رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'کارکرد خاک'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. مقاوم سازی لرزه ای تاسیسات آب شهری شهر تهران با وسعت حدود بیش از 1000 کیلومتر مربع و جمعیتی بالای 10 میلیون نفر در جوار رشته کوههای البرز قرار دارد. بدلیل قرار گرفتن این شهر روی گسل‌های متعدد و با توجه به سوابق تاریخی موجود در خصوص لرزه‌خیزی تهران و حوادث مختلفی که ناشی از بروز زمین‌لرزه، بوقوع پیوسته است، این شهر همیشه در معرض بروز زمین لرزه قرار دارد. هنگام زلزله خسارات زیادی به سیستمهای خط لوله مدفون وارد کرده و این خسارات مشکلات فراوانی را در زندگی روزمره سبب شده است. از انجا که خطوط لوله در سطح وسیعی گسترد بوده و در برخی مناطق الزاما از نواحی دارای گسل عبور می کنند.لذا مطالعه بهسازی خطوط لوله در نواحی دارای گسل‌ها از اهمیت خاصی برخوردار است. بارگذاری ناشی از وقوع زمین لرزه به صورت تغییر مکان گسل به لوله اعمال شده، که در نتیجه آن این تغییر مکان باعث ایجاد نیرو و تنش در خطوط لوله مدفون می‌شود. شکست خط لوله مدفون به صورت شکست ناشی از اندر کنش نیروی محوری و گشتاور خمشی است. حساسیت پارامترهای طراحی در شکست خط لوله باید مورد بررسی قرار گرفته است. نتایج آنالیز نشان می دهد که با افزایش تغییر مکان گسل، افزایش قطر لوله، افزایش عمق دفن لوله، افزایش زاویه اصطکاک بین خاک و لوله به ناحیه شکست خود نزدیکتر می‌گردد. در این مقاله ضمن تشریح وضعیت کنونی تصفیه خانه و تاسیسات آب شرب شهر تهران، مقدار آسیب پذیری آنها در زلزله تشریح می‌گردد، و اقدامات مورد نیاز در جهت تعمیرات پیشگیرانه و مقاوم سازی در برابر زلزله ارائه می‌شود. کلیدواژه‌ها: مقاوم‌سازی، تاسیسات آبی، زلزله، لوله مدفون، شریانهای حیاتی 1- مقدمه: شبکه های توزیع آب شهری و مجراهای تخلیه پسآب مدفون، از شریانهای حیاتی جامعه شهری می‌باشند که بروز آسیب در آنها از یک سو لطمه اقتصادی قابل توجه در بر داشته و از سوی دیگر می‌تواند منجر به بروز صدمات و خسارات گسترده شود. تغییر شکل‌های بزرگ ناشی از شکست شیبها، زلزله، حرکت گسلها و شناور شدن لوله‌ها در ترانشه‌های کم عمق صدمات عمده‌ای در شبکه خطوط لوله مدفون به وجود آورده است. در خطوط جمع اوری فاضلاب نیز بیرون زدگی منهول‌ها بیشترین موردی است که پس از وقوع زلزله در نقاط مختلف از جمله زلزله کوبه ژاپن مشاهده می‌شود. به علت گسترده بودن خطوط لوله مدفون در جوامع شهری از جمله شهر تهران که به واقع این خطوط کلاف سردر گمی را تشکیل داده‌اند که عومل مختلف ایجاد کننده خرابی در خطوط لوله بایستی در طراحی خطوطی لوله مدفون در نظر گرفته شود. با توجه به طول عمر خطوط لوله زیرزمینی و مدت زمان بهره‌برداری در شرایط محیطی و نیز تغییرات آئین‌نامه ها لزوم بهسازی، مقاوم‌سازی، تعمیرات پیشگیرانه این خطوط در برابر عوامل مخرب حیاتی است. یکی از پدیده‌های مخرب بر روی خطوط لوله حرکت گسل است. در طی سالهای گذشته، محققان بسیاری در زمینه تاثیر حرکت فعال گسل بر روی خطوط لوله مدفون مطالعه کرده اند. بدیهی است که قابل استفاده بودن خطوط لوله پس از حرکت گسل نیاز به قابلیت تغییر شکل غیرالاستیک بدون ایجاد خرابی دارد. در شهر تهران که ره طور عمده بر روی سه گسل عمده قرار گرفته است ضرورت در نظر گرفتن محل گسل‌ها و بکارگیری اتصالات قابل انعطاف بیش از پیش اهمیت دارد. زمین لرزه ممکن است باعث ایجاد خسارات شدیدی به تاسیسات آبی یک شهر شود. آمار و گزارشات متعددی از سراسر دنیا در خصوص حصول خسارات شدید ناشی از بروز حوادث روی خطوط حیاتی (Lifelines ) تاسیسات مختلف منجمله تاسیسات آب و گاز و برق و مخابرات بعد از وقوع یک زمین لرزه با شدت بالا وجود دارد. چنین گزارشاتی از زمان وقوع زمین‌لرزه سال 1906 در سانفرانسیسکوی آمریکا تا کنون در دسترس می‌باشد. در این زمین‌لرزه خسارات شدیدی به تاسیسات تصفه آب و خطوط لوله انتقال شهر وارد گردید، که باعث عدم تامین آب شرب شهر و آتش‌سوزی‌های متعدد در سطح شهر بعد از وقوع زمین‌لرزه شد. در گزارش دیگری موضوع زمین‌لرزه بزرگ شهر مکزیکوسیتی در سپتامبر سال 1985 مطرح شده است. در این زمین‌لرزه که منجر به جابجایی وسیعی از اراضی شده است ضمن تخریب مخازن آب شرب و تصفیه‌خانه، خطوط اصلی لوله آب شرب نیز دچار شکستگی شد و در نتیجه آن بیش از 4 میلیون نفر به مدت سه هفته فاقد آب آشامیدنی بوده‌اند. در سال 1994 در زمین لرزه Northridge کالیفرنیا نیز تاسیسات تهیه آب شرب از جمله تاسیسات تصفیه و خطوط لوله اصلی انتقال و توزیع آب به دلیل تخریب دائمی زمین دچار شکستگی شدند. در سال 1995 در زمین لرزه شهر کوبه ژاپن در مخازن نگهداری و شبکه توزیع آب شهری به دلیل تخریب زمین و تکان زیرزمینی بیش از 2000 مورد شکستگی، تخریب لوله‌ها و تاسیسات آب شربشهر گزارش شده است. همچنین اثر زمین‌لرزه بر منهولها به طوری بوده که باعث بیرون زدگی منهولها در سرتاسر منطقه زلزله زده شده است. 2- اهمیت شریانهای حیاتی و مجاری مدفون: آسیب‌پذیری لوله کشی‌ها به هنگام زلزله از چند جنبه حائز اهمیت است، اول انکه برای مثال قطع جریان در شاه لوله‌های آب به واسطه شکستگی‌ها می‌تواند جان بازماندگان زلزله را به خطر بیاندازد. شکست و انفجار در لوله های گاز طبیعی می‌تواند باعث آتش‌سوزی‌های وسیع گردد. در صورت آسیب دیدن لوله‌ها و شبکه‌ها‌ی جمع‌آوری فاضلاب بوی تعفن منطقه آسیب دیده را فرا گرفته و احتمال شیوع بیماریهای عفونی پس از زلزله وجود دارد. با توجه به مطالب گفته شده اهمیت تعمیرات پیشگیرانه و مقاوم سازی و تقویت شریانهای حیاتی و مجاری مدفون شهر تهران بیش از پیش آشکار می‌گردد. 3- عوامل موثر بر مقاومت لوله مدفون: تحقیقات نشان داده است که عوامل موثر بر مقدار ظرفیت مقاومت لوله مدفون در برابر حرکت گسل به پارامترهای خاک، زاویه برخورد لوله با گسل، طول لغزش، خواص مواد، شکل‌پذیری و غیره بستگی دارد. ضمنا با کم کردن مقاومت طولی خاک در برابر حرکت لوله، مقاومت لوله بالا می‌رود. 4- مدل‌های ارائه شده برای لوله های مدفون: *کندی (Candi) با در نظر گرفتن فشار پاسیو خاک به صورت یکنواخت و استفاده از تئوری افت بزرگ روش جدیدی ارائه داد. در این روش فرض شده است که خطوط لوله به شکل یک کابل نرم رفتار می‌کند که با توجه به سازگاری تغییر شکل لوه به صورت یک منحنی با انحنا ثابت تغییر شکل می‌دهد. برای اعمال تعادل فقط از یک نیروی محوری کششی در نقطه انحنا استفاده کرده و از مقاومت نرمی لوله صرف نظر گردید. توجه به این نکته الزامی است که حذف صلبیت خمشی فرض شده در این مدل شرایط تعادل را ارضا نکرده و باعث ایجاد فشار در خطوط لوله می‌شود. فرض دیگر کندی این است که نقاط دور از محدوده انحنادار به صورت مماسی به خطوط تغییر شکل نیافته لوله متصل می‌شوند که مشابه رفتار یک تیر روی بستر الاستیک می‌باشد. * نیمان آزمایشات متعددی در موضوع مقاومت خاک در برابر حرکت افقی لوله‌ها انجام داده است. نتایج آزمایشات نشانگر این نکته است که، مقاومت پاسیو خاک حول محیط لوله یکنواخت نیست و بسیار بیشتر از فشار استاتیکی زمین می‌باشد. و نیز نشان دادند که رابطه بین فشار خاک و تغییر مکان غیرخطی است و در مقادیر بیشتر فشار زمین، افزایش بیشتری از تغییر مکان دیده می‌شود. * وانگ ویه یک مدل تحلیل ارائه داده است که در آن تاثیر حرکت بزرگ گسل بر روی خطوط لوله مدفون بصورت آنالیز استاتیکی و بر پایه تئوری تغییر شکل‌های بزرگ استوار شده است. بر خلاف مدل‌های قبلی که شکست لوله را به صورت شکست کششی محوری در نقطه تماس گسل با خط لوله در نظر می‌گرفتند در این مدل شکست به صورت اندرکنش نیروی محوری و گشتاور خمشی منظور شده است. آنها همچنین انحنا خط لوله را با شعاع ثابت در نظر گرفته‌اند. نتایج نشان می‌دهد که اغلب موارد شکست در حالت اندرکنش نیروی محوری ولنگر خمشی است. با این حال مطالعات اوله نشان داد هر چه حرکت گسل بزرگتر باشد، طول قسمت تغییر شکل یافته لوله نیز بلندتر خواهد بود. لذا باید ناحیه تغییر شکل پذیر را بزرگتر در نظر گرفتو در صورت استفاده از اتصالات انعطاف‌پذیر یا ریل در طول خطوط باید مقدار تغییر مکان را بیشتر در نظر گرفت. 5- مبانی مدل تحلیلی لوله مدفون در تلاقی با گسل: در این مدل تغییر شکل لوله در تقاطع با گسل با عنایت به تاثیر نیوری زلزله بر روی خط لوله مورد توجه قرار می‌گیرد. این نیرو به صورت جابجایی زمین، ناشی از حرکت گسل ظاهر می‌شود و باعث ایجاد تغییر شکل در خط لوله می گردد. این تغییر شکل، نیروی گشتاور خمشی در طول خط لوله ایجاد می‌کند. 6- کارکرد خاک: برای یک لوله مدفون در ارتباط با حرکت بزرگ ناشی از گسل، در نظر گرفتن فشار مقاوم خاک اطراف لوله به عنوان فشار طولی مقاومت کننده در برابر حرکت لوله معقول به نظر می‌رسد. 7- نقاط بحرانی: راهکارهایی که برای شناخت هرچه بیشتر نقاط بحرانی پیشنهاد می‌گردد، عبارتند از: - آزمایش‌های آلتراسونیک برای ضخامت‌سنجی جداره‌ای لوله‌ها، به منظور بررسی اثرات ناشی از خوردگی لوله‌هایی که در عمق زمین، مکانهائی با دسترسی مشکل، ارتفاع، مجاور سقف یا در داخل سقفهای کاذب قرار گرفته اند بکار می‌رود. - جهت بررسی ستون و پایه‌ها، مهاربندی قاب، لوله‌ها و بادبندهای سازه های فولادی. شامل بررسی و آزمایش کیفیت و سلامت جوش‌ها از طریق انجام آزمایشها غیرمخرب (NDT) و آزمایش آزمایشهای آلتراسونیک (UT)، آزمایش با مایعات نافذ (MT)، آزمایش با ذرات مغناطیسی. - پرتونگاری و رادیوگرافی (RT) بررسی وضعیت دستگاهها و تجهیزات انتقال سیالات که در امتداد خطوط لوله قرار دارند نظیر پمپ‌ها، کمپرسورها و... - بررسی مواد و مصالح به کار رفته. - بررسی اتصالات، انشعاب‌ها و مقاومت آنها. 8- خسارت‌های وارده به شبکه های لوله کشی: به طور کلی خسارت های وارده به شبکه های لوله‌کشی ناشی از زلزله را می توان به سه دسته کلی تقسیم نمود که عبارتند از: 1- از دست دادن قابلیت بهره‌برداری: زمانی که شبکه دیگر توانایی انتقال سیال را نداشته باشد حتی بدون اینکه نشتی یا شکستگی حادث شده باشد (برای مثال زمانی که پمپی آسیب دیده و دیگر نمی توان آن را به سرویس آورد یا زمانی که کمپرسور روی خط لوله دچار نقص فنی شده یا یک شیر کنترل در اثر ضربه از کار افتاده و دیگر اجازه عبور سیال را از خود نمی‌دهد. 2- از دست دادن فشار کافی: که می‌تواند در اثر نشت، شکستگی، ترک یا پارگی جداره ای لوله به هنگام زلزله اتفاق افتد. 3- از دست دادن تکیه‌گاهها و نگهدارنده‌ها: لوله از روی تکیه گاهها، آویزها و نگهدارنده‌ها سقوط نموده یا کنده شدن تکیه گاهها از داخل دیوارها سبب سقوط لوله‌ها بر روی زمین می‌شود. 9- رفتار سیستمهای لوله‌کشی به هنگام زلزله: رفتار صحیح و قابل قبول سیستمخای لوله کشی به هنگام زلزله بستگی به سلامت و کیفیت عوامل اساسی و کلیدی زیر دارد: - مواد و مصالح مصرفی، طراحی مکانیکی خطوط لوله، ضخامت جداره، چیدمان و نگهدارنده‌ها. - ساخت (جوشکاری، لحیم‌کاری، قید و بست‌ها و اتصالات، ازمایش‌های غیرمخرب تعمیر و نگهداری) - پایش و مقابله با خوردگی، بازرسی‌های منظم و دوره‌ای حین بهره‌برداری - ساختمانها و سازه‌ها و شرایط خاک زیر و اطراف ساختمانها. 10- عوامل موثر در آسیب‌پذیری لوله‌ها: در اینجا به تشریح 12 عامل موثر در آسیب‌پذیری لوله ها می‌پردازیم: 1- خوردگی (Corrosion: خوردگی و زنگ زدن در لوله‌ها باعث کاهش سطح مقطع موثر در لوله‌ها می گردد و مقطع بحرانی در ناحیه خوردگی یا زنگ زدگی ایجاد می‌شود. بر اساس گزارشهای منتشر شده از زلزله سال 1999 تایوان، 50 درصد لوله های فولادی شکسته شده قبلا به علت خوردگی ضعیف شده بودند که نشانگر این مطلب است که خوردگی عامل مهمی در افزایش خسارتهای ناشی از زلزله می‌باشد و برای مهار آن باید نسبت به تعویض لوله ها و احتمالا تغییر جنس اقدام نمود. 2- نشت محتویات داخل لوله‌ (Leakage) : نشت لوله ها از دو جهت مورد توجه است. اول از لحاظ ایجاد خرابی در خود لوله و دوم از لحاظ قرار گرفتن لوله‌ها و تکیه‌گاههای اطراف محل نشت در معرض خوردگی و زنگ زدگی. 3- کیفیت جوش (Weld Quality) : در صورتی که نقاط جوش از کیفیت مطلوب برخوردار نباشند نقاط جوش به نقاط بحرانی و آسیب‌پذیر در هنگام زلزله تبدیل خواهند شد. 4- وضعیت خم ها (Bend Conditions) : تجربه زلزله‌های گذشته نشان داده است که بیشتر شکست‌ها در لوله‌ها در نواحی خم ها رخ داده است که می تواند به علت عوامل مختلفی باشد و لذا محل خم‌ها یک ناحیه آسیب‌پذیر است. بنابراین هرچه تعداد خم ها کمتر و زوایای تغییر در خم‌ها ملایم‌تر باشد آسیب‌پذیری کمتر خواهد بود. 5- پوشش (Isolation) : وضعیت پوشش یا ایزولاسیون لوله‌ها از آن جهت مورد نظر است که در لوله های فولادی خرابی پوشش موجب ایجاد زنگ‌زدگی و خوردگی، در لوله ها و در نتیجه ایجاد مقطع بحرانی می‌شود. 6- مهارلوله‌ها (Restraints) : مهمترین عامل و اساسی‌ترین معیار در افزایش و کاهش آسیب پذیری لوله‌ها وضعیت مهار لوله ها می‌باشد. مهار جانبی لوله ها در واقع تعیین‌کننده ترین عامل در رفتار لوله در هنگام زلزله می‌باشد. 7- نسبت قطر لوله‌های انشعاب (Branch relative diameter) : مبنای کلی برای انشعابهای نامناسب، O می‌باشد/ انشعابهای با قطر نسبی کمتر از 5. 8- خستگی (Fatigue) : آنچه به عنوان خستگی در این ارزیابی مد نظر است اثرات ناشی از لرزش لوله یا حرکات دائمی دیگر لوله‌ها تحت اثر عوامل مختلف می‌باشد. 9- ضربه و برخورد(Proximity and Impact) : ضربه و برخورد به لوله‌ها و عدم رعایت فاصله مناسب بین لوله‌ها با هم و یا سایر تجهیزات و تکیه‌گاهها در ارزیابی عینی مورد بررسی قرار گرفته است. در اثر حرکات جانبی ناشی از زلزله اگر موقعیت لوله‌ها نامناسب باشد، در اثر ضربه و برخورد نیروهای اضافه به بدنه و نقاط حساس بر لوله‌ها وارد می‌شود که می تواند منجر به آسیب لوله ها گردد که بر این اساس تعداد موارد مستعد برخورد ارزیابی می‌گردد. 10- اتصال به تجهیزات مهار نشده (Connection To Unanchored Component): اتصال لوله ها به تجهیزات مهار نشده عملا در هنگام وقوع زلزله و ایجاد تغییر مکانهای زیاد در تجهیزات به علت مهار ناکافی باعث ایجاد تغییر مکانهای بیش از حد انتظار در لوله‌های متصل به آن تجهیزات می‌شود. 11- تغییر مکان‌های متفاوت (Differential Displacement) : وجود گیرداری زیاد در یک سر لوله و امکان ایجاد تغییر مکان‌های بزرگ در سر دیگر لوله باعث آسیب در مقطعی که گیرداری آن زیاد است می گردد. 12- قطر زیاد و دهانه کوتاه (Aboveground) : لوله‌هایی با قطر زیاد و طول کوتاه که طبعا دارای سختی بسیار زیادی هستند مستعد شکست‌های برشی در سیستم های لوله‌کشی می‌باشند. 13- امروزه عمدتا در مناطق شهری و (Aboveground) بیشتر از لوله‌های روی زمینی سایت‌های صنعتی به دلایل ایمنی و زیباسازی خطوط لوله به صورت مدفون اجرا می‌شوند. از انجا که یک سیستم خط لوله مدفون عمدتا از یک منطقه جغرافیایی وسیع عبور می نماید با خطرات لرزه‌ای و شرایط خاک بسیار متنوع مواجه می‌باشد. به ویژه اگر لوله‌های زیرزمینی با گسل تقاطع ایجاد کند در نواحی تقاطع با گسل بسیار آسیب‌پذیر خواهد بود. از طرف دیگر لوله‌های زیرزمینی یا مدفون در خاک به حرکت‌های زلزله به صورت حرکتهای همراه با زمین به شکلی که تقریبا همان انحنا در تنش‌های محوری زمین را دار باشد پاسخ می‌دهند. در هنگام زلزله، زمین توسط امواج زلزله تغییر شکل می دهد و خطوط لوله مدفون ممکن است کمانش نموده یا بشکنند. بنابراین اصل اساسی در طراحی لرزه‌ای خطوط لوله مدفون طرحی آزاد برای زلزله می‌باشد. بدین معنا که به لوله اجازه انبساط و انقباض و همچنین انعطاف‌پذیری لازم برای کاهش نیروهای لرزه‌ای داده شود. 11- منابع: 1- دباغی، م، مقاوم سازی تاسیسات لوله کشی، 1385، اولین همایش بین‌المللی مقاوم سازی لرزه‌ای 2- رجایی،ح، ارزیابی فتار خطوط لوله در برابر حرکت گسل، اولین همایش بین‌المللی مقاوم سازی لرزه‌ای 3- کمک پناه، علی، منتظرقائم، سعید، موسسه بین‌المللی زلزله شناسی و مهندسی زلزله، مجموعه مقالات اولین کارگاه تخصصی بررسی راهبردهای کاهش خسارات زمین لرزه در کشور، تهران، 1373. 4- فرشاد، علی اصغر محمدی، ناصر، اقدامات بهداشت محیط در کاهش اثرات بلایای طبیعی، کمیته تخصصی بهداشت درمان کاهش اثرات بلایای طبیعی، سال 1378. 5- اصل هاشمی، احمد- اقدامات بهداشتی در شرایط اضطراری، دانشگاه علوم پزشکی تبریز، مرکز کشوری برنامه مدیریت سلامت دانشگاه علوم پزشکی تبریز. 6- دکتر نجف‌پور، علی‌اصغر، استادیار گروه مهندسی بهداشت محیط دانشگاه علوم پزشکی تبریز- جلیل‌زاده، علی‌رضا، دانشجوی کارشناسی ارشد مهندسی محیط زیست (مدیریت بهداشت محیط در بلایای طبیعی) خلاصه مقالات دومین همایش علمی – تحقیقی مدیریت امداد و نجات. 7- شمسی، ا، ارایه راهکارهای لازم برای مقاوم سازی لرزه‌ای منهول های فاضلاب، اولین همایش بین‌المللی مقاوم‌سازی لرزه‌ای. 8 - American Waterworks Associatio, " Who environmental health management in emergency ", 2003 9 -Ground Respones curves For Rock Tunels by: Edwin T.Brown, MAsce, John w.Broy 10 -under ground excavation in rock By: Hoekond Brown [1980] 11 - Support of underground Excavation inhand Rock By: Hoek, E. kaiser, P.K. & bowden برگرفته از: فصلنامه عمران و مقاوم سازی ، شماره اول، بهار 86، ص 48-44.
×
×
  • اضافه کردن...