رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'بررسی انجام تست غیر مخرب درمخازن کامپوزیتی'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. مخازن CNG براساس نوع مواد به‌كار رفته در آنها به چهار دسته عمده تقسيم مي‌شوند: 1. مخازن تمام فلزي 2. مخازن فلزي كه در قسمت استوانه‌اي مخزن با مواد كامپوزيت پوشش داده شده‌اند 3. مخازن فلزي با پوشش كامپوزيت 4. مخازن پلاستيكي كه پوشش كامپوزيتي دارند. در وسايل نقليه حساس به وزن بالا، از مخازن نوع سوم و چهارم استفاده مي‌شود. در اين نوع از مخازن، مواد به‌كار رفته در بوش سيلندر، به نحوي طراحي شده است تا بتواند از نشت گاز جلوگيري كند. در بدنه آنها نيز براي تحمل فشارهاي وارده، از مواد كامپوزيتي استفاده شده است. براي ايجاد استحكام در مخزن كامپوزيت، مي‌توان از فيبر ـ كربن، فايبرگلاس يا تركيب اين دو و يك رزين اپوكسي به‌عنوان اتصال‌دهنده، استفاده كرد. مخازن سوخت كامپوزيتي به علت وزن پايين، مقاومت در برابر خوردگي و مقاومت در برابر خستگي، بسيار مطلوب هستند، اما عموماً مقاومت كمتري در برابر خرابي ناشي از تصادم يا ضربه دارند. در نتيجه، طول عمر كم يك مخزن كامپوزيتث از جنس فيبر ـ كربن، عاملي مهم است كه باعث عدم استقبال از وسايل نقليه داراي اين نوع مخازن مي‌شود. در اين مقاله، به بررسي دو روش مهم انجام آزمايش كنترل كيفيت عملكرد مخازن كامپوزيتي پرداخته‌ايم كه در حال حاضر در كشورهاي صنعتي كاربرد چشمگيري دارند. كاربرد گاز طبيعي به‌عنوان سوخت جايگزين در كشور ما، امروزه گسترش و توسعه چنداني نيافته است. از دلايل عمده عدم موفقيت در توسعه فرهنگ استفاده از سوخت‌هاي پاك و به‌طور خاص گاز طبيعي، مي‌توان به دلايل زير اشاره كرد: 1. زمان طولاني و هزينه بالاي نصب مخازن در خودروها 2. عدم اعتماد مصرف‌كنندگان به ايمني و قابليت اطمينان مخازن 3. وزن بالاي مخازن فلزي كه باعث كاهش بهره‌وري خودرو مي‌شود 4. عدم وجود جايگاه‌هاي كافي براي سوخت‌‌گيري براي كاهش وزن مخازن و افزايش بهره‌وري خودرو، استفاده از مخازن كامپوزيتي در سال‌هاي اخير مورد توجه كارشناسان قرار گرفته است. از طرفي، كاربرد اين نوع مخازن موجب افزايش نگراني مصرف‌كننده از ايمني و قابليت اطمينان آن شده است. با توجه به اين موضوع، لزوم توسعه و به‌كارگيري روش‌هاي انجام آزمايش براي كنترل نحوه عملكرد مخازن كامپوزيتي، بيش از هر چيزي ضروري به‌نظر مي‌رسد. روش‌هاي انجام آزمايشات غيرمخرب (NDE) تحقيقات زيادي در زمينه ارزيابي غيرمخرب در مخازن كامپوزيت انجام گرفته است. از انواع آزمايشات NDE مي‌توان به‌روش‌هاي نظير تست آلتراسونيك، ترموگرافي (دمانگاري)، برش‌نگاري1 و امواج آكوستيك، براي شناسايي خلل و فرج، لايه‌لايه شدگي2 نواحي با رزين زياد و حجم پايين، اشاره كرد. ساير روش‌هاي NDE شامل: اكوستو ـ التراسونيك، ويبرو ـ اكوستيك، تجزيه و تحليل وضعيت، مقاومت الكتريكي، جريان فوكو و علامت‌گذاري قطعه مي‌شود. يكي از روش‌هاي انجام آزمايش NDE، استفاده از حسگرهاي فيبرنوري قرار داده شده در سيلندر است كه بتازگي پژوهشگران به‌ استفاده از آن در كنترل كيفيت ساختار كامپوزيت روي آورده‌اند. در اين بخش، به معرفي دو روش مهم براي انجام تست‌هاي غيرمخرب پرداخته مي‌شود كه عبارتند از: استفاده از حسگرهاي فيبر نوري و تست‌هاي آلتراسونيك. استفاده از حسگرهاي فيبر نوري در انجام آزمايش چند روش استفاده از فيبر نوري در كنترل كيفيت سازه‌هاي كامپوزيتي ابداع شده است. در اين روش‌ها، فيبر نوري همانند مبدلي عمل مي‌كند كه مي‌تواند تغييرات را توسط تغييرات دامنه نور و تأخير زماني، شناسايي كند. با توجه به روش به‌كار گرفته شده، اين تغييرات به‌طور دقيق مي‌توانند به پديده‌هاي فيزيكي مانند كشش (كرنش)، فشار و دما وابسته باشند. در نتيجه، با كنترل اين تغييرات مي‌توان سطوح كيفيت در مخزن كامپوزيت را كنترل كرد. «چانگ» و «سركيس» حسگرهاي فيبرنوري قرار داده شده در لايه‌هاي كامپوزيت گرافيت ـ اپوكسي را براي ارزيابي ميزان آسيب‌رساني ضربه با حجم كم، به‌كار بردند. براي ايجاد پوشش مناسب، موضع‌يابي صحيح و ايمني در برابر از بين رفتن پولاريزاسيون (قطبي شدگي) در كنترل اين مخازن از حسگرهاي غيراتالون همراستا استفاده مي‌شود. فيبر نوري به علت ايمني در برابر اختلالات الكتريكي، مقاومت در برابر خوردگي و سازگاري با مواد كامپوزيت و شرايط فرايند، انتخاب شده‌است. نحوه عملكرد اين فيبرنوري از طريق ايجاد فركانسي متناوب است كه در شاخص انكسار (شكست) در ميان طول مشخص هسته يك فيبرنوري تك‌حالتي، ايجاد مي‌شود. اين ساختار متناوب باعث عملكرد مشابه يك بازتابنده با طول موج مشخص در فيبرنوري مي‌شود كه مي‌تواند به‌عنوان شاخص نشان‌دهنده كشش (كرنش) ايجاد شده در ساختار كامپوزيت شناخته‌شود. حدود قابليت اطمينان حسگر با توجه به بازگذاري و تغييرات جريان متناوب ايجاد شده در فيبرنوري محاسبه مي‌شود. بررسي نحوه عملكرد حسگرهاي فيبرنوري امكان كاربرد فيبرنوري در كامپوزيت براي انجام آزمايشات NDE در سيلندرهاي كامپوزيتي براي تعيين ميزان خرابي ناشي‌از ضربه يا تصادم، با بررسي‌هاي آزمايشگاهي انجام شده به اثبات رسيده است. در اين روش، رشته‌هاي فيبرنوري از جنس پلي‌آميد عايق گرما در بين لايه‌هاي مختلف پانل كامپوزيتي و يا سيلندر، به‌صورت مارپيچ نصب شده و انتهاي فيبرها به وسيله كانكتورهاي ST به‌هم متصل مي‌شوند. همچنين از تعدادي حسگر در مركز پانل براي اندازه‌گيري كشش نقطه‌اي در جهت‌هاي افقي و عمودي استفاده مي‌شود. فيبرنوري و حسگرها، به‌وسيله نگهدارنده‌هاي رزين، در بالاي لايه‌ها قرار داده مي‌شوند و بخشي از حسگرها براي اتصال‌هاي بعدي از لامينت بيرون مي‌ماند. بعد از اينكه قراردادن حسگرها كامل شد، پانل كامپوزيت و سر حسگر خارجي كانكتورها و ساير تجهيزات، با دقت در يك صفحه فلزي قرار گرفته و درون ظرف خلاء قرار داده مي‌شود. از يك بالشتك پوشش‌دهنده فلزي جدا از سطح كامپوزيت براي حفظ يكنواختي (يكسان بودن) سطح پانل در طول عمليات استفاده مي‌شود، پانل‌ها 2 ساعت در دماي 120 درجه تحت خلاء 26-29) قرار داده مي‌شود. پانل كامپوزيت براي بررسي حالات بالقوه خرابي ناشي از ضربه به 2 روش مورد آزمايش قرار مي‌گيرد. روش اول، شامل بررسي دامنه نوسان تغييرات نور به‌عنوان شاخص عملكرد كشش و كرنش و در روش دوم كشش متمركز در پانل به‌عنوان شاخص بارگذاري اندازه‌گيري مي‌شود. آزمايش اول، شامل اندازه‌گيري كشش (كرنش) پانل توسط تست هيدروستاتيك است. در اين روش، بر روي مخزن سوخت، با اعمال فشارهاي مختلف، از يك بازتاب سنج دامنه زماني اپتيك با دقت يك دهم ميلي‌متر براي اندازه‌گيري طول فيبر به‌عنوان شاخص فشار استفاده مي‌شود. به‌عنوان مثال، نتايج آزمايش نشان مي‌دهد در فشار متغير بين صفر تا 24820KPa حداكثر تا 4 ميلي‌متر بر طول فيبر اضافه مي‌شود. در انجام آزمايش دوم، ابزاري چكش مانند براي ضربه زدن به مركز پانل به‌كار مي‌رود. در اين روش، پانل كامپوزيت با استفاده از يك نگهدارنده گوشه‌اي در يك طرف و با سر آزاد در سمت ديگر، ثابت نگه داشته مي‌شود. در اينجا خروجي مبدل نور به‌عنوان شاخص ميزان تغيير از حالت بدون تنش (بدون فشار) تا كاملاً پرتنش (فشار ايجاد شده توسط نيروي به‌كار رفته در سمت آزاد) اندازه‌گيري و خرابي ايجاد شده، قابل مشاهده خواهد بود. تجهيزات به‌كار رفته در اين آزمايش كه آن را «آزمايش ضربه چكش» مي‌نامند، شامل يك فيكسچر با پايه عمودي براي حفظ پانل كامپوزيت و ابزاري چكش مانند براي ايجاد نيروي ضربه‌اي به پانل است. اين ابزار، طوري طراحي شده است كه بتواند به ارتفاع عمودي بالاي نقطه تماس پانل رسيده و سپس با حركتي نوساني به پانل اصابت كند. براي اندازه‌گيري اندازه ضربه ايجاد شده قبل از برخورد در نوك ابزار، اين وسيله به يك مكانيزم زمان‌سنج ليزري براي اندازه‌گيري نيرو، مجهز است. يك سيستم پشتيباني فيبر نوري3 (Foss I) كه يك نوسان سنج (اسيلسكوپ) را براي اندازه‌گيري كشش در يكي از حسگرها تغذيه مي‌كند نيز در اين آزمايش به‌كار مي‌رود. نحوه كاربرد اين فيبرها در هنگام استفاده از وسيله نقليه به‌عنوان شاخص كنترل عملياتي مخزن، اين گونه است كه تعدادي فيبر با الگوي معين در مخزن جايگذاري شده كه طول آنها در طول فرايند سوخت‌گيري قابل كنترل بوده و مي‌توان تغييرات كلي در طول فيبر را كنترل كرد. يك اندازه‌گيري اوليه از فشار به طول فيبر قبل از به‌كار بردن مخزن بايد انجام شود. در بلندمدت، در هر بار سوخت‌گيري و يا بروز تغييرات و همچنين خرابي ناشي از ضربه خارجي، مي‌بايستي كنترل شود. آزمايشات انجام شده نشان مي‌دهند كه طول فيبر شاخص دقيقي از كشش (كرنش) در مخزن كامپوزيت است. گفتني است كه در هر سيكل، شيب فشار دقيقاً ثابت مي‌ماند. تغييرات در شيب، شاخص هر تغييري در شرايط مخزن كامپوزيتي است. از اين رو به وسيله كنترل شيب فشار و طول فيبر همراه با آزمايشات ساختاري مخزن، مي‌توان حدود تغييرات شيب مجاز براي حفظ شرايط عملكردي سيلندر را تعيين كرد. تست آلتراسونيك (فراصوت) از تست‌هاي آلتراسونيك اغلب در تشخيص عيوب داخل مواد و قطعات استفاده مي‌شود. همچنين مي‌توان اين آزمايش را براي مشخص كردن ترك‌هاي سطحي كوچك ايجاد شده در قطعات و مواد به‌كار برد. در روش تست غيرمخرب آلتراسونيك، از انرژي ارتعاشي مكانيكي با فركانس بالا براي شناسايي و تعيين محل ناپيوستگي (انفصال) در ساختار و يا تفاوت در گونه‌هاي مواد استفاده مي‌شود. اين امواج، ماهيت الاستيك دارند. براي مثال، محدوده شنوايي انسان بين 20 هرتز تا 20 كيلوهرتز است، اما امواج الاستيك مي‌توانند فركانسي تا 500 ميليون هرتز را نيز توليد كنند. نحوه توليد اين امواج به‌وسيله برخي مواد بلوري است كه داراي خاصيت پيزوالكتريك بوده و هنگامي كه ولتاژي به سطوح آنها اعمال شود، تغيير بعد مي‌دهند. ايجاد كرنش در اين بلورها، باعث به‌وجود آمدن ميداني الكتريكي در آنها مي‌شود كه اندازه آن متناسب با مقدار تغيير بعد است. اين مواد، مبناي كار مبدل‌هاي الكترومكانيكي هستند. كوارتز طبيعي، اولين ماده پيزو الكتريكي است كه در اين زمينه به‌كار گرفته شده است. تكنيك‌هاي بازرسي ماوراي صوت، شامل دو دسته عمده ذيل هستند: 1. از طريق برخورد مستقيم موج با قطعه و اندازه‌گيري با تماس بين قطعه مورد آزمايش و تستر از طريق لايه واسطه نازكي از مايع و اندازه‌گيري زاويه انعكاس و درجه ميرايي موج 2. از طريق غوطه‌ورسازي قطعه مورد آزمايش در آب، در اين روش قطعه مورد آزمايش در يك مخزن آب غوطه‌ور شده و تستر در بالاي قطعه درون آب قرار مي‌گيرد. نحوه كاربرد امواج فراصوتي در آزمايش مخازن به اين صورت است كه در تستر، يك پالس الكتريكي ايجاد شده و به مبدل منتقل مي‌شود اين مبدل پالس الكتريكي را تبديل به ارتعاش مكانيكي مي‌كند و ارتعاشات با انرژي پايين، از بين يك مايع كه مخزن در آن غوطه‌ور است، عبور مي‌كند. در اينجا، به تناسب انرژي ضعيف، پراكنده، منعكس و يا براي نشان دادن شرايط ماده، تشديد مي‌شود. انرژي صوتي بازتابيده يا تشديد شده مجدداً به وسيله مبدل به انرژي الكتريكي تبديل شده و به تستري كه قبلاً در آن تقويت شده بود، بازمي‌گردد. محل و دامنه انعكاس موج، شرايط ماده مورد تست را نشان مي‌دهد. در دو سيلندر آراميد ـ آلومينيم كه در يك آزمايش به وسيله تست آلتراسونيك عكسبرداري شده است، يكي از سيلندرها در فشار بالا و دماي پايين، تست شده و ديگري به‌عنوان سيلندر كنترل به‌كار رفته و مورد آزمايش قرار گرفته است. اين سيلندرها با پالس بازتابي ماوراي صوت، اسكن شده‌اند. داده‌هاي تست آلتراسونيك در قسمت استوانه‌اي هر سيلندر، با كاربرد يك پوب 1 اينچ، 1مگاهرتز جمع‌آوري شده است. شكل 2 چگونگي قرار دادن مبدل در سيلندر، نحوه به دست آوردن داده‌ها و ناحيه اسكن شده را نشان مي‌دهد. در نماي تست آلتراسونيك، قسمتي از قطعه نشان داده شده كه نشان‌دهنده موقعيت افقي و عمودي ترك‌هاي موجود است. عمق ترك با سايه‌هاي خاكستري و رنگي نشان داده شده است. در روش غوطه‌ورسازي، آب به‌عنوان واسطه ارتباطي عمل كرده و پروب را مي‌توان به سهولت براي اندازه‌گيري و به دست آوردن داده‌ها با هدف تجزيه و تحليل آنها به‌كار برد. بيشترين دامنه منعكس شده، نشان‌دهنده لايه‌لايه شدگي داخل كامپوزيت است كه با رنگ سفيد نشان داده شده است. كمترين دامنه منعكس شده، نشان‌دهنده ناحيه‌هايي با حدود مطلوب است كه با رنگ سياه در شكل نشان داده شده است. شكل 1: نماي سيلندر كامپوزيت با پوشش فيلامان آراميد ـ آلومينيم در آب، در اسكنر آلتراسونيك شكل 2: شكل كلي فرايند آماده‌سازي و تنظيم سيلندر كامپوزيت آلومينيم با فيلامان آراميد در زمان انجام تست آلتراسونيك نتايج در اين مقاله، دو روش ارزيابي غيرمخرب سيلندرهاي كامپوزيتي بررسي شد. هر يك از اين دو روش از لحاظ قدمت استفاده، متفاوت هستند به‌طوري كه از تست آلتراسونيك به‌عنوان ابزار قديمي كنترل محصول در حين و يا در مراحل پاياني توليد استفاده مي‌شود، اما با بروز آوري اين تست، همچنان جايگاه آن به‌عنوان ابزار قوي و الزامي كنترل نهايي مخازن حفظ شده است. اين درحالي است كه استفاده از فيبر نوري در كنترل مخازن به دليل هزينه بالا و محدوديت‌هاي تكنولوژيكي، همچنان در مراحل آزمايشگاهي قرار دارد. البته از لحاظ مزيت كنترل در حين عملكرد مخازن مجهز به حسگرهاي فيبر نوري و دارا بودن قابليت اطمينان مناسب، پيش‌بيني مي‌شود كه در آينده كاربرد اين روش بيش از پيش مورد توجه قرار گيرد. شكل 3: نماي 2 سيلندر تست: يك سيلندر كه در 1000 سيكل فشار و تبريد آزمايش شده و سيلندر ديگر كه براي كنترل استفاده شده و آزمايش روي آن انجام نشده است. پانوشت‌ها: 1 . Shearography 2 . Delamination 3 . Fiber Optic Support System منابع: 1. آزمون‌هاي غيرمخرب، بري‌هال، ورنون جان، مترجم: دكتر مجتبي ناصريان ريابي 2. Analysis And Experimental Testing of Insulated Pressureveessels For Automotive Hydrogen Storage, S. M. Aceves J. Martinez– Frias Lawrence Livermore National Laboratory Centro de Ingenieria y Desarrollo Industria. 3. Smart Onboard Inspection Of High Pressure Gas Fuelcylinders J. ichael Starbuck and Dave L. BeshearsOak Ridge National Laboratory* 4. A. J. Rogovsky, “Ultrasonic and Thermographic Methods for NDE of Composite Parts,” Materials Evaluation, 43 (5), 547 (1985) 5. K. L. Reifsnider, “Feasibility of Useful Real– Time In- Process Evaluation of Laminates,” Polymer NDE, Technomic Publishing Co., Lancaster, PA, 1986, pp. 104- 115.
×
×
  • اضافه کردن...