رفتن به مطلب

ارسال های توصیه شده

مقدمه : نانوکامپوزيتهاي خاک رس / پليمر بهبود فوق‌العاده‌اي در بسياري از خواص فيزيکي و مهندسي پليمرهايي که در آنها از مقدار کمي پرکننده استفاده مي‌شود، ايجاد مي‌کند. اين تکنولوژي که امروزه مي‌تواند کاربرد تجاري نيز پيدا کند، توجه زيادي را طي سالهاي اخير به خود جلب کرده است. عمدة پيشرفت‌هايي که در اين زمينه بوقوع پيوسته، طي پانزده سال اخير بوده و در اين مقاله به اين پيشرفتها و همچنين مزيتها، محدوديتها و برخي مسايل و مشکلات آن خواهيم پرداخت.

 

 

هر چند اخيراً پيشرفتهاي عمده‌اي در توسعة روشهاي سنتزي و کاربرد آنها در پليمرهاي مهندسي صورت گرفته و تحقيقاتي نيز در مورد خيلي از خواص مهندسي آنها صورت گرفته، ولي با اينحال، براي فهميدن مکانيزم‌هايي که باعث افزايش کارايي در نانوکامپوزيتهاي مرسوم به الياف تقويت مي‌شوند، مزيتها و امتيازاتي دارد، ولي هنوز نتوانسته تاثيري در بازار کامپوزيتهايي که در آنها جزء اليافي درصد بالايي دارد، ايجاد کند.

موضوع فناوري نانو طي سالهاي اخير بطور فزاينده‌اي مطرح شده است. عرصة نانو، محدوده‌اي بين ابعاد ميکرو و ابعاد مولکولي است و اين محدوده‌اي است که دانشمندان مواد و شيميدان‌ها در آن به مطالعاتي پرداخته‌اند و اتفاقاً مورد توجه آنها نيز قرار گرفته است، مانند مطالعه در ساختار بلورها. ولي تکنولوژي که توسط علوم مواد و شيمي توسعه يافته و به نانومقياس معروف است، نبايد به عنوان نانوتکنولوژي تلقي شود. هدف اصلي در نانوتکنولوژي ايجاد کاربردهاي انقلابي و خواص فوق‌العاده مواد، با سازماندهي و جنبش آنها و همچنين طراحي ابزار در مقياس نانو مي‌باشد.

تعريف

نانوکامپوزيت‌هاي خاک­رس / پليمر يک مثال موردي از نانوتکنولوژي هستند. در اين نوع مواد، از خاک­رس‌هاي نوع اسمکتيت (Smectite-type) از قبيل هکتوريت، مونت موريلونيت و ميکاي سنتزي، به عنوان پرکننده براي بهبود خواص پليمرها استفاده مي‌شود. خاک­رس‌هاي نوع اسمکتيت، ساختاري لايه‌اي دارند و هر لايه، از اتمهاي سيليسيم کوئورانيه شده بصورت چهار وجهي که به يک صفحه هشت وجهي با لبه‌هاي مشترک از Al(OH) 3 يا Mg(OH) 2 متصل شده، تشکيل شده است. با توجه به طبيعت پيوند بين اين اتمها، انتظار مي‌رود اين مواد خواص مکانيکي فوق‌العاده‌اي را در جهت موازي اين لايه‌ها نشان دهند ولي خواص مکانيکي دقيق اين لايه‌ها هنوز شناخته نشده‌اند. اخيراً با استفاده از روشهاي مدل‌سازي تخمين زده شده که ضريب يانگ در راستاي لايه‌ها، پنجاه تا چهارصد برابر بيشتر از يک پليمر عادي است. لايه‌ها نسبت صفحه‌اي (aspect ratio) بالايي دارند و هر لايه تقريباً يک نانومتر ضخامت دارد، در حاليکه شعاع آن از سي نانومتر تا چند ميکرون، متفاوت مي‌باشد. صدها يا هزاران عدد از اين لايه‌ها بوسيله يک نيروي واندروالسي ضعيف، روي هم انباشته مي‌شوند تا يک جزء رسي را تشکيل دهند. با يک پيکربندي مناسب اين امکان وجود دراد که رس‌ها را به اشکال و ساختارهاي گوناگوني، درون يک پليمر، به شکل سازمان‌يافته قرار دهيم.

در گذشته، عمدتاً به اين شکل از دانه‌هاي رسي براي افزايش کارايي پليمر استفاده مي‌شود که آنها را در حد ميکروني خرد مي‌کردند تا از آنها در توليد پليمرهاي تقويت شده بوسيله پرکننده‌هاي در اندازه ميکرون، استفاده کنند. همانطور که در شکل 1 نشان داده شده.

مي‌توان تصور کرد که خواص مکانيکي فوق‌العاده لايه‌هاي منفرد در اجزاي خاک­رس نتوانند در يک سيستم به طرز موثري عمل کنند و پيوندهاي ضعيف بين دو لايه منشاء ايراد در اين کار مي‌باشد. معمول است که از ميزان بالايي از خاک­رس استفاده شود تا به بهبود کافي هر ضرايب دست يابيم، در حاليکه اين کار باعث کاهش استحکام و سختي پليمر مي‌شود.

clip_image002_0000.jpg

 

 

 

 

 

 

 

 

 

 

 

 

 

شکل 1: اصول کاربردي متفاوت در ساخت ميکرو و نانوکامپوزيت‌هاي رايج

اصلي که در نانوکامپوزيت‌هاي خاک­رس / پليمر رعايت مي‌شود، اين است که نه تنها دانه‌هاي رسي را از هم جدا مي‌کنند، بلکه لايه‌هاي هر دانه را نيز از هم جدا مي‌کنند (همانطور که در شکل 1 بصورت شماتيک نشان داده شده است) با انجام اين عمل، خواص مکانيکي فوق‌العاده هر لايه نيز بطور موثر بکار مي‌آيد و اين در حالي است که در اجزاي تقويت­شده نيز بطور چشمگيري افزايش پيدا مي‌کند، زيرا هر جزء رسي خود از صدها تا هزارات لايه تشکيل شده است.

ويژگيها نانوکامپوزيت­هاي خاک رس / پليمر

يکي از دستاوردهاي تحقيقات اين است که مشخص شده که بسياري از خواص مهندسي هنگاميکه از ميزان کمي معمولاً چيزي کمتر از 5% وزني، پرکننده استفاده شود، بهبود قابل توجهي مي‌يابد. در پليمرهايي چون نايلون (nylon-6) 6 هرگاه از چنين ميزان کمي پرکننده استفاده شود، يک افزايش 103 درصدي در ضريب يانگ، 49 درصدي در قدرت کشساني و 146 درصدي در مقاومت در برابر تغيير شکل بر اثر گرما، از خود نشان مي‌دهد. ساير خواص فيزيکي بهبود يافته عبارتند از: مقاومت در برابر آتش، مقاومت بارير (barrier resistance) و هدايت يوني.

امتياز ديگر نانوکامپوزيتهاي خاک رس / پليمر اين است که تاثير قابل توجهي بر خواص اپتيکي پليمر ندارند. ضخامت يک لايه رس منفرد، بسيار کمتر از طول موج نور مرئي است، بنابراين نانوکامپوزيت‌هاي خاک­رس / پليمر که خوب ورقه شده باشد، از نظر اپتيکي شفاف مي‌باشد. ميکرو نانوکامپوزيت‌هايي که تصويرشان در شکل 1 نشان داده شده، از ترکيب خاک­رس و پلي­پروپيلن و با استفاده از روش سرد کردن سريع جهت به حداقل رساندن اثر کريستاليزاسيون، ساخته شده‌اند. ميکروکامپوزيت‌هاي مرسوم، قهوه‌اي و مات به نظر مي‌رسند، در حاليکه نانوکامپوزيت‌ها تقريباً شفاف و بيرنگند. با اين دلايل، نتيجه مي‌گيريم که نانوکامپوزيتهاي خاك­رس/ پليمر نمايش خوبي از نانوتکنولوژي مي‌باشد. با سازماندهي و چينش ساختار کلي در پليمرها در مقياس نانومتر، مواد جديد با خواص نو يافت شده‌اند. نکته ديگر در توسعه نانوکامپوزيتهاي خاك­رس / پليمر اين است که اين تکنولوژي، فوراً مي‌تواند کاربرد تجاري پيدا کند، در حاليکه بيشتر نانوتکنولوژي‌هاي ديگر، هنوز در مرحله مفاهيم و اثبات هستند.

 

كاربردهاي نانوکامپوزيت­هاي خاک رس / پليمر

اولين کاربرد تجاري اين مواد با استفاده از نانوکامپوزيت خاك­رس / نايلون 6 بعنوان روکش نوار زمان‌سنج براي ماشينهاي تويوتا در همکاري با ube در سال 1991 بود. به فاصله کمي بعد از آن Unikita نانوکامپوزيت نايلون6 را بعنوان محافظ روي موتورهاي GDI شرکت ميتسوبيشي معرفي کرد. در آگوست 2001، ژنرال موتورز و باسل، کاربرد نانوکامپوزيت‌هاي خاك­رس / پليمر را بعنوان جزء مکمل COMC ساخاري و شورلت اکستروژن‌ها به همگان اعلام کرد. اين امر با کاربرد اين نانوکامپوزيت‌ها در درب‌هاي شورلت ايمپالاز (Impalas) صورت گرفت.

اخيراً شرکت نوبل پليمرز (Noble/Polymers) نانوکامپوزيت‌هاي خاك­رس / پلي‌پروپيلن را براي استفاده در صندلي‌هاي هندا آکورد ساخته است و اين در حالي است که Ube دارد نانوکامپوزيت‌هاي خاك­رس / نايلون12 (clay/nylon-12) را براي استفاده در اجزاي سيستم سوخت‌رساني، توليد مي‌کند.

علاوه بر کاربرد در صنعت خودرو، نانوکامپوزيت­هاي خاك­رس / پليمر، به صنايع نوشيدني‌ها نيز راه يافته‌اند. Alcos CSZ نانوکامپوزيتهاي خاك­رس / پليمر چندلايه را در کاربردهاي جديد خود (بعنوان مواد خطي – سدي) (barrier liner materials) بکار مي‌برد. شرکت Honey well محصولات نانوکامپوزيت خاك­رس / پليمري Aegis TM NC resin را در بسته‌بندي نوشيدني‌ها بکار مي‌برد و اخيراً شرکت‌هاي Mitsubishi Gas Chemical و Nano car ، نانوکامپوزيتهاي Nylon-MXD6 را براي ساخت بطري‌هاي چند لايه (polyethylene terephtalate) PET ساخته است.

تاريخچه نانوکامپوزيتهاي خاك­رس / پليمر

اگرچه تحقيقات در مورد ترکيب خاك­رس/ پليمر به قبل از 1980 برمي‌گردد، ولي کارهايي که در آن زمان صورت گرفت را نبايد در تاريخچه نانوکامپوزيتهاي خاك­رس / پليمر به حساب آورد، چرا که هيچگاه به نتيجه چشمگيري براي بهبود خواص فيزيکي و مهندس آنها ختم نشد. در حقيقت مي‌توان منشاء نانوتکنولوژي خاك­رس / پليمر را کارهاي شرکت تويوتا که تلاش براي لايه‌لايه کردن دانه‌هاي رسي در نايلون6 شروع شد، دانست. آنها فاش ساختند که توانسته‌اند بهبود قابل توجهي در خواص پليمرها، با تقويتشان بوسيله خاک رس در مقياس نانومتر، ايجاد کنند. از آن موقع به بعد تحقيقات وسيعي در اين زمينه در سطح جهان انجام شده است. در حال حاضر اين بهبودها به ساير پليمرهاي مهندسي از جمله پلي­پروپيلن (PP) ، پلي­اتيلن، پلي­استايرن، پلي­وينيل کلريد،­ آکريلونيتريل، پليمرهاي بوتا اي ان اسنايرن (ABS) ، پلي­متيل متاکريلات، PET ، کوپليمرهاي اتيلن سوينيل استات، پلي­اکريلونيتريل، پلي­کربنات، پلي­اتيلن اکسيد (PEO) ، اپوکسي رزين، پلي­اميد، پلي­لاکتيد، پلي­کاپرولاکتون، فنوليک رزين، پلي­پي­فنيلن وينيلن، پلي­پيرول، لاستيک، استارک (آهار)، پلي­اوراتان، پلي­وينيل پيريدين، سرايت کرده.

تکنولوژي ساخت نانوکامپوزيت­هاي خاک­رس / پليمر

مرحله نهايي در ساخت نانوکامپوزيت­هاي خاك­رس / پليمر، جدا جدا کردن لايه‌هاي رسي و پخش آن در پليمر مي‌باشد. استراتژي کار بستگي دارد به سازگاري و همگون بودن رس و پليمري که استفاده مي‌شود. اين تعيين مي‌کند که آيا نياز به عمليات مقدماتي روي خاك­رس يا پليمر قبل از مخلوط کردن هست يا نه. اگر سطح لايه‌هاي سيليکاتي با پليمر، سازگار و همگون باشد، اختلاط مستقيم بين اين دو مي‌تواند اتفاق بيفتد، بدون اينکه نياز به عمليات مقدماتي باشد. چنين مواردي بيشتر وقتي اتفاق مي‌افتد که پليمر قابل حل در آب، مانند PEO يا PVP استفاده کنيم، چرا که اين پليمرها و سطح لايه‌هاي سيليکات، هر دو آبدوست هستند و نيروهاي دوقطبي يا وان‌دروالسي بين لايه‌هاي سيليکات، باعث سهولت جذب مولکولهاي آبدوست و ايجاد فشارهاي عمودي روي لايه مي‌شود که در نتيجه باعث جداکردن تک‌تک لايه‌هاي رسي در اين پليمرها مي‌گردد.

اما به هر حال، بيشتر پليمرها آب گريز و در نتيجه با دانه‌هاي رسي آبدوست، ناسازگار هستند. در اين موارد نياز به يکسري عمليات مقدماتي روي خاک­رس يا پليمر داريم. پرکاربردترين روش‌هاي براي اصلاح دانه‌هاي رسي، استفاده از آمينواسيدها، نمکهاي آمونيم آلي و يا فسفونيم تترا ارگانيک‌هاست تا سطح آبدوست رس‌ها را به آب گريز تبديل کنيم. دانه‌هاي رسي که به اين روش اصلاح مي‌شوند، ارگانوکلي ناميده مي‌شوند. در مورد پليمرهايي که فاقد هرگونه گروه عاملي مي‌باشند، مانند پلي­پروپيلن (PP) ، معمولاً از تکنيک­هاي افزودن گروه عاملي قطبي روي زنجيره پليمري استفاده مي‌شود و يا اينکه در طي فرآيند ساخت، پليمرهاي پيوند خورده را بصورت مستقيم وارد مي‌کنند. مثلاً در نانوکامپوزيت­هاي رسي / پلي­پروپيلن (clay PP) از مالئيک اسيد پيوند خورده به پلي­­پروپيلن، بصورت مستقيم استفاده شده است. در طي پيشرفتهاي اخير، از مخلوطي که پلي پروپيلن، پروپيلن پيوند خورده با مالئيک ايندريد و ارگانوکلي استفاده شده است.

روشهاي زيادي در توليد نانوکامپوزيتها استفاده شده، ولي سه روشي که از ابتداي کار توسعه بيشتري يافته‌اند عباراند از: پليمريزاسيون insitu ، ترکيب محلول القاشدن و فرآيند ذوبي .

روش اينسيتو عبارت است از وارد نمودن يک پيش ماده پليمري بين لايه‌هاي رسي و آنگاه پهن کردن و سپس پاشيدن لايه‌هاي رسي درون ماده زمينه (matrix) با پليمريزاسيون. ابتکار اين روش بوسيله گروه تحقيقاتي شرکت تويوتا بود و زماني رخ داد که مي‌خواستند نانوکامپوزيتهاي خاك­رس / پليمر6 را بسازند. اين روش قابليت و توانايي توليد نانوکامپوزيتهايي با لايه لايه شدگي خوب را دارد و در محدوده وسيعي از سيستم­هاي پليمري، کاربرد دارد. اين روش براي کارخانه‌هاي پليمر خام مناسب است تا در فرآيندهاي سنتزي پليمر، نانوکامپوزيت‌هاي رسي / پليمر بسازند و مخصوصاً براي پليمرهاي ترموستينگ (پليمرهايي که در برابر گرما مستحکم‌تر مي‌شوند) بسيار مفيد است.

روش ترکيب محلول القا شده (solution induced interceletion) از يک حلال براي بارگيري و پخش رس‌ها در محلول پليمري استفاده مي‌شود. اين روش هنوز مشکلات و موانع زيادي را در راه توليد تجاري نانوکامپوزيت‌ها پيش رو دارد. قيمت بالاي حلالهاي مورد نياز و همچنين مشکل جداسازي فاز حلال از فاز محلول توليد شده، از جمله اين موانع هستند. همينطور در اين روش، نگرانيهايي از نظر امنيت و سلامتي وجود دارد . با اين وجود اين روش در مورد پليمرهاي محلول در آب قابل اجرا و مقرون به صرفه است، بخاطر قيمت پايين آب که بعنوان حلال استفاده مي‌شود و همچنين امنيت بيشتر و خطر کمتر آن براي سلامتي.

در روش فرآيند ذوبي، ترکيب خاك­رس و پليمر در حين ذوب شدن انجام مي‌شود. بازده و کارآيي اين روش به اندازه روش اينسيتو نيست و کامپوزيتهاي توليد شده، ورقه‌ورقه شدگي کمي دارند. به هر حال اين روش مي‌تواند در صنايع توليد پليمر قديمي که در آنها از روشهاي قديمي مانند قالبگيري و تزريق (Extrution and injection molding) استفاده مي‌شود، بکار رود و اتفاقاً نقش مهمي در افزايش سرعت پيشرفت توليد تجاري نانوکامپوزيت‌هاي رس / پليمر ايفا کرده است.

علاوه بر اين سه روش با روش‌هاي ديگر نيز در حال توسعه هستند که عبارتند از: ترکيب جامد، کوولکانيزاسيون و روش سل-ژل. اين روشها بعضاً در مراحل ابتدايي توسعه هستند و هنوز کاربرد وسيع پيدا نکرده‌اند.

 

رقابت نانوکامپوزيت­هاي خاک­رس / پليمر با کامپوزيتهاي اليافي

با پيدا شدن سروکله تکنولوژي نانوکامپوزيت، جهشي در زمينه تقويت پليمرها بوجود آمده، و معقول به نظر مي‌رسد که فکر کنيم نانوکامپوزيت­هاي خاك­رس / پليمر، بتوانند جاي کامپوزيتهاي تقويت شده با الياف مرسوم را بگيرند.

از نظر تئوري، تقويت پليمرها در مقياس نانويي، امتيازات برتري نسبت به کامپوزيتهاي تقويت­شده با الياف دارند. ضعف کامپوزيت­هاي تقويت شده با الياف، در واقع يک شکست در راه استفاده مفيد از خواص ذاتي و طبيعي مواد است. مثلاً سعي مي‌کنيم که با بکارگيري پيوندهاي قوي کووالانسي و استفاده از صفحه‌هاي آروماتيک ساختار گرافيتي، مواد کربني را مستحکم‌تر کنيم. در حاليکه الياف کربني که امروزه استفاده مي‌شود، تنها 3 تا 4 درصد استحکام نظري صفحات آروماتيک را به دست مي‌دهند. عدم اتصال داخلي بين صفحات آروماتيک در ساختار الياف کربني، مانع دستيابي به استحکام مطلوب مواد مي‌شود، در حاليکه اين مشکل در مورد نانوکامپوزيتهاي تقويت­شده با پرکننده‌هاي لايه‌اي وجود ندارد. هنگاميکه از پرکننده‌هاي لايه‌اي و ورقه‌اي در زمينه پليمري استفاده مي‌شود، اتصالات و پيوندهاي داخلي بوجود آيد و بنابراين حداکثر استفاده از خواص ذاتي و طبيعي لايه‌هاي منفرد مي‌شود.

در حقيقت خواص مکانيکي بدست آمده، در بهترين نانوکامپوزيت‌هاي خاك­رس / پليمر بسيار کمتر از کامپوزيتهايي است که از درصد بالايي الياف، براي تقويت استفاده مي‌کنند. در حال حاضر بيشترين پيشرفتها و بهبودها در خواص مکانيکي نانوکامپوزيتهاي خاك­رس / نايلون6 بدست آمده که در آنها 4 درصد وزني از خاك­رس بارگذاري شده است. شکل 2 ضريب و قدرت کشساني اين نانوکامپوزيت را با نايلون 60 و نايلون 60 تقويت شده با 48 درصد وزني، الياف خرده شيشه‌اي نشان مي‌دهد. مشاهده مي‌شود که بهترين نانوکامپوزيت خاك­رس / پليمري، هنگاميکه حجم بالايي از جز را تقويت‌کننده اليافي مطرح باشد، نمي‌تواند با کامپوزيتهاي اليافي همساني و رقابت کند. به منظور دستيابي به خواص مکانيکي بهتر عناصر تقويت‌کننده بيشتري در نانوکامپوزيتهاي خاك­رس / پليمر مورد نياز است، در حاليکه چنين کاري غيرممکن است. زيرا هنگاميکه عمل لايه لايه شدن اتفاق مي‌افتد، سطح تماس لايه‌هاي رسي صدها و بلکه هزاران برابر مي‌شود و اين باعث مي‌شود که مولکولهاي پليمر کاني، براي خيس کردن تمام سطح تقويت‌کننده‌هاي رسي نداشته باشيم.

 

clip_image0041.jpg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

شکل 2

در هر حال، هنگاميکه بحث استفاده از درصد پايين پرکننده مطرح باشد، در اين حالت نانوکامپوزيت‌هاي خاك­رس / پليمر را با کامپوزيتهاي تقويت شده بوسيله الياف، مقايسه کنيم، مي‌بينيم که نانوکامپوزيتها تقويت بهتري را نسبت به کامپوزيتهاي اليافي مرسوم، نشان مي‌دهند. اطلاعات بدست آمده بوسيله تحقيقات Fornes و Panl در مورد ضريب يانگ نانوکامپوزيتهاي خاك­رس / نايلون6 و کامپوزيت­هاي نايلون6 تقويت شده با الياف شيشه‌اي در محدوده استفاده از 10 درصد وزني پرکننده، در شکل 3 رسم شده است. مي‌توان مشاهده نمود که نانوکامپوزيتها کارآيي بيشتري را در بهبود ضريب يانگ نسبت به کامپوزيتهاي اليافي نشان مي‌دهند.

 

 

clip_image0061.jpg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

شکل 3

از مقايسه بالا مشهود مي‌گردد نانوکامپوزيتهاي خاك­رس / پليمر در محدوده بارگذاري درصد پايين از الياف، امتيازاتي نسبت به کامپوزيتهاي تقويت شده با الياف دارند و مطمئناً بازار کامپوزيتهاي اليافي مرسوم با حجم پايين از جزء اليافي، با پيشرفت نانوکامپوزيتهاي خاك­رس / پليمري تحت تاثير قرار خواهد گرفت، ولي فعلاً تابحال، پيشرفت در نانوکامپوزيت­ها تاثير کمي روي بازار کامپوزيتهاي تقويت شده با الياف گذاشته است.

مشكلات توسعه نانوکامپوزيت­هاي خاک­رس / پليمر

علاوه بر پرکننده‌ها، عمده مشکلات پيش­روي پيشرفت نانوتکنولوژي خاك­رس / پليمر عبارتنداز: عدم شناخت مکانيزمهاي موثر در افزايش کارايي، به کاربردي پليمرهاي ترموستينگ و عدم پايداري ارگانوکلي‌ها در برابر حرارت.

اگرچه مدل‌سازي‌هاي زيادي در جهت پيشبرد درک از مکانيزم افزايش کارايي عمده خواص فيزيکي و مهندسي در استفاده از نانوکامپوزيت‌هاي خاك­رس / پليمر انجام شده، ولي هنوز مسافت زيادي را پيش­رو داريم. به­عنوان مثال، هنوز خواص فيزيکي مهندسي لايه‌هاي منفرد سيليکات، دقيقا شناخته نشده‌اند. از اين رو مشکل است که يک مکانيزم تقويت‌کننده ايجاد کنيم، و از طرفي، ساختار ذغال باقيمانده ناشي از احتراق نانوکامپوزيت خاك­رس / پليمر هنوز روشن نيست. بدون آن ممکن نيست مکانيزمي براي ايجاد مقاومت در برابر آتش، براي آن طراحي کنيم. مدل‌سازيها و تحقيقات تجربي اساسي، بايد در جهتي هدايت شود که در آينده اين موانع برطرف شوند.

به کاربردن پليمرهاي ترموستينگ، مشکل عمده ديگري در توسعه نانوکامپوزيتهاي خاك­رس / پليمر مي‌باشد. ترکيب خاک­رس با يک پيش ماده پليمر ترموستينگ مي‌تواند عامليت يک پليمر را تغيير دهد. تغيير در عامليت بر ميزان اتصالات عرضي تاثير مي‌گذارد و بخوبي مشخص است که عمده خواص مهندسي پليمر‌هاي ترموستينگ، تابعي از ميزان تعداد اتصالات عرضي است. با اين وجود گزارش‌هايي هم وجود داشته مبني بر بهبود خواص مکانيکي سيستمهاي پليمري تروستينگي که ميزان اتصالات عرضي آن پايين بوده است، از جمله اپوکسي رزين با T g پايين و پلي اوراتان‌ها.

آخرين مسئله مستقيماً بر مي‌گردد به نگراني در مورد تجاري‌سازي نانوتکنولوژي خاك­رس / پليمر، کمبود ارگانوکلي‌هاي پايدار در برابر گرما و نيز از نظر تجاري در دسترس، از موانع ثبت شده در اين مسير هستند. بيشتر ارگانوکلي‌هاي در دسترس، از جايگزيني کاتيون فلزي درون ساختار رس، با نمکهاي آمونياک آلي تهيه مي‌شوند. اين نمکهاي آمونيم در مقابل گرما ناپايدارند و حتي در دماهاي کمتر از 170 درجه سانتيگراد از بين مي‌روند. مسلماً چنين مواد فعال سطعي (سورفکتنت) براي بيشتر پلاستيکهاي مهندسي هنگاميکه از تکنولوژي فرآيند ذوب شدن براي ساختن نانوکامپوزيت‌ها استفاده شود، صاحب نيستند و ساخت نانوکامپوزيتهايي که در آن از ارگانوکلي‌هاي اصلاح شده بوسيله نمکهاي آمونيم بکار رفته، با استفاده از تکنيک‌هاي ديگر، به يک معضل تبديل شده است. اگرچه تعداد زيادي سورفکتنت پايدار در برابر گرما، مثل فسفونيم شناخته شده‌اند، ولي اين سورفکتنت‌ها براي کاربرد تجاري، مقرون به صرفه نيستند. نوآوري‌هايي در جهت اصلاح رس‌هاي آبدوست با استفاده از پليمرها و اليکومرهاي چند عاملي انجام شده تا ارگانوکلي‌هاي پايدار در برابر گرما براي توليد نانوکامپوزيتهاي رس / پليمر بسازند.

خلاصه و نتيجه‌گيري:

پيشرفت‌هاي عمده در توسعه نانوکامپوزيت­هاي خاك­رس / پليمر به پانزده ساله اخير بر مي‌گردد و مزيتها و محدوديتهاي اين تکنولوژي روشن شده است. با اين حال، تا شناخت مکانيزم‌هاي افزايش کارايي و بهبود خواص مهندسي آنها و اينکه بتوانيم ريزساختارهاي آنها را سازماندهي و چينش کنيم تا به خواص مهندسي ويژه دست پيداي کنيم، راه طولاني در پيش رو داريم.

در مواقعي که از درصد پايين پرکننده استفاده شود، نانوکامپوزيتهاي خاك­رس / پليمر اين پتانسيل را دارند تا جايگزين کامپوزيتهاي مرسوم تقويت شده با الياف شوند.

  • Like 3
لینک به دیدگاه
  • 3 سال بعد...

نانو خاک رس یکی از مواد معدنی در مقیاس نانو است که بدلیل شکل پرکی و نسبت وجهی بالا در صورت پراکنش مناسب در بسترهای پلیمری، سبب بهبود چشمگیری در خواص مکانیکی و مقاومت خوردگی بستر می‌شود. این ساختار نانو به دلیل ساختار ویژه‌شان بسیار آبدوست هستند، لذا اختلاطشان به سختی انجام می‌شود. به همین دلیل نیاز به اصلاح سطحی این ذرات است. در مطالعه‌ای مشاهده شد با افزایش درصد وزنی خاک رس به بستر پلی‌اتر-یورتان کاهش هدایت حرارتی اتفاق افتاد. همچنین در مطالعه دیگر افزایش مقاومت به خوردگی مشاهده شد.

سه رویکرد عمده برای سنتز نانوکامپوزیت‌های پلیمر- خاک رس وجود دارد. در رویکرد اول یک مونومر یا یک ماده پیش ساخته با خاک رس مخلوط شده و در ادامه پلیمریزاسیون می شود. این روش پلیمریزاسیون درجا اولین بار روی نانوکامپوزیت‌های نایلون 6 حاصل از کاپرولاکتام انجام شد. مونومر در داخل صفحات قرار‌می‌گیرد و ارگانوکلی را متورم می‌کند. سه رویکرد عمده برای سنتز نانوکامپوزیت‌های پلیمر- خاک رس وجود دارد. در رویکرد اول یک مونومر یا یک ماده پیش ساخته با خاک رس مخلوط شده و در ادامه پلیمریزاسیون می شود. این روش پلیمریزاسیون درجا اولین بار روی نانوکامپوزیت‌های نایلون 6 حاصل از کاپرولاکتام انجام شد. مونومر در داخل صفحات قرار‌می‌گیرد و ارگانوکلی را متورم می‌کند. برای خاک رس های اصلاح شده با سرفکتانت های دراز زنجیر ، صفحات متورم شده با مونومر یا پیش ساخته یک آرایش تک لایه پارافین d-space شاخص نشان می دهد. تحت پلیمریزاسیون تک لایه های خاک رس به زور از هم جدا می‌شوند و برهمکنشی بین زنجیرهای سرفکتانت ها صورت نمی‌گیرد. نانو کامپوزیت های ورقه ورقه تشکیل می‌شود. روش دوم حل کردن پلیمر در یک حلال و مخلوط نمودن آن با خاک رس ارگانوفیلیک است، سپس حلال خارج می‌شود.

روش سوم برهمکنش مذاب است و شامل گرم کردن مخلوط پلیمر و خاک رس ارگانوفیلیک تا بالای دمای انتقال شیشه‌ای و دمای ذوب است. خصوصیات نانوکامپوزیت وابسته است به سازگاری و برهمکنش بین پلیمر و ارگانوفیلیک خاک رس ها. یکی از مشکلات در سنتز این نانوکامپوزیت ها این است که پلیمرهای غیرقطبی مثل پروپیلن براحتی به داخل صفحات خاک رس وارد نمی‌شوند. در مطالعه‌ای توسط راث و سنگرام اثر نانو‌خاک رس بر رفتار پلی‌یورتان-اوره رطوبت پخت را مورد ارزیابی قرار دادند. به دلیل به پیچیده شدن نفوذ رطوبت در اثر حضور نانوخاک رس زمان ژل شدن به تعویق افتاد. با استفاده از دستگاه WAXD و TEM مشخص شد صفحات نانوخاک‌رس در داخل ماتریس پلیمر یورتان-اوره قرار گرفتند. همچنین WAXD نشان داد که مورفولوژی بسیار منظم و غیرمعمولی را از بخش سخت زنجیر پلیمری نشان داد. حرکت دینامیکی بخش نرم پلیمر نیز تحت تاثیر حضور نانوخاک رس کند شد. خواص مکانیکی هم در اثر حضور نانوخاک رس تقویت شد.

wdgxgr83ytpbnsu3bcn.jpg

  • Like 3
لینک به دیدگاه

پيش بيني سازگاري انواع مختلفي از نانوخاك رس اصلاح شده درنانوكامپوزيت هاي پليمري با سورفكتنت هاي مختلف

 

دراين پژوهش از كوپليمرهاي پلي استايرن - كو - آكريلات سنتز شده با روش پليمريزاسيون امولسيوني نيمه پيوسته استفاده شد با استفاده از آزمون زاويه تماس انرژيهاي سطحي فيلم پليمري با درصدهاي مختلف گروه هاي فعال سطحي تعيين شد از سه نانورس مختلف Cloisite 30B,Cloisite15A,A-MMT نانورس اصلاح شده با (aminoundecanoic acid (AUA جهت محاسبه انرژي آزاد هلمهولتز با استفاده از مدل mean-field استفاده و نتايج حاصل با يكديگر مقايسه شد برهمكنش بين پليمر عامل دار سورفكتانت و خاك رس نقش كليدي در تعيين ساختار تعادلي نانوكامپوزيت وسازگاري نانورس هاي مختلف با نانوكامپوزيت حاصله دارند تغييرات انرژي آزاد هلمهولتز با تغيير درصد گروه هاي عاملي هيدروكسيل نشان داد كه كوپليمر فاقد گروه عاملي و نانورس Cloisite®15A بهترين شرايط براي فرآيند لانهادن مذاب را دارند.

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

  • Like 1
لینک به دیدگاه

بررسی تاثیر نانو کلی بر روی خواص فیزیکی و مکانیکی نانوکامپوزیت pp/sebs تقویت شده توسط نانوکلی

 

سیدمجتبی موسوی، محسن رضایی قزوینی‌ها، مجید عبدوس،سعیده مزینانی

 

 

چکیده

در این تحقیق ما ابتدا آلیاژی از پلی‌پروپیلن و الاستومر استایرن اتیلن بوتیلن استایرن (SEBS) را با استفاده از روش میکس شدن مذاب تهیه نمودیم و در مرحله بعد PP /SEBSتولید شده را با درصدهای مختلف از نانوکلی باز هم با روش میکس شدن مذاب مخلوط میکنیم. موفولوژی نانوکامپوزیت‌های تولیدی با استفاده از XRDو TEMمورد ارزیابی قرار گرفته است. سپس خواص مخلوط‌های با درصد مختلف نانوذره را با هم مقایسه نمودیم.

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

  • Like 1
لینک به دیدگاه
  • 2 هفته بعد...

بررسی خواص ویسکوالاستیک نانوخاک زس-پوشش‌های پلی‌یورتان با جامد حجمی 100 درصد

 

 

M. Taghavi, S. M. Kassiriha, A. A. Sarabi, H. Nazokdast

 

نانوخاک رس به میزان 0،0.5،1،2،3 درصد وزنی در محمل پلی‌استر-اتر پلی ال تحت شرایط یکسان توسط همزن مکانیکی و فراصوت پراکنده شد و سپس با افزودن جزء ایزوسیانات آروماتیک بدون حلال به نسبت استوکیومتری، نانو کامپوزیت‌های با درصد وزنی فوق حاصل گردید. با استفاده از آزمون تفرق اشعه ایکس و میکروسکوپ الکترون عبوری، پراکنش لایه لایه‌ای نانوخاک رس در پوشش پلی یورتان بدون حلال تایید گردید.

نتایج حاصل از آزمون حرارتی دینامیکی-مکانیکی نشان می دهد که با افزایش درصد وزنی نانو در پوشش، دمای انتقال شیشه‌ای نانوکاپوزیت افزایش یافته است در حالی که به دلیل کاهش چگالی شبکه‌ای نانو کامپوزیت‌ها، مدول با افزایش درصد وزنی نانو خاک رس کاهش یافته است.

 

 

پسوورد:

www.noandishaan.com

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

  • Like 1
لینک به دیدگاه
×
×
  • اضافه کردن...