رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'دارورسانی'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. محققان آمریکایی موفق به طراحی پلیمر هوشمندی شدند که قادر به رهاسازی داروی ضد سرطان است. آن‌ها برای این کار از خودآرایی رشته‌های دی‌ان‌ای استفاده کردند. این ساختار جدید می‌تواند برای رهاسازی داروهای ضد سرطان نظیر دوکسوروبیسین مورد استفاده قرار گیرد. اطلاعات بیشتر درباره این دستاورد پزشکی در نشریه ACS Nano به چاپ رسیده است. خودآرایی نانوذرات یکی از شاخه‌های علم نانو است که از آن در حوزه‌هایی نظیر اپتیک، حسگری و رهاسازی دارو استفاده می‌شود. در طول فرآیند خودآرایی ترکیبی به نانوذره اضافه می‌شود که می‌تواند منجر به واکنشی شود. در پایان فرآیند خودآرایی، نانوذره‌ای ایجاد می‌شود که حالت جامد داشته یا به صورت یک خوشه مولکولی است. این گروه تحقیقاتی اخیرا به بررسی چگونگی استفاده از DNA برای رسیدن به ساختارهایی مفید پرداخته‌اند. نتایج بررسی‌های اولیه نشان داد که فرآیند خودآرایی نانوذرات بسیار سریع و محصول نهایی بسیار پایدار است، اما این فرآیند خودآرایی بسیار چالش برانگیز است. «مای» از محققان این پروژه می‌گوید: ما به دنبال پاسخ این سوال بودیم که چگونه می‌توان فرآیند خودآرایی در نانوذرات را آغاز یا به پایان رساند. در نهایت دریافتیم که با عامل گرما می‌توان تغییرات ساختاری در یک پلیمر ایجاد کرد و در نهایت یک پلیمر هوشمند طراحی کردیم که ساختار آن در مقیاس نانو تغییر می‌کرد. پلیمر هوشمند به مولکول بزرگی اطلاق می‌شود که از واحدهای سازنده اتمی ساخته شده است؛ این پلیمر در صورت قرار گرفتن در معرض محرک‌های خارجی نظیر نور، گرما یا اسید می‌تواند واکنش نشان دهد. این گروه موفق به طراحی پلیمری شدند که نه تنها با تغییر دما واکنش می‌داد، بلکه در حضور نانوذرات طلا خودآرایی می‌کرد. آنچه در طراحی این پلیمر تازگی دارد، این است که به نانوذرات طلا رشته‌های منفرد دی‌ان‌ای متصل شده است. این پلیمر می‌تواند در دماهای بالا ( 50 درجه سانتی‌گراد) چروکیده شود و فعالیت از پیش تعیین شده‌ای را انجام دهد و با کاهش دما بسط ساختاری پیدا کرده و رشته دی‌ان‌ای از فعالیت باز بماند. این گروه تحقیقاتی دریافته‌اند که در صورت افزایش دما داروی ضد سرطان می‌تواند از پوسته دی‌ان‌ای رهاسازی شود. منبع: پینا
  2. رهاسازی هدفمند دارو، یکی از راهبردهای اصلی در درمان سرطان است. اخیرا روش جدیدی برای این کار ارائه شده است که در آن، نانوذرات پلیمری حساس به pH برای این کار در نظر گرفته شدند. این نانوذرات با وارد شدن به تومور به دلیل تغییر pH محیط، تغییر شکل داده و دارو را رهاسازی می‌کنند. محققان برای رهاسازی دارو در تومورهای سرطانی راهبرد جدیدی ارائه کردند. آنها از نانوذرات حاوی گروه‌های بازی برای این کار استفاده کردند. این نانوذرات به راحتی وارد محیط‌هایی با اسیدیته بالا، نظیر تومورهای سرطانی می‌شوند و دارو را رهاسازی می‌کنند. یون یین وون استادیار دانشگاه پرودو می‌گوید: این پدیده‌ای که ما از آن استفاده می‌کنیم حرکت در pH گفته می‌شود که راهبرد مناسبی برای درمان تومورهای حالت جامد سرطانی است. به محلول‌های دارای pH کمتر از 7 اسید گفته می‌شود و محلول‌های دارای pH بالاتر از 7 نیز محلول‌های بازی هستند. در راهبرد حرکت در pH، باید از مایسل‌های پلیمری سنتز شده استفاده کرد. این مایسل‌ها به شکلی هستند که دارو در مرکز آنها قرار می‌گیرد و لایه بیرونی در صورت تغییر pH، دچار تغییر ساختار شدیدی می‌شوند. با افزایش ابعاد این مایسل به دو برابر، کارایی آنها در رهایش دارو درون تومور نیز به دو برابر افزایش می‌یابد. با این روش می‌توان مقدار دوز مناسب از دارو را به درون تومور تزریق کرد. این روش را می‌توان با روش‌های دیگر رهایش دارو ترکیب نمود و از آن در پزشکی استفاده کرد. محققان نشان دادند که بیشترین تورم در مایسل زمانی اتفاق می‌افتد که pH برابر 0.5±7 باشد، در این صورت رهایش دارو به درون تومور با بالاترین کارایی انجام می‌شود. وون می‌گوید: تومورهای حالت جامد، دارای pH 6.5 تا 6.9 بوده در حالی که pH بخش‌های نرمال بدن 7.4 است. مایسل‌ها از مولکول‌های آمین‌دار تشکیل شده‌اند. این مولکول‌ها دارای اتم‌های هیدروژن و نیتروژن هستند. مایسل‌ها در pHهای کم متورم شده که دلیل آن پروتونه شدن گروه آمینی است. در واقع گروه‌های آمینی پروتونه شده، به دلیل داشتن بار مثبت یکدیگر را دفع می‌کنند در نتیجه نانوذرات بزرگ‌تر می‌شوند. بار مثبت مانع از حرکت سریع نانوذرات می‌شود که این کار موجب تجمع آنها در محل تومور می‌شود. در این حالت دارو رهاسازی می‌شود. روی سطح این نانوذرات از ماده‌ای پوشانده شده که به صورت محافظ از نانوذرات محافظت می‌کند. در نتیجه تا وقتی که نانوذرات به تومور نرسند، تغییر شکل نمی‌دهند و دچار زوال ساختاری نمی‌شوند. این پژوهش گامی موثر در مسیر توسعه رهاسازی دارو دربخش نانوپزشکی محسوب می‌شود. منبع : Nanoparticles, 'pH phoresis' could improve cancer drug delivery منبع : مجله بسپار
  3. برآورد هزينه ارائه و كشف يك داروي جديد به بازار مصرف بين 500 ميليون تا 5/1 ميليارد دلار تخمين زده شده است. مهمترين علت اين رقم سرسام‌آور، تعلل و توقف داروها در مرحله آزمايشات باليني و احياناً طي مطالعات بعد از ورود به بازار (post marketing) مي‌باشد. علي‌رغم، آنكه پيشرفت‌هاي جديد امكان دسترسي محققين را به دسته تركيبات داروئي نوين فراهم مي‌نمايد، معذالك اكثر متخصصين داروسازي به دنبال يافتن راه‌هايي هستند تا از طريق آن داروها را به دقت به‌ محل اثر اصلي خود برسانند تا بيشترين اثر درماني آن ها بروز نمايد. در حال حاضر اكثر داروها از طريق جذب سيستميك به محل اثر خود ارائه مي‌شوند . پايه‌هاي اين نگرش بر اين مبنا است كه اگر مقدار كافي از دارو وارد سيستم گردش خون شود، بالاخره مقداري از آ ن به محل اثر خود اعم از اينكه محل اثر در بافت ، عضو و يا سلول‌ ‌باشد خواهد رسيد . به طور مثال برخي از داروهاي ضد سرطان از اين طريق بر روي سلول هاي در حال تقسيم تأثير مي‌گذارند ، اما در همان حال ممكن است به سلول هاي سالم نيز به نوعي مانند سلول هاي سرطاني آسيب برسانند . البته براي مواجه با اين مشكل و كاهش هزينه‌هاي مربوط به ارائه داروهاي جديد، مي‌بايستي كه آنها را به طور اختصاصي بر روي اهداف تعيين شده طراحي نمود. در مواردي حتي دارو را به آنتي بادي اختصاص ي سلول گرفتار موردنظر متصل مي‌نمايند تا داروي پيوند يافته بتواند به راحتي مسير اتصال خود به سلول هاي هدف را به طور اختصاصي پيدا كند. برخي از محققين نيز نقاط ورودي را در مسير متابوليكي بيماري ها پيدا كرده اند و بر مبناي آن داروها را طراحي و ارائه مي‌نمايند ، اما آيا راه اختصاصي وجود دارد تا بتواند حتي يك مولكول دارو را به طور ايده آل به هدف خود متصل نمايد؟ نگاه ريزتر براي مواجه و مقابله با يك چنين مشكلاتي، بسياري از محققين خود را در مسير فناوري نانو قرار داده‌اند. قطع نظر از سايز و شكل ذرات كه اغلب مي‌بايستي كمتر از 100 نانومتر باشد، نانو سامانه‌هاي نوين داروسازي (Nano DDS) روش هاي هدف‌گيري شده‌اي را براي ارائه مقادير بيشتر از مواد داروئي به مناطق هدف در اختيار قرار مي‌‌دهند. با درنظر گرفتن اينكه ، البته با ارائه فقط يك متد نمي‌توان ك ليه مشكلات ف ارماكوك ي نت ي ك را برطرف نمود،‌ اما معذالك مي‌بايست اذعان ن م ود كه ارائه اين نوع ذرات خيلي از مشكلات توزيع در بدن را حذف و يا كاهش مي‌دهد. به دليل اينكه اكثر داروها داراي خواص هيدروف وبي ك (ليپوفيل) هستند ، بنابراين در غلظت‌هاي زياد در بافت تمايل به رسوب دادن پيدا مي‌كنند و براي برطرف كردن اين اثر مي‌بايستي كه همراه آنان مواد جانبي زيادي در فرمولاسيون‌ها به كار روند و لذا س ميت‌هاي بافتي زيادي در اين موارد حاصل مي شود. براي مقابله با اين مشكل، نانو سامانه هاي نوين دارورساني زيادي كه داراي خواص آبدوستي و يا ل يپوفيل باشند طراحي شده است. در برخي از موارد خيلي از داروها سريع تجزيه و به سرعت از اد ر ار دفع مي‌شوند. در اين موارد تغييرات فيزيكوشيميايي مي تواند سبب افزايش فراهمي زيستي داروها ‌شود و در نهايت سبب كاهش نياز به تجويز دارو در اندازه‌هاي كمتري ‌شود. مطالعات نشان داده است كه انكپسول نمودن مواد داروئي تأثير زيادي در مهار ك ليرنس دارو ها از بدن مي‌گذارد. مشكل ديگري كه در مورد داروهاي سيتوتو كسي ك وجود دارد ، مورد تهاجم قرار گرفتن ساير بافت ها توسط اين نوع داروهاست (Extravasation) . با به كارگيري انواع پليمرهاي زيست تخريب‌پذير در سامانه‌هاي nanoDDS بر اين مشكل نيز مي‌توان تا حدي فائق آمد. در هر صورت به دليل آنكه سامانه‌هاي nanoDDS مي‌توانند حجم توزيع مربوط به داروها را بدن كاهش دهند، لذا عوارض جانبي داروهاي مورد مصرف با اين سامانه‌ها نيز كاهش مي‌يابد. علي‌رغم مكانيسم هدف‌گيري شده اين نوع دارورساني كه در بالا توضيح داده شد، نسبت مولكول دارو به مولكول هدف مي‌بايستي 1 به 1 باشد . اما سامانه‌هاي nanoDDS مي‌توانند صدها و يا هزاران مولكول از دارو را با خود حمل نمايند و اين نسبت را افزايش دهند و در نهايت سبب ارائه يك نوع رهش كنترل شده و طولاني‌تر به درون بافت هدف شوند . بنابراين به علت كاهش دوز مورد نياز، اين نوع دارورساني مناسب تر خواهد بود . داروها در ذرات حامل بدون شك با پيشرفت‌هاي اخيري كه در زمينه صنعت پلي‌مر و شيمي سطح در كنار ساير روش‌هاي صنعتي نمودن فراهم شده است، كانون توجه در فناوري دارورساني ، در زمينه طراحي و كاربرد ذرات نانو باشد. در اين عرصه از ساختمان‌هاي مولكولي با هسته سراميكي و يا فلزي تا كمپلكس‌هاي ذرات ليپد ـ پليمر همگي توانائي خود را براي داروسازي به اثبات رسانيده‌اند . بطور مثال شركت Nano Med pharmaceuticals تمامي تلاش خود را بر روي دارو رساني به مغز و همچنين به سيستم ايمني معطوف داشته است. بنا به گفته مسؤولين اين شركت، محققين آنجا توانسته‌اند نانوذرات با طبيعت خنثي، كاتيونيك و يا آنيونيك را از ذرات شيميايي كه عمدتاً داراي خواص داروئي هستند طراحي و توليد كنند. اين ذرات حاوي فرآ ورده هائي از نوع الكل‌هاي با زنجيره طولاني، فسفوليپيدها و مواد فعال كننده سطحي هستند. آنها توانسته‌اند اين داروها را به صورت انكپسول شده و يا به صورت جذب شده بر روي ذرات نوعي ماتريك س طراحي شده در سايز نانو سوار نمايند و اين مجموعه را در اختيار سلول‌هاي هدف قرار دهند. در دارو رساني به سيستم اعصاب مركزي (CNS) ، مشكل‌ترين بخش مربوط به عبور دارو از سد خوني مغزي BBB و رساندن دارو به بخش‌هاي مركزي است. براي آنكه داروئي بتواند براي بيماري‌هائي نظير سرطان مغز، سكته مغزي، آلزايمر و يا پاركينسون مؤثر شود ، مي‌بايستي به راحتي بتواند از اين سد خوني ـ مغزي عبور نمايد. در حال حاضر 95% داروهاي موجود اين مشكل را دارند و لذا در اين گونه موارد به طور مستقيم و با پذيرش مخاطراتي ، آنها را به درون مغز و يا مايع مغز ي- نخاعي تزريق مي نماي ند و يا حتي در بعضي موارد به كمك كاشتني‌ها (implants) دارو در مغز وارد مي‌شود. در حال حاضر برخي از شركت هاي داروئي توانسته‌اند نانو ذراتي را از داروها تهيه نمايند تا بدون برخورد با محدوديت عبور از سد خوني - مغزي بتواند دارو به طور طولاني اثر به بافت‌هاي مغزي برسند و در نتيجه عوارض سميت و عوارض حاصل از دو زاژ بالاتر برطرف شود. داروي paclitaxel كه در موارد درمان سرطان مغز به كار مي‌رود نيز توسط فناوري نانو به صورت ذرات نانو با قابليت عبور از سد خوني ـ‌ مغزي تهيه و قابل ارائه است. در اين مورد نيز نانو ذرات حاوي paclitaxel در مقادير كمتر و با عوارض جانبي كمتر به درون مغز دارورساني مي‌شود. يك شركت ديگر آلماني به نام Nano Del Technologies با استفاده از جذب داروها بر روي سطح ذرات پلي سيانوآكر يلات توانسته است در راه ارائه فناوري نانو و دارو رساني اقدامات عملي انجام دهد. آنها پس از سوار كردن دارو بر روي پليمر در طي پليمريزاسيون و سپس با مواد فعال سطحي مانند پلي سوربات 80 ذرات نانو را پوشش داده و امكان دارورساني و رهش كنترل شده آن را فراهم مي‌نمايند. البته اين شركت هنوز به درستي مكانيسم برداشت و انتخاب اين ذرات توسط سلول ها را نتوانسته است به دست آورد و لكن شايد نوعي مكانيسم نفوذ به درون سلول (enodcytosis) مطرح باشد. به نظر ميرسد كه پلي سوربات 80 سبب تحريك آپوپروتئين E/B شده و آن هم باعث اتصال ذرات نانوحاوي دارو به ليپوپروتئين‌هاي گيرنده‌هاي سطحي مستقر در سطح سلول‌ها شود و به اين صورت داروها در داخل ذرات به درون سلول هاي مغزي راه مي‌يابند. علي‌رغم آنكه اين شركت هنوز در مرحله آزمايشات بر روي حيوانات است، مغذالك كارائي اين سامانه در دارو رساني ضد صرع ها ، ضد دردها و داروهاي مؤثر بر اعصاب به اثبات رسيده است. اين سامانه به طور جالبي براي دارورساني doxorubicin كه يك داروي مؤثر در سرطان مغز مي‌باشد جواب داده است. در حال حاضر اين شركت آمادگي همكاري مشترك با ساير شركت هاي داروئي به م ن ظور انتقال امتياز و ادامه همكاري را دارد. روغن و آب در حاليكه شركت ها ي ي مانند NanoMed به دنبال طراحي سامانه‌هائي براي انكپسول كردن داروها و يا اتصال آنها بر روي ذرات نانو هستند، ساير شركت ها سامانه ذراتي را فرموله مي‌كنند كه در آنها مولكول داروجزئي از ساختار مواد تشكيل دهنده باشد. به دليل آنكه اغلب ساختارهاي داروئي ليپوفيل هستند،‌ لذا اين دسته از ذرات نانو مي‌بايستي كه در داخل امولس ي ون‌هاي روغن ـ آب عرضه شوند. به طور مثال محققين شركت Kereos ذراتي را عرضه كرده‌اند كه از پرفلوروكربن‌هائي (perfluorocarbones) تشكيل شده است . البته اين ذرات از نظر داروسازي بي‌تأثير هستند و آنها را با لايه‌هاي ليپيدي پوشش داده‌اند. در حقيقت لايه ليپيدي يك محل اتصال نانوكووالانت مناسبي را براي اتصال عوامل ليپوفيل مانند برخي از مولكول هاي كوچك و آ‌نتي‌بادي‌ها فراهم مي‌كند. هر يك از ذرات داخل امولس ي ون كه حاوي 10 الي چند صد مولكول ليگان د هدف هستند مي‌توانند با مولكول‌هاي زيستي يا بيوماركرها اتصال برقرار نمايند. هر يك از اين ذرات مي‌توانند با تعداد زيادي حتي 000/100 مولكول از موادي كه روي آ ن سوار شده اند همراه شوند و به طور فوق العاده اختصاصي به مولكول هدف برسند. اين تعداد از مولكول هاي مواد دارو ي ي در مقايسه با ساير روش‌ها كه براي دارورساني آنها مي‌بايستي مقدار زيادي از مواد تجويز شونده بسيار جالب و متمايز است. شركت Kereos اين سامانه از نانو ذرات را براي كاربرد در تصويربرداري رز و نانس مغناطيسي (MRI) و در ارتباط با دارورساني براي كاربرد داروهاي قلبي و ضدسرطان پيشنهاد داده است در غالب نظريه ، اين مواد پس از اتصال اختصا صي به مولكول‌هاي سرطاني مي‌توانند زمينه موجود در تصاوير مربوط به MRI را تشكيل دهند، كه از حيث ك اربرد ، اين مواد در مراحل اوليه ايجاد سرطان‌ها به امر تشخيص و درمان كمك مي‌كند. در بيماري هاي قلبي عروقي، پيشگيري از تشكيل پلاك آترواسكلروزين كه ريشه خيلي از بيماري هاي قلبي عروقي است و همچنين سبب حملات قلبي مي‌شود بسيار مهم است. Bristol-Myers Squibb توانسته است كاربرد اين نوع ذرات نانو را در تشخيص پلاك‌هاي اوليه به اثبات برساند و از سال 2007 در مرحله مطالعات باليني در عرصه درمان نيز اين شركت امولس ي ون‌ه اي ي را براي عرضه داروهاي مؤثر بر تومورهاي جامد ارائه كرده است كه تا سال 2006 در مرحله باليني قرار خواهند گرفت. فلورن ها ( Fullerenes ) محققين مؤسسه C Sixty از ماكرو مولكول هاي درماني به صورت فلورن ها استفاده مي‌كنند. در حقيقت اين مولكو ل هاي غول‌پيكر داراي 20 الي 84 كربنه هستند و از نظر ساختاري شبيه توپ فوتبال هستند و به عنوان آنتي - اكسيدان و داراي قدرت جذب راديكال هاي آزادي هستند كه در طي بيماري هائي مانند بيماري هاي اعصاب، حملات قلبي و ديابت افزايش مي‌يابند. انواعي از مواد داراي اكسيژن فعال و راديك ا ل‌هاي آزاد موجود هستند كه مي توانند الكترون‌هاي غيرمزدوج خود را در تماس با مولكول‌هاي حياتي مانند اسيدهاي نوكلئيك قرار ‌دهند و به اين وسيله سبب تخريب سلولي و مرگ سلول (apoptosis) ‌شوند. محققين C Sixty معتقدند كه فلورن ها به صورت يك "اسفنج راديكالي" عمل مي‌كند و مي‌تواند كه الكترون هاي تخريب شده را در ميان بگيرد. در عمل فلورن ها در آب نامحلول هستند لذا لازم است تا به نوعي محلوليت آنها افزايش يابد. اين شركت توانسته است فلورن ها را ب ه كمك اسيدمالونيك اصلاح ساختار نمايد و توليد ماده‌اي به نام C3 را بنمايد كه به طور مؤثري در بيماري تخريب اعصاب مؤثر است. بعدها دسته تركيباتي به نام دندريمر ها تهيه شدند كه اين مواد شاخه‌دار بزرگ مي‌توانستند خواص محلوليت در آب را افزايش دهند. اين امر منجر به تهيه تركيباتي شد كه رفتار فارماكوكينتيك و توزيع در بدن مانند مولكول هاي كوچك را داشتند. اين شركت مجوز يكي از فرآورده هاي خود را به شركت Merck داده است. ليپوزوم‌ها ليپوزوم‌ها در دارورساني با استقبال زيادي روبرو شده‌اند. اين مواد مي‌توانند به طور كروي مواد داروئي را دربر گر فته و احاطه نماي ن د. تاكنون بسياري از تركيبات از جمله ضدسرطان‌ها و آنتي بيوتيك‌ها توسط ليپوزوم‌ها مورد استفاده قرار گرفته اند . در مقابل نيز شركت‌هائي مانند Anosys وجود دارند كه توانسته‌اند از ليپوزوم‌ها به صورت حامل‌هاي دارو ي ي استفاده نمايند. اغلب سلول ها براي انتقال پيام و سيگنال مهم خود به سلول ديگر از حامل‌هائي به نام dexosome ها استفاده مي‌كنند. در سيستم ايمني ، اين سلول هاي دندانه‌دار ، آنتي‌ژن‌ توم و رها و عوامل ويروس ي و عفونت ز ا را حس مي‌كنند و اين پيام را به سطح سلول منتقل مي‌نمايند. در آنجا اين پيام توسط سلول هاي T مورد شناسائي واقع مي‌شود و سپس سلول هاي شناخته شده به عنوان آنتي‌ژن را نابود مي‌سازد. شركت Anosys توانسته‌اند با شناسايي dexosome هائي ، واكسن‌هائي را تهيه نمايند كه به كمك آنها مولكول‌هاي هدف را در سيستم ايمني مورد شناسائي قرار دهند. در حقيقت اين شركت توانسته است dexosome هاي مصنوعي براي هدف قراردادن سرطان را بسازد. محققين Anosys به كمك اين روش خواهند توانست نوعي ايمني اكتسابي بر عليه انواعي از سرطان‌ها ايجاد نمايند. اين شركت فاز I مطالعات باليني مربوط به اين روش را پشت‌سرگذاشته و به زودي در فاز II مطالعات قرار خواهد گرفت. اهميت اندازه ذرات قطع نظر از اينكه آيا تحقيقات مذكور در حد فرمولاسيون خواهند ماند و يا به صورت دارورساني توسط ذرات انجام خواهد پذيرفت، معذالك مي‌بايست اذعان نمود كه روش هاي فناوري نانو مسير خود را ادامه خواهند داد. به عقيده كارشناسان البته اندازه كوچك ذرات بسيار مؤثر است به طوريكه در زير 100 نانومتر، ذرات قابليت هاي جالبي از نظر خواص شيميايي، فيزيكي و بيولوژيك بدست مي‌آورند. تحليل با توجه به گسترش روز- افزون كاربرد فرآورده هاي نانو و استقبال صنايع دارويي ساير كشورها از اين رويكرد، مي بايستي تمامي ظرفيت هاي بالقوه اين فناوري نوين در صنعت داروسازي كشور به درستي برآورد شود و تاثير آن را در ايجاد تحولات كيفي و كمي مد نظر قرار داد. البته مطالعات اوليه اي كه تاكنون انجام شده است نيز ضرورت استقبال از اين رويكرد را تاييد مي نمايد. لذا اهميت انجام پروژه هاي نانو در مراكز تحقيقاتي و دانشگاهي از ارزش بالايي برخوردار است. اميد است كه با انجام پژوهش هاي جدي و كاربردي ضمن ارزشيابي اهميت به كار گيري نتايج حاصل از آنها، صنايع دارويي موجود در كشور بتوانند از دستاورد هاي آن در آينده استفاده نمايند. منبع: دارو فنآوری ايران
×
×
  • اضافه کردن...