seyed mehdi hoseyni 27119 اشتراک گذاری ارسال شده در 25 آبان، ۱۳۹۳ 1-7 مقدمه در اوايل دهه 1960 ادوات وكنترلر هاي الكترونيكي جايگزين كنترلرهاي نيوماتيكي شدند كه از مزاياي اين كنترلر هامي توان سرعت و دقت زياد و كم حجم بودن آنها را نام برد. طولي نكشيد كه كامپيوترهاي ديجيتال كه قابليت پردازش لوپها ي كنترلي را داشتند، جايگزين كنترلرهاي الكترونيكي شدند. كامپيوتر مركزي پس از دريافت تمام متغير هاي پروسسي از طريق وروديها و دستورات صادره توسط اپراتور از طريق صفحه كليد ، آنها را طبق برنامه كنترلي از قبل نوشته شده پردازش و نتايج اين پردازش را از طريق خروجيها به محركهاي نهايي كنترل اعمال مي كنند. اين نوع كنترل اصطلاحا DDC (Direct Digital Control) ناميده مي شود و در آن اپراتور توسط يك صفحه كليد و يك نمايشگر VDU(Visual Display Unit) با سيستم ارتباط بر قرار مي كند. كامپيوتر مركزي قابليت پردازش حجم زيادي از متغير هاي زماني وپروسسي را دارد ولي با افزايش بيش از حد اين اطلاعات، سرعت و كارايي كامپيوتر پايين آمده و به كامپيوتري با ظرفيت و سرعت زياد نياز مي شد و اگر كامپيوتر مركزي از كار مي افتاد باعث از كار افتادن كل سيستم كنترلي و پروسس مي شد. DCS در واقع تكميل شده و توسعه يافته سيستم كنترل مركزي يا همان DDC مي باشد، كه سطوح مختلف كنترلي در آن بيشتر و تكميل تر مي باشد. در اين سيستم متغير هاي اندازه گيري شده توسط سيگنالهاي آنالوگ (ولتاژ،جريان و...) به كارتهاي ورودي DCS منتقل و اين سيگنالها پس از تبديل به معادل ديجيتال جهت پردازش وارد سيستم مركزي كنترل مي شوند و در رابطه با سيگنالهاي خروجي نيز نتايج پردازنده مركزي كنترل بصورت ديجيتال به كارتهاي خروجي ارسال و در آنجا پس از تبديل اين سيگنالها به آنالوگ،به محرك ها اعمال مي شوند. در پايين ترين سطح اين سيستم (Process Controller) كار اندازه گيري متغير هاي پروسسي، كنترل لوپها توسط كنترلر هاي ميكروپروسسوري، اجراي Logic ها ، جمع آوري اطلاعات و آناليز آنها ، محاسبات و ارتباط با وسايل و ادوات ديگر انجام مي شود . كارهاي انجام شده در پايين ترين سطح توسط اپراتورها قابل كنترل بوده و توسط يك Supervisor مشاهده و قابل ثبت مي باشد. در سيستم DCS از كار افتادن هريك از قسمتهاي كنترلي تاثير آنچناني بر پروسه كنترلي نداشته است و حتي با از كار افتادن سطوح بالا، سطوح پايين كه شامل Process Controller ها مي باشد، مي تواند كار كنترلي را ادامه دهد. در DCS سيگنال راه اندازه گيري شده و سيگنال ارسالي به ادوات توسط يك جفت سيم به ورودي و خروجيهاي Process Controller وصل مي شوند و ارتباط اين سطح باسطوح ديگر از طريق بزرگراههاي اطلاعاتي و شبكه خاص خود سيستم (Data Highway & Plant Network) صورت مي گيرد و باعث كاهش هزينه سيم كشي و امكان اضافه نمودن ادوات بيشتر و ارتباط ادوات اضافه شده با ادوات موجود از طريق اين بزرگراههاي ارتباطي را مي دهد و بدين ترتيب توسعه سيستم آسانترو با كمترين هزينه صورت مي گيرد. Figure 7-1:Control Systems' Evolution اساس كار كنترلرهاي PLC ميكروپروسسوري بوده و شبيه سيستمهاي كنترل مركزي و DCS عمل مي كنند ولي با قابليت هاي محدودتر و كمتر. اين نوع كنترلر ها جهت كنترل قسمتي از پروسس واحد كه مي تواند مستقل از كل واحد كار كرده و پروسه پيچيده اي ندارد، بكار رفته و جايگزين رله ها و تايمرهاي الكترومكانيكي شده و جهت اجراي برنامه هاي ترتيبي(Sequential) و گسسته (Discrete System) استفاده مي شوند. با وجود پيشرفتهاي زيادي كه تا كنون در زمينه ساخت و بكارگيري سيستم هاي كنترلي صورت گرفته ولي كنترلرهاي PLC هنوز كاربرد داشته و همراه سيستمهاي جديد بخشي از واحد پروسسي را كنترل مي كنند. 3 لینک به دیدگاه
seyed mehdi hoseyni 27119 مالک اشتراک گذاری ارسال شده در 25 آبان، ۱۳۹۳ نحوه عملكرد سيستم كنترل FCS در مقايسه با DCS 1-2-7 معرفي سيستم كنترل Fieldbus FCS) Fieldbus Control System) جديدترين تكنولوژي سيستم كنترل دردنيا مي باشد ، كه بعد از DCS به بازار آمده است. استاندارهايي در ارتباط آنالوگ(4-20mA و يا 1-5V ، براي سيگنال الكترونيكي و 3-15psi براي سيگنال نيوماتيكي) جهت انتقال سيگنال كنترل و ابزارهاي اندازه گيري ، از ادوات فيلد به اتاق كنترل وجود دارد. اما Fieldbus يك ارتباط ديجيتال با پروتكل خاص خود مي باشد. اين پروتكل متفاوت با ساير پروتكل ها مي باشد، زيرا در پروتكل هاي ديگر هدف فقط انتقال اطلاعات بوده ولي در طراحي پروتكل FCS اهداف كنترلي و كاربرد فرايند هاي فرايندي منظور شده و هدف صرف ارتباط ديجيتال نمي باشد. بحث ارتباط هوشمند در اواسط دهه 80 ، تحول مهمي در زمينه ارتباط ديجيتال ايجاد كرد. به بيان ساده ، Fieldbus يك شبكه ارتباطي دو طرفه سريال و تمام ديجيتال با پروتكل Multi-drop ما بين ادوات و وسائل ابزار دقيقي هوشمند فيلد (Intelligent Field Device) همچون سنسورها (Sensors) ، عملگرها (Actuators) ، ترانسميترها (Transmitters) و... با كنترلر و كنترل مركزي مي باشد و هدف در اين سيستم توزيع كار كنترلي و استراتژي كنترل در كل ادوات فيلد مي باشد. IEC(International Electrotechnical Commission) پروتكل هاي زير را براي فيلد باس معرفي كرده است: • Foundation Fieldbus and HSE • Controlnet • Profibus and Profinet • P-NET • WordFIP • INTERBUS • SwiftNet Foundation Fieldbus) FF) از استاندارهاي معروف فيلد باس است كه در سال 1994 جهت اهداف زير معرفي شدو اين بخش به تو ضيح در مورد اين استاندارد اختصاص دارد: 1.ترقي دادن فيلد باس و گسترش آن هم براي راحتي مصرف كننده و هم براي توليد كننده 2.رسيدن به يك استاندارد مناسب و هماهنگ Figure 2-1 به دليل سرعت تحولات و پيشرفت صنعت، بخصوص صنعت كنترل، سريع بوده و روز به روز سيستمهاي پيشرفته تري توليد مي شود و سيستم هاي قبلي و قديمي (Pneumatic&DCS) از رده خارج مي شوند، لذا از نظر آينده نگري و خصوصا از نظر اقتصادي طبيعي. منطقي به نظر مي رسد كه بجاي انتخاب سيستمي كه در حال از رده خارج شدن مي باشد و در سه يا چهار سال آينده مشكل قطعه يدكي و سرويس دهي از طرف سازندگان را خواهد داشت، سيستمي را انتخاب كرد كه حداقل با اين سرعت پيشرفت تا دو دهه ديگر نگراني مشكلات تعويض و از رده خارج شدن را نداشته باشد. شبكهFieldbus شبيه LAN بوده و تركيبي از سگمنتها مي باشد و هر سگمنت به يك كارت كنترلي به نام H1 متصل مي باشد و قابليت اتصال چند وسيله ابزار دقيقي را فقط با يك جفت سيم فراهم مي كند وجايگزين سيستم Tranditional point-to- point) 4-20mA) شده است كه براي هر تجهيز فيلد يك جفت سيم بكار مي رود. سيگنال Fieldbus به وسيله سوار شدن بر روي يك ولتاژ مستقيم كه وظيفه تغذيه ادوات Fieldbus را دارد، منتقل مي شود. انجام اين كار بوسيله دستگاهي به نام Power Condition كه مابين منبع تغذيه و شبكه Fieldbus قرار دارد، صورت مي گيرد و كنترل اين تبديل از طريق سيستم برنامه ريز گذرگاه به نام LAS(Link Active Scheduler) انجام مي شود. سيگنالهاي FCS با استفاده از يك تكنيك خاص، تبديل به كد مي شود. اين سيگنال “ سيگنال سنكرون “ ناميده مي شود. 2-2-7 مدل مرجع OSI) Open system Interconnect) لايه هاي مدل OSIدر شكل 2-2 نشان داده شده است،در فيلد باس سه لايه هاي 3,4,5,6 از مدل مرجع OSI حذف شده است و مورد استفاده قرار نمي گيرد و همچنين لايه كاربر نيز در مدل OSI نبوده در حاليكه در مدل تعريف شده براي فيلد باس وجود دارد بنابراين تكنولوژي فيلد باس شامل سه لايه است: 1)لايه فيزيكي 2) لايه پشته ارتباطات 3)لايه كاربردي 1-لايه فيزيكي :اين لايه مكانيسمي براي ارسال و دريافت سيگنالهاي الكتريكي بين قطعات فيلد باس مي باشد كه اطلاعات در قالب منتطق 0 و 1 از يك نقطه شبكه به نقاط ديگر ارسال مي شد. اين لايه اطلاعات را ازلايه پشته مي گيرد. سپس به سيگنال الكتريكي تبديل مي كند و روي باس قرار مي دهد و بالعكس. 2- لايه پشته ارتباطات(DLL): لايه تنظيم اطلاعات و تعيين تقدم و صف بندي اطلاعات را برعهده دارد. اين كار توسط قسمتي به نام LAS(Link Active Scheduler) انجام مي گيرد. LAS شامل ليستي از نوبت بندي ارسالي از تمام قطعات فيلد باس مي باشد كه مي بايست اطلاعات خود را ارسال نمايند. هنگاميكه زمان ارسال اطلاعات يك ابزار فرا مي رسد LAS يك پيغام Compel Data به آن ابزار ارسال مي كند. پس از دريافت CD ، آن ابزار بافر خود را به تمامي قطعات فيلد باس ارسال مي كند. LAS مي تواند پيغام ديگري به نام PT(Pass Token)را نيز به ابزارات فيلد باس ارسال نمايد در اين حالت وسيله اي كه PT را دريافت كرده است اجازه دارد تا زمانيكه كارش تمام شود يا حداكثر زمان نگهداري پايان يابد اطلاعات خود را ابزارات ديگر فيلد باس ارسال نمايد. دو زير لايه FAS و FMS(Fieldbus Message Specification)نيز بر روي DLL قرار دارند. 3-لايه كاربر: اين لايه شامل بلوك هايي است كه هر يك از اين بلوكها معرف توابع كاربري خاصي هستند كه در ادامه اين بخش توضيحات مختصري درباره اين بلو كها داده خواهد شد. فيلد باس را مي توان به سه دسته زير تقسيم كرد: Low-Speed Fieldbus) FF-H1) High-Speed Fieldbus) FF-H) High- Speed Ethernet) HSE) Foundation Fieldbus H1 ، با سرعت انتقال داده 31.25KHz، براي اجراي بيشترين الگوريتم كنترل ،باندازه كافي سريع نيست.براي اين منظور،يك لايه ارتباطي سريعتر داخل Foundation Fieldbus وجود دارد: كه آن فيلدباسهاي بر مبناي Fast-Ethernet مي باشد. اما فيلدباس H1،در برخي كاربرد ها با موفقيت عمل مي كند. 3-2-7 توپولوژيهاي فيلدباس چندين توپولوژي ممكن براي شبكه فيلد باس وجود دارد.اين بخش تعدادي از توپولوژيهاي ممكن را نشان داده و در مورد خصوصيات هر يك توضيحاتي داده است.شكل 3-2 چهار توپولوژي را نشان مي دهد كه در زير در مورد هركدام شرح داده مي شود: Daisy-Chain Tree Topology Point to Point Spur Topology Figure 2-2 Daisy Chain Topology اين توپولوژي به معني اتصال چند وسيله فيلد به يك خط Trunk به صورت سري، بدون داشتن ارتباط شاخه اي يا گرفتن T مي باشد دراين نوع از توپولوژي امكان اضافه و يا كم كردن ادوات بطوريكه ديگر ادوات از سرويس خارج نشوند وجود ندارد و به همين دليل از اين توپولوژي به ندرت استفاده مي شود.(شكل 3-2) Figure 2-3 Tree Topology اين توپولوژي زماني بكار برده مي شود كه چند وسيله ابزار دقيقي از نظر فيزيكي كاملا نزديك هم با شند. ارتباط اين چند وسيله مستقيما توسط ارتباط Trunk از FCS Junction Box نزديك ادوات ، به كارت H1 صورت مي گيرد.(شكل4-2) Figure 2-4 Spur Topology اين توپولوژي ممكن است زماني بكار رود كه چند وسيله در يك مسير ( نه ضرورتا نزديك هم) قرار گرفته باشند. خط Trunk(شاه سيم) از Host شروع و تا آخرين وسيله فيلد ادامه پبدا مي كند و هر يك از ادوات توسط ارتباط T به اين خط وصلمي شوند.(شكل 5-2) Figure 2-5 Point-to-Point Topology اين توپولوژي شامل يك سگمنت است كه تنها دو تجهيز دارد.و مطابق شكل زير است.(شكل 6-2) Figure 2-6 شكل زير تركيبي از چهار توپولوژي ذكر شده نشان مي دهد: Figure 2-7 با توجه به تعاريف فوق بهترين نوع اتصال ادوات FCS توپولوژي Tree مي باشد. به دلايل قيد شده در ذيل ، تعداد ادوات قابل اتصال به هر Segment محدود مي باشد. كيفيت سيگنال با افزايش تعداد ادوات متصل به يك سگمنت در مجموع طول كابل افزايش مي يابد ، اين طول تبايد بيشتر از 1900 متر و حداكثر طول يك Spur (در عمل) نبايد بيش از 120 متر باشد و اين طول در كيفيت سيگنال تاثير دارد. جريان و ولتاژ اعمالي توسط منبع تغذيه ، ولتاژ دريافتي هروسيله بايد مابين 9 تا 32 ولت مستقيم باشد. تعداد ادوات واقع در هر سگمنت FCS نيز وابسته به منبع ولتاژ منبع تغذيه ، مقاومت خط و جريان مصرفي ادوات محدود مي شود . انتها ي هر كابل با يك Terminator با امپدانس 100Ω محدود مي شود. اين امر كابل اينسترومنتي را به عنوان يك مسير انتقال متعادل جهت انتقال يك سيگنال با فركانس نسبتا بالا با كمترين اعوجاج و نويز ممكن مي سازد. ادوات Fieldbus مجهز به سيستم ميكروپروسسوري بوده و مي توانند بخشي از كار كنترلي را به عهده بگيرند. اين عمل با بارگذاري بعضي از توابع كنترلي (Function Block)FB در حافظه اين ادوات ممكن مي گردد. اين بلوك ها در مجموعه اي به نام Function Block Library قرار داده شده اند و به عنوان ابزاري قدرتمند در رسيدن به اهداف كنترل فرايند به كار گرفته مي شوند. هرچه تعداد اين بلوك هاي بازگذاري شده در ادوات يك سگمنت بيشتر باشد، به همان نسبت حجم اطلاعات ارسالي و دريافتي بيشتر و در نهايت پردازش آنها زمان بر خواهد بود. زمان اجراي عمليات كنترلي در هر لحظه ، فاصله زماني ورود يك سيگنال از يك ورودي آنالوگ تا خروج سيگنال از يك خروجي آنالوگ در يك حلقه كنترلي مي باشد. براي هر سگمنت يك بازه زماني تعريف مي شود كه اين بازه بايد براي اجراي عمليات كنترلي و جابجايي كليه اطلاعات موجود برروي آن سگمنت كافي باشد. واضح است كه هر چه تعداد ادوات در يك سگمنت زياد باشد به زمان زيادي جهت اجراي عمليات كنترلي و جابجايي اطلاعات نياز خواهد بود. براي بالا بردن ضريب اطمينان(Risk assessment) و بخاطر اينكه در مواقع بروز مشكل براي يك وسيله ، حلقه هاي كنترل زيادي از سرويس خارج نشوند، براي هر سگمنت فقط يك حلقه كنترل در نظر مي گيرند و بقيه ادوات متصل به سگمنت كار غير كنترلي داشته و يا به عنوان Indicator بكار بردن مي شوند. در نتيجه در تعداد ادوات اتصالي به يك سگمنت محدوديت وجود خواهد داشت. كارتهاي ورودي/ خروجي سريال (Serial I/O) در FCS كه كارتهاي H1 ناميده مي شوند، جايگزين كارتهاي ورودي/ خروجي 4-20mA (Traditional I/O) در DCS شده اند. كارتهاي H1 كا ارتباط ادوات فيلد را با شبكه FCS بر قرار مي كنند،نياز به مارشالينگ كابينت و سيم بندي خاصي ندارند و در حال حاضر مي توان تا 16 دستگاه از ادوات فيلد را به آن وصل نمود، ولي هيچكدام از سازندگان Fieldbus قرار دادن بيش از 10 دستگاه از ادوات فيلد را توصيه نكرده و تضمين نمي كنند. 3 لینک به دیدگاه
seyed mehdi hoseyni 27119 مالک اشتراک گذاری ارسال شده در 25 آبان، ۱۳۹۳ مقايسه DCS & FCS و مزايا و معايب آنها نسبت به يكديگر: FCS براي راهبري اهداف كنترلي از FB هاي استاندارد شده مانند AI (Analog Input)،AO Analog Outputو PID استفاده مي كند. همانطور كه گفته شد اين FB ها در حافظه ادوات فيلد بارگذاري مي شوند. با اين عمل سيستم كنترل از اتاق كنترل به فيلد منتقل گشته و به تبع آن باعث كاهش سخت افزار مي گردد.(شكل 1-3) Figure 3-1:Function Block با اينكه ادوات كنترل پروسسي داراي پايداري بالاو احتمال خراب شدن آنها كم مي باشد، ولي با اين وجود اين احتمال وجود دارد و مي توان در طراحي سيستم كنترل اين خطا را تا حد زيادي كاهش داد: اولا با ايجاد سطوح مختلف كنترلي و قرار دادن ادوات تك در پايين ترين سطح، ثانيا ايزوله كردن آنها از سطوح بالاتر توسط Barrier يا Isolator جهت جلوگيري از انتقال خطا به سطح بالاتر، ثانيا قرار دادن اغلب سخت افزارهاي سطوح بالاتر بصورت Redundancy .(شكل2-3) Figure 3-2 براي فيلد باس H1 جداسازي خطاي سيم بندي بكار رفته است. بدين معني كه جهت اطمينان بيشتر ادوات در چندين شبكه (H1 Segment) مستقل تقسيم مي شوند كه در صورت بروز خطا در ادوات يك لوپ، فقط در همان شبكه H1 اين خطا محدود مي شود. كه البته اخيرا كارتهاي H1 نيز به صورت Redundancy طراحي و توليد شده است. مهمترين سوال اين است كه در صورت قطع سيمي كه تا ده وسيله به آن وصل است چه اتفاقي مي افتد؟ در صورت بروز خطا در يك كارت ورودي / خروجي (4-20mA I/O Card) سيستم DCS كه اغلب Redundant نيز مي باشد، باعث از سرويس خارج شدن آنها مي شود و اين روند در FCS نيز با قطع يك جفت سيم وجود دارد كه در صورت قرار گرفتن حتي شانزده وسيله(هشت لوپ) در يك سگمنت(H1) هر هشت لوپ از سرويس خارج خواهد شد، كه اين درمقوله از پايداري نسبت پايداري هردو يكسان مي باشد. بطور خلاصه اينكه با بروز يك خطا در هر دو سيستمFCS و DCS احتمال از سرويس خارج شدن هر هشت لوپ وجود دارد. در DCS جهت لوپهاي حساس و مهم اغلب كارتهاي Redundant I/O در نظر مي گيرند و در صورت بروز خطا در سيم واقع شده در فيلد يك لوپ از سرويس خارج مي شود كه اين كار در FCS نيز با قرار دادن تعداد كمتري از لوپهاي مهم (حداكثر دو لوپ) در يك شبكه FCS(H1 Redundancy) امكان پذير بوده و از اين لحاظ نيز مشاهده مي شود كه ضريب پايداري(در صد خطا) همچون DCS مي باشد. در صورت عدم استفاده از كارتهاي H1 به صورت Redundant ، جهت بالا بردن ضريب اطمينان و ايمني ، تركيب I/O ها طوري در نظر گرفته مي شودكه در هر كارت H1 بيش از يك لوپ كنترلي- شامل يك Control Valve و يك ترانزميتر قرار نگرفته باشد و ساير I/O هاي باقيمانده در كارت H1 به منظور كارهاي غير كنترلي يا نشان دهنده استفاده مي شود. با طراحي و توليد كارت H1 به صورت Redundant و گذرندن مراحل تست و اخذ تاييديه كميته FCS مي توان تعداد لوپها ي كنترلي در نظر گرفته شده در يك كارت H1 و يك سگمنت را تا دو لوپ كنترلي افزايش داد. مهمترين مزيتي كه تجهيزات فيلد در FCS دارند اين است كه در صورت بروز خطاي خروجي آن وسيله به حالت Fail Safe رفته و فرمانهاي متناسب با شرايط مستقل از اپراتور و كنترلر مركزي را صادر مي كند و ممكن است به حالت از قبل مشخص شده رفته و يا در موقعيت مطمئن ( يا آخرين مقدار) قرار گيرد ، و اين عمل (Fail safe) ممكن است در صورت بروز خطا در سنسور، خود وسيله ويا ارتباط وسيله با كنترل مركزي صورت گيرد و تمام اين خطا ها به اپراتور گزارش مي شود (حتي قطع هواي ابزار دقيق ارسالي به سر Control Valve) . در DCS اين قابليت ها محدود بوده و در صورت بروز خطا مثلا در ترانسميتر ممكن است حداكثر يا حداقل را در خروجي قرار دهد كه از قبل بايستي توسط يك سوئيچ سخت افزاري در آن تنظيم شود. Figure 3-3 مزاياي ديگر عبارتند از: كاهش تعداد Barrier هاي مورد استفاده در داخل كابينت ها. كاهش سيم كشي و سيم بندي در داخل كابينت ها و درفيلد و به تبع موارد فوق كاهش حجم كابينت هاي مارشالينگ (Marshaling Cabinets) كنترل ((Control Cabinet نسبت به DCSو DDC. كاهش سيم كشي در فيلد و به تبع آن كاهش متعلقات سيم كشي شامل Tray،Boxو... صرفه جويي در هزينه و كاهش زمان نصب سيستم كنترلي و ادوات فيلد زمان Commissioning&Start-up در صورت صحيح بودن طراحي FCS تا يك هشتم مشابه ازنوعConventional نيز كاهش مي يابد. اعمال تغييرات Configuration سيستم Analog/Digital 10% سريعتر از سيتم آنالوگ مي باشد. خاصيت Interoperability ادوات FCS: قابليت بكار بردن ادوات مختلف فيلد باس در يك سيستم ، بطور مستقل از كارخانه سازنده، بطوريكه كوچكترين تغييري در عملكرد و آرايش همان سيستم ايجاد نشود. به دليل خاصيتInteroperability مي توان در خريد قطعات و توسعه واحد، اين قطعات را بابالا ترين كيفيت و قيمت نازل انتخاب كرد. اين امر بدليل كثرت توليد كنندگان و رقابت بين شركتهاي سازنده FCS مي باشد. جهت اضافه كردن يا بكار بردن ادوات سازندگان متفاوت در يك شبكه FCS،( بدون كم شدن از قابليت ها و توابع آن وسيله) نياز است تا برنامه اي از طرف سازندگان به خريدار ارائه گردد، كه اين برنامه به زبان DDL (Device Description Language) نوشته شده و قابل اجرا در تمام سيستمها ي كنترل مركزي FCS بوده و تمام اطلاعات لازم جهت شناساندن وسيله به كنترل مركزي Host را شامل مي شود. اين اطلاعات ابزاري براي كاليبره و عيب يابي وسيله بوده و شامل تمام بلوك هاي استاندارد مي باشد و همواره از طرف سازندگان، ويرايش جديد آن توسط افزودن توابع جديد به ادوات نصب شده قبلي ارائه مي شود. بنا به دلايلي كه در بالا قيد گرديد نيازي به نگراني بابت تهيه قطعات يدكي و انبار كردن آنها نمي باشد ، در نتيجه هزينه صرف شده بابت خريد Spar Part را مي توان تقليل داده و از انبار كردن قطعات اضافي صرف نظر كرد. قابليت توسعه و تغيير در اين سيستم (FCS) خيلي آسان بوده و نياز به كارتهاي I/O سيم بندي جديد، اضافه كردن فضاي داخل كابينت ها ، كارتهاي مبدل و .... نمي باشد. به توجه به دومورد اخير كه يكي از مهمترين مزاياي سيستم كنترلي FCS مي باشد، نيازي به خريد يك سيستم براي مجتمع هايي كه برنامه توسعه داشته باشند يا برنامه نصب آنها به تدريج صورت مي گيرد، نمي باشد. زيرا سيستم FCS قابليت رشد و توسعه در اندازه بزرگ را نيز دارا مي باشد. به دليل اطلاعات ديجيتالي و Handshaking كه با ادوات فيلد دارد، ديد وسيعي را نسبت به اين ادوات داشته و سيستم يكپارچه اي را تشكيل مي دهد.به عبارت ديگر در سيستم كنترلي DCS اطلاعات كنترلي كافي،ولي اطلاعات مديريتي نسبت به سيستم FCS كمتر مي باشد. ولي در سيستم كنترلي FCS علاوه بر اينكه اطلاعات كنترلي بيشتر از DCSبوده بلكه اطلاعات مديريتي خيلي بيشتر از DCS مي باشد، و در كل از ديدگاه مديريتي FCS نسبت به DCS، ديد وسيع و بيشتري را از نظر اطلاعاتي به مديريت مي دهد. ضمنا جهت بدست آوردن ضريب تصحيح و اعمال آن در اندازه گيري، لازم است تا دو متغير همزمان(فشار يا دبي همراه با دماي سيال) اندازه گيري شوند. با توجه به قابليت Multi-Variable ترانسميترهاي FCS،صرفه جويي قابل ملاحظه اي در خريد و نصب ادوات اندازه گيري مي توان انجام داد. در FCS علاوه بر سيگنالهاي اندازه گيري شده، اطلاعات كاملي از دستگاه نصب شده در فيلد در اختيار اپراتور قرار مي گيرد. اين اطلاعات شامل: زمان تغيير دستگاه طبق تشخيص خود دستگاه(Self Diagnostic)، اطلاعات كاليبراسيون شامل جدول زمانبندي و اطلاعات داده شده به خود دستگاه شامل : محل،زمان، روش،شخص كاليبره كننده و...،شرايط محيط،وضعيت PV, MV، به عهده گرفتن قسمتي از كار كنترلي توسط بلوك هاي (Function Block) كارهاي ديگر مي باشد با استفاده از بلوكهاي توابع استاندارد شده (Standard Function Block) SFB و انتقال آنها با استفاده از بلوكهاي توابع استاندارد (SFB) و انتقال آنها با استفاده از تكنولوژي FCS به فيلد و واگذاري بخشي از كارهاي كنترلي به ادوات فيلد ، بار كنترلي در اتاق كنترل و حجم اطلاعات تبادلي از ادوات فيلد با اتاق كنترل ،كاهش يافته كه يكي ديگر از مزاياي سيستم FCS به شمار مي رود. Figure 3-4 معايب فيلد باس يكي از معايب بزرگ فيلد باس گراني ابزارات دقيق آن مي باشد كه انتظار مي رود در آينده نزديك قيمت اين ادوات كاهش يابد. يكي ديگر از معايب فيلد باس محدود بودن تعداد ابزارات در يك شبكه فيلد باس است. 3 لینک به دیدگاه
seyed mehdi hoseyni 27119 مالک اشتراک گذاری ارسال شده در 25 آبان، ۱۳۹۳ انواع بلو كهاي استاندارد بلوكهاي متفاوتي با كاربردهاي مختلف در FCS وجود دارد كه در زير به توضيح برخي از آنها پرداخته مي شود: 1-4-7 Resource Block:اين بلوك (RB) مشخصات وسيله ابزار دقيقي همچون نام وسيله، سازنده و شماره سريال وسيله را بيان مي كند و فقط يك RB در هر وسيله موجود دارد. 2-4-7Function Block : اين نوع بلوكها (FB) رفتار كنترلي سيستم را فراهم مي سازد. چندين FB مي تواند در يك وسيله بارگذاري شود كه بعضي از آنها استاندارد بوده و كنترل اصلي و اساسي را بر عهده دارند. بلوكهاي استاندارد مي توانند بر حسب نياز و كاربرد در داخل ادوات فيلد بار گذاري شوند. براي مثال يك Temperature Transmitter ممكن است حاوي يك بلوك از نوع AI FB و يك Control Valve شامل يك بلوك PID FB و همچنين AO FB باشد. Figure 4-1 بنابراين يك لوپ كنترلي كامل مي تواند با بكارگيري يك ترانزميتر ساده و يك كنترل ولو، در سيستم فيلد باس تشكيل شود. در حالي كه در سيستمهاي كنترلي Traditional، در كنار ترانزميتر و كنترل ولو، به جهت عدم وجود مفهومي به نام Function Blocks، نيازبه يك كنترلر و در كنار آن مبدل جريان الكتريكي به فشار هوا ، جهت انجام عمل كنترلي داريم. لذا ملاحظه مي شود كه با بكارگيري ادوات فيلد ، لوپ كنترلي ، ساده و البته مطمئن تر مي شود. 3-4-7: Transducer Block: يك TB كار ارتباط بلوكهاي توابعي FBs را از I/O مورد نياز توابع سخت افزار و سنسورهاي دستگاه بر عهده دارد و شامل اطلاعاتي از قبيل تاريخ كاليبراسيون و نوع سنسور مي باشد هر ورودي /خروجي FB فقط شامل يك كابل TB مي باشد 4-4-7: Flexible Function Block: بلوكهاي FFB شبيه بلوكهاي FB بوده، مگر در كاربرد، سفارش، تعريف پارامترهاي بلوك و زمان لازم جهت اجراي بلوك ، كه جهت اجراي بلوك كه توسط ابزار برنامه نويسي مشخص و تعيين مي شود. FFB عموما جهت مقاصد كنترلي فرايندهاي گسسته و فرايندهاي گروهي Process) (Batch بكار مي روند و توسط اين بلوكها حتي مي توان كارايي يك سيستم PLC را نيز شبيه سازي كرد. عموما در معماري اتاق كنترل، تكنولوژي FCS را نمي توان بر كل سيستم در نظر گرفت و اعمال كرد. زيرا چندين سيستم در اتاق كنترل بكار برده مي شود كه از نظر سخت افزاري و نرم افزاري خواص و امكانات فيلد باس را ندارد، و يا بخشي از قابليت هاي فيلد باس را دارا مي باشند، از طرف ديگر تمام ادوات فيلد قابليت تكنولوژي FCS را نداشته و بعضي از آنها به DCS وصل مي شوند. به عنوان مثال با توجه به عدم وجود تكنولوژي FCS در مورد ورودي /خروجيهاي ON/OFF(سوئيچ ها) و با توجه به پروتكل خاص Vibration Transmitter ها ارتباط اين ادوات با سيستم كنترلي از نوع Traditional 4-20mA خواهد بود. همچنين با توجه به اينكه سيستم FCS گواهي و استاندارهاي لازم را در مورد ESD،Emergency Shut Down) (و Fir&Gas System تاكنون اخذ نكرده است ، لذا اين دو سيستم نيز از نوع Traditional خواهد بود. در حال حاضر سيگنالهايي كه قابليت اتصال به سيستم FCS را دارند شامل وروديهاي آنالوگ و براي ترانزميترها و بعضي آنالايزر ها و خروجيهاي آنالوگ براي Positioner ها و محركهاي الكتريكي مي باشد. 3 لینک به دیدگاه
ارسال های توصیه شده