رفتن به مطلب

ترانسفورماتورهای برق قدرت


ارسال های توصیه شده

ترانسفورماتورهای ولتاژ خازنی (c.v.t) جهت اندازه گیری ولتاژ در شبکه استفاده می شود و به صورت موازی با شبکه قرار می گیرد و مدار آن نیز مجهز به کلید فیز می باشد. ترانس ولتاژ خازنی جهت نصب بین خاز و زمین در شبکه های دارای نقطه منو زمین شده یا جدا شده از زمین هستند. این مقاله PDF در مورد ترانسفورماتوهای ولتاژ خازنی مدل CPA و CPB هست که امیدوارم بدردتون بخوره.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه
  • 2 ماه بعد...
  • پاسخ 129
  • ایجاد شد
  • آخرین پاسخ

بهترین ارسال کنندگان این موضوع

بهترین ارسال کنندگان این موضوع

نحوه فیلتر کردن روغن ترانسفورماتور

 

روغن ترانسفورماتورهای قدرت نقش بسیار مهمی در عملكرد ترانسفورماتورها دارند. نقش عایق كنندگی، خنك كنندگی و تشخیص عیب از جمله مهمترین وظایف روغن می باشند. با پیرشدن ترانسفورماتور ، روغن این دستگاه بعضی از خصوصیات شیمیایی و الكتریكی خود را از دست می دهد. از جمله مهمترین این خصوصیات می توان به خصوصیات الكتریكی كه حائز اهمیت می باشند، اشاره نمود.

دلایل اصلی كه روغن ترانسفورماتورهای قدرت را دچار مشكل می نمایند عبارتند از:

۱) افزایش ذرات معلق در روغن

۲) وجود آب به مقدار زیاد در روغن

۳) وجود آلودگی های شیمیایی مانند اسیدیته و...

 

 

مسائل فوق باعث تغییر پارامترهای متعدد می شوند. به عنوان مثال افزایش ذرات معلق و وجود آن باعث كاستن قدرت دی الكتریك روغن و افزایش اسیدیته، باعث خوردگی كاغذ و اجزای داخلی ترانسفورماتور می شود. برای بهبود روغن ترانسفورماتوری كه دچار ضعف های متعدد شده است می توان از فیلتراسیون استفاده نمود. با فیلتر نمودن روغن می توان ذرات معلق آن را جدا نمود و در نتیجه ولتاژ شكست را بالا برد. می توان با خلاء نمودن روغن ، آب را بصورت بخار از روغن جدا نمود. حذف آلودگی های شیمیایی فقط با كمك فیلترهای شیمیایی ممكن است.

از جمله مهمترین آلودگی كه روغن ترانسفورماتور را تحت تأثیر قرار می دهد وجود آب به مقدار كم در داخل روغن است. جدا نمودن آن در داخل ترانسفورماتور به راحتی امكان پذیر نمی باشد. علت این مسأله وجود مقادیر بسیار زیاد آب داخل كاغذ ترانسفورماتور می باشد كه با جدا نمودن آب روغن دوباره جایگزین آن می شود.

● روشهای فیلتر نمودن

الف) روشهای Off-line

از زمانهای دور برای بهبود کیفیت عایقی روغن ترانسفورماتورهای قدرت از روشهای فیلتراسیون هنگامی که ترانسفورماتور خاموش بوده است استفاده می کردند. در این روش هنگامی که ترانسفورماتور خاموش می باشد به مدت چند شبانه روز به صورت پیوسته روغن را داخل ترانسفورماتور چرخانده و آنرا در بیرون تحت فیلتراسیون و خلاء به منظور جدا نمودن ذرات معلق و آب محلول قرار می دادند.

این روش دارای معایب فراوانی است از جمله لزوم داغ نمودن روغن ترانسفورماتور و همچنین لزوم خاموش نمودن ترانسفورماتور را می توان نام برد.

ب) روشهای نوین – روشهای در حین کار

برای جدا نمودن آب به صورت بهینه، لازم است كه از فیلترهای در حین كار استفاده نمود. مهمترین مزایای فیلترهای (خشك كن) های در حین كار خشك نمودن بهینه ترانسفورماتور در طول زمان و همچنین عدم لزوم خاموشی ترانسفورماتور را می توان عنوان نمود. اصول عملکرد این فیلترها مانند شکل زیر است که در آن روغن از مخزن تحت فشار خارج شده و در مسیر آن یک فیلتر فیزیکی قرار می گیرد. در اینجا ذرات معلق فیلتر شده و تحت تاثیر خلاء آب محلول در آن گرفته می شود. روغن فیلتر شده به وسیله پمپ به ترانسفورماتور برگردانده می شود. این چرخه با دبی پایین در حدود ۲۵۰ لیتر در ساعت به صورت پیوسته از چند ماه تا چند سال با توجه به وضعیت ترانسفورماتور صورت می گیرد.

● مزایای خشك كردن On-Line روغن و كاغذ عایقی ترانسفورماتورهای قدرت با استفاده ازدستگاه V۳۰

▪ رطوبت زدائی از روغن ترانسفورماتور بصورت On-Line

▪ افزایش ولتاژ شکست روغن عایقی

▪ رطوبت زدائی از کاغذ عایقی ترانسفورماتور

▪ کاهش میزان ذرات معلق داخل روغن ترانس

▪ کاهش میزان ضریب تلفات عایقی روغن

▪ کاهش میزان اسیدیته روغن

▪ افزایش قابلیت بارگیری ترانسفورماتور

▪ افزایش عمر باقیمانده ترانسفورماتور

▪ عملکرد مطمئن و عدم تأثیر سو بر بهره برداری عادی از ترانسفورماتور

▪ گاززدائی از روغن ترانسفورماتور با استفاده از روش De-Gassing

▪ اعلام آلارم و خروج ترانسفورماتور از مدار در صورت تشکیل مقدار زیاد گاز

لینک به دیدگاه

روغن ترانسفورماتور

 

روغن ترانسفورماتور بخش تصفیه شده روغن معدنی می باشد که در دمای بین 250 تا 300 درجه سانتی گراد به جوش آمده است . این روغن پس از تصفیه از لحاظ شیمیایی کاملاً خالص بوده و تنها شامل هیدرو کربنهای مایع می باشد. روغن ترانسفورماتور دو وظیفه اساسی بر عهده دارد:اول اینکه بعنوان عایق الکتریکی عمل می نماید و ثانیاً حرارت های ایجاد شده در قسمتهای برقدار ترانسفورماتور را به خارج منتقل می کند.با ولتاژ های بالایی که هم اکنون در شبکه انتقال انرژی صورت می گیرد نیاز به روغن ترانسفورماتور ها بعنوان عایق الکتریکی و وسیله خنک کننده افزایش یافته است.چنانچه روغن خالص باشد مشخصات الکتریکی آن خوب خواهد بود و نیز اگر ویسکوزیته (چسبندگی) روغن کم باشد ، خاصیت خنک کنندگی بهتری خواهد داشت و POUR POINT آن پائین خواهد بود . به هر حال ویسکوزیته روغن را نمی توان بسیار پائین انتخاب کرد زیرا در این صورت flash point روغن پائین تر خواهد آمد و از روغن با flash point پائین نبایستی استفاده کرد.پائین ترین حد flash point در اینگونه موارد 130 درجه سانتی گراد در نظر گرفته میشود.در عین حال ویسکوزیته روغن نباید به اندازه کافی پائین باشد تا p.p روغن کمتر از 40- درجه سانتی گراد باشد.( در بعضی کشورهای اروپای شمالی از روغنهایی با p.p پائیت استفاده میشود ) .

 

 

خصوصیات یک روغن ایده آل میتواند ایتمهای زیر را در بر داشته باشد :

1-استقامت الکتریکی بالایی داشته باشد.

2-انتقال حرارت را بخوبی انجام دهد .

3- جرم مخصوص پائینی داشته باشد .

در روغن هایی که جرم مخصوص پائینی دارند ، ذرات معلق براحتی و به سرعت ته نشین میگردند و این خاصیت باعث تسریع در روند هموژنیزه روغن میشود.

4-ویسکوزیته پائینی داشته باشد، روغنی که وسکوزیته پائینی دارد سیالیت آن بهتر است و بیشتر است و در نتیجه خاصیت خنک کنندگی بهتری خواهد داشت.

5- Pour point پائینی داشته باشد .روغنی که Pour point پائینی دارد در درجه حرارت های پائین حرکت خود را از دست خواهد داد.

6- Flash point بالایی داشته باشد. Flash point مشخص کننده تمایل روغن به تبخیر شدن میباشد. هر چه Flash point روغن پائین تر باشد تمایل به تبخیر شدن در روغن بیشتر است.هنگامی که روغن تبخیر میشود ، ویسکوزیته آن بالا میرود و روغن های تبخیر شده ترکیبات اتش زایی را با هوای بالای روغن ایجاد می کنند.

7- به مواد عایقی و استراکچر فلزی نمی بایستی آسیبی برساند.

8- خاصیت شیمیایی پایداری داشته باشد.این مسئله به عمر بیشتر روغن کمک خواهد کرد.

خصوصیات روغن ترانسفورماتور :

روغنی که در ترانسفورماتور بکار میرود می بایستی دو خصیصه زیر را داشته باشد :

1- روغن باید تمییز باشد .مواد جامد معلق یا ترکیبات شیمیایی زیان آور و یا آب در آن هرگز موجود نباشد.

2- روغن از لحاظ شیمیایی بایستی پایدار باشد .تغییرات روغن با توجه به گرما و اکسیژنی که با آن در تماس باشد در درجه حرارت کار نرمال ترانس میبایستی تا حد امکان کم باشد.

ناخالصی ها :

ناخالصی ها در اولین قدمخاصیت الکتریکی روغن را تحت تاثیر قرار می دهد. با توجه به نوع ناخالصی تاثیر پذیری روغن متفاوت خواهد بود.بطور مثال :

1- ذرات جامد با قطر بیشتر از mμ 15 و قطرات کوچک آب استقامت دی الکتریک روغن را کاهش میدهد.

2- چنانچه ذرات جامد در روغن باشد ، استقامت دی الکتریک روغن توسط آب های غیر محلول در روغن کاهش خواهد یافت.

3- ذرات جامد بسیار کوچک (mμ 15> ) برای مثال ترکیبات قطبی حل نشده در میدانهای الکتریکی بالا تلفات دی الکتریکی در روغن را بالا خواهد برد.

به هر حال هر چه میزان ناخالصی ها در روغن بیشتر باشد،تاثیر پذیری روغن بیشتر خواهد شد.بنابر این برای انواع مختلف نا خالصی ها و خصوصیات الکتریکی وابسته به روغن می بایستی محدودیت هایی در نظر گرفت. البته این حدود تابع ولتاژ وسایلی است که بدان وابسته می باشند.

حد اکثر میزان آب مجاز در روغن مطابق IEC 422 ، mg/dm3 20 برای ولتاژهای بیش از 170 کیلو ولت و mg/dm3 30 برای ولتاژ های کمتر از 170 کیلو ولت می باشد.

برای ضریب پراکندگی دی الکتریک (tg δ ) که تابع ذرات کوچک و ترکیبات قطبی حل نشده در روغن می باشد ، حدود کاملاً مشخص نمی باشد. معمولاً می توانیم حد بالای tg δ را /00 ْ400 برای درجه حرارت 90 درجه سانتی گراد را در نظر بگیریم برای برخی روغن ها به هر حال حد بالای tg δ را می توانیم تا/ 00 ْ2000 در نظر بگیریم.

زوال و اضمحلال روغن :

از آنجا که روغن یک ترکیب آلی است زوال و تاثیر ناپذیری آنرا در مقابل گرما و اکسیژن نمی توانیم کاملاً از بین ببریم. بنابراین روغن اکسیده میشود و ترکیبات اسیدی و قطبی به تبع آن بوجود می آید و کشش سطحی روغن در مقابل آب کاهش می باید.

از طرف دیگر ترکیبات اسیدی بر کاغذ و تخته های فشرده شده عایق های سیم پیچی ها تاثیر نامطلوبی خواهد گذاشت. در حقیقت سلول های عایقی هنگامی که تحت حرارت قرار می گیرند در محیط اسیدی سریعتر از محیط خنثی ترد و شکننده می شوند.

تشکیل لجن و کثافات در روغن ترانسفورماتور از پیامدهای دیگر زوال و اضمحلال روغن می باشد. پس از این مرحله تغییرات در روغن نسبتاً سریعتر صورت می گیرد . برای مثال کشش سطحی در این مرحله از مقدار اولیه خود N/M 3- 10 * 45 به مقدار N/M 3- 10 * 15 کاهش می یابد.لجن و کثافات هنگامی که در روغن ترانسفورماتور تشکیل میشوند ، بر روی سیم پیچی ها رسوب می کنند و باعث می گردند که سیم پیچی ها بطور موثر خنک نشوند.

هنگامیکه اسیدیته (Neutralization value) روغن بسیار بالا باشد و یا کثافات در روغن مشاهده شده است توصیه میشود اقدامات آمده در جدول انجام گیرد.همانگونه که خواهید دید از ته نشین شدن و رسوب هر گونه کثافات در روغن ترانس باید جلوگیری بعمل آید.

تجزیه و تحلیل گازها برای آشکار کردن نقصهای ابتدایی در ترانسفورماتور :

عایقها در یک ترانسفورماتور تنها به دلیل حرارت و تجزیه شیمیایی زائل نمی شوند، بلکه تخلیه الکتریکی نیز در این فرایند موثر می باشند. بوسیله تخلیه الکتریکی و درجه حرارت نسبتاً بالای محیط ، روغن و کاغذ به مواد گازی از قبیل هیدروژن – متان – اتیلن – استیلن – و اکسید کربن تجزیه می گردند . این پدیده در ترانسفورماتور بدین معنی است که نقصی وجود دارد . این نقص می تواند کاملاً بی ضرر باشد و نیز می تواند بسیار جدی بوده و دیر یا زود منتهی به عملکرد بد ترانسفورماتور شود.

منشاء و میزان گازهای مختلف تولید شده بستگی به نوع و جدی بودن خطا دارد. بنابراین با بررسی گازهای حل نشده در روغن ترانسفورماتور نیاز به بازدید و تعمیر ترانسفورماتور آشکار می گردد. برای مثال اضافه حرارت روغن باعث ایجاد گاز متان و اتیلن ، تخلیه الکتریکی جزئی در روغن باعث ایجاد هیدروژن و تخلیه الکتریکی شدید ، گاز استیلن در روغن ایجاد خواهد نمود.

به هر حال ، چگونگی بررسی اینگونه گاز های ایجاد شده در روغن و تجزیه و تحلیل آنها هنوز کاملاً قطعی نشده و در کشور های مختلف در این خصوص مطابق با استاندارد های IEC تحقیقات ادامه دارد.

نظارت بر روغن و رطوبت گیر :بررسی روغن های نمونه برداری شده از ترانس که در فواصل منظمی صورت می گیرند ، نظارت خوبی بر کار ترانسفورماتور خواهد بود . با این عمل نه تنها برخی مشخصات روغن در زمانهای معینی ضبط می گردد ، بلکه همچنین میزان پیشرفت و تغییرات این مشخصه با زمان نیز آشکار خواهد شد.که این خود مبنای بهتری برای ارزیابی وضعیت روغن می باشد.چنانچه نتایج بعضی از اندازه گیریها هماهنگ با نتایج قبلی نباشد ، این بدان معنی است که در اندازه گیری ها و یا هنگام نمونه برداری خطایی وجود داشته است . روغن نمونه برداری شده براحتی بوسیله آلودگی و رطوبت شیر ها و یا بطری نمونه برداری ، آلوده می گردد و بنابراین نمونه برداری از روغن ترانسفورماتور بایستی با حد اکثر دقت صورت گیرد.

ترکیب روغن ها :

چه نوع روغنی را میتوانیم به ترانسفورماتورها اضافه نمائیم؟ در حقیقت ترکیب دو نوع روغن متفاوت می تواند نتایج غیر قابل انتظاری به همراه داشته باشد.بازدارنده اکسیداسیون دو روغن ممکن است بر یکدیگر تاثیر گذاشته و یا ترکیبات ناشی از کهولت در یک روغن می تواند رسوبات ایجاد کند در حالیکه این رسوبات توسط روغن دوم رقیق گردد. به هر حال روغن ها می توانند به دلایل مختلفی با یکدیگر نا سازگار باشند.

در موارد نامشخص، آزمایشات مربوط به ترکیبات دو نوع روغن متفاوت می تواند انجام شود . معمولاً باید اصول زیر را همواره در ترکیب دو نوع روغن متفاوت مراعات نمود.

روغن دو نوع ترانسفورماتور را در صورت داشتن شرایط زیر می توان ترکیب نمود.

1- مطابق با استاندارد واحدی باشند.

2- شامل باز دارنده اکسیداسیون یکسان و یا باز دارنده اکسیداسیون قابل مقایسه ای باشند.

3- مقدار خنثی (Neutralization value) کوچکتر از mg KOH/g 0.5 داشته باشد.

4- میزان آب در روغن ازg/g μ 20 کمتر باشد.

لینک به دیدگاه
  • 5 ماه بعد...

همونطور که میدونید ترانسفورمر یک سیم پیچ اولیه و یک سیم پیچ ثانویه داره که دور یه هسته پیچیده شده اند.. یک ترانسفورمر میتونه برای دو منظور 1-افزایش یا کاهش ولتاژ و یا 2-ایزوله کردن بکار برود.

نسبت دور ( (winding ratio :

سیم پیچهای ترانسفورمر سیمهای مغناطیسی لاکی هستند که دور هسته پیچیده شده اند(مثل عکس زیر).تعداد سیم پیچها با تعداد دفعاتی که هر تکه سیم یک دور کامل به دور هسته میچرخد تعیین میشود.سیم پیچ اولیه سیم پیچی است که درایومیشه و سیم پیچ ثانویه٬ سیم پیچ خروجیه. ثانویه با میدان مغناطیسی القاء شده توسط اولیه در هسته ٬ درایو میشه.یک ترانسفورمر با نسبت 1:1 سطح ولتاژ رو از اولیه به ثانویه کم یا زیاد نمیکنه(صرفنظر از تلفات کوچک) و نسبت 1:2 سطح ولتاژ ثانویه رو دو برابر اولیه و نسبت 1:3 (ثانویه:اولیه) یعنی سطح ولتاژ ثانویه(خروجی) 3 برابر سطح ولتاژ اولیه(ورودی) است.البته تمام این اعمال برای ترانسفورمری است که بار نداشته باشد (جریان مینیمم).وقتی از ثانویه جریانی کشیده میشه٬ یه افت ولتاژ در ثانویه داریم و در نتیجه نسبت ولتاژ اولیه به ثانویه دقیقا مطابق نسبت دور آنها نخواهد بود.این افت ولتاژ در وهله اول بخاطر کمتر بودن تزویج مغناطیسی بین اولیه و ثانویه کمتر از 100% در هسته ودر مرحله دوم بخاطر تلفات مس است(مقاومت).اولیه و ثانویه در اصل از نظر الکتریکی نمیتونن به هم وصل باشن.یعنی اینکه تمام قدرت انتقالی از اولیه به ثانویه از طریق هسته(بطور مغناطیسی)است.ترانسفورمر زیر مشابه چیزیه که میتونید در یه آمپلی فایر صوتی کوچک اتومبیل پیدا کنید.نسبت سیم پیچی 1:2 است.رنگهای مختلف٬ اولیه و ثانویه رو نشون میدن.دقت کنید که سیم پیچای ثانویه دو برابر اولیه اند. سکل سماتیکی هم نشون میده که سیم پیچها چگونه با هم ارتباط دارن.تپ مرکزی اولیه (خط وسطی قرمز) به باطری وصل شده. تپ مرکزی ثانویه (مشکی)به زمین(ground) وصل شده.

شکل واقعی و شماتیک ترانسفورمر نمونه((1:2 ratio:

tranrat1.gif

 

برای اطلاع ضمیمه (As a side note) :

توانی که به اولیه داده میشود با توان خروجی ترانسفورمر برابر است(اگه از تلفات هسته و مسی صرفنظر کنیم).اگه یه ترانسفورمر افزاینده 1:2 داشته باشیم و اولیه اش 24ولت داشته باشه٬ با صرفنظر از تلفات ثانویه اش 48ولت خواهد داشت.اگه یه بار 5آمپری رو ثانویه بگذاریم توان خروجی P=I*E; P=5*48; P=240 watts خواهد بود و چون در ترانسفورمر توان ورودی با خروجی برابر است٬ و توان خروجی 240وات است.اگه ازفرمول I=P/E استفاده کنیم میبینیم I=240/24; I=10 amps .اگه ولتاژ رو کاهش میدادیم٬ جریان اولیه کمتر از ثانویه میشد.

-------------------------------------------------------

Advanced Info:

به هنگام طراحی ترانسفورمر شما باید تعداد دور اولیه رو برای اینکه ترانسفورمر خوب کار کنه رو محاسبه کنید. تعدادی متغیر مختلف که باید به حساب بیان.

Ac :

Ac سطح مقطع موثر هسته (effective cross sectional core area) است.این عدد بوسیله سازنده هسته معلوم میشود.

B:

چگالی شار(flux density) (B) که بر حسب گوس (gauss)بیان میشود.اگر چگالی شار خیلی زیاد باشد هسته اشباع خواهد شد(قسمت موثری از مدار مغناطیسی ناپدید خواهد شد – خیلی بد). بطور کلی در منابع تغذیه سوییچینگ آمپلی فایر صوتی اتومبیل یا در زیر 35kHz ٬ چگالی شار روی یا زیر 2000گوس نگه داشته میشه.بعضی هسته ها برای زیر 35kHz٬چگالی شار بیشتری ارائه میدن ولی همین 2000گوس عدد محافظه کارانه بهتریه.برای فرکانسهای بالاتر٬ مجبورید برای چگالی شارهای پایینتر طراحی کنید تا از گرم شدن هسته جلوگیری کنید.چارت زیر چگالی ماکزیمم تقریبی را برای فرکانسهای داده شده نشان میدهد.به منظور دقت بیشتر مقادیر برای ماده ی هسته داده شده٬ به سازنده هسته مراجعه کنید.

نمودارتغییرات flux density بر حسب frequency :

fluxdensityvsfrequency.gif

ولتاژ اولیه (primary voltage)

ولتاژ اولیه برای یک سیستم push-pull (این مثال٬ یک push-pull SMPS است)٬ دو برابر ولتاژ اولیه ورودی است.برای منابع تغذیه سوییچینگ آمپلی فایر اتومبیل٬ ولتاژ ورودی 12vDC است.یعنی اینکه ولتاژ نهایی اولیه 24ولت است.اگه ما 13.5ولت بعنوان ولتاژ ورودی استفاده کنیم٬ ولتاژ اولیه رو باید 27ولت بگیریم. (یعنی اگه خواستیم یه ترانس واسه منبع تغذیه سوییچینگ آمپلی فایر اتومبیل طراحی کنیم٬ چون ولتاژ ورودیش 12vdc هست٬ پس باید تو محاسبات جلوی primary voltage٬ عدد 24 گذاشت).

فرکانس عملیاتی (Operating Frequency):

فرکانس کاری(نوسانی) فرکانسی است که اولیه رو راه اندازی میکنه.معمولا در آمپلی فایر صوتی اتومبیل بین 25KHz تا 100KHz است.

تعداد دور اولیه (Primary Turns) :

تعداد دور اولیه رجوع داده میشه به اولین ماشین حسابی که این سایت در صفحه ی

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
قرار داده که تعداد دور نهایی سیم پیچ در سمت اولیه رو بدست میدهد.البته٬ برای یک سیستم push-pull ٬ تعداد دورها برای هر نیمه اولیه باید یکسان باشد.(تعداد دور گفته شده رو باید نصف کنیم). اگه نتیجه محاسبات مثلا 13 شد٬ باید به 14(به بالاتر) اونو گرد کنین و به هر کدام از نیمه ها 7 دور اختصاص دهید.برای شکل ترانسی که دیدیم٬ باید 7دور سبز و 7دور نارنجی بپیچیم.

 

منبع : golgoli.blogdoon.com

لینک به دیدگاه
  • 2 هفته بعد...

◄ سيستمONAN (روغن طبيعي – هوا طبيعي) :

 

در اين سيستم ، هوا به طور طبيعي با سطح خارجي رادياتورهاي در تماس است و رادياتورها به طور طبيعي با هوا خنک مي شوند. همچنين گردش روغن در ترانسفورماتور نيز به طور طبيعي صورت مي گيرد ؛ يعني روغن گرم بالا مي رود و روغن سرد ، جاي آن را مي گيرد.اين نوع سيستم خنک کنندگي مختص ترانسفورماتورهاي با قدرت کم است ؛ زيرا با افزايش قدرت ترانسفورماتور ، حرارت سيم پيچ ها زياد مي شود و روغن بايد با سرعت بيشتري در تماس با هواي بيرون قرار گيرد و عمل خنک کنندگي با سرعت بيشتري انجام شود. از اين نوع سيستم براي ترانسفورماتورهاي قدرت تا MVA 30 مورد استفاده قرار مي گيرد.

 

 

Archive.0035.2.jpg

 

◄ سيستم ONAF (روغن طبيعي – هوا اجباري) :

 

در اين سيتم ، گردش روغن در داخل ترانسفورماتور به طور طبيعي صورت مي گيرد ؛ ولي فن هاي نصب شده روي بدنه رادياتورها ، سرعت تماس هواي خارج با بدنه رادياتور را افزايش مي دهد. لذا روغن سريعتر خنک مي شود و طبعاً مي توان توان ترانسفورماتور را بالا برد.

 

دميدن هوا توسط فن ها مي تواند به طور مداوم يا با فاصله تناوبي انجام شود ؛ بدين صورت که عملکرد فن مي تواند تابعي از درجه حرارت روغن داخل ترانسفورماتور باشد و هنگامي که دماي روغن از حد معيني افزايش يافت ، فن ها به طور خودکار وارد مدار مي شوند. البته هنگامي که درجه حرارت محيط خيلي بالا باشد ، ترانسفورماتور مي تواند بدون سيستم فن و با خنک شدن طبيعي ، تقريباً تا دو سوم توان نامي خود کار کند و در صورتي که بخواهيم با توان نامي کار کند ، بايد فن ها شروع به کار کنند.

 

اين نوع سيستم خنک کنندگي به طور وسيعي در ترانسفورماتورهاي قدرت با توان بين 30 تا 60 مگا ولت آمپر مورد استفاده قرار مي گيرد.

 

 

 

Archive.0035.1.jpg

 

 

 

 

◄ سيستم OFAF (روغن اجباري – هوا اجباري) :

در اين سيستم ، گردش روغن در داخل ترانسفورماتور به کمک فن ، سرعت داده مي شود تا انتقال حرارت با سرعت بيشتري انجام گيرد. فن هاي هوا نيز بدنه رادياتورها را در تماس بيشتري با هوا قرار مي دهند تا روغن را سريعتر خنک کنند. در اين سيستم با توجه به سرعت بسيار بالاي خنک کنندگي سيم پيچ ها ، مي توان قدرت نامي ترانسفورماتور را به مقدار قابل توجهي افزايش داد. لازم به ذکر است که عموماً از اين نوع سيستم خنک کنندگي در ترانسفورماتورهاي با توان بيش از MVA 60 استفاده مي شود

 

 

◄ سيستم OFWF (روغن اجباري – آب اجباري) :

 

در اين سيستم ، ابتدا روغن توسط پمپ از بالاي ترانسفورماتور وارد رادياتور مي شود تا پس از عبور از آن ، از پايين رادياتور وارد ترانسفورماتور گردد. در رادياتور ، آب خنک کنندگي هم در توسط پمپ در خلاف مسير روغن در رادياتور عبور مي کند که باعث کاهش دماي روغن مي شود. از اين نوع سيستم در ترانسفورماتورهاي با توان بيش از MVA 60 مورد استفاده قرار مي گيرد.

 

 

◄ سيستم ODWF (روغن اجباري در سيم پيچ و هسته – آب اجباري) :

 

در ترانسفورماتورهاي با قدرت هاي بسيار بالا ، به منظور کاهش هرچه بيشتر دماي سيم پيچ ها و هسته بايد روغن را توسط پمپ ها ، با فشار و جهت مناسب از قسمت تحتاني تانک ترانسفورماتور به داخل سيم پيچ ها و هسته هدايت نمود. همچنين مشابه روش قبل ، با استفاده از رادياتور و چرخش روغن در داخل آن و به واسطه تماس غير مستقيم با آب خنک کنندگي ، دماي روغن به مقدار مورد نظر کاهش مي يابد.

لینک به دیدگاه

انچه درمورد ترانسفورمرها باید دانست!

 

 

 

ترانسفورماتور وسيله اي است كه انرژي الكتريكي را در يك سيستم جريان متناوب از يك مدار به مدار ديگر انتقال مي دهد و مي تواند ولتاژ كم را به ولتاژ زياد وبالعكس تبديل نمايد.

برخلاف ماشينهاي الكتريكي كه انرژي الكتريكي و مكانيكي را به يكديگر تبديل مي كنند ، در ترانسفور ماتور انرژي به همان شكل الكتريكي باقيمانده و فركانس آن نيز تغيير نميكند و فقط مقادير ولتاژ و جريان در اوليه و ثانويه متفاوت خواهد بود. ترانسفورماتورها نه تنها به عنوان اجزاء اصلي سيستم هاي انتقال و پخش انرژي مطرح هستند بلكه در تغذيه مدارهاي الكترونيك و كنترل ، يكسوسازي ، اندازه گيري و كوره هاي الكتريكي نيز نقش مهمي بر عهده دارند.

انواع ترانسفورماتورها را ميتوان برحسب وظايف آنها بصورت ذيل بسته بندي كرد :

 

 

1- ترانسفورماتورهاي قدرت در نيروگاهها و پستهاي فشار قوي

2- ترانسهاي توزيع در پستهاي توزيع زميني و هوايي ، براي پخش انرژي در سطح شهرها و كارخانه ها

3- ترانسهاي قدرت براي مقاصد خاص مانند كوره هاي ذوب آلومينيم ، يكسوسازها و واحدهاي جوشكاري

4- اتوترانسها جهت تبديل ولتاژ با نسبت كم و راه اندازي موتورهاي القايي

5- ترانسهاي الترونيك

6- ترانسهاي ولتاژ و جريان جهت مقاصد اندازه گيري و حفاظت

7- ترانسهاي زمين براي ايجاد نقطه صفر و زمين كردن نقطه صفر

8- ترانسهاي آزمايشگاه فشار قوي و...

 

 

و از نظر ماده عايقي و ماده خنك كننده نيز ترانسفورماترها را مي توان بصورت ذيل بسته بندي كرد :

 

 

1- ترانسفورماتورهاي روغني Oil immersed power Transformer

2- ترانسفورماتورهاي خشك Dry type transformer 3-ترانسفورماتورهاي با عايق گازي (sf6) Gas insulated transformer

ساير ترانسفورماتورها مانند ترانسفورماتورهاي كوره ، ترانسفورماتورهاي تغيير دهنده فاز و..

بعنوان ترانسفورماتورهاي خاص قلمداد مي گردند.

 

◄ ساختمان ترانسهاي قدرت روغني:

قسمتهاي اصلي در ساختمان ترانسفورماتورهاي قدرت روغني عبارتند از:

1- هسته يك مدار مغناطيسي

2- سيم پيچ هاي اوليه و ثانويه

3- تانك اصلي روغن

 

 

به جز موارد فوق اجزا ديگري نيز به منظور اندازه گيري وحفاظت به شرح زير وجوددارند :

 

 

1- كنسرواتوريا منبع انبساط روغن

2- تب چنجر

3- ترمومترها

4- نشان دهنده هاي سطح روغن

5- رله بوخ هلتز

6- سوپاپ اطمينان يا لوله انفجاري / شير فشار شكن )

7- رادياتور يا مبدلهاي حرارتي

8- پمپ و فن ها

10 – شيرهاي نمونه برداري از روغن پايين و بالاي تانك

11- شيرهاي مربوط به پركردن و تخليه روغن ترانس

12- مجراي تنفسي و سيليكاژل مربوط به تانك اصلي و تب چنجر

13- تابلوي كنترل

14- تابلوي مكانيزم تب چنجر

15- چرخ ها

16- پلاك مشخصات نامي

 

◄ هسته :

هسته ترانس يك مدار مغناطيسي خوب با حداقل فاصله هوايي و حداقل مقاومت مغناطيسي است تا فورانهاي مغناطيسي براحتي از آن عبور كنند. هسته بصورت ورقه ورقه ساخته شده و ضخامت ورقه ها حدود0.3 ميليمتر و حتي كمتر است. براي كاهش تلفات فوكو ورقه ها تا حد امكان نازك ساخته مي شوند و لي ضخامت آنها نبايد بحدي برسد كه از نظر مكانيكي ضعيف شده و تاب بردارد.

در ترانسهاي قدرت ضخامت ورقه ها معمولاً 0.3 يا 0.33 ميليمترانتخاب مي شود كه اين ورقه ها توسط لايه نازكي از وارنيش عايقي با يك سيم نازك عايقي ، نسبت به هم عايق مي شوند.

 

 

◄ سيم پيچي هاي ترانس :

در ساختمان سيم پيچ هاي ترانس بايد موارد متعددي در نظر گرفته شوند كه در ذيل به مهمترين آنها اشاره مي نمائيم :

1- در سيم پيچ هابايد جنبه هاي اقتصادي كه همان مصرف مقدار مس و راندمان ترانس مي باشد ، مراعات شود.

2- ساختمان سيم پيچ ها براي رژيم حرارتي كه بايد در آن كار كند محاسبه شود ، زيرا در غير اين صورت عمر ترانس كاسته خواهد شد.

3- سيم پيچ ها در مقابل تنش ها و كشش هاي حاصل از اتصال كوتاه هاي ناگهاني مقاوم شوند.

4- سيم پيچ ها بايد در مقابل اضافه ولتاژهاي ناگهاني از نقطه نظر عايقي ، مقاومت لازم را داشته باشند.

سيم پيچ ترانس ها نسبت به هم در نوع سيم پيچ ، تعداد حلقه ها درجه و اندازه سيمها و ضخامت عايق بين حلقه ها متفوت خواهند بود. هر چه ولتاژ ترانس بالا برود ، تعداد حلقه هاي سيم پيچ بيشتر مي شود و هر چه ظرفيت ترانس بيشتر شود ، اندازه سيم ها بزرگتر مي گردد.

در ترانس با هسته ستوني ، سيم پيچها اعم از فشار قوي ، متوسط و فشار ضعيف و سيم پيچ تنظيم – بصورت استوانه متحدالمركز روي ستونهاي هسته قرار مي گيرند. معمولاً سيم پيچ فشار ضعيف در داخل و فشار قوي در خارج واقع مي شوند و ترتيب فوق به اين دليل رعايت مي شود كه عايق كاري فشار ضعيف نسبت به هسته راحت تر است.

 

 

◄ تانك اصلي روغن :

تانك ترانس يك ظرف مكعب يا بيضوي شكل است كه هسته و سيم پيچ هاي ترانس در آن قرار مي گيرند و نقش يك پوشش حفاظتي را براي آنها ايفا مي كند داخل اين ظرف از روغن پر مي شود بطوريكه هسته و سيم پيچ كاملاً در روغن فرو مي روند. سطح خارجي تانك تلفات گرمايي داخل ترانس را به بيرون منتقل مي كند از هر مترمربع سطح تانك حدوداً 400 الي 450 وات توان گرمايي به خارج منتقل مي شود ، بطوريكه در ترانسهاي كوچك ، همين سطح براي خنك كاري كافي است و به تمهيدات ديگري نظير رادياتور وفن نياز نمي باشد. در ترانسهاي تا KVA 50 بدنه تانك از ورق ساده فولادي به ضخامت حدوداً MM3 ميليمتر ساخته مي شود ، سطح آن صاف بوده و نيازي به ميله هاي تقويتي يا لوله هاي خنك كن ندارد. هر 4 وجه ترانس از يك ورق يك پارچه درست مي شود و فقط در يك گوشه جوشكاري مي گردد.

تانك ترانس بايستي موجب شود كه موارد مشروحه ذيل تأمين گردند :

- حفاظتي براي هسته ، سيم پيچ ، روغن و ساير متعلقات داخلي باشد.

- داراي استقامت كافي باشد كه در حين حمل و نقل و نيز در زمان اتصال كوتاه داخلي بتواند تنش هاي مكانيكي ايجاد شده را تحمل نمايد.

- ارتعاشات و صدا در آن به حداقل برسد.

- ساختمان آن در برابر نشت روغن و يا نفوذ هوا كاملاً آب بندي باشد.

- سطوح كافي براي دفع گرماي ناشي از تلفات ترانس را تأمين كند.

- محلي براي نصب بوشينگها ، تب چنجر ، مخزن ذخيره روغن و ساير متعلقات باشد.

- از نظر ابعاد در حدي باشد كه براحتي قابل تحمل و حمل و نقل از طريق جاده يا راه آهن باشد.

- حداقل تلفات فوكو در آن ايجاد شود.

- حداقل ميدان مغناطيسي در خارج از آن وجود داشته باشد.

به اين ترتيب طراحي تانك ترانس به روش پيش بيني شده براي حمل و نفل آن نيز بستگي دارد.

 

 

◄ مقره ها ( بوشينگ ها ):

سرهاي خروجي سيم پيچ هاي فشار قوي و فشار ضعيف بايد نسبت به بدنه فلزي تانك ، عايقكاري شوند. براي اين منظور از مقره ها استفاده مي شود. مقره يا بوشينگ تشكيل شده است از يك هادي مركزي كه توسط عايق هاي مناسبي در ميان گرفته شده است.

بوشينگها روي در پوش فوقاني ترانس نصب مي شوند و در موارد نادري بوشينگها را روي ديوارة جانبي تانك هم نصب مي كنند. انتهاي پاييني مقره در داخل تانك جاي مي گيرد ، در حاليكه سر ديگر آن در بالاي درپوش و در هواي خارج واقع مي شود.

ترمينالهاي هر دو سر داراي بستهاي مناسبي براي اتصال به سر هادي هاي داخل ترانس و نيز هادي هاي شبكه مي باشند. شكل و اندازه بوشينگها به كلاس ولتاژ ، نوع محل ( داخل ساختمان يا در هواي آزاد ) و جريان نامي آن بستگي دارد. بوشينگهاي داخل ساختماني نسبتاً كوچك بوده و سطح آن صاف است ، اما بوشينگهاي هواي آزاد كاملاً در معرض شرايط مختلف جوي نظير برف و باران و آلودگي و... قرار مي گيرند ، بنابراين از نظر شكل كاملاً متفاوتند و از سپرهايي به شكل چتر تشكيل مي شوند ، تا سطح زيرين آنها در مقابل باران خشك نگه داشته شوند. دراين صورت سطح خارجي آنها زياد شده و فاصله خزش جرقه روي سطح چيني عايق زيادتر مي گردد و در نتيجه استقامت الكتريكي بوشينگ افزايش مي يابد.

در حال حاضر تمام ترانسهاي با قدرت زياد ، براي كار در هواي آزاد ساخته مي شوند و مقره هاي عايقي ، براي ولتاژهاي مختلف زير موجود مي باشند :

0.5و1و3 و6 تا 10 و20 و 35 و110 و220 و320 و500 و750 كيلووات در ترانسهاي قدرت از 3 تا 10 كيلووالت ، همان بوشينگ kv10 بكار مي رود. براي ترانسهاي kv 1 و كمتر از مقره چيني ساده يا مقره اپوكسي زرين ساخته مي شود.

 

 

◄ سيستم هاي اندازه گيري و حفاظت ترانس:

 

+ كنسر واتور يا منبع انبساط روغن

منبع ذخيره روغن كه به اسامي منبع انبساط و كنسرواتور نيز ناميده مي شود ، تانكي است كه در بالاترين قسمت ترانس نصب مي شود در حين تغييرات بار روزانه ، روغن ترانس انبساط وانقباض مي يابد و در حين انبساط وارد منبع ذخيره مي شود. اندازه و حجم منبع ذخيره به اندازه ترانس و تغييرات دمايي آن در هنگام بهره برداري بستگي دارد. در ترانسهايي كه داراي تب چنجر قابل قطع زير بار هستند ، منبع انبساط به دو بخش تقسيم مي گردد كه قسمت كوچكتر براي تب چنجر و قسمت بزرگتر براي تانك اصلي در نظر گرفته مي شود. از بالاي هر قسمت منبع ذخيره ، لوله اي به فضاي آزاد آورده مي شود ، كه به آن مجراي تنفسي مي گويند (Breather) در ورودي اين مجرا ظرف شيشه اي قرار دارد ، كه داخل آن از ماده اي رطوبت گير به نام سيليكاژل پر مي شود. به اين ترتيب هواي ورودي به ترانس رطوبت خود را از دست داده و كاملاً خشك خواهد بود.

در هر قسمت منبع ذخيره ، يك نشان دهندة سطح روغن نصب مي شود تا سطح روغن را در حين كار ترانس بتوان نظارت كرد و همچنين دو سطح منبع ديگر كه مجهز به كنتاكت آلارم مي باشند نيز بر روي آنها نصب مي گردند سطح خارجي منبع ذخيره نيز با رنگ مناسب پوشيده مي شود تا از خوردگي و زنگ زدن محافظت گردد.

 

 

+ تپ چنجر

در بارهاي مختلف افت ولتاژ در ترانسفورماتورها و خطوط نيز تغيير مي كند و سبب تغيير ولتاژ شبكه مي شود. كنترل ولتاژ شبكه هاي توزيع و انتقال عمدتاً توسط تب چنجر ايجاد مي شود. اساس كار تب چنجر بر تغيير نسبت تبديل ترانس استوار است. بدين ترتيب كه با انشعاباتي كه در سيم پيچ فشار قوي تعبيه مي گردد تعداد دور سيم پيچ را تغيير داده و سبب تغيير ولتاژ خروجي ترانس مي گردد

تپ چنجرها بطور گسترده اي براي كنترل ولتاژ شبكه در سطوح مختلف ولتاژي بكار گرفته مي شوند. معمولاً كنترل ولتاژ در محدودة %15 +_ مقدور است. ولتاژ هر پله تب چنجر عموماً بين 1 تا 5/2 درصد تغيير مي كند انتخاب مقدار كم براي پله ها سبب افزايش تعداد تپ ها مي گردد و انتخاب مقدار بالا براي هر پله باعث عدم امكان تنظيم دقيق ولتاژ مورد نظر مي گردد.

 

 

محل تپ چنجر : (( تپ چنجر ))

در داخل تانك اصلي ، قسمتي را براي بخش اصلي تب چنجر ( دايورترسوئيچ ) در نظر گرفته اند اين قسمت كاملاً آب بندي شده است داخل آن نيز با روغن ترانس پر شده است. اين روغن كاملاً از روغن تانك اصلي جداست و باهم مخلوط نمي شود. تپ چنجر را در سمت فشار قوي نصب كرده اند كه داراي مزيت هاي زيرمي باشند :

الف) در طرف فشار قوي جريان كمتر است لذا براي تپ چنجرهايي كه زير بار عمل مي كنند حذف جرقه ساده تر است.

ب) چون تعداد دور سيم پيچها ي فشار قوي بيشتر است ، لذا امكان تغييرات يكنواخت تروپه هاي كوچكتر به راحتي ميسر است. در اتصال ستاره انشعابات تب چنجر را در سمت نقطه صفر قرار مي دهند تا عايق كاري آن نسبت به زمين ساده تر باشد.

بهره برداري از ترانسفورماتورهاي با تنظيم كننده ولتاژ زير بار :

اكثر ترانسفورماتورها داراي دستگاهي بنام تب چنجر بوده كه كار آنها عملاً در مدار گذاشتن و خارج كردن تعدادي از حلقه هاي سيم پيچي ترانسفورماتور به منظور تغيير دادن در نسبت تبديل ترانس مي باشد. عموماً اين دستگاه در قسمت فشار قوي قرار مي گيرد.

 

 

تب چنجر ترانسفورماتورها عموماً بر 2 نوع مي باشند :

1- On load tap changer : ترانسفورماتورهايي كه تب آنها زماني كه تپ ترانسفورماتور زيربار است ، قابل تغيير مي باشد.

2- Off load tap changer : ترانسفورماتورهايي كه تب آنها فقط زماني كه در مدار نباشند ، قابل تغيير مي باشند.

اين تغيير تپ در محل روي بدنة ترانس صورت مي گيرد. به اين ترتيب با توجه به تعداد تپ و اينكه هر تپ چه مقدار تغيير ولتاژ بوجود مي آورد و نياز به چه مقدار تغيير در ولتاژ مي باشد ، تب آنها را بر حسب نياز سيستم تغيير مي دهيم. مكانيزم عمل تپ به طور كلي به اين صورت است كه اهرمي قادر است در جهت گردش عقربه هاي ساعت تعداد حلقه هاي سيم پيچ را كم و در خلاف آن زياد نمايد.

ترانسفورماتورهايي كه مجهز به سيستم اتوماتيك ولتاژ ( Avr = Automatic voltage regulation) مي باشند به طريق زير تغيير تب صورت مي گيرد :

الف) اتوماتيك ب) دستي و الكتريكي از اطاق فرمان

ج) دستي الكتريكي از محل د) دستي مكانيكي توسط اهرم مخصوص

هر تغيير Tab در اوليه ترانس قدرت به اندازه kv5 در ولتاژ ورودي ترانس تغيير ايجاد مي كند.

 

◄ ترمومترها :

اين نشان دهنده ها ، از نوع عقربه اي بوده و براي تشخيص درجه حرارت گرمترين نقطه سيم پيچي ترانس بكار ميرود. معمولاً به ازاء هر گروه سيم يك نشان دهنده بكار گرفته شده كه روي يك از فازها نصب مي شود. اين روش اندازه گيري بصورت غيرمستقيم است به اين معني كه غلاف ترمومتر داخل روغن بوده و دماي روغن را حس مي كند، سپس توسط يك زف جرياني متناوب با جريان عبوري از سيم پيچ از كويل حرارتي عبور ميكند ، لذا گرمايي متناسب با سيم پيچ ها در ترمومتر ايجاد مي شود.

 

 

نشان دهنده حرارت ورغن :

اين نشان دهنده نيز از نوع عقربه اي بوده و عنصر حساس آن در بالاي ترانس و در حول و حوش گرمترين محل روغن نصب مي شود و خود آن روي بدنه ترانس و در مجاورت ترمومترهاي سيم پيچ ها نصب مي گردد. نوع عنصر حساس ، اغلب مقاومت حساس به دما است.

 

 

◄ نشان دهندة سطح روغن :

اگر چه رله بوخهولتز مي تواند كاهش سطح روغن را نشان دهد ولي ، براي داشتن ضريب اطمينان بالاتر ، نشان دهندة سطح روغن نيز بروي منبع ذخيره ( كنسرواتور) پيش بيني مي شود. ممكن است نشان دهنده بصورت دريچه شيشه اي براي ديدن سطح روغن باشد. علاوه برآن ، نشان دهنده نوع عقربه اي كه از طريق مغناطيس ، با شناور داخل منبع كنسرواتور در ارتباط است. نيز تعبيه مي گردد و بايد طوري نصب شود كه از سطح زمين قابل رؤيت باشد. عقربه نشان دهنده بايد نمايانگر سطوح حداكثر ، حداقل و نرمال بوده و كنتاكتهايي براي آلارم نيز بايد پيش بيني شده باشد

 

 

◄ رله بوخهولتز :

تجهيزات الكتريكي كه داخل آنها پر از روغن است نظير ترانسفورماتورها ، بوشينگهاي آنها و ترمينال باكس مربوط به كابلها را مي توان جهت محافظت از عيوب داخلي و از دست رفتن روغن آنها ، با رله بوخهولتز حفاظت كرد.

اين رله كه در لوله رابط بين تانك ومنبع ذخيره نصب مي شود از دو گوي شناور كه در داخل محفظه رله نصب شده اند و مي توانند همراه با سطح روغن جابجا شوند ، تشكيل شده است. دو عدد كليد جيوه اي نيز با شناور همراه هستند و مي توانند كنتاكتهايي را قطع يا وصل كنند رله بوخهلتز بسيار دقيق است و از آنجا كه در مراحل اوليه آغاز شدن بسياري از مشكلات ، آلارم مي دهد. اين شانس را به پرسنل بهره برداري مي دهد كه شرايط خطرناك را خيلي زود شناسايي كنند. و از آسيب هاي جدي به تجهيزات جلوگيري نمايند.

تنظيم درجه حساسيت رله بوخهولتز كاملاً تجربي است و بستگي به ترانس و رله دارد. در هر حال بايد دقت داشت كه رله خيلي حساس نباشد ، زيرا اضافه بار كم و جريانهاي اتصال كوتاه شديد خارجي و حتي تغييرات درجه حرارت موسمي ، سبب جريان پيدا كردن روغن مي شود كه نبايد رله بوخهولتز را بكار اندازد. پس از هر تريپ ترانس ، در اثر رله بوخهولتز بايد گازهايي كه در محفظه رله جمع شده است را خارج نمود تا شناور آن به حالت اوليه خود بازگردد.

در ضمن بايد گازهايي را كه به محفظه گاز رله خارج مي كنيم ، از نظر قابليت اشتعال مورد آزمايش قرار دهيم ، زيرا در صورتيكه ترانسفورماتور خوب تحت خلاء قرار نگرفته باشد ، هواي موجود در داخل روغن ، كم كم خارج شده و در رله جمع مي گردد و مي تواند سبب ظاهر شدن آلارم گردد.

همچنين ممكن است به طريقي هوا به داخل ترانسفورماتور نفوذ كرده باشد. اين عمل در ترانسهايي كه روغن آنرا جديداً عوض كرده اند بيشتر پيش مي آيد. با وجود اينكه رله بوخهولتز يك رله بسيار خوبي است و مي تواند از آغاز پيدايش نقص آن را تشخيص دهد ، و ليكن داراي محدويت هايي نيز هست كه در ادامه ذكر مي گردد.

 

 

◄ محدوديت هاي رله بوخهولتز :

 

۱-فقط خطاهايي را تشخيص مي دهد كه در سطح روغن پايين تر از رله اتفاق افتاده باشد.

2- تنظيم كليد جيوه اي را نمي توان زياد حساس گرفت ، زيرا در اين صورت لرزشهاي ناشي از بهره برداري ، زلزله ، شوكهاي مكانيكي در خط و حتي نشستن پرنده ها ، ممكن است اشتباهاً آنرا به كار اندازند.

3- مي نيمم زمان عمل كردن آن 0.1 ثانيه است و متوسط آن 0.2 ثانيه. چنين رله اي خيلي كند به حساب مي آيد ، و ليكن با وجود آن ارزش اين رله بسيار بالاست.

4- از نظر اقتصادي رله بوخهولتز براي ترانسهاي كمتر از kva 500 بكار برده نمي شود.

6- سوپاپ اطمينان يا لوله انفجاري ( شير فشار شكن )

 

در اثر اتصال كوتاه ناگهاني و يا هر حادثة ديگر در هسته و سيم پيچها كه منجر به ايجاد گاز شديد شود ، فشار داخل تانك مي تواند به ميزان خطرناكي افزايش يابد. براي جلوگيري از خطر انفجار تانك ، در بالاي درپوش آن شير فشار شكن نصب مي گردد.

اين شيزر در عرض چند ميلي ثانيه عمل خواهد كرد و سبب تخليه فشار خواهد شد. در همين موقع ، ميكرو سويچي كه همراه آن است ، سبب بسته شدن مدار تريپ مي گردد. پس از كاهش فشار در اثر نيروي فنر ، شير خود به خود بسته خواهد شد.

 

 

◄ رادياتور يا مبدل حرارتي:

نظر به اينكه روغن داراي خاصيت عايقي خوب و همچنين تبادل حرارتي زياد مي باشد. در ترانسفورماتورها بعنوان خنك كننده مورد استفاده قرار مي گيرد. جهت تبادل حرارتي بهتر با محيط اطراف ، اصولاً روغن از طريق رادياتور و پمپ هاي روغن يك سيكل بسته را طي مي نمايد و حين عبور از رادياتورها توسط فن ها با محيط اطراف تبادل حرارتي انجام مي دهد. لازم به توضيح است در بعضي از ترانسفورماتورهاي واحدهاي آبي روغن توسط كولرهاي آبي ( Heat exchanger ) خنك مي شود.

 

 

◄ پمپ و فن ها:

جهت تبادل حرارتي بهتر با محيط اطراف ، اصولاً روغن از طريق رادياتور و پمپ هاي روغن يك سيكل بسته را طي مي نمايد و حين عبور از رادياتورها توسط فن ها با محيط اطراف تبادل حرارتي انجام مي دهد.

معمولاً در ترانس هاي قدرت كه مجهز به پمپ روغن مي باشند ، يك نشان دهندة فولي روغن در مسير باي پاس و به موازات مسير پمپ هاي روغن نصب مي شود كه در شرايط روشن بودن پمپ ها و جاري بودن روغن ، صفحه معلق آن به صورت مايل قرار مي گيرد. اما به خاموش شدن پمپ و يا قطع جريان روغن – به هر دليل ديگر – صفحه بر اثر نيروي وزن پايين آمده و بصورت قائم واقع مي شود. در اين حالت ، اغلب سبب بسته شدن كنتاكتي خواهد شد كه موقعيت اين صفحه را در اتاق فرمان گزارش مي نمايد. همچنين از طريق دريچه شيشه اي ، موقعيت آن قابل رؤيت است.

10 – شيرهاي نمونه برداري از روغن پايين و بالاي تانك

11- شيرهاي مربوط به پركردن و تخليه روغن ترانس

12- مجراي تنفسي و سيليكاژل مربوط به تانك اصلي و تب چنجر

منبع ذخيره روغن توسط يك يا دو مجراي تنفسي به هواي آزاد مربوط مي گردد و در ورودي آن يك ظرف شيشه اي كار گذاشته مي شود كه بسته به بزرگي منبع مي تواند از يك يا چند قسمت تشكيل شده باشد. درون اين ظرفها را با سيليكاژل پر مي كنند.

هنگاميكه بار ترانس زياد باشد و روغن گرم شود بر اثر انبساط روغن مقداري از هواي داخل منبع ذخيره از طريق مجراي تنفسي خارج مي شود. در انتهاي ظرف سيليكاژل يك مجرا وجود دارد كه در بالاي آن يك پياله زنگي شكل بصورت معكوس قرار دارد و در ته ظرف مقداري روغن ترانس ريخته مي شود. به اين مجموعه تله هوا (air trap) ميگويند.

هوا براي خارج شدن ا زمنبع ذخيره بايد از اين تله بگذرد هنگاميكه روغن منقبض مي شود فشار داخل منبع ذخيره كاهش مي يابد. و فشار هواي بيرون بر سطح روغن داخل تله ، سبب مي گردد كه سطح روغن داخل زنگ تا آنجا پائين بيايد كه هوا بتواند از آن عبور كند و پس از گذشتن از سيليكاژل به منبع ذخيره برسد. به اين ترتيب روغن، ذرات معلق در هوا را مي گيرد و سيليكاژل كه يك ماده رطوبت گير است باعث جذب رطوبت هوا خواهد شد.

سيليكاژل به صورت دانه هاي گرد كوچكي است كه در شرايط خشك ، رنگ آن آبي است و با جذب رطوبت به رنگ صورتي در خواهدآمد. وقتي حدود 75% درصد از سيليكاژل داخل ظرف تغيير رنگ داد بايد آن را تعويض نمود. سيليكاژل صورتي شده را براي بازيافت به آزمايشگاه مي فرستند سليكاژل از پايين ظرف شروع به تغيير رنگ مي كند. اگر در مواردي مشاهده شود اين تغيير رنگ از بالاي ظرف شروع شده است به اين معني است كه نشتي هوا وجود دارد و بايد آن را برطرف نمود.

13- تابلوي كنترل

14- تابلوي مكانيزم تب چنجر

15- چرخ ها

16- پلاك مشخصات نامي

 

ترانسهاي قدرت T1 ,T2 (400/33KV) پست اتصالشان بصورت ستاره مثلث مي باشد اين بدان علت است كه اتصال شماره – مثلث در پست هاي فرعي و در پايان خط انتقال بكار مي رود و توسط آن ولتاژ فشار قوي به متوسط يا فشار ضعيف تبديل مي شود تا به ترانس توزيع متصل گردد.

از زيان ديگر اين روش اين است كه چون هارموني سوم جريان در مثلث بسته مي تواند جريان يابد ، لذا جريان آن سينوسي بوده و در نتيجه ولتاژهاي ثانويه سينوسي مي باشند ( يعني داراي هارموني سوم ولتاژ نمي باشند ).

 

 

كاربرد اين اتصال :

1- پست هاي فرعي انتهاي خط انتقال انرژي

2- تبديل فشار قوي به فشار ضعيف

3- در مواردي كه همه مصرف كننده ها سه فاز داشته باشند.

اتصال زيگزاگ :

همانگونه كه از اسمش پيداست اين اتصال در ترانس زيگزاگ استفاده شده است :

مزاياي اين اتصال : 1- از ثانويه ترانس قدرت در مقابل اتصال زمين حفاظت مي كند.

2- نامتعادلي بار را شديداً كاهش مي دهد.

3- مانند اتصال مثلث هارموني سوم ولتاژ را حذف مي كند.

اتصال ترانس مصرف داخلي پست بصورت مثلث – ستاره مي باشد : 33KV/380Vاين اتصال در سيستمهاي توزيعي ( چهار سمبه ) بكار مي رود كه همزمان مي تواند هم مصرف كننده هاي سه فاز را تغذيه نمايد و هم بصورت تكفاز در مصارف خانگي و روشنايي استفاده شود.

 

◄ قطع و وصل ترانسفورماتورهاي قدرت :

جهت قطع ترانسفورماتور بايستي ابتدا بار ترانسفورماتوري كه قرار است از مدار خارج گروه محاسبه شود. اگر امكان مانور دادن بار بر روي ترانسفورماتورهاي پرالل وجود داشته باشد ، مي توان پس از انجام مانور اقدام به قطع دژنكتور طرف ثانويه ترانسفورماتور نمود. بعد از آن پك ترانسفورماتور را در صورتيكه از نوع O.L.T.C باشد ، روي حالت زمان گذاشته و سپس دژكتور طرف اوليه قطع گردد.

در صورتيكه امكان مانور بار وجود نداشته باشد و يا خروج ترانسفورماتور اضطراري نباشد ، خاموشي به يكي از روزهاي تعطيل يا در ساعاتي از شبانه روز كه بار خروجي حداقل داشته باشد ، موكول مي گردد. عمل وصل ترانسفورماتورها عيناً عكس عملياتي است كه در حالت قطع صورت مي گيرد.

 

تجهيزات اندازه گيري و حفاظت ترانسفور ماتور 165MVA يا 62.5MVA پست 400KV

 

1- ترانسفورماتورهاي جريان

2- نشان دهنده درجه حرارت سيم پيچ

3- نشان دهنده درجه حرارت روغن

4- Pressure relief valve

5- سيليكاژل Dehy drating breather ( محفظه سيليكاژل )

6- رله بوخهولتز Buchholz relay

7- Gas collector

8- كيج مغناطيسي سطح روغن

لینک به دیدگاه

ترانسفورماتور چیست؟

 

 

قسمت اعظم انرژي الکتريکي مورد نياز انسان در تمام کشورهاي جهان ، توسط مراکز توليد مانند نيروگاههاي بخاري ، آبي و هسته‌اي توليد مي‌شود. اين مراکز داراي توربينها و آلترناتيوهاي سه فاز هستند و ولتاژي که بوسيله ژنراتورها توليد مي‌شود، بايد تا ميزاني که مقرون به صرفه باشد جهت انتقال بالا برده شود. گاهي چندين مرکز توليد بوسيله شبکه‌اي به هم مرتبط مي‌شوند تا انرژي الکتريکي مورد نياز را بطور مداوم و به مقدار کافي در شهرها و نواحي مختلف توزيع کنند.

در محلهاي توزيع براي اينکه ولتاژ قابل استفاده براي مصارف عمومي و کارخانجات باشد، بايد ولتاژ پايين آورده شود. اين افزايش و کاهش ولتاژ توسط ترانسفورماتور انجام مي‌شود. بديهي است توزيع انرژي بين تمام مصرف کننده‌هاي يک شهر از مرکز توزيع اصلي امکانپذير نيست و مستلزم هزينه و افت ولتاژ زيادي خواهد بود. لذا هر مرکز اصلي به چندين مرکز يا پست کوچکتر (پستهاي داخل شهري) و هر پست نيز به چندين محل توزيع کوچکتر (پست منطقه‌اي) تقسيم مي‌شود. هر کدام از اين مراکز به نوبه خود از ترانسهاي توزيع و تبديل ولتاژ استفاده مي‌کنند.

بطور کلي در خانواده و توزيع انرژي الکتريکي ، ترانسفورماتورها از ارکان و اعضاي اصلي هستند و اهميت آنها کمتر از خطوط انتقال و يا مولدهاي نيرو نيست. خوشبختانه به دليل وجود حداقل وسايل ديناميکي در آنها کمتر با مشکل و آسيب پذيري روبرو هستند. مسلما‌ اين به آن معني نيست که مي‌توان از توجه به حفاظتها و سرويس و نگهداري آنها غفلت کرد. در اين مقاله نخست مختصري از تئوري و تعاريفي از انواع ترانسفورماتورها بيان مي‌شود، سپس نقش ترانسفورماتورها در شبکه توليد و توزيع نيرو و در نهايت شرحي در مورد سرويس و تعمير ترانسها ارائه مي‌شود.

 

 

◄ تئوري و تعاريفي از ترانسفورماتورها:

ترانسفورماتورها به زبان ساده و شکل اوليه وسيله‌اي است که تشکيل شده از دو مجموعه سيم پيچ اوليه و ثانويه که در ميدان مغناطيسي و اطراف ورقه‌هايي از آهن مخصوص به نام هسته ترانسفورماتور قرار مي‌گيرند. مقره‌ها يا بوشينگها يا ايزولاتورها و بالاخره ظرف يا محفظه ترانسفورماتور.

کار ترانسفورماتورها بر اساس انتقال انرژي الکتريکي از سيستمي با يک ولتاژ و جريان معين به سيستم ديگري با ولتاژ و جريان ديگر است. به عبارت ديگر ترانسفورماتور دستگاهي است استاتيکي که در يک ميدان مغناطيسي جريان و فشار الکتريکي را بين دو سيم پيچ يا بيشتر با همان فرکانس و تغيير اندازه يکسان منتقل مي‌کند.

 

 

◄ انواع ترانسفورماتورها:

سازندگان و استانداردها در کشورهاي مختلف هر يک به نحوي ترانسفورماتورها را تقسيم بندي کرده و تعاريفي براي درجه بندي آنها ارائه داده‌اند. برخي ترانسها را بنا بر موارد و ترتيب بهره برداري آنها متفاوت شناخته‌اند، مانند ترانسهاي انتقال قدرت ، اتو ترانس و يا ترانسهاي تقويتي و گروهي از ترانسها را به غير از ترانسفورماتور اينسترومنتي(ترانس جريان و ولتاژ) ، ترانس قدرت مي‌نامند و اصطلاحا ترانس قدرت را آنهايي مي‌دانند که در سمت ثانويه آنها فشار الکتريکي توليد مي‌شود.

اين نوع تقسيم بندي در عمل دامنه وسيعي را در بر مي‌گيرد که در يک طرف آن ترانسفورماتورهاي کوچک و قابل حمل با ولتاژ ضعيف براي لامپهاي دستي و مشابه آن قرار مي‌گيرند و طرف ديگر شامل ترانسهاي خيلي بزرگ براي تبديل ولتاژ خروجي ژنراتور به ولتاژ شبکه و خطوط انتقال نيرو است. در بين اين دو اندازه (حد متوسط) ترانسهاي توزيع و يا انتقال در مؤسسات الکتريکي و ترانسهاي تبديل به ولتاژهاي استاندارد قرار دارند.

ترانسها اغلب به صورت هسته‌اي يا جداري طراحي مي‌شوند. در نوع هسته‌اي در هر يک از سيم پيچها شامل نيمي از سيم پيچ فشار ضعيف و نيمي از سيم پيچ فشار قوي هستند و هر کدام روي يک بازوي هسته‌اي قرار دارند. در نوع جداري ، سيم پيچها روي يک هسته پيچيده شده‌اند و نصف مدار فلزي مغناطيسي از يک طرف و نصف ديگر از طرف هسته بسته مي‌شود.

در اکثر اوقات نوع جداري براي ولتاژ ضعيف و خروجي بزرگ و نوع هسته‌اي براي ولتاژ قوي و خروجي کوچک بکار مي‌روند (بصورت سه فاز يا يک فاز).

ترانسهاي تغذيه و قدرت مانند ترانس اصلي نيروگاه ترانس توزيع و اتو ترانسفورماتور ، ترانسفورماتورهاي قدرت معمولا سه فاز هستند، اما گاهي ممکن است در قدرتهاي بالا به دليل حجم و وزن زياد و مشکل حمل و نقل از سه عدد ترانس تک فاز استفاده کنند. ترانسهاي صنعتي مانند ترانسهاي جوشکاري ، ترانسهاي راه اندازي و ترانسهاي مبدل ترانس براي سيستمهاي کشش و جذب که در راه آهن و قطارهاي الکتريکي بکار مي‌رود

لینک به دیدگاه

سلام.مطالبی را در این زمینه ها میخواستم.ممنون

ترانسفورماتور 3 فاز،انواع اتصالات،شکل اتصالات،دیاگرام و معادلات و روابط ولتاژ و جریان و توان

لینک به دیدگاه
سلام.مطالبی را در این زمینه ها میخواستم.ممنون

ترانسفورماتور 3 فاز،انواع اتصالات،شکل اتصالات،دیاگرام و معادلات و روابط ولتاژ و جریان و توان

 

دوست عزیز از این لینک میتونی مطلب مورد نظرتونو پیدا کنی

لینک به دیدگاه
  • 3 هفته بعد...

تو این مقاله با انواع پست های فشار قوی و بررسی تجهیزات آن آشنا می شیم.

بخشهای این مقاله عبارت است از:

1- انواع پست های فشار قوی از نظر عملکرد

2- انواع پست ها از نظر عایق بندی

3- اجزای تشکیل دهنده پست ها

4- جبران کننده ها

5- تاسیسات جانبی

6- تله موج یا موج گیر

7- کلید های قدرت

8- دسیکانکت

9- انواع برق گیر

10- ترانسفورماتور ها

11- و........

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

Alexander D. Poularikas, "Transforms and Applications Handbook, Third Edition (Electrical Engineering Handbook)"

CRC | 2010 | ISBN: 1420066528 | 911 pages | PDF | 16,4 MB

 

Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions.

It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications.

Revisiting transforms previously covered, this book adds information on other important ones, including:

 

Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite

 

Fraction Fourier

 

Zak

 

Continuous and discrete Chirp-Fourier

 

Multidimensional discrete unitary

 

Hilbert-Huang

Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field

 

Download

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه
  • 2 هفته بعد...

روغن ترانسفورماتورهای قدرت نقش بسیار مهمی در عملکرد ترانسفورماتورها دارند. نقش عایق کنندگی، خنک کنندگی و تشخیص عیب از جمله مهمترین وظایف روغن می باشند. با پیر شدن ترانسفورماتور ، روغن این دستگاه بعضی از خصوصیات شیمیایی و الکتریکی خود را از دست می دهد. از جمله مهمترین این خصوصیات می توان به خصوصیات الکتریکی که حائز اهمیت می باشند، اشاره نمود.

دلایل اصلی که روغن ترانسفورماتورهای قدرت را دچار مشکل می نماید عبارتند از:

۱) افزایش ذرات معلق در روغن

۲) وجود آب به مقدار زیاد در روغن

۳) وجود آلودگی های شیمیایی مانند اسیدیته و...

مسائل فوق باعث تغییر پارامترهای متعدد می شوند. به عنوان مثال افزایش ذرات معلق و وجود آن باعث کاستن قدرت دی الکتریک روغن و افزایش اسیدیته، باعث خوردگی کاغذ و اجزای داخلی ترانسفورماتور می شود. برای بهبود روغن ترانسفورماتوری که دچار ضعف های متعدد شده است می توان از فیلتراسیون استفاده نمود. با فیلتر نمودن روغن می توان ذرات معلق آن را جدا نمود و در نتیجه ولتاژ شکست را بالا برد. می توان با خلاء نمودن روغن ، آب را بصورت بخار از روغن جدا نمود. حذف آلودگی های شیمیایی فقط با کمک فیلترهای شیمیایی ممکن است.

از جمله مهمترین آلودگی هایی که روغن ترانسفورماتور را تحت تأثیر قرار می دهد وجود آب به مقدار کم در داخل روغن است. جدا نمودن آن در داخل ترانسفورماتور به راحتی امکان پذیر نمی باشد. علت این مسأله وجود مقادیر بسیار زیاد آب داخل کاغذ ترانسفورماتور می باشد که با جدا نمودن آب روغن دوباره جایگزین آن می شود.

● روشهای فیلتر نمودن

الف) روشهای Off-line

از زمانهای دور برای بهبود کیفیت عایقی روغن ترانسفورماتورهای قدرت از روشهای فیلتراسیون هنگامی که ترانسفورماتور خاموش بوده است استفاده می کردند. در این روش هنگامی که ترانسفورماتور خاموش می باشد به مدت چند شبانه روز به صورت پیوسته روغن را داخل ترانسفورماتور چرخانده و آنرا در بیرون تحت فیلتراسیون و خلاء به منظور جدا نمودن ذرات معلق و آب محلول قرار می دادند.

این روش دارای معایب فراوانی است از جمله لزوم داغ نمودن روغن ترانسفورماتور و همچنین لزوم خاموش نمودن ترانسفورماتور را می توان نام برد.

ب) روشهای نوین – روشهای در حین کار

برای جدا نمودن آب به صورت بهینه، لازم است که از فیلترهای در حین کار استفاده نمود. مهمترین مزایای فیلترهای (خشک کن) های در حین کار خشک نمودن بهینه ترانسفورماتور در طول زمان و همچنین عدم لزوم خاموشی ترانسفورماتور را می توان عنوان نمود. اصول عملکرد این فیلترها مانند شکل زیر است که در آن روغن از مخزن تحت فشار خارج شده و در مسیر آن یک فیلتر فیزیکی قرار می گیرد. در اینجا ذرات معلق فیلتر شده و تحت تاثیر خلاء آب محلول در آن گرفته می شود. روغن فیلتر شده به وسیله پمپ به ترانسفورماتور برگردانده می شود. این چرخه با دبی پایین در حدود ۲۵۰ لیتر در ساعت به صورت پیوسته از چند ماه تا چند سال با توجه به وضعیت ترانسفورماتور صورت می گیرد.

● مزایای خشک کردن On-Line روغن و کاغذ عایقی ترانسفورماتورهای قدرت با استفاده ازدستگاه V۳۰

▪ رطوبت زدائی از روغن ترانسفورماتور بصورت On-Line

▪ افزایش ولتاژ شکست روغن عایقی

▪ رطوبت زدایی از کاغذ عایقی ترانسفورماتور

▪ کاهش میزان ذرات معلق داخل روغن ترانس

▪ کاهش میزان ضریب تلفات عایقی روغن

▪ کاهش میزان اسیدیته روغن

▪ افزایش قابلیت بارگیری ترانسفورماتور

▪ افزایش عمر باقیمانده ترانسفورماتور

▪ عملکرد مطمئن و عدم تأثیر سوء بر بهره برداری عادی از ترانسفورماتور

▪ گاززدائی از روغن ترانسفورماتور با استفاده از روش De-Gassing

▪ اعلام آلارم و خروج ترانسفورماتور از مدار در صورت تشکیل مقدار زیاد گاز

لینک به دیدگاه

اهميت ترانسفورماتورها در صنعت برق و شبكه‌هيا صنعتي، بركسي پوشيده نيست. امروزه يكي از ملزومات اساسي در انتقال و توزيع الكتريكي در جهان ترانسفورماتورها، مي‌باشند.

ترانسفورماتورها در اندازه‌ها و توان‌هاي مختلفي جهت تغيير سطح ولتاژ الكتريكي به‌منظور كاهش تلفات ولتاژ در فرآيند انتقال و توزيع انرژي الكتريكي به‌كار مي‌روند.

در صنعت سيمان، به‌عنوان يكي از مصرف كننده‌هاي بزرگ برق و استفاده از سطوح ولتاژ مختلف در آن، استفاده از ترانسفور ماتورها يكي از اركان اجتناب‌ناپذير مي‌باشد.

در اين مقاله به اختصار ترانسفورماتورها، ساختمان آنها، تعميرات و نگهداري آنها مورد بررسي قرار گرفته است.

● ساختمان ترانسفور ماتور

ترانسفورماتورها را با توجه به كاربرد و خصوصيات آنها مي‌توان به سه دسته كوچك، متوسط و بزرگ دسته‌بندي كرد. ساختمان ترانسفورماتورهاي بزرگ و متوسط به‌دليل مسائل فاظتي و عايق‌بندي و امكانات موجود، نسبت به انواع كوچك آن پيچيده‌تر است. اجزاء تشكيل دهنده يك ترانسفورماتور به شرح زير است:

● هسته‌ ترانسفورماتور

هسته ترانسفورماتور متشكل از ورقه‌هاي نازكي است كه سطح آنها با توجه به قدرت ترانسفور ماتورها محاسبه مي‌شود. براي كم كردن تلفات آهني هسته‌ ترانسفور ماتور را نمي‌توان به‌طور يكپارچه ساخت. بلكه معمولاً آنها را از ورقه‌هاي نازك فلزي كه نسبت به يكديگر عايق هستند، مي‌سازند اين ورقه‌ها از آهن بدون پسماند با آلياژي از سيليسيم (حداكثر ۴.۵ درصد) كه داراي قابليت هدايت الكتريكي و قابليت هدايت مغناطيسي زيادي است ساخته مي‌شوند . زياد بودن مقدار سيليسيم، باعث شكننده شدن ورق‌ها مي‌شود. براي عايق كردن ورق‌هاي ترانسفورماتور، در گذشته از يك كاغذ نازك مخصوص كه در يك سمت اين ورقه چسبانده مي‌شد، استفاده مي‌كردند، اما امروز در هنگام ساختن و نورد اين ورقه‌ەا يك لايه نازك اكسيد فسفات يا سيليكات به ضخامت ۲ تا ۲۰ ميكرون به‌عنوان عايق بر روي آنها ماليده مي‌شود، كه باعث پوشاندن روي ورقه‌ها مي‌گردد. علاوه بر اين، از لاك مخصوصي نيز براي عايق كردن يك طرف ورقه‌ها استفاده مي‌شود. تمامي ورقه‌هاي ترانسفور ماتور داراي يك لايه عايق هستند. در هنگام محاسبه سطح مقطع هسته بايد سطح آهن خالص را منظور كرد. ورقه‌هاي ترانسفور ماتورها را به ضخامت‌هاي ۰.۳۵ و ۰.۵ ميليمتر و در اندازه‌هاي استاندارد مي‌سازند. بايد دقت كرد كه سطح عايق شده‌ٔ ورقه‌هاي ترانسفور ماتور همگي در يك جهت باشند (مثلاً همه به طرف بالا) علاوه بر اين تا حد امكان نبايد در داخل قرقره فضاي خالي باقي بماند. لازم به ذكر است ورقه‌ها با فشار داخل قرقره جاي بگيرند تا از ارتعاش و صدا كردن آنها نيز جلوگيري شود.

● سيم پيچ‌ ترانسفور ماتور

معمولاً براي سيم‌پيچ اوليه و ثانويه ترانسفور ماتور از هادي‌هاي مسي با عايق (روپوش) لاكي استفاده مي‌كنند، كه با سطح مقطع گرد و اندازه‌هاي استاندارد وجود دارند و با قطر آنها مشخص مي‌شوند. در ترانسفور ماتورهاي پرقدرت از هادي‌هاي مسي كه به‌صورت تسمه هستند استفاده مي‌شوند و ابعاد اين گونه هادي‌ها نيز استاندارد است.

سيم پيچي ترانسفور ماتور به اين ترتيب است كه سر سيم‌پيچ‌ها را به‌وسيله روكش عايق‌ها از سوراخ‌هاي قرقره خارج مي‌كنند، تا بدين ترتيب سيم‌ها، قطع (خصوصاً در سيم‌هاي نازك و لايه‌هاي اول) يا زخمي نشوند، علاوه بر اين بهتر است رنگ روكش‌ها نيز متفاوت باشد تا در ترانسفور ماتورهاي داراي چندين سيم پيچ، به‌راحت بتوان سر هم سيم‌پيچ را مشخص كرد. بعد از اتمام سيم‌پيچي يا تعمير سيم‌پيچ‌ها ترانسفور ماتور بايد آنها را با ولتاژهاي نامي خودشان براي كنترل و كسب اطمينان از سالم بودن عايق بدنه و سيم‌پيچ‌هاي اوليه و ثانويه آزمايش كرد.

● قرقره‌ ترانسفور ماتور

براي حفاظت و نگهداري از سيم پيچ‌هاي ترانسفورماتور خصوصاً در ترانسفورماتورهاي كوچك بايد از قرقره استفاده نمود. جنس قرقره بايد از مواد عايق باشد. قرقره معمولاً از كاغذ عايق سخت، فيبرهاي استخواني يا مواد ترموپلاستيك مي‌سازند. قره‌قره‌هائي كه از جنس ترموپلاستيك هستند، معمولاً يك تكه ساخته مي‌شوند ولي براي ساختن قرقره‌هاي ديگر آنها را در چند قطعه تهيه و سپس بر روي همديگر سوار مي‌كنند. بر روي ديواره‌هاي قرقره بايد سوراخ يا شكافي ايجاد كرد تا سر سيم‌پيچ از آنها خارج شود.

اندازه قرقره بايد با اندازهٔ ورقه‌هاي ترانسفورماتور متناسب باشد و سيم‌پيچ نيز طوري بر روي آن پيچيده شود، كه از لبه‌هاي قرقره مقداري پائين‌تر قرار گيرد تا هنگام جا زدن ورقه‌هاي ترانسفور ماتور، لايه‌ٔ روئي سيم پيچ صدمه نبيند. اندازه قرقره‌هاي ترانسفور ماتورها نيز استاندارد هستند، اما در تمام موارد، با توجه به نياز، قرقره مناسب را مي‌توان طراحي كرد.

● نكات قابل توجه قبل از حمل ترانس‌هاي قدرت

پس از پايان مراحل ساخت و انجام موفقيت‌آميز آزمايشات كارخانه‌اي، قبل از جابه‌جائي ترانسفورماتور، از محلي به محل ديگر و قبل از بارگيري بايد اقدامات زير به روي ترانسفور ماتور انجام گيرد، به‌منظور كاهش ابعاد و وزن ترانسفورماتور و نيز از نظر فني و محدوديّت‌هاي ترافيكي، بايد تجهيزات جنبي ترانسفورماتور ”كنسرواتور (منبع انبساط)، بوشينگ‌ها و...“ باز و به‌طور جداگانه بسته‌بندي و آماده حمل گردند. اما خود ترانسفورماتور به طريق زير حمل مي‌گردد.

الف ـ حمل با روغن: ترانسفورماتورهاي كوچك و ترانسفورماتورهائي كه وزن و ابعاد آنها مشكلاتي را از نظر حمل ايجاد نمي‌نمايند، معمولاً با روغن حمل مي‌گردند. در اين حال سطح روغن بايد حدوداً ۱۵ سانتيمتر پايين‌تر از درپوش اصلي (سقف) ترانسفورماتور قرار داشته باشد.

▪ توجه:

فاصله ۱۵ سانتيمتري فوق‌الذكر در مورد كليه ترانسفورماتورها يكسان نبوده و توصيه مي‌شود و به دستورالعمل كارخانه سازنده مراجعه شود.

لازم به ذكر است كه در هنگام حمل روغن، قسمت فعال (Active Part) ترانسفورماتور بايد كاملاً در داخل روغن قرار گيرد.

به‌منظور جلوگيري از نفوذ رطوبت و هوا به داخل ترانسفورماتور، فضاي بين روغن و سقف ترانسفورماتور را با هواي خشك و يا گاز نيتروژن با فشار حدود ۲/۰ بار در هواي ۲۰ درجه پر مي‌كنند. لازم به ذكراست كه گاز نيتروژن بايد كاملاً خشك باشد، در اين حالت با نصب يك محفظه سيليكاژل بسته (آب‌بندي شده) بر روي ترانسفورماتور عمل جذب رطوبت انجام مي‌شود. ضمناً جهت جلوگيري از پاشيدن روغن به داخل سيليكاژل در طول حمل از يك وسيله حفاظتي استفاده مي‌شود.

حمل بدون روغن: ترانسفورماتورهاي بزرگ بدون روغن حمل مي‌گردند. در اين موارد پس از تخليه روغن، ترانسفورماتور را با هواي خشك (داراي رطوبت كمتر از ppmv ۲۵ و نقطه ميعان كمتر از ۶۰ ـ درجه سانتيگراد) يا با نيتروژن (با درجه خلوص ۹.۹۹%) پر مي‌كنند. لازم به ذكر است كه در اين حالت نيز در طول حمل بايد فشار هوا يا نيتروژن به‌طور مرتب كنترل گردد.

▪ نكات قابل توجه و مهم در نصب و قبل از راه‌اندازي:

۱) كنترل ضربه‌نگار

۲) كنترل فشار هوا

۳) كنترل نقطه شبنم و اكسيژن

۴) كنترل استقرار ترانسفورماتور بر روي فوندانسيون

۵) كنترل تجهيزات جنبي ترانسفورماتور شامل بوشينگ، سيستم خنك كننده، رادياتور، فن، پمپ، كنسرواتور و ملحقات آن

۶) سيستم تنفسي

۷) شير اطمينان

۸) ترمومترها شامل ترمومتر روغن (كاليبره كردن ترمومتر) و ترمومتر سيم پيچ

۹) تپ چنجر

۱۰) رله‌بو خهلتس

• روغن ترانسفور ماتور

روغن‌هاي ترانسفور ماتور عمدتاً تركيبات پيچيده‌اي از هيدروكربن‌هاي مشتق از نفت خام مي‌باشند و به جهت دارا بودن خواص مورد نياز، اين نوع روغن‌ها جهت ترانسفورماتورها مناسب‌تر تشخيص داده شده‌اند.

خواص مورد نياز براي روغن‌هاي ترانسفور ماتور به‌طور خلاصه عبارتند از:

▪ عايق كاري الكتريكي

▪ انتقال حرارت

▪ قابليت خاموش كردن قوس‌الكتريكي

▪ پايداري شيميائي

▪ سيل كردن ترانسفورماتور

▪ جلوگيري از خوردگي

▪ در مورد سفارش خريد روغن براي ترانسفورماتورها دو مورد مهم را مدنظر قرار مي‌دهيم.

▪ انتخاب نوع روغن ترانسفورماتور

نوع روغن و كيفيت آن، براساس طراحي ترانسفورماتورها مي‌باشد. به‌عنوان مثال در يكي از بررسي‌ها نوعي چسب كه در داخل ترانسفورماتور به‌كار برده شده بود توسط روغن ترانس حل گرديد و باعث شد كه ذرات چسب داخل روغن پراكنده شود و منجر به كاهش دي‌الكتريك روغن گردد. مورد ديگري كه مورد آزمايش قرار گرفت، اين بود كه كاتاليزور مس و آهن باعث از بين بردن روغن تشخيص داده شده است. بنابراين نوع ترانسفورماتور و مواد به كار رفته در آن درتعيين نوع و كيفيت روغن آن تأثير زيادي دارد.

● آلودگي روغن ترانفسورماتورها:

به‌طور كلي دو نوع آلودگي اصلي در روغن ترانسفور ماتورها عبارتند از:

۱) مواد معلق در روغن

۲) آب

۳) اكسيداسيون روغن

پس از شناسائي مؤلفه‌هاي روغن با آزمايش‌هاي مختلف، تصميم به تصفيه يت تعويض روغن اتخاذ مي‌گردد.

به‌طور كلي ۳ نوع آزمايش كلي بر روي روغن ترانسفورماتور انجام مي‌گيرد كه عبارتند از:

۱) آزمون‌هاي فيزيكي

۲) آزمون‌هاي شيميائي

۳) آزمون‌هاي قسمت‌هاي الكتريكي

برخي از آزمايش‌هائي كه بايد روي روغن ترانسفورماتورها، انجام گيرد در زير آمده است.

۱) تست اسيديته

۲) تست گازهاي حل شده در روغن

۳) تست كشش سطحي

۴) تست بي‌فنيل پلي كلريد (pcb)

● تست ولتاژ شكست:

روغن ترانسفورماتورها معمولاً بايد داراي ضريب شكست بيشتر از ۵۰ كيلو ولت باشند، كه با انجام آزمايش ولتاژ شكست، نسبت به اندازه‌گيري آن اقدام مي‌گردد. اگر اين شاخص تا حد مشخصي كمتر از ۵۰ كيلو ولت باشد مي‌توان با تصفيه روغن موجود آن را اصلاح كرد، در غير اين صورت بايد نسبت به تعويض روغن اقدام نمود.

● آناليز گاز كروماتورگرافي:

با توجه به اينكه مولكول‌هاي روغن از تركيبات هيدروكربن ساخته شده‌اند، حرارت يا شكست الكتريكي مي‌تواند باعث شكست مولكول‌هاي روغن و توليد گازهاي قابل اشتعالي مثل متان، اتيلن، اتان و ساير گازها شود، كه در دراز مدت انفجار ترانسفورماتور را در پي خواهد داشت. تحليل گاز كروماتوگرافي به اندازه‌گيري ميزان گازهاي توليد شده در روغن ترانسفورماتور و آناليز آنها مي‌پردازد.

● تكنولوژي ساخت

ساخت ترانسفورماتورهاي فشار قوي فاقد روغن، در طول عمر يكصد ساله ترانسفور ماتورها، يك انقلاب محسوب مي‌شود. ايده استفاده از كابل با عايق پليمر پلي‌اتيلن، به‌جاي هادي‌هاي مسي داراي عايق كاغذي از ذهن يك محقق سوئدي به نام پرفسور ”Mats lijon“ تراوش كرده است.

تكنولوژي استفاده از كابل به‌جاي هادي‌هادي مسي داراي عايق كاغذي، نخستين بار در سال ۱۹۹۸ در يك ژنراتور فشار قوي به‌نام ”Power Former“ به‌كار گرفته شد. در اين ژنراتور بر خلاف سابق كه از هادي‌هاي شمشي (مستطيلي) در سيم‌پيچي استاتور استفاده مي‌شد، از هادي‌هاي گرد استفاده شده است. همان‌طور كه از معادلات ماكسول استنباط مي‌شود، هادي‌هاي سيلندري، توزيع ميدان‌الكتريكي متقارني دارند. بر اين اساس ژنراتوري مي‌توان ساخت كه برق را با سطح ولتاژ شبكه توليد كند به‌طوري كه نياز به ترانسفورماتور افزاينده نباشد. در نتيجه اين كار، تلفات الكتريكي به ميزان ۳۰ درصد كاهش مي‌يابد.

در يك كابل پليمري فشار قوي، ميدان الكتريكي در داخل كابل باقي مي‌ماند و سطح كابل داراي پتانسيل زمين مي‌باشد. در عين حال ميدان مغناطيسي لازم براي كار ترانسفورماتور تحت تأثير عايق كابل قرار نمي‌گيرد. در يك ترانسفورماتور خشك، با استفاده از تكنولوژي كابل، امكانات تازه‌اي براي بهينه كردن طراحي ميدان‌هاي الكتريكي و مغناطيسي، نيروهاي مكانيكي و تنش‌هاي گرمائي فراهم كرده است.

در فرآيند تحقيقات و ساخت ترانسفورماتور خشك، در مرحله نخست يك ترانسفورماتور آزمايشي تك فاز با ظرفيت ۱۰ مگا ولت‌آمپر (Dry former)، طراحي، ساخته و آزمايش گرديد.

”Dry former“ اكنون در سطح ولتاژهاي از ۳۶ تا ۱۴۵ كيلوولت و ظرفيت تا ۱۵۰ مگاولت آمپر وجود دارد.

● ويژگي‌هاي ترانسفورماتورهاي خشك

با پيشرفت تكنولوژي امكان ساخت ترانسفورماتورهاي خشك با بازدهي بالا فراهم شده است.

ترانسفورماتور خشك داراي ويژگي‌هاي منحصر به فردي است از جمله:

۱) به روغن براي خنك شدن، يا به‌عنوان عايق الكتريكي نياز ندارد. سازگاري اين نوع ترانسفورماتور با طبيعت و محيط زيست يكي از مهمترين ويژگي‌هاي مهم آن است. به‌دليل عدم وجود روغن، خطر آلودگي خاك و منابع آب زيرزميني و همچنين احتراق و خطر آتش‌سوزي كم مي‌شود.

با حذف روغن و كنترل ميدان‌هاي الكتريكي كه در نتيجه آن خطر ترانسفورماتور از نظر ايمني افراد و محيط زيست كاهش يافته است. امكانات تازه‌اي را از نظر محل نصب ترانسفورماتور فراهم كرده است. به اين ترتيب امكان نصب ترانسفورماتور خشك در نقاط شهري و جاهائي كه از نظر زيست محيطي حساس هستند، وجود دارد.

۲) در ترانسفورماتور خشك به‌جاي بوشينگ چيني در قسمت‌هاي انتهائي از عايق سيليكن را بر (Silicon rubber) استفاده مي‌شود. به اين ترتيب خطر ترك خوردن چيني بوشينگ و نشت بخار روغن از بين مي‌رود.

۳) كاهش مواد قابل اشتعال، نياز به تجهيزات گسترده آتش‌نشاني را كاهش مي‌دهد. بنابراين از اين دستگاه‌ها در محيط‌هاي سرپوشيده و نواحي سرپوشيده شهري نيز مي‌توان استفاده كرد.

۴) با حذف روغن در ترانسفورماتور خشك، نياز به تانك‌هاي روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن كاملاً از بين مي‌رود. بنابراين كار نصب آسان‌تر شده و تنها شامل اتصال كابل‌ها و نصب تجهيزات خنك كننده خواهد بود.

۵) از ديگر ويژگي‌هاي ترانسفورماتور خشك، كاهش تلفات الكتريكي است. يكي از راه‌هاي كاهش تلفات و بهينه كردن طراحي ترانسفورماتور، نزديك كردن ترانسفورماتور به محل مصرف انرژي تا حد ممكن است تا از مزاياي انتقال نيرو به قدر كافي بهره‌برداري شود. با به‌كارگيري ترانسفورماتور خشك اين امر امكان‌پذير است.

۶) اگر در پست، مشكل برق پيش آيد، خطري متوجه عايق ترانسفور ماتور نمي‌شود. زيرا منبع اصلي گرما يعني تلفات در آن توليد نمي‌شود. به‌علاوه چون هوا واسطه خنك شدن است و هوا هم مرتب تعويض و جابه‌جا مي‌شود، مشكلي از بابت خنك شدن ترانسفورماتور بروز نمي‌كند.

سيستم نمايش و مديريت ترانسفورماتورها (TMMS)

سيستم TMMS (Transformer Monitoring Management System فارادي يك سيستم نمايش و مديريت ترانسفورماتور است.

سيستم TMMS براساس جمع‌آوري اطلاعات بحراني بهره‌برداري ترانسفورماتور و تجزيه و تحليل آنها عمل مي‌نمايد.

سيستم TMMS با تجزيه و تحليل اطلاعات قادر خواهد بود كه ضمن تفسير عملكرد ترانسفورماتور عيب‌هاي آن را تشخيص داده و اطلاعات لازم براي تصميم‌گيري را در اختيار بهره‌بردار قرار دهد.

اطلاعات بهره‌برداري كه براي فرآيند نمايش و مديريت ترانسفورماتورها مورد نياز بوده و توسط سنسورهاي مخصوص جمع‌آوري مي‌گردند به شرح زير مي‌باشند.

● گازهاي موجود در روغن‌ ترانسفورماتورهمراه با ئيدران

▪ آب موجود در روغن ترانسفورماتور همراه با Acquaoil ۳۰۰

▪ جريان بار ترانسفورماتور

▪ دماي نقاط مختلف ترانسفورماتور

▪ وضعيت تپ جنچر ترانسفورماتور

▪ سيستم خنك كنندگي ترانسفورماتور

اطلاعات بهره‌برداري فوق جمع‌آوري شده و به‌همراه ساير اطلاعات موجود به‌طور مستمر تجزيه و تحليل شده تا بتوانند اطلاعات زير را درباره وضعيت بهره‌برداري ترانسفورماتور تهيه نمايند.

▪ شرايط عمومي و كلي ترانسفورماتور

▪ ظرفيت بارگيري ترانسفورماتور

▪ ميل و شدت توليد گاز و جباب در داخل روغن ترانسفورماتور

▪ ملزومات نگهداري ترانسفورماتور

سيستم TMMS فارادي را مي‌توان براي ترانسفورماتورهاي موجود به‌كار برد و همچنين مي‌توان آن را در ساختمان ترانسفورماتورهاي جديد طراحي و نصب نمود.

ارتقاء سيستم TMMS فارادي با افزودن سنسورهاي اضافي مي‌توانيد باعث ارتقاء عملكرد آن براي مواد زير گرديد.

▪ حداكثر نمودن ظرفيت بارگذاري ترانسفورماتور براي بهره‌برداري اقتصادي و بهينه

▪ تشخيص عيب و توصيه راه حل در ترانسفورماتورها

▪ مديريت عمر ترانسفورماتور و افزايش آن

▪ تكميل و توسعه فرايند و عملياتي مديريت ترانسفورماتورها با كمك اطلاعات اضافي تهيه شده در زمان حقيقي

▪ كاهش و حذف خروجي ترانسفورماتورها به‌صورت برنامه‌ريزي شده و يا ناشي از خطا

▪ آشكارسازي علائم اوليه پيدايش خطا در ترانسفورماتورها

▪ نمايش مراحل تكامل و شكل‌گيري شرايط پيدايش خطا

● ترانسفورماتورها سازگار با هارمونيك ترانسفورماتورهاي عامل K

هارمونيك‌هاي توليد شده توسط بارهاي غير خطي مي‌توانند مشكلات حرارتي و گرمائي خطرناكي را در ترانسفورماتورهاي توزيع استاندارد ايجاد نمايند. حتي اگر توان بار خيلي كمتر از مقدار نامي آن باشد، هارمونيك‌ها مي‌توانند باعث گرماي بيش از حد و صدمه ديدن ترانسفورماتورها شوند. جريان‌هاي هارمونيكي تلفات فوكو را به شدت افزايش مي‌دهند. به‌همين دليل سازنده‌ها، ترانسفورماتورهاي تنومندي را ساخته‌اند تا اينكه بتوانند تلفات اضافي ناشي از هارمونيك‌ها را تحمل كنند. سازنده‌ها براي رعايت استاندارد يك روش سنجش ظرفيت، به‌نام عامل K را ابداع كرده‌اند. عامل K نشان دهنده مقدار افزايش در تلفات فوكو است. بنابراين ترانسفورماتور عامل K مي‌تواند باري به اندازه ظرفيت نامي ترانسفورماتور را تغذيه نمايد مشروط بر اينكه عامل K بار غير خطي تغذيه شده برابر با عامل K ترانسفورماتور باشد. مقادير استاندارد عامل K برابر با ۴، ۹، ۱۳، ۲۰، ۳۰، ۴۰، ۵۰ مي‌باشند. اين نوع ترانسفورماتورها عملاً هارمونيك را از بين نبرده تنها نسبت به آن مقاوم مي‌باشند.

ترانسفورماتور (HMT (Harmonic Mitigating Transformer نوع ديگري از ترانسفورماتورهاي سازگار با هارمونيك ترانسفورماتورهاي HMT هستند كه از صاف شدن بالاي موج ولتاژ بهواسطه بريده شدن آن جلوگيري مي‌كند HMT، طوري ساخته شده است كه اعو جاج ولتاژ سيستم و اثرات حرارتي ناشي از جريان‌هاي هارمونيك را كاهش مي‌دهد. HMT اين كار از طريق حذف فلوها و جريان‌هاي هارمونيكي ايجاد شده توسط بار در سيم پيچي‌هاي ترانسفورماتور انجام مي‌دهد.

چنانچه شبكه‌هاي توزيع نيروي برق مجهز به ترانسفورماتورهاي HMT گردند مي‌توانند همه نوع بارهاي غير خطي (با هر درجه از غير خطي بودن) را بدون اينكه پيامدهاي منفي داشته باشند، تغذيه نمايند. به همين دليل در اماكني كه بارهاي غير خطي زياد وجود دارد از ترانسفورماتور HMT به صورت گسترده استفاده مي‌شود.

● مزاياي ترانسفورماتور HMT

▪ مي‌توان از عبور جريان مؤلفه صفر هارمونيك‌ها (شامل هارمونيك‌هاي سوم، نهم و پانزدهم) در سيم پيچ‌ اوليه، از طريق حذف فلوي آنها در سيم پيچي‌هاي ثانويه جلوگيري كرد.

ترانسفورماتورهاي HMT با يك خروجي در دو مدل با شيفت فازي متفاوت ساخته مي‌شوند. وقتي كه هر دو مدل با هم به‌كار مي‌روند، مي‌توانند جريان‌هاي هارمونيك پنجم، هفتم، هفدهم و نوزدهم را در قسمت‌ جلوئي شبكه حذف كنند.

▪ ترانسفورماتورهاي HMT با دو خروجي مي‌توانند مؤلفه متعادل جريان‌هاي هارمونيك پنجم، هفتم، هفدهم و نوزدهم را در داخل سيم پيچي‌هاي ثانويه حذف كنند.

▪ ترانسفورماتورهاي HMT با سه خروجي مي‌توانند مؤلفه‌ متعادل جريان‌هاي هارمونيك پنجم، هفتم، يازدهم و سيزدهم را در داخل سيم پيچي ثانويه حذف كنند.

▪ كاهش جريان‌هاي هارمونيكي در سيم‌پيچي‌هاي اوليه HMT باعث كاهش افت ولتاژهاي هارمونيكي و اعو جاج مربوطه مي‌شود.

كاهش تلفات توان به‌علت كاهش جريان‌هاي هارمونيكي به‌عبارت ديگر ترانسفورماتور HMT باعث ايجاد اعو جاج ولتاژ خيلي كمتري در مقايسه با ترانسفورماتورهاي معمولي يا ترانسفورماتور عامل K مي‌شود.

منبع: مركز تحقيقات و فناوري اتوماسيون

لینک به دیدگاه

ترانسفورماتورهای برق قدرت

 

 

 

اهميت ترانسفورماتورها در صنعت برق و شبكه‌هيا صنعتي، بركسي پوشيده نيست. امروزه يكي از ملزومات اساسي در انتقال و توزيع الكتريكي در جهان ترانسفورماتورها، مي‌باشند.

ترانسفورماتورها در اندازه‌ها و توان‌هاي مختلفي جهت تغيير سطح ولتاژ الكتريكي به‌منظور كاهش تلفات ولتاژ در فرآيند انتقال و توزيع انرژي الكتريكي به‌كار مي‌روند.

در صنعت سيمان، به‌عنوان يكي از مصرف كننده‌هاي بزرگ برق و استفاده از سطوح ولتاژ مختلف در آن، استفاده از ترانسفور ماتورها يكي از اركان اجتناب‌ناپذير مي‌باشد.

در اين مقاله به اختصار ترانسفورماتورها، ساختمان آنها، تعميرات و نگهداري آنها مورد بررسي قرار گرفته است.

● ساختمان ترانسفور ماتور

ترانسفورماتورها را با توجه به كاربرد و خصوصيات آنها مي‌توان به سه دسته كوچك، متوسط و بزرگ دسته‌بندي كرد. ساختمان ترانسفورماتورهاي بزرگ و متوسط به‌دليل مسائل فاظتي و عايق‌بندي و امكانات موجود، نسبت به انواع كوچك آن پيچيده‌تر است. اجزاء تشكيل دهنده يك ترانسفورماتور به شرح زير است:

● هسته‌ ترانسفورماتور

هسته ترانسفورماتور متشكل از ورقه‌هاي نازكي است كه سطح آنها با توجه به قدرت ترانسفور ماتورها محاسبه مي‌شود. براي كم كردن تلفات آهني هسته‌ ترانسفور ماتور را نمي‌توان به‌طور يكپارچه ساخت. بلكه معمولاً آنها را از ورقه‌هاي نازك فلزي كه نسبت به يكديگر عايق هستند، مي‌سازند اين ورقه‌ها از آهن بدون پسماند با آلياژي از سيليسيم (حداكثر ۴.۵ درصد) كه داراي قابليت هدايت الكتريكي و قابليت هدايت مغناطيسي زيادي است ساخته مي‌شوند . زياد بودن مقدار سيليسيم، باعث شكننده شدن ورق‌ها مي‌شود. براي عايق كردن ورق‌هاي ترانسفورماتور، در گذشته از يك كاغذ نازك مخصوص كه در يك سمت اين ورقه چسبانده مي‌شد، استفاده مي‌كردند، اما امروز در هنگام ساختن و نورد اين ورقه‌ەا يك لايه نازك اكسيد فسفات يا سيليكات به ضخامت ۲ تا ۲۰ ميكرون به‌عنوان عايق بر روي آنها ماليده مي‌شود، كه باعث پوشاندن روي ورقه‌ها مي‌گردد. علاوه بر اين، از لاك مخصوصي نيز براي عايق كردن يك طرف ورقه‌ها استفاده مي‌شود. تمامي ورقه‌هاي ترانسفور ماتور داراي يك لايه عايق هستند. در هنگام محاسبه سطح مقطع هسته بايد سطح آهن خالص را منظور كرد. ورقه‌هاي ترانسفور ماتورها را به ضخامت‌هاي ۰.۳۵ و ۰.۵ ميليمتر و در اندازه‌هاي استاندارد مي‌سازند. بايد دقت كرد كه سطح عايق شده‌ٔ ورقه‌هاي ترانسفور ماتور همگي در يك جهت باشند (مثلاً همه به طرف بالا) علاوه بر اين تا حد امكان نبايد در داخل قرقره فضاي خالي باقي بماند. لازم به ذكر است ورقه‌ها با فشار داخل قرقره جاي بگيرند تا از ارتعاش و صدا كردن آنها نيز جلوگيري شود.

● سيم پيچ‌ ترانسفور ماتور

معمولاً براي سيم‌پيچ اوليه و ثانويه ترانسفور ماتور از هادي‌هاي مسي با عايق (روپوش) لاكي استفاده مي‌كنند، كه با سطح مقطع گرد و اندازه‌هاي استاندارد وجود دارند و با قطر آنها مشخص مي‌شوند. در ترانسفور ماتورهاي پرقدرت از هادي‌هاي مسي كه به‌صورت تسمه هستند استفاده مي‌شوند و ابعاد اين گونه هادي‌ها نيز استاندارد است.

سيم پيچي ترانسفور ماتور به اين ترتيب است كه سر سيم‌پيچ‌ها را به‌وسيله روكش عايق‌ها از سوراخ‌هاي قرقره خارج مي‌كنند، تا بدين ترتيب سيم‌ها، قطع (خصوصاً در سيم‌هاي نازك و لايه‌هاي اول) يا زخمي نشوند، علاوه بر اين بهتر است رنگ روكش‌ها نيز متفاوت باشد تا در ترانسفور ماتورهاي داراي چندين سيم پيچ، به‌راحت بتوان سر هم سيم‌پيچ را مشخص كرد. بعد از اتمام سيم‌پيچي يا تعمير سيم‌پيچ‌ها ترانسفور ماتور بايد آنها را با ولتاژهاي نامي خودشان براي كنترل و كسب اطمينان از سالم بودن عايق بدنه و سيم‌پيچ‌هاي اوليه و ثانويه آزمايش كرد.

● قرقره‌ ترانسفور ماتور

براي حفاظت و نگهداري از سيم پيچ‌هاي ترانسفورماتور خصوصاً در ترانسفورماتورهاي كوچك بايد از قرقره استفاده نمود. جنس قرقره بايد از مواد عايق باشد. قرقره معمولاً از كاغذ عايق سخت، فيبرهاي استخواني يا مواد ترموپلاستيك مي‌سازند. قره‌قره‌هائي كه از جنس ترموپلاستيك هستند، معمولاً يك تكه ساخته مي‌شوند ولي براي ساختن قرقره‌هاي ديگر آنها را در چند قطعه تهيه و سپس بر روي همديگر سوار مي‌كنند. بر روي ديواره‌هاي قرقره بايد سوراخ يا شكافي ايجاد كرد تا سر سيم‌پيچ از آنها خارج شود.

اندازه قرقره بايد با اندازهٔ ورقه‌هاي ترانسفورماتور متناسب باشد و سيم‌پيچ نيز طوري بر روي آن پيچيده شود، كه از لبه‌هاي قرقره مقداري پائين‌تر قرار گيرد تا هنگام جا زدن ورقه‌هاي ترانسفور ماتور، لايه‌ٔ روئي سيم پيچ صدمه نبيند. اندازه قرقره‌هاي ترانسفور ماتورها نيز استاندارد هستند، اما در تمام موارد، با توجه به نياز، قرقره مناسب را مي‌توان طراحي كرد.

● نكات قابل توجه قبل از حمل ترانس‌هاي قدرت

پس از پايان مراحل ساخت و انجام موفقيت‌آميز آزمايشات كارخانه‌اي، قبل از جابه‌جائي ترانسفورماتور، از محلي به محل ديگر و قبل از بارگيري بايد اقدامات زير به روي ترانسفور ماتور انجام گيرد، به‌منظور كاهش ابعاد و وزن ترانسفورماتور و نيز از نظر فني و محدوديّت‌هاي ترافيكي، بايد تجهيزات جنبي ترانسفورماتور ”كنسرواتور (منبع انبساط)، بوشينگ‌ها و...“ باز و به‌طور جداگانه بسته‌بندي و آماده حمل گردند. اما خود ترانسفورماتور به طريق زير حمل مي‌گردد.

الف ـ حمل با روغن: ترانسفورماتورهاي كوچك و ترانسفورماتورهائي كه وزن و ابعاد آنها مشكلاتي را از نظر حمل ايجاد نمي‌نمايند، معمولاً با روغن حمل مي‌گردند. در اين حال سطح روغن بايد حدوداً ۱۵ سانتيمتر پايين‌تر از درپوش اصلي (سقف) ترانسفورماتور قرار داشته باشد.

▪ توجه:

فاصله ۱۵ سانتيمتري فوق‌الذكر در مورد كليه ترانسفورماتورها يكسان نبوده و توصيه مي‌شود و به دستورالعمل كارخانه سازنده مراجعه شود.

لازم به ذكر است كه در هنگام حمل روغن، قسمت فعال (Active Part) ترانسفورماتور بايد كاملاً در داخل روغن قرار گيرد.

به‌منظور جلوگيري از نفوذ رطوبت و هوا به داخل ترانسفورماتور، فضاي بين روغن و سقف ترانسفورماتور را با هواي خشك و يا گاز نيتروژن با فشار حدود ۲/۰ بار در هواي ۲۰ درجه پر مي‌كنند. لازم به ذكراست كه گاز نيتروژن بايد كاملاً خشك باشد، در اين حالت با نصب يك محفظه سيليكاژل بسته (آب‌بندي شده) بر روي ترانسفورماتور عمل جذب رطوبت انجام مي‌شود. ضمناً جهت جلوگيري از پاشيدن روغن به داخل سيليكاژل در طول حمل از يك وسيله حفاظتي استفاده مي‌شود.

حمل بدون روغن: ترانسفورماتورهاي بزرگ بدون روغن حمل مي‌گردند. در اين موارد پس از تخليه روغن، ترانسفورماتور را با هواي خشك (داراي رطوبت كمتر از ppmv ۲۵ و نقطه ميعان كمتر از ۶۰ ـ درجه سانتيگراد) يا با نيتروژن (با درجه خلوص ۹.۹۹%) پر مي‌كنند. لازم به ذكر است كه در اين حالت نيز در طول حمل بايد فشار هوا يا نيتروژن به‌طور مرتب كنترل گردد.

▪ نكات قابل توجه و مهم در نصب و قبل از راه‌اندازي:

۱) كنترل ضربه‌نگار

۲) كنترل فشار هوا

۳) كنترل نقطه شبنم و اكسيژن

۴) كنترل استقرار ترانسفورماتور بر روي فوندانسيون

۵) كنترل تجهيزات جنبي ترانسفورماتور شامل بوشينگ، سيستم خنك كننده، رادياتور، فن، پمپ، كنسرواتور و ملحقات آن

۶) سيستم تنفسي

۷) شير اطمينان

۸) ترمومترها شامل ترمومتر روغن (كاليبره كردن ترمومتر) و ترمومتر سيم پيچ

۹) تپ چنجر

۱۰) رله‌بو خهلتس

• روغن ترانسفور ماتور

روغن‌هاي ترانسفور ماتور عمدتاً تركيبات پيچيده‌اي از هيدروكربن‌هاي مشتق از نفت خام مي‌باشند و به جهت دارا بودن خواص مورد نياز، اين نوع روغن‌ها جهت ترانسفورماتورها مناسب‌تر تشخيص داده شده‌اند.

خواص مورد نياز براي روغن‌هاي ترانسفور ماتور به‌طور خلاصه عبارتند از:

▪ عايق كاري الكتريكي

▪ انتقال حرارت

▪ قابليت خاموش كردن قوس‌الكتريكي

▪ پايداري شيميائي

▪ سيل كردن ترانسفورماتور

▪ جلوگيري از خوردگي

▪ در مورد سفارش خريد روغن براي ترانسفورماتورها دو مورد مهم را مدنظر قرار مي‌دهيم.

▪ انتخاب نوع روغن ترانسفورماتور

نوع روغن و كيفيت آن، براساس طراحي ترانسفورماتورها مي‌باشد. به‌عنوان مثال در يكي از بررسي‌ها نوعي چسب كه در داخل ترانسفورماتور به‌كار برده شده بود توسط روغن ترانس حل گرديد و باعث شد كه ذرات چسب داخل روغن پراكنده شود و منجر به كاهش دي‌الكتريك روغن گردد. مورد ديگري كه مورد آزمايش قرار گرفت، اين بود كه كاتاليزور مس و آهن باعث از بين بردن روغن تشخيص داده شده است. بنابراين نوع ترانسفورماتور و مواد به كار رفته در آن درتعيين نوع و كيفيت روغن آن تأثير زيادي دارد.

● آلودگي روغن ترانفسورماتورها:

به‌طور كلي دو نوع آلودگي اصلي در روغن ترانسفور ماتورها عبارتند از:

۱) مواد معلق در روغن

۲) آب

۳) اكسيداسيون روغن

پس از شناسائي مؤلفه‌هاي روغن با آزمايش‌هاي مختلف، تصميم به تصفيه يت تعويض روغن اتخاذ مي‌گردد.

به‌طور كلي ۳ نوع آزمايش كلي بر روي روغن ترانسفورماتور انجام مي‌گيرد كه عبارتند از:

۱) آزمون‌هاي فيزيكي

۲) آزمون‌هاي شيميائي

۳) آزمون‌هاي قسمت‌هاي الكتريكي

برخي از آزمايش‌هائي كه بايد روي روغن ترانسفورماتورها، انجام گيرد در زير آمده است.

۱) تست اسيديته

۲) تست گازهاي حل شده در روغن

۳) تست كشش سطحي

۴) تست بي‌فنيل پلي كلريد (pcb)

● تست ولتاژ شكست:

روغن ترانسفورماتورها معمولاً بايد داراي ضريب شكست بيشتر از ۵۰ كيلو ولت باشند، كه با انجام آزمايش ولتاژ شكست، نسبت به اندازه‌گيري آن اقدام مي‌گردد. اگر اين شاخص تا حد مشخصي كمتر از ۵۰ كيلو ولت باشد مي‌توان با تصفيه روغن موجود آن را اصلاح كرد، در غير اين صورت بايد نسبت به تعويض روغن اقدام نمود.

● آناليز گاز كروماتورگرافي:

با توجه به اينكه مولكول‌هاي روغن از تركيبات هيدروكربن ساخته شده‌اند، حرارت يا شكست الكتريكي مي‌تواند باعث شكست مولكول‌هاي روغن و توليد گازهاي قابل اشتعالي مثل متان، اتيلن، اتان و ساير گازها شود، كه در دراز مدت انفجار ترانسفورماتور را در پي خواهد داشت. تحليل گاز كروماتوگرافي به اندازه‌گيري ميزان گازهاي توليد شده در روغن ترانسفورماتور و آناليز آنها مي‌پردازد.

● تكنولوژي ساخت

ساخت ترانسفورماتورهاي فشار قوي فاقد روغن، در طول عمر يكصد ساله ترانسفور ماتورها، يك انقلاب محسوب مي‌شود. ايده استفاده از كابل با عايق پليمر پلي‌اتيلن، به‌جاي هادي‌هاي مسي داراي عايق كاغذي از ذهن يك محقق سوئدي به نام پرفسور ”Mats lijon“ تراوش كرده است.

تكنولوژي استفاده از كابل به‌جاي هادي‌هادي مسي داراي عايق كاغذي، نخستين بار در سال ۱۹۹۸ در يك ژنراتور فشار قوي به‌نام ”Power Former“ به‌كار گرفته شد. در اين ژنراتور بر خلاف سابق كه از هادي‌هاي شمشي (مستطيلي) در سيم‌پيچي استاتور استفاده مي‌شد، از هادي‌هاي گرد استفاده شده است. همان‌طور كه از معادلات ماكسول استنباط مي‌شود، هادي‌هاي سيلندري، توزيع ميدان‌الكتريكي متقارني دارند. بر اين اساس ژنراتوري مي‌توان ساخت كه برق را با سطح ولتاژ شبكه توليد كند به‌طوري كه نياز به ترانسفورماتور افزاينده نباشد. در نتيجه اين كار، تلفات الكتريكي به ميزان ۳۰ درصد كاهش مي‌يابد.

در يك كابل پليمري فشار قوي، ميدان الكتريكي در داخل كابل باقي مي‌ماند و سطح كابل داراي پتانسيل زمين مي‌باشد. در عين حال ميدان مغناطيسي لازم براي كار ترانسفورماتور تحت تأثير عايق كابل قرار نمي‌گيرد. در يك ترانسفورماتور خشك، با استفاده از تكنولوژي كابل، امكانات تازه‌اي براي بهينه كردن طراحي ميدان‌هاي الكتريكي و مغناطيسي، نيروهاي مكانيكي و تنش‌هاي گرمائي فراهم كرده است.

در فرآيند تحقيقات و ساخت ترانسفورماتور خشك، در مرحله نخست يك ترانسفورماتور آزمايشي تك فاز با ظرفيت ۱۰ مگا ولت‌آمپر (Dry former)، طراحي، ساخته و آزمايش گرديد.

”Dry former“ اكنون در سطح ولتاژهاي از ۳۶ تا ۱۴۵ كيلوولت و ظرفيت تا ۱۵۰ مگاولت آمپر وجود دارد.

● ويژگي‌هاي ترانسفورماتورهاي خشك

با پيشرفت تكنولوژي امكان ساخت ترانسفورماتورهاي خشك با بازدهي بالا فراهم شده است.

ترانسفورماتور خشك داراي ويژگي‌هاي منحصر به فردي است از جمله:

۱) به روغن براي خنك شدن، يا به‌عنوان عايق الكتريكي نياز ندارد. سازگاري اين نوع ترانسفورماتور با طبيعت و محيط زيست يكي از مهمترين ويژگي‌هاي مهم آن است. به‌دليل عدم وجود روغن، خطر آلودگي خاك و منابع آب زيرزميني و همچنين احتراق و خطر آتش‌سوزي كم مي‌شود.

با حذف روغن و كنترل ميدان‌هاي الكتريكي كه در نتيجه آن خطر ترانسفورماتور از نظر ايمني افراد و محيط زيست كاهش يافته است. امكانات تازه‌اي را از نظر محل نصب ترانسفورماتور فراهم كرده است. به اين ترتيب امكان نصب ترانسفورماتور خشك در نقاط شهري و جاهائي كه از نظر زيست محيطي حساس هستند، وجود دارد.

۲) در ترانسفورماتور خشك به‌جاي بوشينگ چيني در قسمت‌هاي انتهائي از عايق سيليكن را بر (Silicon rubber) استفاده مي‌شود. به اين ترتيب خطر ترك خوردن چيني بوشينگ و نشت بخار روغن از بين مي‌رود.

۳) كاهش مواد قابل اشتعال، نياز به تجهيزات گسترده آتش‌نشاني را كاهش مي‌دهد. بنابراين از اين دستگاه‌ها در محيط‌هاي سرپوشيده و نواحي سرپوشيده شهري نيز مي‌توان استفاده كرد.

۴) با حذف روغن در ترانسفورماتور خشك، نياز به تانك‌هاي روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن كاملاً از بين مي‌رود. بنابراين كار نصب آسان‌تر شده و تنها شامل اتصال كابل‌ها و نصب تجهيزات خنك كننده خواهد بود.

۵) از ديگر ويژگي‌هاي ترانسفورماتور خشك، كاهش تلفات الكتريكي است. يكي از راه‌هاي كاهش تلفات و بهينه كردن طراحي ترانسفورماتور، نزديك كردن ترانسفورماتور به محل مصرف انرژي تا حد ممكن است تا از مزاياي انتقال نيرو به قدر كافي بهره‌برداري شود. با به‌كارگيري ترانسفورماتور خشك اين امر امكان‌پذير است.

۶) اگر در پست، مشكل برق پيش آيد، خطري متوجه عايق ترانسفور ماتور نمي‌شود. زيرا منبع اصلي گرما يعني تلفات در آن توليد نمي‌شود. به‌علاوه چون هوا واسطه خنك شدن است و هوا هم مرتب تعويض و جابه‌جا مي‌شود، مشكلي از بابت خنك شدن ترانسفورماتور بروز نمي‌كند.

سيستم نمايش و مديريت ترانسفورماتورها (TMMS)

سيستم TMMS (Transformer Monitoring Management System فارادي يك سيستم نمايش و مديريت ترانسفورماتور است.

سيستم TMMS براساس جمع‌آوري اطلاعات بحراني بهره‌برداري ترانسفورماتور و تجزيه و تحليل آنها عمل مي‌نمايد.

سيستم TMMS با تجزيه و تحليل اطلاعات قادر خواهد بود كه ضمن تفسير عملكرد ترانسفورماتور عيب‌هاي آن را تشخيص داده و اطلاعات لازم براي تصميم‌گيري را در اختيار بهره‌بردار قرار دهد.

اطلاعات بهره‌برداري كه براي فرآيند نمايش و مديريت ترانسفورماتورها مورد نياز بوده و توسط سنسورهاي مخصوص جمع‌آوري مي‌گردند به شرح زير مي‌باشند.

● گازهاي موجود در روغن‌ ترانسفورماتورهمراه با ئيدران

▪ آب موجود در روغن ترانسفورماتور همراه با Acquaoil ۳۰۰

▪ جريان بار ترانسفورماتور

▪ دماي نقاط مختلف ترانسفورماتور

▪ وضعيت تپ جنچر ترانسفورماتور

▪ سيستم خنك كنندگي ترانسفورماتور

اطلاعات بهره‌برداري فوق جمع‌آوري شده و به‌همراه ساير اطلاعات موجود به‌طور مستمر تجزيه و تحليل شده تا بتوانند اطلاعات زير را درباره وضعيت بهره‌برداري ترانسفورماتور تهيه نمايند.

▪ شرايط عمومي و كلي ترانسفورماتور

▪ ظرفيت بارگيري ترانسفورماتور

▪ ميل و شدت توليد گاز و جباب در داخل روغن ترانسفورماتور

▪ ملزومات نگهداري ترانسفورماتور

سيستم TMMS فارادي را مي‌توان براي ترانسفورماتورهاي موجود به‌كار برد و همچنين مي‌توان آن را در ساختمان ترانسفورماتورهاي جديد طراحي و نصب نمود.

ارتقاء سيستم TMMS فارادي با افزودن سنسورهاي اضافي مي‌توانيد باعث ارتقاء عملكرد آن براي مواد زير گرديد.

▪ حداكثر نمودن ظرفيت بارگذاري ترانسفورماتور براي بهره‌برداري اقتصادي و بهينه

▪ تشخيص عيب و توصيه راه حل در ترانسفورماتورها

▪ مديريت عمر ترانسفورماتور و افزايش آن

▪ تكميل و توسعه فرايند و عملياتي مديريت ترانسفورماتورها با كمك اطلاعات اضافي تهيه شده در زمان حقيقي

▪ كاهش و حذف خروجي ترانسفورماتورها به‌صورت برنامه‌ريزي شده و يا ناشي از خطا

▪ آشكارسازي علائم اوليه پيدايش خطا در ترانسفورماتورها

▪ نمايش مراحل تكامل و شكل‌گيري شرايط پيدايش خطا

● ترانسفورماتورها سازگار با هارمونيك ترانسفورماتورهاي عامل K

هارمونيك‌هاي توليد شده توسط بارهاي غير خطي مي‌توانند مشكلات حرارتي و گرمائي خطرناكي را در ترانسفورماتورهاي توزيع استاندارد ايجاد نمايند. حتي اگر توان بار خيلي كمتر از مقدار نامي آن باشد، هارمونيك‌ها مي‌توانند باعث گرماي بيش از حد و صدمه ديدن ترانسفورماتورها شوند. جريان‌هاي هارمونيكي تلفات فوكو را به شدت افزايش مي‌دهند. به‌همين دليل سازنده‌ها، ترانسفورماتورهاي تنومندي را ساخته‌اند تا اينكه بتوانند تلفات اضافي ناشي از هارمونيك‌ها را تحمل كنند. سازنده‌ها براي رعايت استاندارد يك روش سنجش ظرفيت، به‌نام عامل K را ابداع كرده‌اند. عامل K نشان دهنده مقدار افزايش در تلفات فوكو است. بنابراين ترانسفورماتور عامل K مي‌تواند باري به اندازه ظرفيت نامي ترانسفورماتور را تغذيه نمايد مشروط بر اينكه عامل K بار غير خطي تغذيه شده برابر با عامل K ترانسفورماتور باشد. مقادير استاندارد عامل K برابر با ۴، ۹، ۱۳، ۲۰، ۳۰، ۴۰، ۵۰ مي‌باشند. اين نوع ترانسفورماتورها عملاً هارمونيك را از بين نبرده تنها نسبت به آن مقاوم مي‌باشند.

ترانسفورماتور (HMT (Harmonic Mitigating Transformer نوع ديگري از ترانسفورماتورهاي سازگار با هارمونيك ترانسفورماتورهاي HMT هستند كه از صاف شدن بالاي موج ولتاژ بهواسطه بريده شدن آن جلوگيري مي‌كند HMT، طوري ساخته شده است كه اعو جاج ولتاژ سيستم و اثرات حرارتي ناشي از جريان‌هاي هارمونيك را كاهش مي‌دهد. HMT اين كار از طريق حذف فلوها و جريان‌هاي هارمونيكي ايجاد شده توسط بار در سيم پيچي‌هاي ترانسفورماتور انجام مي‌دهد.

چنانچه شبكه‌هاي توزيع نيروي برق مجهز به ترانسفورماتورهاي HMT گردند مي‌توانند همه نوع بارهاي غير خطي (با هر درجه از غير خطي بودن) را بدون اينكه پيامدهاي منفي داشته باشند، تغذيه نمايند. به همين دليل در اماكني كه بارهاي غير خطي زياد وجود دارد از ترانسفورماتور HMT به صورت گسترده استفاده مي‌شود.

● مزاياي ترانسفورماتور HMT

▪ مي‌توان از عبور جريان مؤلفه صفر هارمونيك‌ها (شامل هارمونيك‌هاي سوم، نهم و پانزدهم) در سيم پيچ‌ اوليه، از طريق حذف فلوي آنها در سيم پيچي‌هاي ثانويه جلوگيري كرد.

ترانسفورماتورهاي HMT با يك خروجي در دو مدل با شيفت فازي متفاوت ساخته مي‌شوند. وقتي كه هر دو مدل با هم به‌كار مي‌روند، مي‌توانند جريان‌هاي هارمونيك پنجم، هفتم، هفدهم و نوزدهم را در قسمت‌ جلوئي شبكه حذف كنند.

▪ ترانسفورماتورهاي HMT با دو خروجي مي‌توانند مؤلفه متعادل جريان‌هاي هارمونيك پنجم، هفتم، هفدهم و نوزدهم را در داخل سيم پيچي‌هاي ثانويه حذف كنند.

▪ ترانسفورماتورهاي HMT با سه خروجي مي‌توانند مؤلفه‌ متعادل جريان‌هاي هارمونيك پنجم، هفتم، يازدهم و سيزدهم را در داخل سيم پيچي ثانويه حذف كنند.

▪ كاهش جريان‌هاي هارمونيكي در سيم‌پيچي‌هاي اوليه HMT باعث كاهش افت ولتاژهاي هارمونيكي و اعو جاج مربوطه مي‌شود.

كاهش تلفات توان به‌علت كاهش جريان‌هاي هارمونيكي به‌عبارت ديگر ترانسفورماتور HMT باعث ايجاد اعو جاج ولتاژ خيلي كمتري در مقايسه با ترانسفورماتورهاي معمولي يا ترانسفورماتور عامل K مي‌شود.

 

منبع: مركز تحقيقات و فناوري اتوماسيون

لینک به دیدگاه

در ژوئیه ۱۹۹۹، شركت ABB، یك ترانسفور ماتور فشار قوی خشك به نام “Dryformer “ ساخته است كه نیازی به روغن جهت خنك شدن بار به عنوان دی الكتریك ندارد.در این ترانسفورماتور به جای استفاده از هادیهای مسی با عایق كاغذی از كابل پلیمری خشك با هادی سیلندری استفاده می شود.

تكنولوژی كابلاستفاده شده در این ترانسفورماتور قبلاً در ساخت یك ژنراترو فشار قوی به نام "Power Former"در شركتABB به كار گرفته شده است. نخستین نمونه از این ترانسفورماتور اكنون در نیروگاه هیدروالكترولیك “Lotte fors” واقع در مركز سوئد نصب شده كه انتظار می رود به دلیل نیاز روزافزون صنعت به ترانسفورماتور هایی كه ازایمنی بیشتری برخوردار باشند و با محیط زیست نیز سازگاری بیشتری داشته باشند، با استقبال فراوانی روبرو گردد.

ایده ساخت ترانسفورماتور فاقد روغن در اواسط دهه ۹۰ مطرح شد. بررسی، طراحی و ساخت اینترانسفورماتور از بهار سال ۱۹۹۶ در شركت ABB شروع شد. ABB در این پروژه از همكاری چند شركت خدماتی برق از جمله Birka Kraft و Stora Enso نیز بر خوردار بوده است.

● تكنولوژی

ساخت ترانسفورماتور فشار قوی فاقد روغن در طول عمر یكصد ساله ترانسفورماتورها، یك انقلاب محسوبمی شود. ایده استفاده از كابل با عایق پلیمر پلی اتیلن (XLPE) به جای هادیهای مسی دارای عایق كاغذی از ذهن یك محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش كرده است.

تكنولوژی استفاده از كابل به جای هادیهای مسی دارای عایق كاغذی، نخستین بار در سال ۱۹۹۸ در یك ژنراتور فشار قوی به نام “ Power Former” ساخت ABB به كار گرفته شد. در این ژنراتور بر خلاف سابق كه از هادیهای شمشی ( مستطیلی ) در سیم پیچی استاتور استفاده می شد، از هادیهای گرد استفاده شده است.

همانطور كه از معادلات ماكسول استنباط می شود، هادیهای سیلندری ، توزیع میدان الكتریكی متقارنی دارند. بر این اساس ژنراتوری می توان ساخت كه برق را با سطح ولتاژ شبكه تولید كند بطوریكه نیاز به ترانسفورماتور افزاینده نباشد. در نتیجه این كار، تلفات الكتریكی به میزان ۳۰ در صد كاهشمی یابد.

در یك كابل پلیمری فشار قوی، میدان الكتریكی در داخل كابل باقی می ماند و سطح كابل دارای پتانسیل زمینمی باشد.در عین حال میدان مغناطیسی لازم برای كار ترانسفورماتور تحت تاثیر عایق كابل قرار نمی گیرد.در یك ترانسفورماتور خشك، استفاده از تكنولوژی كابل، امكانات تازه ای برای بهینه كردن طراحی میدان های الكتریكی و مغناطیسی، نیروهای مكانیكی و تنش های گرمایی فراهم كرده است.

در فرایند تحقیقات و ساخت ترانسفورماتور خشك در ABB، در مرحله نخست یك ترانسفورماتور آزمایشی تكفاز با ظرفیت ۱۰ مگا ولت آمپر طراحی و ساخته شد و در Ludivica در سوئد آزمایش گردید. “ Dry former” اكنون در سطح ولتاژ های از ۳۶ تا ۱۴۵ كیلو ولت و ظرفیت تا ۱۵۰ مگا ولت آمپر موجود است.

● نیروگاه مدرن Lotte fors

ترانسفورماتور خشك نصب شده در Lotte fors كه بصورت یك ترانسفورماتور – ژنراتور افزاینده عمل می كند ، دارای ظرفیت ۲۰ مگا ولت امپر بوده و با ولتاژ ۱۴۰ كیلو ولت كار می كند. این واحد در ژانویه سال ۲۰۰۰ راه اندازی گردید.

اگر چه نیروگاه Lotte fors نیروگاه كوچكی با قدرت ۱۳ مگا وات بوده و در قلب جنگلی در مركز سوئد قرار دارد اما به دلیلنوسازی مستمر، نیروگاه بسیار مدرنی شده است. در دهه ۸۰ میلادی ، توربین های مدرن قابل كنترل از راه دور در ان نصب شد و در سال ۱۹۹۶، كل سیستم كنترل آن نوسازی گردید. این نیروگاه اكنون كاملاً اتوماتیك بوده و از طریق ماهواره كنترل می شود.

● ویژگیهای ترانسفورماتور خشك

ترانسفورماتور خشك دارای ویژگیهای منحصر بفردی است از جمله:

۱) به روغن برای خنك شده با به عنوان عایق الكتریكی نیاز ندارد.

۲) سازگاری این نوع ترانسفورماتور با طبیعت و محیط زیست یكیاز مهمترین ویژگی های آن است. به دلیل عدم وجود روغن، خطر آلودگی خاك و منابع آب زیر زمینی و همچنین احتراق وخطر آتش سورزی كم میشود.

۳) با حذف روغن و كنترل میدانهای الكتریكی كه در نتیجه آن خطر ترانسفور ماتور از نظر ایمنی افراد ومحیط زیست كاهش می یابد، امكانات تازه ای از نظر محل نصب ترانسفورماتور فراهم میشود.به این ترتیبامكانات نصب ترانسفورماتور خشك در نقا شهری و جاهایی كه از نظر زیست محیطی حساس هستند،فراهم میشود.

۴) در ترانسفورماتور خشك به جای بوشینگ چینی در قسمتهای انتهایی از عایق سیسیكن را بر استفاده میشود.به این ترتیب خطر ترك خوردن چینی بوشینگ و نشت بخار روغن از بین میرود.

۵) كاهش مواد قابل اشتعال، نیاز به تجهیزات گسترده آتش نشانی كاهش میدهد. بنابراین از این دستگاهها در محیط های سر پوشیده و نواحی سرپوشیده شهری نیز می توان استفاده كرد.

۶) با حذف روغن در ترانسفورماتور خشك، نیاز به تانك های روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن كاملاً از بین میرود.بنابراین كار نصب آسانتر شده و تنها شامل اتصال كابلها و نصب تجهیزات خنك كننده خواهد بود.

۷) از دیگر ویژگی های ترانسفورماتور خشك، كاهش تلفات الكتریكی است. یكی از راههای كاهش تلفات و بهینه كردن طراحی ترانسفورماتور، نزدیك كردن ترانسفورماتور به محل مصرف انرژی تا حد ممكن است تا از مزایای انتقال نیرو به قدر كافی بهره برداری شود. با بكار گیری ترانسفورماتور خشك این امر امكان پذیر است .

۸) اگر در پست، مشكل برق پیش آید، خطری متوجه عایق ترانسفورماتور نمی شود. زیرا منبع اصلی گرما یعنی تلفات در آن تولید نمی شود.بعلاوه چون هوا واسطه خنك شدن است و هوا هم مرتب تعویض و جابجا می شود، مشكلی از بابت خنك شدن ترانسفورماتور بروز نمی كند.

● نخستین تجربه نصب ترانسفررماتور خشك

ترانسفورماتورخشك برای اولین بار در اواخر سال ۱۹۹۹ در Lotte fors سوئد به آسانی نصب شده و از آن هنگام تاكنون به خوبی كار كرده است. در آینده اینزدیك دومین واحد ترانسفورماتور خشك ساخت ABB (Dry former ) در یك نیروگاه هیدروالكتریك در سوئد نصب می شود.

● چشم انداز آینده تكنولوژی ترانسفورماتور خشك

شركت ABB در حال توسعه ترانسفورماتور خشك Dryformer است. چند سال اول از آن در مراكز شهری و آن دسته از نواحی كه از نظر محیط زیست حساس هستند، بهره برداری می شود. تحقیقات فنی دیگری نیز در زمینه تپ چنجر خشك، بهبود ترمینال های كابل و سیستم های خنك كن در حال انجام است. در حال حاضر مهمترین كار ABB، توسعه و سازگار كردن Dryformer با نیاز مصرف كنندگان برای كار در شبكه و ایفای نقش مورد انتظار در پست هاست.

منبع:بانک اطلاعات مهندسی برق

لینک به دیدگاه

حرکت به سمت خصوصی سازی در صنعت برق تولیدکنندگان برق را به استفاده بهینه و بسیار کارا از تجهیزات موجودشان ترغیب می کند . لذا در راستای این سیاست در حال حاضر توجه ویژه ای به کیفیت تجهیزات مورد استفاده و بهبود عملکرد و افزایش فاصله زمانی تعمیر و نگهداری توسط تولیدکنندگان مبذول می شود .

از آنجا که ترانسفورماتورهای قدرت یکی از گرانترین تجهیزات در صنایع برق می باشند ، لذا تولیدکنندگان برای کاهش هزینه های سرمایه گذاری سعی می کنند ترانسفورماتورهای قدرت خود را در وضعیت اضافه بار نسبت به مقادیر نامی آن قرار دهند. این اضافه بار باعث افزایش درجه حرارت ترانسفورماتور و سایر بخشهایی که جریان از آن عبور میکند می شوند . یکی از حساسترین قسمتها کنتاکت های تپ چنجر های زیر بار می باشند که با افزایش درجه حرارت ، تخریب و به حالت زغالی درمی آیند .

برنامه های وسیع تحقیقاتی برای رفع این مشکل اجرا شده است و آخرین تکنولوژی که در مرحله آزمایش و پیاده سازی عملی بسیار موفق بوده است ، روشی است که توسط نیکولز برای شرکت گاز و برق پاسیفیک انجام شده است .

در بررسیهای اولیه ای که نیکولز بر روی کنتاکتهای سوخته انجام داده است این نتیجه را داده است که طرح جدید کنتاکت ها باید دارای هدایت الکتریکی و حرارتی بالاتر ، مقاومت بالاتری در برابر جوش خوردن و در برابر سائیدگی مکانیکی داشته باشد . در این طراحی نیکولز در نظر داشت که طرح مورد نظر قابل انطباق برای انواع تپ چنجرها باشد .

برای اینکار طرح استفاده از کنتاکت های با پوشش نقره بالا و ایجاد کنتاکت هایی با مقاومت خیلی پائین ELR ارائه شد. برای ایجاد این روکش ابتدا با استفاده از سلف فرکانس بالا این آلیاژ نقره ای بر روی کنتاکت جوش خورده است و سپس مقادیر اضافی آن ماشینکاری شده است . این سطح نقره ای باعث ایجاد مقاومت کم و تماس استاتیکی بهتری برای کنتاکت های کلید می شود .این طرح در پروژه های مختلفی مورد استفاده واقع شده و باعث جلوگیری از تخریب کنتاکتها و عدم نیاز به تعمیر و نگهداری در دوره های زمانی کوتاه شده است .

 

منبع : High Voltage Supply

آدرس :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

به گفتگو بپیوندید

هم اکنون می توانید مطلب خود را ارسال نمایید و بعداً ثبت نام کنید. اگر حساب کاربری دارید، برای ارسال با حساب کاربری خود اکنون وارد شوید .

مهمان
ارسال پاسخ به این موضوع ...

×   شما در حال چسباندن محتوایی با قالب بندی هستید.   حذف قالب بندی

  تنها استفاده از 75 اموجی مجاز می باشد.

×   لینک شما به صورت اتوماتیک جای گذاری شد.   نمایش به صورت لینک

×   محتوای قبلی شما بازگردانی شد.   پاک کردن محتوای ویرایشگر

×   شما مستقیما نمی توانید تصویر خود را قرار دهید. یا آن را اینجا بارگذاری کنید یا از یک URL قرار دهید.


×
×
  • اضافه کردن...