رفتن به مطلب

نانوالکترونیک


samyar

ارسال های توصیه شده

دید کلی

 

اصولاً اتصالات نیم رسانا - فلز جزء لازمه تمامی قطعات الکترونیکی هستند. چگونگی و رفتار اتصالات الکتریکی به غلظت سطح نیم رسانا (Si) ، تمیزی سطح و واکنشهای بین فصل مشترک فلز - نیم رسانا بستگی دارد. بعد از ابداع ترانزیستور توسط جان باردین ، مفهوم و اهمیت مدارهای مجتمع روشن شد. پس از آن موفقیت بزرگ تجمع و اتصال تعداد بسیار زیادی از قطعات کوچک و اجزای الکترونیکی بر سطح زیر لایه تحول عظیمی در ساخت عملی مدارهای مجتمع بوجود آورد. با ابداع و رشد فناوری مینیاتور کردن قطعات الکترونیکی بشر به یکی از مهمترین دستاوردهای خود در قرن گذشته نائل آمد.

 

 

 

nano_system.jpg

سیر تکاملی و رشد

 

با گسترش ، طراحی و ساخت مدارهای مجتمع بویژه افزایش انباشت قطعات در مقیاس خیلی بزرگ در دهه 1980 تلاش برای کوچکتر کردن قطعات میکرو الکترونیکی ادامه یافت. از طرف دیگر تقاضای جدید برای ساخت مدارهای مجتمع بویژه مدارهای حافظه شامل حافظه دینامیکی (DRAM) و حافظه استاتیکی (SRAM) با ویژگیهایی نظیر سرعت عمل بالا توأم با کاهش اتلاف توان روز به روز بیشتر شد. در روند تکاملی فناوری فرامینیاتور کردن قطعات الکترونیکی بویژه در هندسه و مقیاس زیر میکرونی کمتر از 0.2 میکرومتر یعنی حوزه فناوری طراحی قطعات نانو الکترونی و فناوری ساخت مدارهای مجتمع از پیچیدگی خاصی برخوردار است.

 

بطور متوسط در هر شش سال ابعاد و اندازه قطعات الکترونیکی به نصف تقلیل یافته است. امروزه با استفاده از مزیتهای مجتمع سازی کوچکی قطعات ، بطور مشخص فناوری نانو الکترونیک ساختار اینگونه مدارهای مجتمع گسترده‌تر و پیچیده‌تر است. بطوری که این مدارها از ده‌ها میلیون ترانزیستور ،

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
،
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
و
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
تشکیل شده است. عرض خطوط اتصالات بین قطعات مختلف در سال 2000 میلادی 0.18 میکرومتر بود، که کاهش آن همچنان ادامه دارد.

 

در راستای پیشرفت این فناوری ، در همین سال مجموع فروش مدارهای مجتمع در دنیا حدود 150 میلیارد دلار بر آورد شده است. به این دلیل پیچیدگی و ویژگیهای خاص مدارهای مجتمع با ساختار نانومتری بکار گیری مواد جدید و ‏فرآیندهای بهتر تولید و همچنین استفاده روشهای دقیقتر ساخت.

 

 

 

nanotech-carbon.jpg

مشخصه یابی لایه نازک قطعات الکترونیکی

 

مشخصه یابی لایه نازک قطعات مختلف امری الزامی است. بعضی از فرآیندهای مهم ساخت مدارهای مجتمع عبارتند از:

 

 

 

  • نفوذ کاشت یونی
  • لیتوگرافی
  • فلز نشانی
  • غیر فعال سازی و غیره
     
    که در فناوری نانو الکترونیک برای انجام اینگونه فرآیندها باید از پارامترها و سیستمهای خاص استفاده کرد. مثلاً در فرآیند فلز نشانی استفاده از
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    بجای فلز رایج
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    برای اتصالات درونی بین قطعات مختلف عملی اجتناب ناپذیر است. اما نفوذ سریع اتمهای Cu در زیر Si در عملیات حرارتی منجر به تشکیل لایه سلیساید مس و در نهایت سبب تخریب قطعه الکترونیکی می‌شود. برای رفع این مشکل معمولاً از یک لایه میانی از مواد دیرگذار مانند Ta و w یا Mo به عنوان سد نفوذی برای بهبود پایداری حرارتی لایه Cu / Si استفاده می‌کنند.

ساخت و مشخصه یابی سیستمهای چند لایه‌ای

 

مشخصه یابی سیستمهای چند لایه‌ای Cu/Ta /Si اخیراً مورد مطالعه قرار گرفته است. در این زمینه تأثیر ولتاژ بایاس منفی بر بهبود خواص الکتریکی و ساختاری سد نفوذی لایه اسپاترنیگ Ta در سیستم Ta/Si گزارش شده است. همچنین در فناوری طراحی قطعات نانو الکترونی با استفاده ار میکروسکوب نیروی اتمی (AFM) و ساخت لایه‌های نازک مورد نیاز در مدارهای مجتمع مذکور فقط در محیطهای تعریف شده توسط روشهای دقیق لایه نشانی نظیر لایه نشانی با باریکه مولکولی (MBE) و لایه نشانی با بخار شیمیایی مواد آلی فلزی (MOCVD) امکان پذیر است.

 

 

 

C_nano_tube.jpg

وسعت فناوری نانو الکترونیک

 

در فناوری نانو الکترونیک فرآیندهایی سطح زیر لایه Si از جمله سوزش توسط فناوری پلاسما و باریکه یونی صورت می‌گیرد. اینگونه مدارهای مجتمع با ویژگیهای منحصر به فرد خود در مقیاس نانومتری کاربردهای متنوعی از سیستمهای مزوسکوپیک دارند. بعضی از این کاربردها عبارتند از:

 

 

 

  • ساخت نقطه‌ها و سیستمهای کوانتومی تونل زنی در دیودهای تشدید کننده مثل Si و Gi
  • طراحی و ساخت تقویت کننده‌های لیزری مثل InGap
  • طراحی و ساخت میکرو احساسگرها و ماشینهای میکرونی برای کاربردهای خاص
  • به دلیل اهمیت فناوری نانو الکترونیک در چند سال گذشته چندین کارگاه عملی در زمینه‌های مختلف فیزیک و فناوری نانو الکتریک برگزار شده است. با ادامه رشد و گسترش این فناوری پیشرفته ، در آینده شاهد تحول عظیمی در زمینه‌های ارتباطات خواهیم بود.

لینک به دیدگاه

نانوالکترونیک چیست؟

 

 

در دهه های اخیر شاهد پیشرفت های زیادی در زمینه افزایش قابلیت ذخیره اطلاعات روی حافظه ها و همچنین کاهش اندازه آن ها بوده ایم که نتیجه آن دو برابر شدن سرعت پردازش در عرض هر ۱۸ ماه بوده است و این، انتظار تحولی عظیم در صنعت میکروالکترونیک را طی ۱۵ سال آینده از نظر بنیادی و اقتصادی نوید می دهد.

 

 

 

 

 

 

 

 

 

 

 

 

92576fdc1d8d835930f8422e0f6e0828.jpg

 

 

 

 

 

 

 

 

 

 

 

فن آوری نانو نقطه همگرایی علوم مختلف در آینده است. در این میان یکی از پرکاربردترین شاخه ها نانو الکترونیک می باشد. امروزه افزایش ظرفیت ذخیره داده، افزایش سرعت انتقال آن و کوچک کردن هر چه بیشتر وسائل الکترونیکی و به خصوص ترانزیستورها دارای اهمیت بسیاری است زیرا کوچک تر شدن ابعاد وسائل الکترونیکی علاوه بر افزایش سرعت پردازش، توان مصرفی را نیز کاهش می دهد و نانو الکترونیک می تواند در رسیدن به ابعاد هر چه کوچک تر راهگشا باشد. برای آشنایی بیشتر با این فن آوری و درک عمیق تر پدیده های گوناگونی که در ابعاد نانو متر روی می دهد و در نتیجه تحلیل دقیق نتایج و اصلاح اصولی روش های آزمایش، باید علوم پایه ای نظیر فیزیک کوانتوم و مکانیک کوانتومی و فیزیک حالت جامد مورد مطالعه قرار بگیرند.

● اهداف:

در دهه های اخیر شاهد پیشرفت های زیادی در زمینه افزایش قابلیت ذخیره اطلاعات روی حافظه ها و همچنین کاهش اندازه آن ها بوده ایم که نتیجه آن دو برابر شدن سرعت پردازش در عرض هر ۱۸ ماه بوده است و این، انتظار تحولی عظیم در صنعت میکروالکترونیک را طی ۱۵ سال آینده از نظر بنیادی و اقتصادی نوید می دهد. اکنون نیز تحقیقات ادامه داشته و هدف از آن تولید خواص نمونه و شکل ظاهری جدید و در نتیجه خلق نانوالکترونیک جدید است.

● کاربرد نانوالکترونیک در صنعت:

با استفاده از این فناوری می توان ظرفیت ذخیره سازی اطلاعات را در حد ۱۰۰۰ برابر یا بیشتر افزایش داد که این نهایتاً به ساخت ابزارهای ابرمحاسباتی به کوچکی یک ساعت مچی منتهی می شود. ظرفیت نهایی ذخیره اطلاعات به حدود یک ترابیت در هر اینچ مربع رسده، و این امر موجب ذخیره سازی ۵۰ عدد DVD یا بیشتر در یک هارد دیسک با ابعاد یک کارت اعتباری می شود. ساخت تراشه ها در اندازه های فوق العاده کوچک به عنوان مثال در اندازه های ۳۲ تا ۹۰ نانومتر، تولید دیسک های نوری ۱۰۰ گیگابایتی در اندازه های کوچک نیز از دیگر محصولات آن می باشد.

● نمونه هایی از کاربرد فن آوری نانو در الکترونیک:

۱) کربن نانو تیوب ها (carbon nanotubes)

نانو تیوب ها دارای فرم لوله ای با ساختار شش ضلعی هستند. نانو تیوب ها را می توان صفحات گرافیتی فرض کرد که لوله شده اند. بر اساس محور چرخش صفحات نانو تیوب ها می توانند رسانا یا نیمه رسانا باشند.

به علت اینکه کربن با سه پیوند همچنان دارای یک اوربیتال خالی p می باشد ، حرکت موجی الکترون ها به راحتی در سطح بیرونی این لوله ها صورت می گیرد. این ساختار کربنی علاوه بر رسانایی بالا دارای استحکام مکانیکی بسیار خوبی نیز است. البته در کنار این مزایا مشکلاتی نیز وجود دارد. اغلب فرآیند های ساخت نانو تیوب ها به گو نه ای می باشند که امکان کنترل و نظارت کامل در طول فرآیند وجود ندارد به عنوان مثال تعیین قطر دقیق و یکسان برای لوله های کشت شده در یک محیط، کنترل تولید نانو لوله های تک دیواره و یا چند لایه و یا ساخت نانو لوله های مستقیم و بدون خم شدگی با طول زیاد از مسائلی است که هنوز در فرآیند بهبود کیفیت تولید نیاز به مطالعه و تحقیقات بیشتری دارد. همچنین به علت پدیده تونل زنی الکترون که یک پدیده کوانتومی است امکان افزایش نشتی جریان و در نتیجه افزایش تلفات وجود دارد که بررسی روش های کاهش احتمال تونل زنی از جمله کارهایی است که می توان انجام داد. از کربن نانو تیوب ها به دلیل رسانایی بالا و مقاومت کم در دمای محیط در ساخت کانال هدایت ترانزیستورها ، نوک میکروسکوپ های عکسبرداری در ابعاد نانو استفاده می شود.

۲ ) نانو ترانزیستورها (nanotransistors)

طبق قانون مور( MOORE Law) تعداد ترانزیستورها در واحد سطح تراشه های الکترونیکی در هر بازه ۱۰ تا ۱۸ ماهه دو برابر می شود. نام فن آوری رایج امروز در ساخت ترانزیستورها، MOSFET می باشد که بر پایه استفاده از سیلیکون است. کوچکتر شدن ابعاد ترانزیستورها در MOSFET دارای مشکلاتی است که از جمله آن نشتی های جریان متفاوتی است که ایجاد می شود. یکی از روش های حل این مشکل ساخت تراتزیستورها با استفاده از نانو سختارها و به خصوص نانو تیوب ها می باشد.

۳ ) محاسبه گر ها در مقیاس نانو ( nanocomputers)

امروزه در زمینه های مختلف از جمله فن آوری نانو پیوند میان رشته های مختلف علوم امری انکار ناپذیر است. از جمله نتایج این همکاری طراحی نانو محاسبه گرها می باشد. هیدرو کربن های آروماتیک از ریشه بنزن به علت وجود اوربیتال های p و ابر الکترونی در بالا و پایین آنها و همچنین پدیده رزونانس می توانند محیط انتقال خوبی برای الکترون باشند و بر عکس هیدروکربن های زنجیری مانند نارسانا عمل می کنند. از به هم پیوستن این هیدروکربن ها با هم می توان دیود، گیت های منطقی و مدارهای الکترونیکی را طراحی کرد.

۴ ) MRAMها ( Magnetic Random Access Memories )

فن آوری های روز حافظه ( RAM, Flash Memory, …) مشکلات متعددی را برای مصرف کنندگان آنها به وجود آورده است که به عنوان نمونه می توان به سرعت پایین خواندن و نوشتن روی Flash Memories و EEPROM و یا محدودیت اقتصادی افزایش فضای RAM اشاره کرد. MRAM یک فن آوری حافظه پایدار است که علاوه بر سرعت بالا می تواند ظرفیت حافظه بالایی را نیز فراهم کند. اساس کار MRAM بر پایه تفاوت مقاومت الکتریکی لایه های نازک مواد بر اثر قطبیده شدن ذرات آنها در راستاهای متفاوت می باشد؛ که به مقاومت مغناطیسی موسوم است. چون سلول های حافظه MRAM بر پایه ترانزیستور عمل نمی کنند پس در ابعاد کوچک مشکلاتی نظیر تونل زنی رخ نخواهد داد و می توان سلول های حافظه MRAM را تا ابعاد نانو کوچک کرد.

۵ ) C۶۰

از جمله نانو ساختارها که حتی نسبت به نانو لوله های کربنی دارای مزایای بیشتری نیز می باشد C۶۰ است. C۶۰ از ۱۲ پنج ضلعی و ۲۰ شش ضلعی تشکیل شده که به شکل متقارنی در کنار هم قرار گرفته اند.

مولکول های C۶۰ در محلول های بنزن یافت می شوند که با عمل تبخیر قابل استحصال می باشند. انواع ترکیبات C۶۰ با فلزات، نظیر K۳C۶۰ , Cs۲RbC۶۰ ، که در آنها فلز فضای خالی درون C۶۰ را پر می کند دارای خاصیت ابر رسانایی در دماهای نسبتاً مناسب می باشند؛ البته تحقیقات برای دستیابی به ترکیباتی با خاصیت ابررسانایی در دماهای بالاتر همچنان ادامه دارد. کاربرد دیگر C۶۰ استفاده از آن به عنوان گیت های منطقی است. با لیتوگرافی طلا روی یک سطح سیلیکونی و عبور جریان از سیم های طلا یک صفحه مشبک ایجاد می شودکه فاصله بین اتصالات آن در حدود نانو متر است. محلول رقیق C۶۰ را بین اتصالات قرار می دهند به طوری که در هر فاصله یک C۶۰ قرار گیرد. با برقرار شدن جریان در سیم های طلا C۶۰ به علت یک پدیده کوانتومی شروع به نوسان می کند و به همین علت جریان در زمان های معینی بر قرار می شود از این خاصیت می توان در طراحی گیت های منطقی استفاده کرد.

کارهایی که باید در راستای پیشرفت این علم انجام شود:

نانو الکترونیک زمینه گسترده ای با پتانسیل ایجاد تغییرات بنیادی در علوم مختلف حتی در پزشکی است و انجام کارهای زیر برای پیشبرد آن می تواند مفید باشد:

۱) فهم اصول انتقال در مقیاس نانو

۲) گسترش فهم هرچه بهتر روش های خودچیدمانی(self assembly) ذرات برای انجام کارها به صورت ارزان تر، که این خود مستلزم حل مشکلات ارتباطی و جایگزینی در ترانزیستورهاست

۳) یافتن راه هایی جدید برای به کار بردن علم الکترونیک و عدم تکثیر ابزار و به جای آن تحقیق راجع به انواع جدیدتر.

لینک به دیدگاه

به گفتگو بپیوندید

هم اکنون می توانید مطلب خود را ارسال نمایید و بعداً ثبت نام کنید. اگر حساب کاربری دارید، برای ارسال با حساب کاربری خود اکنون وارد شوید .

مهمان
ارسال پاسخ به این موضوع ...

×   شما در حال چسباندن محتوایی با قالب بندی هستید.   حذف قالب بندی

  تنها استفاده از 75 اموجی مجاز می باشد.

×   لینک شما به صورت اتوماتیک جای گذاری شد.   نمایش به صورت لینک

×   محتوای قبلی شما بازگردانی شد.   پاک کردن محتوای ویرایشگر

×   شما مستقیما نمی توانید تصویر خود را قرار دهید. یا آن را اینجا بارگذاری کنید یا از یک URL قرار دهید.

×
×
  • اضافه کردن...