقادیر مختلف و در خاک های آهکی لومی ماسه ای بر روی ویژگی های شیمیایی خاک بررسی کردند . فاصله آبیاری اثری بر روی ویژگی های شیمیایی خاک نداشت . مصرف این ماده اسیدیته خاک را در دو عمق 10 - 0 و 20 - 10 سانتی متری خاک در مقایسه با شاهد به طور معنی داری افزایش داد . هدایت الکتریکی در لایه بالایی خاک تیمار شده بالاتر از شاهد بوده و در عمق پایین تر تفاوت معنی داری با شاهد نداشت . مصرف این ماده سبب افزایش استخراج روی و کاهش آهن و منگنز قابلاستخراج لایه بالایی خاک گردید . استخراج مس و پتاسیم تحت تأثیر این ماده قرار نگرفت . پاسخ پلیمرهای جاذب آب به نمک ها و کودها ظرفیت حمل آب به وسیله هیدروژل اغلب موقع اضافه شدن عناصر غذایی به آب و یا محلول هیدروژل ها کاهش می یابد ( بومن و اونز ، 1991 ) . در شرایط آزمایشگاهی ظرفیت حمل آب هیدروژل ها به وسیله مصرف آب دیونیزه شده تعین می شود . محلول های کودی دارای پتاسیم و آمونیوم ( کاتیون ها یک ظرفیتی ) مقدار جاذب آب هیدروژل PAM را تا 75 درصد کاهش می دهد . مصرف کلسیم ، منیزیم ، آهن و غیره ( کاتیون های دو ظرفیتی ) مقدار جذب آب را تا 90 درصد کاهش می دهد ( پترسون ، 2002 ) . در تحقیقی که به وسیله بومن و اونز در سال 1991 انجام شد ، کاربرد کلسیم به فرم نیترات کلسیم مقدار آبی را که هیدروژل پلی اکریل آمید می توانست نگهداری کند ، به طور معنی داری کاهش داد . واکنش آب گریزی این هیدروژل که با نیترات کلسیم مخلوط شده بود ، به وسیله مصرفی پی در پی پتاسیم ( شستن پی در پی با نیترات پتاسیم ) کاهش یافت . هیدروژل ها دارای تعداد گروه k-coo+ هستند که ممکن است به صورت نمک رفتار کرده و سبب افزایش جذب آب به وسیله آن ها شود . ممکن است کاتیون های چند ظرفیتی به طور فعال مولکول های آب را در مکان های باردار اطراف و داخل پلیمر از جا کنده و جانشین آن شوند ( وانگ و گریک ، 1990 ) . در تحقیقی دیگر ، هر سه نوع هیدروژل بیان شده ( PAM , PVA , SCP ) کاهش مقدار جذب آب را نشان دادند اما SCP کمتر تحت تأثیر اضافه کردن ترکیب های کودی قرار گرفت . با این حال SCP ها نمی توانند به اندازه گروه هیدروژل پلی اکریل آمید آب را جذب کنند . با بررسی سه گروه هیدروژل معلوم شده است که گروه PAM ها بزرگ ترین ظرفیت بافری را در خاک دارند و بنابراین آن ها به طور معنی داری قادر به نگهداری مقدار بیشتری از آب در شرایط مختلف هستند ( جانسون ، 1984 ) . در برخی موارد یک عنصر مانند نیتروژن با یک فرمول به وسیله هیدروژل نگهداری شده ، ولی با فرمول دیگر نگهداری نمی شود .