رفتن به مطلب

ارسال های توصیه شده

علاوه بر جامد، مايع، گاز و پلاسما حالت پنجم ماده چگالش بوز انيشتين است كه به اثرات كوانتومي اين دسته مواد مربوط است. در اين حالت ماده فاقد چسبندگي، كشش سطحي است و مي خواهد خود را در حداكثر سطح بگستراند و از ديواره هاي ظرف خود بالا مي رود؛. ظاهري شبيه مايع دارد و لي كاملاً مانند كاز ايده آل عمل مي كند و اگر آن را به حركت در آوريم تا ابد به حركت خود ادامه مي دهد! هليم ۴ در دماهاي بسيار پايين نمونه اي از آن است. اتم های انزواطلب (حالت ششم ماده!) محققان ناسا حالت جديدي از ماده را كشف كردند كه حالت چگاليده فرميوني نام دارد. طي مدت زمان طولاني ماده را به سه حالت مي شناختند كه عبارت بودند از جامد، مايع و گاز. اما امروز مي دانيم كه اين سه حالت تنها نيمي از حالت هاي شناخته شده هستند و حداقل شش حالت براي ماده وجود دارد. اين شش حالت عبارتند از جامد، مايع، گاز، پلاسما، حالت چگاليده، بوز - اينشتين و حالت چگاليده فرميوني. دكتر جين دبورا (Jin Deborah) سرپرست گروه دانشمنداني كه چگالش فرميوني را كشف كردند، درباره يافته هاي جديد مي گويد: دسامبر سال گذشته، زماني كه حالت جديد را كشف كرديم براي ما اوقات هيجان انگيزي بود گروه ما هم به خاطر هيجان ناشي از پيشرفت هاي چشمگير و هم به خاطر رقابت فشرده براي كشف حالت جديد، بسيار سخت كار مي كرد تا اين كه نتيجه دلخواه به دست آمد. اگر از دانش آموزان دوره دبيرستان خواص معمولي مواد را بپرسيد، در پاسخ مي گويند جامد ها شكل ثابتي دارند و از نظر فيزيكي سخت هستند اما قابليت خرد شدن را هم دارند. مايعات به آساني جريان مي يابند اما متراكم كردن آنها بسيار سخت است ودر هر ظرفي قرار بگيرند شكل آن ظرف را به خود مي گيرند. گاز ها كمترين چگالي را در مقايسه با ساير حالات دارند و به آساني متراكم مي شوند. گاز ها نه تنها در هر ظرفي قرار بگيرند شكل ظرفي را به خود مي گيرند، بلكه در تمام حجم ظرف پراكنده مي شوند و تمام فضاي ظرف را اشغال مي كنند.» چهارمين شكل ماده پلاسماست. اين حالت تقريباً گاز مانند است اما اتم هاي سازنده پلاسما به الكترون ها و يون ها شكافته شده اند. خورشيد نمونه اي از حالت پلاسما است. در واقع بيشتر ماده جهان به شكل پلاسما است. پلاسما ها معمولاً بسيار داغ هستند از اين رو نمي توان پلاسما را توليد و در ظرف هاي معمولي نگهداري كرد. پلاسما را با استفاده از ميدان مغناطيسي مي توان در يك محدوده از فضا حبس كرد. پنجمين شكل ماده، حالت چگاليده بوز - اينشتين است كه در سال ۱۹۹۵ كشف شد. اين حالت از ماده زماني پديد آمد كه دانشمندان موفق شدند بوزون ها را تا دمايي بسيار پايين سرد كنند. در دماهاي بسيار پايين، بوزون ها به صورت سوپر ذرات منفردي درمي آيند كه بيشتر از آنكه ذره مادي باشند موج مانند به نظر مي رسند. اين حالت از ماده بسيار شكننده است و نور به آهستگي از ميان آن عبور مي كند. پس از چند سال از كشف حالت چگاليده بوز - اينشتين، اينك حالت چگاليده فرميوني هم به حالت هاي قبلي اضافه شده است. اين شكل از ماده چنان بديع است كه هنوز اغلب خواص آن ناشناخته است. اما آنچه كه مسلم است اين حالت هم در دماي بسيار پايين قابل دسترسي است. دكتر جين و همكارانش براي دستيابي به اين حالت جديد، تعداد ۵۰۰ هزار اتم پتاسيم با عدد جرمي ۴۰ را تا دمايي كمتر از يك ميليونيوم كلوين سرد كردند. اين دما بسيار نزديك به صفر مطلق است. در اين حالت اتم هاي پتاسيم بدون آن كه چسبندگي ميان آنها وجود داشته باشد، به صورت مايع جريان يافتند. پايين تر ازاين دما چه اتفاقي مي افتد؟ جواب اين سئوال را كسي نمي داند. دانشمندان در حال حاضر براي يافتن پاسخ اين سئوال به تحقيق مشغول هستند. حالت چگاليده فرميوني تا حدي شبيه چگالش بوز - اينشتين است. هر دو حالت از اتم هايي تشكيل شده اند كه اين اتم ها در دماي پايين به هم مي پيوندند و جسم واحدي را تشكيل مي دهند. در چگالش بوز - اينشتين اتم ها از نوع بوزون هستند در حالي كه در چگالش فرميوني اتم ها فرميون هستند. تفاوت ميان بوزون ها و فرميون ها چيست؟ رفتار بوزون ها به گونه اي است كه تمايل دارند با هم پيوند برقرار كنند و به هم متصل شوند. يك اتم در صورتي كه حاصل جمع تعداد الكترون، پروتون و نوترون هايش زوج باشد، بوزون است. به عنوان مثال اتم هاي سديم بوزون هستند زيرا اتم هاي سديم در حالت عادي يازده الكترون، يازده پروتون و دوازه نوترون دارند كه حاصل جمع آنها عدد زوج ۳۴ مي شود. بنابراين اتم هاي سديم اين قابليت را دارند كه در دماهاي پايين به هم متصل شوند و حالت چگاليده بوز - اينشتين را پديد آورند اما از طرف ديگر فرميون ها منزوي هستند. اين ذرات طبق اصل طرد پائولي هنگامي كه در يك حالت كوانتومي قرار مي گيرند همديگر را دفع مي كنند و اگر ذره اي در يك حالت كوانتومي خاص قرار گيرد مانع از آن مي شود كه ذره ديگري هم بتواند به آن حالت دسترسي يابد. هر اتم كه حاصل جمع تعداد الكترون، پروتون و نوترون هايش فرد باشد، فرميون است. به عنوان مثال، اتم هاي پتاسيم با عدد جرمي ۴۰ فرميون هستند زيرا داراي ۱۹ الكترون، ۱۹ پروتون و ۲۱ نوترون هستند و حاصل جمع اين سه عدد برابر ۵۹ مي شود. دكتر جين و همكارانش بر پايه همين خاصيت انزوا طلبي فرميون ها روشي را پيش گرفتند و از ميدان هاي مغناطيسي كنترل شونده اي براي انجام آزمايش ها استفاده كردند. ميدان مغناطيسي باعث مي شود كه اتم هاي منفرد با هم جفت شوند و ميزان جفت شدگي اتم ها در اين حالت با تغيير ميدان مغناطيسي قابل كنترل است. انتظار مي رفت كه اتم هاي جفت شده پتاسيم خواص همانند بوزون ها داشته باشند اما آزمايش ها نشان دادند كه در بعضي از اتم ها كه ميزان جفت شدگي ضعيف بود هنوز بعضي از خواص فرميوني خود را از دست نداده بودند. در اين حالت يك جفت از اتم هاي جفت شده مي تواند به جفت ديگري متصل شود و اين جفت شدگي به همين ترتيب ادامه يابد تا اينكه سرانجام باعث تشكيل حالت چگاليده فرميوني شود. دكتر جين شك داشت كه جفت شدگي اتم هاي مشاهده شده همانند جفت شدگي اتم هاي هليوم مايع باشد كه به آن ابرشارگي مي گويند. ابرشاره ها نيز بدون آنكه خاصيت چسبندگي ميان آنها باشد به راحتي جريان مي يابند. وضعيت مشابه ديگر، حالت ابررسانايي است. در يك ابررسان الكترون هاي جفت شده (الكترون ها فرميون هستند) بدون آن كه با مقاومت الكتريكي مواجه شوند به راحتي جريان مي يابند. علاقه وافري به ابررساناها وجود دارد زيرا از آنها براي توليد الكتريسيته پاك و ارزان مي توان استفاده كرد. در صورتي كه استفاده از ابر رساناها در تكنولوژي ميسر شود، قطار هاي برقي سريع السير و كامپيوترهاي فوق سريع با قيمتي پايين روانه بازار خواهد شد. اما متأسّفانه استفاده از ابررساناها یا حتي تحقيق درباره آن ها دشوار است. بزرگ ترين مشكل اين است كه حداقل دمايي كه لازم است تا يك ابررسانا ايجاد شود. ۱۳۵ - درجه سلسيوس است. بنابراين نيتروژن مايع يا دستگاه سردكننده ديگري لازم است تا سيم هاي رابط و هر وسيله جانبي ديگري كه الكترون هاي جفت شده در آن محيط قرار مي گيرند را سرد نگه دارد. اين فرآيند هزينه زيادي مي خواهد و به دستگاه هاي پرحجمي نياز دارد. اما اگر ابر رسانايي بر دماي اتاق برقرار شود، كار كردن با آن فوق العاده راحت مي شود و استفاده از آن به خاطر مزيت هاي ياد شده سريعاً افزايش مي يابد. دكتر جين مي گويد: كنترل ميزان جفت شدگي اتم ها با استفاده از تغيير ميدان مغناطيسي، همانند تغيير دما براي يك ابررساناست. اين روند ما را اميدوار مي كند كه بتوانيم آموخته هاي خود از چگالش فرميوني را به ديگر زمينه ها از جمله ابررسانايي در دماي اتاق تسريع دهيم. ناسا كاربرد هاي زيادي را براي ابررسانه ها در نظر گرفته است. به عنوان مثال استفاده از ابر رساناها باعث خواهد شد كه مدار ماهواره هاي چرخنده به دور زمين با دقت بسيار بالايي كنترل شوند. خاصيت اصلي ابررسانا ها به دليل نداشتن مقاومت الكتريكي، امكان انتقال جريان الكتريكي بزرگي در حجم كوچكي از ابررسانا است. به همين خاطر اگر به جاي سيم هاي مسي از ابررساناها استفاده شود، موتور هاي فضاپيما ها تا ۶ برابر نسبت به موتورهاي فعلي كوچك تر و سبك تر خواهند شد و باعث مي شود كه وزن و هزينه ارسال فضاپيما بسيار كاهش يابد. از ديگر زمينه هايي كه ابررساناها مي توانند نقشي اساسي در آنها بازي کنند مي توان كاوش هاي بعدي انسان از فضا را نام برد. ابررساناها بهترين گزينه براي توليد و انتقال بسيار كارآمد انرژي الكتريكي هستند و طي شب هاي طولاني ماه كه دما تا ۱۷3- درجه سانتي گراد پايين مي آيد و طي ماه هاي ژانويه تا مارس دستگاه هاي MRI ساخته شده از سيم هاي ابررسانا، ابزار تشخيصي دقيق و توانمندي در خدمت سلامت خدمه فضاپيماها خواهد بود.»

لینک به دیدگاه
  • 1 ماه بعد...

  • آیا تابحال فکر کرده‌اید که پلاسما چیست؟
  • آیا می‌دانید
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    تا چه حد در زندگی بشر مؤثر است؟
  • درک شما از پلاسمای طبیعی چیست؟

ساختار پلاسما

 

عموما پلاسما را مجموعه‌ای از یونها ،

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
و اتمهای خنثی جدا از هم و تقریبا در حال تعادل مکانیکی ـ الکتریکی می‌گویند. حالتهای خاصی را در مقابل
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
نشان می‌دهد. این رفتارها کاملا برعکس رفتار گازها در مقابل میدان مغناطیسی است. زیرا گازها به سبب خنثی بودنشان از لحاظ
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
توانایی عکس ‌العمل در مقابل مغناطیس و میدان وابسته به آن را ندارند.

 

در کنار این رفتار پلاسما می‌تواند تحت تأثیر میدان مغناطیسی درونی که از حرکت یونهای داخلی به عمل می‌آید قرار گیرد. همچنین پلاسما به علت رفتار جمعیتی که از خود نشان می‌دهد، گرایشی به متأثر شدن در اثر عوامل خارجی ندارد و اغلب طوری رفتار می‌کند که گویی دارای رفتار مخصوص به خودش است. معیار دیگر برای پلاسما آن است که فراوانی بارهای مثبت و منفی باید چندان زیاد نباشد که هر گونه عدم توازن موضعی بین غلظتهای این بارها غیر ممکن باشد.

 

مثلا بار مثبت به سرعت بارهای منفی را بسوی خود می‌کشد تا توازن بار از نو برقرار سازد. بنابراین اگر چه پلاسما به مقدار زیادی بار آزاد دارد، ولی از لحاظ بار الکتریکی خنثی است. ماده در حالت پلاسما نسبت به حالتهای جامد ، مایع و گاز نظم کمتری دارد. با این حال خنثی بودن الکتریکی پلاسما بطور متوسط انرژی از نظم را نشان می‌دهد.

 

چهارمین حالت ماده کدام است؟ tokamak_1.JPG

 

اگر پلاسما تا دمای زیاد حرارت داده شود، نظم موجود در پلاسما از بین می‌رود و ماده به توده درهم و برهم و کاملا نامنظم ذرات منفرد تبدیل می‌شود. بنابراین پلاسما گاهی نظیر سیالات ، رفتاری جمعی و گاهی نظیر ذرات منفرد ، بصورت کاملا تکی عمل می‌کند. به دلیل همین رفتارهای عجیب و غریب است که غالبا پلاسما در کنار گازها و مایعات و جامدات ، چهارمین حالت ماده معرفی می‌شود. بنابراین با توجه به اینکه چگالی پلاسما قابل توجه می‌باشد. مدولانک در تک ذرات منفرد به مشکلات رفتار پلاسما افزوده می‌شود.

 

ضرورت بررسی پلاسمای طبیعی

 

با وجود این پیچیدگیها با عنایت به اینکه 99 درصد ماده موجود در طبیعت و جهان در حالت پلاسما است. علاقمندی ما به پلاسما جدا از بسیاری کاربردها نظیر تولید انرژی ، عدسی پلاسمایی برای کانونش انرژی و ... معتدل می‌باشد، چرا که از ترک زمین ، با انواع پلاسماها مانند (

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
، کمربندها و
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
) مواجه می‌شویم. بنابراین
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
نیز در کنار سایر شاخه‌های علوم فیزیکی ، در شناخت محیط زندگی ما در قالب
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
از یک اهمیت زیادی برخوردار است.

 

انواع پلاسما

 

  • پلاسمای جو: نزدیکترین پلاسما به ما (
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    ) ، یونوسفر (Ionosphere) می‌باشد که از صد و پنجاه کیلومتری سطح زمین شروع و به طرف بالا ادامه می‌یابد. لایه‌های بالاتر یونسفر ، فیزیک سیستمها به فرم پلاسما می‌باشند که توسط تابش موج کوتاه در حوزه وسیعی ، از طیف
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    گرفته تا
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    و همچنین بوسیله پرتوهای کیهانی و الکترونهایی که به گلنونسفر اصابت می‌کنند یونیزه می‌شوند.
  • برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    : پدیده شفق نیز نوعی پلاسما است که تحت اثر یونیزاسیون ایجاد می‌شود. یونسفر پلاسمایی با جذب پرتوهای ایکس ، فرابنفش ، تابش خورشیدی ، انعکاس امواج کوتاه و رادیویی اهمیت اساسی در ارتباط رادیویی در سرتاسر جهان دارد. با همه این احوال نه تنها زمین بلکه زهره و مریخ نیز فضایی یونسفری دارند.

  • ملاحظات نظری نشان می‌دهد که در سایر
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    نظیر مشتری ، زحل ،
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    ،
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    نیز باید یونسفرهای قابل مشاهده وجود داشته باشد. فضای بین سیاره‌ای نیز از پلاسمای بین سیاره‌ای در حال انبساط پر شده که محتوای یک میدان مغناطیسی) ضعیف (حدود -510 تسلا) است.
  • هسته‌های ستارگان دنباله دار نیز به فضای بین پلاسمایی پرتاب می‌کند. از طرف دیگر ،
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    مانند یک کره پلاسمایی است. درخشندگی شدید خورشید ، معمولا عین یک درخشندگی پلاسمایی می‌باشد. خورشید به سه قشر گازی فتوسفر ـ کروموسفر و کورونا (که کرونای آن بیش از یک میلیون درجه ، حرارت دارد) احاطه شده است و انتظار می‌رود که هزاران سال به درخشندگی خود ادامه بدهد.

کاربرد پلاسمای یونسفر

 

یونوسفر زمین در ارتباطات رادیویی اهمیت زیادی دارد. توضیح این نکته لازم است که یونوسفر ، امواج رادیویی با فرکانسهای بیش از 30 مگاهرتز (بین امواج رادار و تلویزیون) را عبور می‌دهد. ولی امواج با فرکانسهای کمتر (کوتاه ، متوسط و بلند رادیویی) را منعکس می‌کند. همچنین شایان ذکر است که ضخامت یونسفر زمین که از چند لایه منعکس کننده تشکیل شده است با عواملی نظیر شب و روز آشفتگی پلاسمایی سطح خورشید در ارتباط نزدیک می‌باشد.

 

مگنتوسفر و کمربندهای تشعشعی زمین

 

می‌دانیم زمین ما دارای میدان مغناطیسی است که می‌تواند بر یونها و بطور خلاصه پلاسمای فضای اطرافش اثر بگذراد. بر طبق نظرات دینامو ،

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
از القای مغناطیس حاصل از حرکات ذرات داخل پلاسمای فضا به درون زمین متأثر می‌شود. که دوباره نقش فیزیک پلاسما را در ژئوفیزیک یادآوری می‌کند. به هرحال بطور نظری باید میدان مغناطیسی به شکل متقارن باشد لیکن فشار باد خورشیدی ، میدان ژئومغناطیس زمین را به صورت
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
یا دکلی شکل در می‌آورد. که در اصطلاح به آن مگنتوسفر زمین گفته می‌شود. ساختمان این لایه پلاسمایی نیز خود از چند لایه تشکیل شده است.

 

ژئوفیزیکدانان با مطالعه اساسی این لایه‌ها ، حد بالای آن را که حدودا 10 برابر شعاع زمین و در جهت خورشید می‌باشد، مغناطیس سکون می‌نامند. خارج از مغناطیس سکون ، ناحیه متلاطمی است که غلاف مغناطیس نام دارد و آن باد خورشیدی در نتیجه فشار مگنتوسفر جهت و سرعت خود را تغییر می‌دهد. مگنتوسفر زمین ، کمربند ایمنی زمین در مقابل ذرات خطرناک کم انرژی و حتی متوسط انرژی می‌باشد. به این کمربند حافظ امنیت زمین در مقابل اشعه‌های خطرناک و ذرات ساتع از خورشید ، اصطلاحا

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
(به افتخار کاشف این کمربندها) گفته می‌شود.

 

آینه‌های مغناطیسی

 

با توجه به تأثیرات میدان مغناطیسی زمین بر روی پلاسما ، ذراتی که در میدان مغناطیسی زمین (کمربند وان آلن) گیر می‌اندازد. بواسطه داشتن میدان مغناطیسی قوی و ضعیف و در قطبین زمین حرکتی انجام می‌دهند که به مثابه یک آینه طبیعی می‌باشد. بنابراین آینه مغناطیسی که قبلا برای اولین بار توسط انریکو فرمی به عنوان مکانیسمی برای شتابدار ساختن پرتوی کیهانی استفاده شده بود، در ژئوفیزیک نیز بکار رفت.

 

 

بادهای خورشیدی

 

خورشید منظومه شمسی منبع نیرومندی از جریان مداوم پلاسما بصورت باد خورشیدی است. باد خورشیدی اصطلاحی برای ذرات تشعشع یافته نظیر بادهایی در حدود 100 هزار درجه کلوین است. باد خورشیدی پدیده پیچیده‌ای است که سرعت و چگالی) آن متغیر می‌باشد. متغیر بودن پلاسمای بادی به فعالیت خورشید بستگی دارد. گفتنی است که به دلیل 100 برابر بودن انرژی جنبشی پلاسما نسبت به انرژی مغناطیسی‌اش ، اصطلاح باد مغناطیسی به آن داده‌اند.

 

فشردگی پلاسما در فضا

 

پلاسمای فضایی می‌تواند تحت عوامل مختلفی فشرده شود و ستارگان فضا را ایجاد کند (به عنوان مثال کوتوله‌های سفید). پلاسمای فضایی با چگالی حدود 100 هزار تا 10 میلیارد گرم بر سانتیمتر مکعب ، محصول نهایی تکامل ستارگان سبک ‌وزن می‌باشد. این نوع ستارگان بسیار چگالتر از خورشید می‌باشند. چرا که اگر کل ماده خورشید با چگالی 1.4 گرم بر سانتیمتر مکعب می‌خواست متراکم و به اندازه مثلا زمین ما شود، چگالی آن به تقریبا یک میلیون گرم بر سانتیمتر مکعب می‌رسید.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
نیز از نوع ستارگان بسیار چگال می‌باشند که محصول تکامل ستارگان همان وزن می‌باشند. اینها آخرین نوع ستارگان قابل مشاهده در جهان هستند که به سبب داشتن چگالی فوق‌العاده زیاد ، نورهای اطراف خود را می‌بلعند و به صورت یک
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
در می‌آیند. بر طبق مدلهای محاسبه شده ، ستارگان نوترونی از لایه‌های مختلفی تشکیل شده‌اند که با حرکت از سطح به طرف داخل ، چگالی به سرعت بالا می‌رود.

 

منبع: وبلاگ شیمی

لینک به دیدگاه

به گفتگو بپیوندید

هم اکنون می توانید مطلب خود را ارسال نمایید و بعداً ثبت نام کنید. اگر حساب کاربری دارید، برای ارسال با حساب کاربری خود اکنون وارد شوید .

مهمان
ارسال پاسخ به این موضوع ...

×   شما در حال چسباندن محتوایی با قالب بندی هستید.   حذف قالب بندی

  تنها استفاده از 75 اموجی مجاز می باشد.

×   لینک شما به صورت اتوماتیک جای گذاری شد.   نمایش به صورت لینک

×   محتوای قبلی شما بازگردانی شد.   پاک کردن محتوای ویرایشگر

×   شما مستقیما نمی توانید تصویر خود را قرار دهید. یا آن را اینجا بارگذاری کنید یا از یک URL قرار دهید.

×
×
  • اضافه کردن...